1484 lines
61 KiB
C++
1484 lines
61 KiB
C++
// © 2016 and later: Unicode, Inc. and others.
|
||
// License & terms of use: http://www.unicode.org/copyright.html
|
||
/**
|
||
*******************************************************************************
|
||
* Copyright (C) 2006-2016, International Business Machines Corporation
|
||
* and others. All Rights Reserved.
|
||
*******************************************************************************
|
||
*/
|
||
|
||
#include <utility>
|
||
|
||
#include "unicode/utypes.h"
|
||
|
||
#if !UCONFIG_NO_BREAK_ITERATION
|
||
|
||
#include "brkeng.h"
|
||
#include "dictbe.h"
|
||
#include "unicode/uniset.h"
|
||
#include "unicode/chariter.h"
|
||
#include "unicode/resbund.h"
|
||
#include "unicode/ubrk.h"
|
||
#include "unicode/usetiter.h"
|
||
#include "ubrkimpl.h"
|
||
#include "utracimp.h"
|
||
#include "uvectr32.h"
|
||
#include "uvector.h"
|
||
#include "uassert.h"
|
||
#include "unicode/normlzr.h"
|
||
#include "cmemory.h"
|
||
#include "dictionarydata.h"
|
||
|
||
U_NAMESPACE_BEGIN
|
||
|
||
/*
|
||
******************************************************************
|
||
*/
|
||
|
||
DictionaryBreakEngine::DictionaryBreakEngine() {
|
||
}
|
||
|
||
DictionaryBreakEngine::~DictionaryBreakEngine() {
|
||
}
|
||
|
||
UBool
|
||
DictionaryBreakEngine::handles(UChar32 c) const {
|
||
return fSet.contains(c);
|
||
}
|
||
|
||
int32_t
|
||
DictionaryBreakEngine::findBreaks( UText *text,
|
||
int32_t startPos,
|
||
int32_t endPos,
|
||
UVector32 &foundBreaks,
|
||
UBool isPhraseBreaking,
|
||
UErrorCode& status) const {
|
||
if (U_FAILURE(status)) return 0;
|
||
(void)startPos; // TODO: remove this param?
|
||
int32_t result = 0;
|
||
|
||
// Find the span of characters included in the set.
|
||
// The span to break begins at the current position in the text, and
|
||
// extends towards the start or end of the text, depending on 'reverse'.
|
||
|
||
int32_t start = (int32_t)utext_getNativeIndex(text);
|
||
int32_t current;
|
||
int32_t rangeStart;
|
||
int32_t rangeEnd;
|
||
UChar32 c = utext_current32(text);
|
||
while((current = (int32_t)utext_getNativeIndex(text)) < endPos && fSet.contains(c)) {
|
||
utext_next32(text); // TODO: recast loop for postincrement
|
||
c = utext_current32(text);
|
||
}
|
||
rangeStart = start;
|
||
rangeEnd = current;
|
||
result = divideUpDictionaryRange(text, rangeStart, rangeEnd, foundBreaks, isPhraseBreaking, status);
|
||
utext_setNativeIndex(text, current);
|
||
|
||
return result;
|
||
}
|
||
|
||
void
|
||
DictionaryBreakEngine::setCharacters( const UnicodeSet &set ) {
|
||
fSet = set;
|
||
// Compact for caching
|
||
fSet.compact();
|
||
}
|
||
|
||
/*
|
||
******************************************************************
|
||
* PossibleWord
|
||
*/
|
||
|
||
// Helper class for improving readability of the Thai/Lao/Khmer word break
|
||
// algorithm. The implementation is completely inline.
|
||
|
||
// List size, limited by the maximum number of words in the dictionary
|
||
// that form a nested sequence.
|
||
static const int32_t POSSIBLE_WORD_LIST_MAX = 20;
|
||
|
||
class PossibleWord {
|
||
private:
|
||
// list of word candidate lengths, in increasing length order
|
||
// TODO: bytes would be sufficient for word lengths.
|
||
int32_t count; // Count of candidates
|
||
int32_t prefix; // The longest match with a dictionary word
|
||
int32_t offset; // Offset in the text of these candidates
|
||
int32_t mark; // The preferred candidate's offset
|
||
int32_t current; // The candidate we're currently looking at
|
||
int32_t cuLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code units.
|
||
int32_t cpLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code points.
|
||
|
||
public:
|
||
PossibleWord() : count(0), prefix(0), offset(-1), mark(0), current(0) {}
|
||
~PossibleWord() {}
|
||
|
||
// Fill the list of candidates if needed, select the longest, and return the number found
|
||
int32_t candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd );
|
||
|
||
// Select the currently marked candidate, point after it in the text, and invalidate self
|
||
int32_t acceptMarked( UText *text );
|
||
|
||
// Back up from the current candidate to the next shorter one; return true if that exists
|
||
// and point the text after it
|
||
UBool backUp( UText *text );
|
||
|
||
// Return the longest prefix this candidate location shares with a dictionary word
|
||
// Return value is in code points.
|
||
int32_t longestPrefix() { return prefix; }
|
||
|
||
// Mark the current candidate as the one we like
|
||
void markCurrent() { mark = current; }
|
||
|
||
// Get length in code points of the marked word.
|
||
int32_t markedCPLength() { return cpLengths[mark]; }
|
||
};
|
||
|
||
|
||
int32_t PossibleWord::candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ) {
|
||
// TODO: If getIndex is too slow, use offset < 0 and add discardAll()
|
||
int32_t start = (int32_t)utext_getNativeIndex(text);
|
||
if (start != offset) {
|
||
offset = start;
|
||
count = dict->matches(text, rangeEnd-start, UPRV_LENGTHOF(cuLengths), cuLengths, cpLengths, NULL, &prefix);
|
||
// Dictionary leaves text after longest prefix, not longest word. Back up.
|
||
if (count <= 0) {
|
||
utext_setNativeIndex(text, start);
|
||
}
|
||
}
|
||
if (count > 0) {
|
||
utext_setNativeIndex(text, start+cuLengths[count-1]);
|
||
}
|
||
current = count-1;
|
||
mark = current;
|
||
return count;
|
||
}
|
||
|
||
int32_t
|
||
PossibleWord::acceptMarked( UText *text ) {
|
||
utext_setNativeIndex(text, offset + cuLengths[mark]);
|
||
return cuLengths[mark];
|
||
}
|
||
|
||
|
||
UBool
|
||
PossibleWord::backUp( UText *text ) {
|
||
if (current > 0) {
|
||
utext_setNativeIndex(text, offset + cuLengths[--current]);
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/*
|
||
******************************************************************
|
||
* ThaiBreakEngine
|
||
*/
|
||
|
||
// How many words in a row are "good enough"?
|
||
static const int32_t THAI_LOOKAHEAD = 3;
|
||
|
||
// Will not combine a non-word with a preceding dictionary word longer than this
|
||
static const int32_t THAI_ROOT_COMBINE_THRESHOLD = 3;
|
||
|
||
// Will not combine a non-word that shares at least this much prefix with a
|
||
// dictionary word, with a preceding word
|
||
static const int32_t THAI_PREFIX_COMBINE_THRESHOLD = 3;
|
||
|
||
// Elision character
|
||
static const int32_t THAI_PAIYANNOI = 0x0E2F;
|
||
|
||
// Repeat character
|
||
static const int32_t THAI_MAIYAMOK = 0x0E46;
|
||
|
||
// Minimum word size
|
||
static const int32_t THAI_MIN_WORD = 2;
|
||
|
||
// Minimum number of characters for two words
|
||
static const int32_t THAI_MIN_WORD_SPAN = THAI_MIN_WORD * 2;
|
||
|
||
ThaiBreakEngine::ThaiBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
|
||
: DictionaryBreakEngine(),
|
||
fDictionary(adoptDictionary)
|
||
{
|
||
UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE);
|
||
UTRACE_DATA1(UTRACE_INFO, "dictbe=%s", "Thai");
|
||
UnicodeSet thaiWordSet(UnicodeString(u"[[:Thai:]&[:LineBreak=SA:]]"), status);
|
||
if (U_SUCCESS(status)) {
|
||
setCharacters(thaiWordSet);
|
||
}
|
||
fMarkSet.applyPattern(UnicodeString(u"[[:Thai:]&[:LineBreak=SA:]&[:M:]]"), status);
|
||
fMarkSet.add(0x0020);
|
||
fEndWordSet = thaiWordSet;
|
||
fEndWordSet.remove(0x0E31); // MAI HAN-AKAT
|
||
fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
|
||
fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK
|
||
fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
|
||
fSuffixSet.add(THAI_PAIYANNOI);
|
||
fSuffixSet.add(THAI_MAIYAMOK);
|
||
|
||
// Compact for caching.
|
||
fMarkSet.compact();
|
||
fEndWordSet.compact();
|
||
fBeginWordSet.compact();
|
||
fSuffixSet.compact();
|
||
UTRACE_EXIT_STATUS(status);
|
||
}
|
||
|
||
ThaiBreakEngine::~ThaiBreakEngine() {
|
||
delete fDictionary;
|
||
}
|
||
|
||
int32_t
|
||
ThaiBreakEngine::divideUpDictionaryRange( UText *text,
|
||
int32_t rangeStart,
|
||
int32_t rangeEnd,
|
||
UVector32 &foundBreaks,
|
||
UBool /* isPhraseBreaking */,
|
||
UErrorCode& status) const {
|
||
if (U_FAILURE(status)) return 0;
|
||
utext_setNativeIndex(text, rangeStart);
|
||
utext_moveIndex32(text, THAI_MIN_WORD_SPAN);
|
||
if (utext_getNativeIndex(text) >= rangeEnd) {
|
||
return 0; // Not enough characters for two words
|
||
}
|
||
utext_setNativeIndex(text, rangeStart);
|
||
|
||
|
||
uint32_t wordsFound = 0;
|
||
int32_t cpWordLength = 0; // Word Length in Code Points.
|
||
int32_t cuWordLength = 0; // Word length in code units (UText native indexing)
|
||
int32_t current;
|
||
PossibleWord words[THAI_LOOKAHEAD];
|
||
|
||
utext_setNativeIndex(text, rangeStart);
|
||
|
||
while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
|
||
cpWordLength = 0;
|
||
cuWordLength = 0;
|
||
|
||
// Look for candidate words at the current position
|
||
int32_t candidates = words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
|
||
|
||
// If we found exactly one, use that
|
||
if (candidates == 1) {
|
||
cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text);
|
||
cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength();
|
||
wordsFound += 1;
|
||
}
|
||
// If there was more than one, see which one can take us forward the most words
|
||
else if (candidates > 1) {
|
||
// If we're already at the end of the range, we're done
|
||
if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
|
||
goto foundBest;
|
||
}
|
||
do {
|
||
if (words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
|
||
// Followed by another dictionary word; mark first word as a good candidate
|
||
words[wordsFound%THAI_LOOKAHEAD].markCurrent();
|
||
|
||
// If we're already at the end of the range, we're done
|
||
if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
|
||
goto foundBest;
|
||
}
|
||
|
||
// See if any of the possible second words is followed by a third word
|
||
do {
|
||
// If we find a third word, stop right away
|
||
if (words[(wordsFound + 2) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
|
||
words[wordsFound % THAI_LOOKAHEAD].markCurrent();
|
||
goto foundBest;
|
||
}
|
||
}
|
||
while (words[(wordsFound + 1) % THAI_LOOKAHEAD].backUp(text));
|
||
}
|
||
}
|
||
while (words[wordsFound % THAI_LOOKAHEAD].backUp(text));
|
||
foundBest:
|
||
// Set UText position to after the accepted word.
|
||
cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text);
|
||
cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength();
|
||
wordsFound += 1;
|
||
}
|
||
|
||
// We come here after having either found a word or not. We look ahead to the
|
||
// next word. If it's not a dictionary word, we will combine it with the word we
|
||
// just found (if there is one), but only if the preceding word does not exceed
|
||
// the threshold.
|
||
// The text iterator should now be positioned at the end of the word we found.
|
||
|
||
UChar32 uc = 0;
|
||
if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < THAI_ROOT_COMBINE_THRESHOLD) {
|
||
// if it is a dictionary word, do nothing. If it isn't, then if there is
|
||
// no preceding word, or the non-word shares less than the minimum threshold
|
||
// of characters with a dictionary word, then scan to resynchronize
|
||
if (words[wordsFound % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
|
||
&& (cuWordLength == 0
|
||
|| words[wordsFound%THAI_LOOKAHEAD].longestPrefix() < THAI_PREFIX_COMBINE_THRESHOLD)) {
|
||
// Look for a plausible word boundary
|
||
int32_t remaining = rangeEnd - (current+cuWordLength);
|
||
UChar32 pc;
|
||
int32_t chars = 0;
|
||
for (;;) {
|
||
int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
|
||
pc = utext_next32(text);
|
||
int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
|
||
chars += pcSize;
|
||
remaining -= pcSize;
|
||
if (remaining <= 0) {
|
||
break;
|
||
}
|
||
uc = utext_current32(text);
|
||
if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
|
||
// Maybe. See if it's in the dictionary.
|
||
// NOTE: In the original Apple code, checked that the next
|
||
// two characters after uc were not 0x0E4C THANTHAKHAT before
|
||
// checking the dictionary. That is just a performance filter,
|
||
// but it's not clear it's faster than checking the trie.
|
||
int32_t num_candidates = words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
|
||
utext_setNativeIndex(text, current + cuWordLength + chars);
|
||
if (num_candidates > 0) {
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Bump the word count if there wasn't already one
|
||
if (cuWordLength <= 0) {
|
||
wordsFound += 1;
|
||
}
|
||
|
||
// Update the length with the passed-over characters
|
||
cuWordLength += chars;
|
||
}
|
||
else {
|
||
// Back up to where we were for next iteration
|
||
utext_setNativeIndex(text, current+cuWordLength);
|
||
}
|
||
}
|
||
|
||
// Never stop before a combining mark.
|
||
int32_t currPos;
|
||
while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
|
||
utext_next32(text);
|
||
cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
|
||
}
|
||
|
||
// Look ahead for possible suffixes if a dictionary word does not follow.
|
||
// We do this in code rather than using a rule so that the heuristic
|
||
// resynch continues to function. For example, one of the suffix characters
|
||
// could be a typo in the middle of a word.
|
||
if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cuWordLength > 0) {
|
||
if (words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
|
||
&& fSuffixSet.contains(uc = utext_current32(text))) {
|
||
if (uc == THAI_PAIYANNOI) {
|
||
if (!fSuffixSet.contains(utext_previous32(text))) {
|
||
// Skip over previous end and PAIYANNOI
|
||
utext_next32(text);
|
||
int32_t paiyannoiIndex = (int32_t)utext_getNativeIndex(text);
|
||
utext_next32(text);
|
||
cuWordLength += (int32_t)utext_getNativeIndex(text) - paiyannoiIndex; // Add PAIYANNOI to word
|
||
uc = utext_current32(text); // Fetch next character
|
||
}
|
||
else {
|
||
// Restore prior position
|
||
utext_next32(text);
|
||
}
|
||
}
|
||
if (uc == THAI_MAIYAMOK) {
|
||
if (utext_previous32(text) != THAI_MAIYAMOK) {
|
||
// Skip over previous end and MAIYAMOK
|
||
utext_next32(text);
|
||
int32_t maiyamokIndex = (int32_t)utext_getNativeIndex(text);
|
||
utext_next32(text);
|
||
cuWordLength += (int32_t)utext_getNativeIndex(text) - maiyamokIndex; // Add MAIYAMOK to word
|
||
}
|
||
else {
|
||
// Restore prior position
|
||
utext_next32(text);
|
||
}
|
||
}
|
||
}
|
||
else {
|
||
utext_setNativeIndex(text, current+cuWordLength);
|
||
}
|
||
}
|
||
|
||
// Did we find a word on this iteration? If so, push it on the break stack
|
||
if (cuWordLength > 0) {
|
||
foundBreaks.push((current+cuWordLength), status);
|
||
}
|
||
}
|
||
|
||
// Don't return a break for the end of the dictionary range if there is one there.
|
||
if (foundBreaks.peeki() >= rangeEnd) {
|
||
(void) foundBreaks.popi();
|
||
wordsFound -= 1;
|
||
}
|
||
|
||
return wordsFound;
|
||
}
|
||
|
||
/*
|
||
******************************************************************
|
||
* LaoBreakEngine
|
||
*/
|
||
|
||
// How many words in a row are "good enough"?
|
||
static const int32_t LAO_LOOKAHEAD = 3;
|
||
|
||
// Will not combine a non-word with a preceding dictionary word longer than this
|
||
static const int32_t LAO_ROOT_COMBINE_THRESHOLD = 3;
|
||
|
||
// Will not combine a non-word that shares at least this much prefix with a
|
||
// dictionary word, with a preceding word
|
||
static const int32_t LAO_PREFIX_COMBINE_THRESHOLD = 3;
|
||
|
||
// Minimum word size
|
||
static const int32_t LAO_MIN_WORD = 2;
|
||
|
||
// Minimum number of characters for two words
|
||
static const int32_t LAO_MIN_WORD_SPAN = LAO_MIN_WORD * 2;
|
||
|
||
LaoBreakEngine::LaoBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
|
||
: DictionaryBreakEngine(),
|
||
fDictionary(adoptDictionary)
|
||
{
|
||
UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE);
|
||
UTRACE_DATA1(UTRACE_INFO, "dictbe=%s", "Laoo");
|
||
UnicodeSet laoWordSet(UnicodeString(u"[[:Laoo:]&[:LineBreak=SA:]]"), status);
|
||
if (U_SUCCESS(status)) {
|
||
setCharacters(laoWordSet);
|
||
}
|
||
fMarkSet.applyPattern(UnicodeString(u"[[:Laoo:]&[:LineBreak=SA:]&[:M:]]"), status);
|
||
fMarkSet.add(0x0020);
|
||
fEndWordSet = laoWordSet;
|
||
fEndWordSet.remove(0x0EC0, 0x0EC4); // prefix vowels
|
||
fBeginWordSet.add(0x0E81, 0x0EAE); // basic consonants (including holes for corresponding Thai characters)
|
||
fBeginWordSet.add(0x0EDC, 0x0EDD); // digraph consonants (no Thai equivalent)
|
||
fBeginWordSet.add(0x0EC0, 0x0EC4); // prefix vowels
|
||
|
||
// Compact for caching.
|
||
fMarkSet.compact();
|
||
fEndWordSet.compact();
|
||
fBeginWordSet.compact();
|
||
UTRACE_EXIT_STATUS(status);
|
||
}
|
||
|
||
LaoBreakEngine::~LaoBreakEngine() {
|
||
delete fDictionary;
|
||
}
|
||
|
||
int32_t
|
||
LaoBreakEngine::divideUpDictionaryRange( UText *text,
|
||
int32_t rangeStart,
|
||
int32_t rangeEnd,
|
||
UVector32 &foundBreaks,
|
||
UBool /* isPhraseBreaking */,
|
||
UErrorCode& status) const {
|
||
if (U_FAILURE(status)) return 0;
|
||
if ((rangeEnd - rangeStart) < LAO_MIN_WORD_SPAN) {
|
||
return 0; // Not enough characters for two words
|
||
}
|
||
|
||
uint32_t wordsFound = 0;
|
||
int32_t cpWordLength = 0;
|
||
int32_t cuWordLength = 0;
|
||
int32_t current;
|
||
PossibleWord words[LAO_LOOKAHEAD];
|
||
|
||
utext_setNativeIndex(text, rangeStart);
|
||
|
||
while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
|
||
cuWordLength = 0;
|
||
cpWordLength = 0;
|
||
|
||
// Look for candidate words at the current position
|
||
int32_t candidates = words[wordsFound%LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
|
||
|
||
// If we found exactly one, use that
|
||
if (candidates == 1) {
|
||
cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text);
|
||
cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength();
|
||
wordsFound += 1;
|
||
}
|
||
// If there was more than one, see which one can take us forward the most words
|
||
else if (candidates > 1) {
|
||
// If we're already at the end of the range, we're done
|
||
if (utext_getNativeIndex(text) >= rangeEnd) {
|
||
goto foundBest;
|
||
}
|
||
do {
|
||
if (words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
|
||
// Followed by another dictionary word; mark first word as a good candidate
|
||
words[wordsFound%LAO_LOOKAHEAD].markCurrent();
|
||
|
||
// If we're already at the end of the range, we're done
|
||
if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
|
||
goto foundBest;
|
||
}
|
||
|
||
// See if any of the possible second words is followed by a third word
|
||
do {
|
||
// If we find a third word, stop right away
|
||
if (words[(wordsFound + 2) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
|
||
words[wordsFound % LAO_LOOKAHEAD].markCurrent();
|
||
goto foundBest;
|
||
}
|
||
}
|
||
while (words[(wordsFound + 1) % LAO_LOOKAHEAD].backUp(text));
|
||
}
|
||
}
|
||
while (words[wordsFound % LAO_LOOKAHEAD].backUp(text));
|
||
foundBest:
|
||
cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text);
|
||
cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength();
|
||
wordsFound += 1;
|
||
}
|
||
|
||
// We come here after having either found a word or not. We look ahead to the
|
||
// next word. If it's not a dictionary word, we will combine it with the word we
|
||
// just found (if there is one), but only if the preceding word does not exceed
|
||
// the threshold.
|
||
// The text iterator should now be positioned at the end of the word we found.
|
||
if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < LAO_ROOT_COMBINE_THRESHOLD) {
|
||
// if it is a dictionary word, do nothing. If it isn't, then if there is
|
||
// no preceding word, or the non-word shares less than the minimum threshold
|
||
// of characters with a dictionary word, then scan to resynchronize
|
||
if (words[wordsFound % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
|
||
&& (cuWordLength == 0
|
||
|| words[wordsFound%LAO_LOOKAHEAD].longestPrefix() < LAO_PREFIX_COMBINE_THRESHOLD)) {
|
||
// Look for a plausible word boundary
|
||
int32_t remaining = rangeEnd - (current + cuWordLength);
|
||
UChar32 pc;
|
||
UChar32 uc;
|
||
int32_t chars = 0;
|
||
for (;;) {
|
||
int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
|
||
pc = utext_next32(text);
|
||
int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
|
||
chars += pcSize;
|
||
remaining -= pcSize;
|
||
if (remaining <= 0) {
|
||
break;
|
||
}
|
||
uc = utext_current32(text);
|
||
if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
|
||
// Maybe. See if it's in the dictionary.
|
||
// TODO: this looks iffy; compare with old code.
|
||
int32_t num_candidates = words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
|
||
utext_setNativeIndex(text, current + cuWordLength + chars);
|
||
if (num_candidates > 0) {
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Bump the word count if there wasn't already one
|
||
if (cuWordLength <= 0) {
|
||
wordsFound += 1;
|
||
}
|
||
|
||
// Update the length with the passed-over characters
|
||
cuWordLength += chars;
|
||
}
|
||
else {
|
||
// Back up to where we were for next iteration
|
||
utext_setNativeIndex(text, current + cuWordLength);
|
||
}
|
||
}
|
||
|
||
// Never stop before a combining mark.
|
||
int32_t currPos;
|
||
while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
|
||
utext_next32(text);
|
||
cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
|
||
}
|
||
|
||
// Look ahead for possible suffixes if a dictionary word does not follow.
|
||
// We do this in code rather than using a rule so that the heuristic
|
||
// resynch continues to function. For example, one of the suffix characters
|
||
// could be a typo in the middle of a word.
|
||
// NOT CURRENTLY APPLICABLE TO LAO
|
||
|
||
// Did we find a word on this iteration? If so, push it on the break stack
|
||
if (cuWordLength > 0) {
|
||
foundBreaks.push((current+cuWordLength), status);
|
||
}
|
||
}
|
||
|
||
// Don't return a break for the end of the dictionary range if there is one there.
|
||
if (foundBreaks.peeki() >= rangeEnd) {
|
||
(void) foundBreaks.popi();
|
||
wordsFound -= 1;
|
||
}
|
||
|
||
return wordsFound;
|
||
}
|
||
|
||
/*
|
||
******************************************************************
|
||
* BurmeseBreakEngine
|
||
*/
|
||
|
||
// How many words in a row are "good enough"?
|
||
static const int32_t BURMESE_LOOKAHEAD = 3;
|
||
|
||
// Will not combine a non-word with a preceding dictionary word longer than this
|
||
static const int32_t BURMESE_ROOT_COMBINE_THRESHOLD = 3;
|
||
|
||
// Will not combine a non-word that shares at least this much prefix with a
|
||
// dictionary word, with a preceding word
|
||
static const int32_t BURMESE_PREFIX_COMBINE_THRESHOLD = 3;
|
||
|
||
// Minimum word size
|
||
static const int32_t BURMESE_MIN_WORD = 2;
|
||
|
||
// Minimum number of characters for two words
|
||
static const int32_t BURMESE_MIN_WORD_SPAN = BURMESE_MIN_WORD * 2;
|
||
|
||
BurmeseBreakEngine::BurmeseBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
|
||
: DictionaryBreakEngine(),
|
||
fDictionary(adoptDictionary)
|
||
{
|
||
UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE);
|
||
UTRACE_DATA1(UTRACE_INFO, "dictbe=%s", "Mymr");
|
||
fBeginWordSet.add(0x1000, 0x102A); // basic consonants and independent vowels
|
||
fEndWordSet.applyPattern(UnicodeString(u"[[:Mymr:]&[:LineBreak=SA:]]"), status);
|
||
fMarkSet.applyPattern(UnicodeString(u"[[:Mymr:]&[:LineBreak=SA:]&[:M:]]"), status);
|
||
fMarkSet.add(0x0020);
|
||
if (U_SUCCESS(status)) {
|
||
setCharacters(fEndWordSet);
|
||
}
|
||
|
||
// Compact for caching.
|
||
fMarkSet.compact();
|
||
fEndWordSet.compact();
|
||
fBeginWordSet.compact();
|
||
UTRACE_EXIT_STATUS(status);
|
||
}
|
||
|
||
BurmeseBreakEngine::~BurmeseBreakEngine() {
|
||
delete fDictionary;
|
||
}
|
||
|
||
int32_t
|
||
BurmeseBreakEngine::divideUpDictionaryRange( UText *text,
|
||
int32_t rangeStart,
|
||
int32_t rangeEnd,
|
||
UVector32 &foundBreaks,
|
||
UBool /* isPhraseBreaking */,
|
||
UErrorCode& status ) const {
|
||
if (U_FAILURE(status)) return 0;
|
||
if ((rangeEnd - rangeStart) < BURMESE_MIN_WORD_SPAN) {
|
||
return 0; // Not enough characters for two words
|
||
}
|
||
|
||
uint32_t wordsFound = 0;
|
||
int32_t cpWordLength = 0;
|
||
int32_t cuWordLength = 0;
|
||
int32_t current;
|
||
PossibleWord words[BURMESE_LOOKAHEAD];
|
||
|
||
utext_setNativeIndex(text, rangeStart);
|
||
|
||
while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
|
||
cuWordLength = 0;
|
||
cpWordLength = 0;
|
||
|
||
// Look for candidate words at the current position
|
||
int32_t candidates = words[wordsFound%BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
|
||
|
||
// If we found exactly one, use that
|
||
if (candidates == 1) {
|
||
cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text);
|
||
cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength();
|
||
wordsFound += 1;
|
||
}
|
||
// If there was more than one, see which one can take us forward the most words
|
||
else if (candidates > 1) {
|
||
// If we're already at the end of the range, we're done
|
||
if (utext_getNativeIndex(text) >= rangeEnd) {
|
||
goto foundBest;
|
||
}
|
||
do {
|
||
if (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
|
||
// Followed by another dictionary word; mark first word as a good candidate
|
||
words[wordsFound%BURMESE_LOOKAHEAD].markCurrent();
|
||
|
||
// If we're already at the end of the range, we're done
|
||
if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
|
||
goto foundBest;
|
||
}
|
||
|
||
// See if any of the possible second words is followed by a third word
|
||
do {
|
||
// If we find a third word, stop right away
|
||
if (words[(wordsFound + 2) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
|
||
words[wordsFound % BURMESE_LOOKAHEAD].markCurrent();
|
||
goto foundBest;
|
||
}
|
||
}
|
||
while (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].backUp(text));
|
||
}
|
||
}
|
||
while (words[wordsFound % BURMESE_LOOKAHEAD].backUp(text));
|
||
foundBest:
|
||
cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text);
|
||
cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength();
|
||
wordsFound += 1;
|
||
}
|
||
|
||
// We come here after having either found a word or not. We look ahead to the
|
||
// next word. If it's not a dictionary word, we will combine it with the word we
|
||
// just found (if there is one), but only if the preceding word does not exceed
|
||
// the threshold.
|
||
// The text iterator should now be positioned at the end of the word we found.
|
||
if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < BURMESE_ROOT_COMBINE_THRESHOLD) {
|
||
// if it is a dictionary word, do nothing. If it isn't, then if there is
|
||
// no preceding word, or the non-word shares less than the minimum threshold
|
||
// of characters with a dictionary word, then scan to resynchronize
|
||
if (words[wordsFound % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
|
||
&& (cuWordLength == 0
|
||
|| words[wordsFound%BURMESE_LOOKAHEAD].longestPrefix() < BURMESE_PREFIX_COMBINE_THRESHOLD)) {
|
||
// Look for a plausible word boundary
|
||
int32_t remaining = rangeEnd - (current + cuWordLength);
|
||
UChar32 pc;
|
||
UChar32 uc;
|
||
int32_t chars = 0;
|
||
for (;;) {
|
||
int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
|
||
pc = utext_next32(text);
|
||
int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
|
||
chars += pcSize;
|
||
remaining -= pcSize;
|
||
if (remaining <= 0) {
|
||
break;
|
||
}
|
||
uc = utext_current32(text);
|
||
if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
|
||
// Maybe. See if it's in the dictionary.
|
||
// TODO: this looks iffy; compare with old code.
|
||
int32_t num_candidates = words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
|
||
utext_setNativeIndex(text, current + cuWordLength + chars);
|
||
if (num_candidates > 0) {
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Bump the word count if there wasn't already one
|
||
if (cuWordLength <= 0) {
|
||
wordsFound += 1;
|
||
}
|
||
|
||
// Update the length with the passed-over characters
|
||
cuWordLength += chars;
|
||
}
|
||
else {
|
||
// Back up to where we were for next iteration
|
||
utext_setNativeIndex(text, current + cuWordLength);
|
||
}
|
||
}
|
||
|
||
// Never stop before a combining mark.
|
||
int32_t currPos;
|
||
while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
|
||
utext_next32(text);
|
||
cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
|
||
}
|
||
|
||
// Look ahead for possible suffixes if a dictionary word does not follow.
|
||
// We do this in code rather than using a rule so that the heuristic
|
||
// resynch continues to function. For example, one of the suffix characters
|
||
// could be a typo in the middle of a word.
|
||
// NOT CURRENTLY APPLICABLE TO BURMESE
|
||
|
||
// Did we find a word on this iteration? If so, push it on the break stack
|
||
if (cuWordLength > 0) {
|
||
foundBreaks.push((current+cuWordLength), status);
|
||
}
|
||
}
|
||
|
||
// Don't return a break for the end of the dictionary range if there is one there.
|
||
if (foundBreaks.peeki() >= rangeEnd) {
|
||
(void) foundBreaks.popi();
|
||
wordsFound -= 1;
|
||
}
|
||
|
||
return wordsFound;
|
||
}
|
||
|
||
/*
|
||
******************************************************************
|
||
* KhmerBreakEngine
|
||
*/
|
||
|
||
// How many words in a row are "good enough"?
|
||
static const int32_t KHMER_LOOKAHEAD = 3;
|
||
|
||
// Will not combine a non-word with a preceding dictionary word longer than this
|
||
static const int32_t KHMER_ROOT_COMBINE_THRESHOLD = 3;
|
||
|
||
// Will not combine a non-word that shares at least this much prefix with a
|
||
// dictionary word, with a preceding word
|
||
static const int32_t KHMER_PREFIX_COMBINE_THRESHOLD = 3;
|
||
|
||
// Minimum word size
|
||
static const int32_t KHMER_MIN_WORD = 2;
|
||
|
||
// Minimum number of characters for two words
|
||
static const int32_t KHMER_MIN_WORD_SPAN = KHMER_MIN_WORD * 2;
|
||
|
||
KhmerBreakEngine::KhmerBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
|
||
: DictionaryBreakEngine(),
|
||
fDictionary(adoptDictionary)
|
||
{
|
||
UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE);
|
||
UTRACE_DATA1(UTRACE_INFO, "dictbe=%s", "Khmr");
|
||
UnicodeSet khmerWordSet(UnicodeString(u"[[:Khmr:]&[:LineBreak=SA:]]"), status);
|
||
if (U_SUCCESS(status)) {
|
||
setCharacters(khmerWordSet);
|
||
}
|
||
fMarkSet.applyPattern(UnicodeString(u"[[:Khmr:]&[:LineBreak=SA:]&[:M:]]"), status);
|
||
fMarkSet.add(0x0020);
|
||
fEndWordSet = khmerWordSet;
|
||
fBeginWordSet.add(0x1780, 0x17B3);
|
||
//fBeginWordSet.add(0x17A3, 0x17A4); // deprecated vowels
|
||
//fEndWordSet.remove(0x17A5, 0x17A9); // Khmer independent vowels that can't end a word
|
||
//fEndWordSet.remove(0x17B2); // Khmer independent vowel that can't end a word
|
||
fEndWordSet.remove(0x17D2); // KHMER SIGN COENG that combines some following characters
|
||
//fEndWordSet.remove(0x17B6, 0x17C5); // Remove dependent vowels
|
||
// fEndWordSet.remove(0x0E31); // MAI HAN-AKAT
|
||
// fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
|
||
// fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK
|
||
// fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
|
||
// fSuffixSet.add(THAI_PAIYANNOI);
|
||
// fSuffixSet.add(THAI_MAIYAMOK);
|
||
|
||
// Compact for caching.
|
||
fMarkSet.compact();
|
||
fEndWordSet.compact();
|
||
fBeginWordSet.compact();
|
||
// fSuffixSet.compact();
|
||
UTRACE_EXIT_STATUS(status);
|
||
}
|
||
|
||
KhmerBreakEngine::~KhmerBreakEngine() {
|
||
delete fDictionary;
|
||
}
|
||
|
||
int32_t
|
||
KhmerBreakEngine::divideUpDictionaryRange( UText *text,
|
||
int32_t rangeStart,
|
||
int32_t rangeEnd,
|
||
UVector32 &foundBreaks,
|
||
UBool /* isPhraseBreaking */,
|
||
UErrorCode& status ) const {
|
||
if (U_FAILURE(status)) return 0;
|
||
if ((rangeEnd - rangeStart) < KHMER_MIN_WORD_SPAN) {
|
||
return 0; // Not enough characters for two words
|
||
}
|
||
|
||
uint32_t wordsFound = 0;
|
||
int32_t cpWordLength = 0;
|
||
int32_t cuWordLength = 0;
|
||
int32_t current;
|
||
PossibleWord words[KHMER_LOOKAHEAD];
|
||
|
||
utext_setNativeIndex(text, rangeStart);
|
||
|
||
while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
|
||
cuWordLength = 0;
|
||
cpWordLength = 0;
|
||
|
||
// Look for candidate words at the current position
|
||
int32_t candidates = words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
|
||
|
||
// If we found exactly one, use that
|
||
if (candidates == 1) {
|
||
cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text);
|
||
cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength();
|
||
wordsFound += 1;
|
||
}
|
||
|
||
// If there was more than one, see which one can take us forward the most words
|
||
else if (candidates > 1) {
|
||
// If we're already at the end of the range, we're done
|
||
if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
|
||
goto foundBest;
|
||
}
|
||
do {
|
||
if (words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
|
||
// Followed by another dictionary word; mark first word as a good candidate
|
||
words[wordsFound % KHMER_LOOKAHEAD].markCurrent();
|
||
|
||
// If we're already at the end of the range, we're done
|
||
if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
|
||
goto foundBest;
|
||
}
|
||
|
||
// See if any of the possible second words is followed by a third word
|
||
do {
|
||
// If we find a third word, stop right away
|
||
if (words[(wordsFound + 2) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
|
||
words[wordsFound % KHMER_LOOKAHEAD].markCurrent();
|
||
goto foundBest;
|
||
}
|
||
}
|
||
while (words[(wordsFound + 1) % KHMER_LOOKAHEAD].backUp(text));
|
||
}
|
||
}
|
||
while (words[wordsFound % KHMER_LOOKAHEAD].backUp(text));
|
||
foundBest:
|
||
cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text);
|
||
cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength();
|
||
wordsFound += 1;
|
||
}
|
||
|
||
// We come here after having either found a word or not. We look ahead to the
|
||
// next word. If it's not a dictionary word, we will combine it with the word we
|
||
// just found (if there is one), but only if the preceding word does not exceed
|
||
// the threshold.
|
||
// The text iterator should now be positioned at the end of the word we found.
|
||
if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < KHMER_ROOT_COMBINE_THRESHOLD) {
|
||
// if it is a dictionary word, do nothing. If it isn't, then if there is
|
||
// no preceding word, or the non-word shares less than the minimum threshold
|
||
// of characters with a dictionary word, then scan to resynchronize
|
||
if (words[wordsFound % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
|
||
&& (cuWordLength == 0
|
||
|| words[wordsFound % KHMER_LOOKAHEAD].longestPrefix() < KHMER_PREFIX_COMBINE_THRESHOLD)) {
|
||
// Look for a plausible word boundary
|
||
int32_t remaining = rangeEnd - (current+cuWordLength);
|
||
UChar32 pc;
|
||
UChar32 uc;
|
||
int32_t chars = 0;
|
||
for (;;) {
|
||
int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
|
||
pc = utext_next32(text);
|
||
int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
|
||
chars += pcSize;
|
||
remaining -= pcSize;
|
||
if (remaining <= 0) {
|
||
break;
|
||
}
|
||
uc = utext_current32(text);
|
||
if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
|
||
// Maybe. See if it's in the dictionary.
|
||
int32_t num_candidates = words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
|
||
utext_setNativeIndex(text, current+cuWordLength+chars);
|
||
if (num_candidates > 0) {
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Bump the word count if there wasn't already one
|
||
if (cuWordLength <= 0) {
|
||
wordsFound += 1;
|
||
}
|
||
|
||
// Update the length with the passed-over characters
|
||
cuWordLength += chars;
|
||
}
|
||
else {
|
||
// Back up to where we were for next iteration
|
||
utext_setNativeIndex(text, current+cuWordLength);
|
||
}
|
||
}
|
||
|
||
// Never stop before a combining mark.
|
||
int32_t currPos;
|
||
while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
|
||
utext_next32(text);
|
||
cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
|
||
}
|
||
|
||
// Look ahead for possible suffixes if a dictionary word does not follow.
|
||
// We do this in code rather than using a rule so that the heuristic
|
||
// resynch continues to function. For example, one of the suffix characters
|
||
// could be a typo in the middle of a word.
|
||
// if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) {
|
||
// if (words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
|
||
// && fSuffixSet.contains(uc = utext_current32(text))) {
|
||
// if (uc == KHMER_PAIYANNOI) {
|
||
// if (!fSuffixSet.contains(utext_previous32(text))) {
|
||
// // Skip over previous end and PAIYANNOI
|
||
// utext_next32(text);
|
||
// utext_next32(text);
|
||
// wordLength += 1; // Add PAIYANNOI to word
|
||
// uc = utext_current32(text); // Fetch next character
|
||
// }
|
||
// else {
|
||
// // Restore prior position
|
||
// utext_next32(text);
|
||
// }
|
||
// }
|
||
// if (uc == KHMER_MAIYAMOK) {
|
||
// if (utext_previous32(text) != KHMER_MAIYAMOK) {
|
||
// // Skip over previous end and MAIYAMOK
|
||
// utext_next32(text);
|
||
// utext_next32(text);
|
||
// wordLength += 1; // Add MAIYAMOK to word
|
||
// }
|
||
// else {
|
||
// // Restore prior position
|
||
// utext_next32(text);
|
||
// }
|
||
// }
|
||
// }
|
||
// else {
|
||
// utext_setNativeIndex(text, current+wordLength);
|
||
// }
|
||
// }
|
||
|
||
// Did we find a word on this iteration? If so, push it on the break stack
|
||
if (cuWordLength > 0) {
|
||
foundBreaks.push((current+cuWordLength), status);
|
||
}
|
||
}
|
||
|
||
// Don't return a break for the end of the dictionary range if there is one there.
|
||
if (foundBreaks.peeki() >= rangeEnd) {
|
||
(void) foundBreaks.popi();
|
||
wordsFound -= 1;
|
||
}
|
||
|
||
return wordsFound;
|
||
}
|
||
|
||
#if !UCONFIG_NO_NORMALIZATION
|
||
/*
|
||
******************************************************************
|
||
* CjkBreakEngine
|
||
*/
|
||
static const uint32_t kuint32max = 0xFFFFFFFF;
|
||
CjkBreakEngine::CjkBreakEngine(DictionaryMatcher *adoptDictionary, LanguageType type, UErrorCode &status)
|
||
: DictionaryBreakEngine(), fDictionary(adoptDictionary) {
|
||
UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE);
|
||
UTRACE_DATA1(UTRACE_INFO, "dictbe=%s", "Hani");
|
||
nfkcNorm2 = Normalizer2::getNFKCInstance(status);
|
||
// Korean dictionary only includes Hangul syllables
|
||
fHangulWordSet.applyPattern(UnicodeString(u"[\\uac00-\\ud7a3]"), status);
|
||
fHangulWordSet.compact();
|
||
// Digits, open puncutation and Alphabetic characters.
|
||
fDigitOrOpenPunctuationOrAlphabetSet.applyPattern(
|
||
UnicodeString(u"[[:Nd:][:Pi:][:Ps:][:Alphabetic:]]"), status);
|
||
fDigitOrOpenPunctuationOrAlphabetSet.compact();
|
||
fClosePunctuationSet.applyPattern(UnicodeString(u"[[:Pc:][:Pd:][:Pe:][:Pf:][:Po:]]"), status);
|
||
fClosePunctuationSet.compact();
|
||
|
||
// handle Korean and Japanese/Chinese using different dictionaries
|
||
if (type == kKorean) {
|
||
if (U_SUCCESS(status)) {
|
||
setCharacters(fHangulWordSet);
|
||
}
|
||
} else { //Chinese and Japanese
|
||
UnicodeSet cjSet(UnicodeString(u"[[:Han:][:Hiragana:][:Katakana:]\\u30fc\\uff70\\uff9e\\uff9f]"), status);
|
||
if (U_SUCCESS(status)) {
|
||
setCharacters(cjSet);
|
||
initJapanesePhraseParameter(status);
|
||
}
|
||
}
|
||
UTRACE_EXIT_STATUS(status);
|
||
}
|
||
|
||
CjkBreakEngine::~CjkBreakEngine(){
|
||
delete fDictionary;
|
||
}
|
||
|
||
// The katakanaCost values below are based on the length frequencies of all
|
||
// katakana phrases in the dictionary
|
||
static const int32_t kMaxKatakanaLength = 8;
|
||
static const int32_t kMaxKatakanaGroupLength = 20;
|
||
static const uint32_t maxSnlp = 255;
|
||
|
||
static inline uint32_t getKatakanaCost(int32_t wordLength){
|
||
//TODO: fill array with actual values from dictionary!
|
||
static const uint32_t katakanaCost[kMaxKatakanaLength + 1]
|
||
= {8192, 984, 408, 240, 204, 252, 300, 372, 480};
|
||
return (wordLength > kMaxKatakanaLength) ? 8192 : katakanaCost[wordLength];
|
||
}
|
||
|
||
static inline bool isKatakana(UChar32 value) {
|
||
return (value >= 0x30A1 && value <= 0x30FE && value != 0x30FB) ||
|
||
(value >= 0xFF66 && value <= 0xFF9f);
|
||
}
|
||
|
||
// Function for accessing internal utext flags.
|
||
// Replicates an internal UText function.
|
||
|
||
static inline int32_t utext_i32_flag(int32_t bitIndex) {
|
||
return (int32_t)1 << bitIndex;
|
||
}
|
||
|
||
/*
|
||
* @param text A UText representing the text
|
||
* @param rangeStart The start of the range of dictionary characters
|
||
* @param rangeEnd The end of the range of dictionary characters
|
||
* @param foundBreaks vector<int32> to receive the break positions
|
||
* @return The number of breaks found
|
||
*/
|
||
int32_t
|
||
CjkBreakEngine::divideUpDictionaryRange( UText *inText,
|
||
int32_t rangeStart,
|
||
int32_t rangeEnd,
|
||
UVector32 &foundBreaks,
|
||
UBool isPhraseBreaking,
|
||
UErrorCode& status) const {
|
||
if (U_FAILURE(status)) return 0;
|
||
if (rangeStart >= rangeEnd) {
|
||
return 0;
|
||
}
|
||
|
||
// UnicodeString version of input UText, NFKC normalized if necessary.
|
||
UnicodeString inString;
|
||
|
||
// inputMap[inStringIndex] = corresponding native index from UText inText.
|
||
// If NULL then mapping is 1:1
|
||
LocalPointer<UVector32> inputMap;
|
||
|
||
// if UText has the input string as one contiguous UTF-16 chunk
|
||
if ((inText->providerProperties & utext_i32_flag(UTEXT_PROVIDER_STABLE_CHUNKS)) &&
|
||
inText->chunkNativeStart <= rangeStart &&
|
||
inText->chunkNativeLimit >= rangeEnd &&
|
||
inText->nativeIndexingLimit >= rangeEnd - inText->chunkNativeStart) {
|
||
|
||
// Input UText is in one contiguous UTF-16 chunk.
|
||
// Use Read-only aliasing UnicodeString.
|
||
inString.setTo(false,
|
||
inText->chunkContents + rangeStart - inText->chunkNativeStart,
|
||
rangeEnd - rangeStart);
|
||
} else {
|
||
// Copy the text from the original inText (UText) to inString (UnicodeString).
|
||
// Create a map from UnicodeString indices -> UText offsets.
|
||
utext_setNativeIndex(inText, rangeStart);
|
||
int32_t limit = rangeEnd;
|
||
U_ASSERT(limit <= utext_nativeLength(inText));
|
||
if (limit > utext_nativeLength(inText)) {
|
||
limit = (int32_t)utext_nativeLength(inText);
|
||
}
|
||
inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status);
|
||
if (U_FAILURE(status)) {
|
||
return 0;
|
||
}
|
||
while (utext_getNativeIndex(inText) < limit) {
|
||
int32_t nativePosition = (int32_t)utext_getNativeIndex(inText);
|
||
UChar32 c = utext_next32(inText);
|
||
U_ASSERT(c != U_SENTINEL);
|
||
inString.append(c);
|
||
while (inputMap->size() < inString.length()) {
|
||
inputMap->addElement(nativePosition, status);
|
||
}
|
||
}
|
||
inputMap->addElement(limit, status);
|
||
}
|
||
|
||
|
||
if (!nfkcNorm2->isNormalized(inString, status)) {
|
||
UnicodeString normalizedInput;
|
||
// normalizedMap[normalizedInput position] == original UText position.
|
||
LocalPointer<UVector32> normalizedMap(new UVector32(status), status);
|
||
if (U_FAILURE(status)) {
|
||
return 0;
|
||
}
|
||
|
||
UnicodeString fragment;
|
||
UnicodeString normalizedFragment;
|
||
for (int32_t srcI = 0; srcI < inString.length();) { // Once per normalization chunk
|
||
fragment.remove();
|
||
int32_t fragmentStartI = srcI;
|
||
UChar32 c = inString.char32At(srcI);
|
||
for (;;) {
|
||
fragment.append(c);
|
||
srcI = inString.moveIndex32(srcI, 1);
|
||
if (srcI == inString.length()) {
|
||
break;
|
||
}
|
||
c = inString.char32At(srcI);
|
||
if (nfkcNorm2->hasBoundaryBefore(c)) {
|
||
break;
|
||
}
|
||
}
|
||
nfkcNorm2->normalize(fragment, normalizedFragment, status);
|
||
normalizedInput.append(normalizedFragment);
|
||
|
||
// Map every position in the normalized chunk to the start of the chunk
|
||
// in the original input.
|
||
int32_t fragmentOriginalStart = inputMap.isValid() ?
|
||
inputMap->elementAti(fragmentStartI) : fragmentStartI+rangeStart;
|
||
while (normalizedMap->size() < normalizedInput.length()) {
|
||
normalizedMap->addElement(fragmentOriginalStart, status);
|
||
if (U_FAILURE(status)) {
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
U_ASSERT(normalizedMap->size() == normalizedInput.length());
|
||
int32_t nativeEnd = inputMap.isValid() ?
|
||
inputMap->elementAti(inString.length()) : inString.length()+rangeStart;
|
||
normalizedMap->addElement(nativeEnd, status);
|
||
|
||
inputMap = std::move(normalizedMap);
|
||
inString = std::move(normalizedInput);
|
||
}
|
||
|
||
int32_t numCodePts = inString.countChar32();
|
||
if (numCodePts != inString.length()) {
|
||
// There are supplementary characters in the input.
|
||
// The dictionary will produce boundary positions in terms of code point indexes,
|
||
// not in terms of code unit string indexes.
|
||
// Use the inputMap mechanism to take care of this in addition to indexing differences
|
||
// from normalization and/or UTF-8 input.
|
||
UBool hadExistingMap = inputMap.isValid();
|
||
if (!hadExistingMap) {
|
||
inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status);
|
||
if (U_FAILURE(status)) {
|
||
return 0;
|
||
}
|
||
}
|
||
int32_t cpIdx = 0;
|
||
for (int32_t cuIdx = 0; ; cuIdx = inString.moveIndex32(cuIdx, 1)) {
|
||
U_ASSERT(cuIdx >= cpIdx);
|
||
if (hadExistingMap) {
|
||
inputMap->setElementAt(inputMap->elementAti(cuIdx), cpIdx);
|
||
} else {
|
||
inputMap->addElement(cuIdx+rangeStart, status);
|
||
}
|
||
cpIdx++;
|
||
if (cuIdx == inString.length()) {
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// bestSnlp[i] is the snlp of the best segmentation of the first i
|
||
// code points in the range to be matched.
|
||
UVector32 bestSnlp(numCodePts + 1, status);
|
||
bestSnlp.addElement(0, status);
|
||
for(int32_t i = 1; i <= numCodePts; i++) {
|
||
bestSnlp.addElement(kuint32max, status);
|
||
}
|
||
|
||
|
||
// prev[i] is the index of the last CJK code point in the previous word in
|
||
// the best segmentation of the first i characters.
|
||
UVector32 prev(numCodePts + 1, status);
|
||
for(int32_t i = 0; i <= numCodePts; i++){
|
||
prev.addElement(-1, status);
|
||
}
|
||
|
||
const int32_t maxWordSize = 20;
|
||
UVector32 values(numCodePts, status);
|
||
values.setSize(numCodePts);
|
||
UVector32 lengths(numCodePts, status);
|
||
lengths.setSize(numCodePts);
|
||
|
||
UText fu = UTEXT_INITIALIZER;
|
||
utext_openUnicodeString(&fu, &inString, &status);
|
||
|
||
// Dynamic programming to find the best segmentation.
|
||
|
||
// In outer loop, i is the code point index,
|
||
// ix is the corresponding string (code unit) index.
|
||
// They differ when the string contains supplementary characters.
|
||
int32_t ix = 0;
|
||
bool is_prev_katakana = false;
|
||
for (int32_t i = 0; i < numCodePts; ++i, ix = inString.moveIndex32(ix, 1)) {
|
||
if ((uint32_t)bestSnlp.elementAti(i) == kuint32max) {
|
||
continue;
|
||
}
|
||
|
||
int32_t count;
|
||
utext_setNativeIndex(&fu, ix);
|
||
count = fDictionary->matches(&fu, maxWordSize, numCodePts,
|
||
NULL, lengths.getBuffer(), values.getBuffer(), NULL);
|
||
// Note: lengths is filled with code point lengths
|
||
// The NULL parameter is the ignored code unit lengths.
|
||
|
||
// if there are no single character matches found in the dictionary
|
||
// starting with this character, treat character as a 1-character word
|
||
// with the highest value possible, i.e. the least likely to occur.
|
||
// Exclude Korean characters from this treatment, as they should be left
|
||
// together by default.
|
||
if ((count == 0 || lengths.elementAti(0) != 1) &&
|
||
!fHangulWordSet.contains(inString.char32At(ix))) {
|
||
values.setElementAt(maxSnlp, count); // 255
|
||
lengths.setElementAt(1, count++);
|
||
}
|
||
|
||
for (int32_t j = 0; j < count; j++) {
|
||
uint32_t newSnlp = (uint32_t)bestSnlp.elementAti(i) + (uint32_t)values.elementAti(j);
|
||
int32_t ln_j_i = lengths.elementAti(j) + i;
|
||
if (newSnlp < (uint32_t)bestSnlp.elementAti(ln_j_i)) {
|
||
bestSnlp.setElementAt(newSnlp, ln_j_i);
|
||
prev.setElementAt(i, ln_j_i);
|
||
}
|
||
}
|
||
|
||
// In Japanese,
|
||
// Katakana word in single character is pretty rare. So we apply
|
||
// the following heuristic to Katakana: any continuous run of Katakana
|
||
// characters is considered a candidate word with a default cost
|
||
// specified in the katakanaCost table according to its length.
|
||
|
||
bool is_katakana = isKatakana(inString.char32At(ix));
|
||
int32_t katakanaRunLength = 1;
|
||
if (!is_prev_katakana && is_katakana) {
|
||
int32_t j = inString.moveIndex32(ix, 1);
|
||
// Find the end of the continuous run of Katakana characters
|
||
while (j < inString.length() && katakanaRunLength < kMaxKatakanaGroupLength &&
|
||
isKatakana(inString.char32At(j))) {
|
||
j = inString.moveIndex32(j, 1);
|
||
katakanaRunLength++;
|
||
}
|
||
if (katakanaRunLength < kMaxKatakanaGroupLength) {
|
||
uint32_t newSnlp = bestSnlp.elementAti(i) + getKatakanaCost(katakanaRunLength);
|
||
if (newSnlp < (uint32_t)bestSnlp.elementAti(i+katakanaRunLength)) {
|
||
bestSnlp.setElementAt(newSnlp, i+katakanaRunLength);
|
||
prev.setElementAt(i, i+katakanaRunLength); // prev[j] = i;
|
||
}
|
||
}
|
||
}
|
||
is_prev_katakana = is_katakana;
|
||
}
|
||
utext_close(&fu);
|
||
|
||
// Start pushing the optimal offset index into t_boundary (t for tentative).
|
||
// prev[numCodePts] is guaranteed to be meaningful.
|
||
// We'll first push in the reverse order, i.e.,
|
||
// t_boundary[0] = numCodePts, and afterwards do a swap.
|
||
UVector32 t_boundary(numCodePts+1, status);
|
||
|
||
int32_t numBreaks = 0;
|
||
// No segmentation found, set boundary to end of range
|
||
if ((uint32_t)bestSnlp.elementAti(numCodePts) == kuint32max) {
|
||
t_boundary.addElement(numCodePts, status);
|
||
numBreaks++;
|
||
} else if (isPhraseBreaking) {
|
||
t_boundary.addElement(numCodePts, status);
|
||
if(U_SUCCESS(status)) {
|
||
numBreaks++;
|
||
int32_t prevIdx = numCodePts;
|
||
|
||
int32_t codeUnitIdx = -1;
|
||
int32_t prevCodeUnitIdx = -1;
|
||
int32_t length = -1;
|
||
for (int32_t i = prev.elementAti(numCodePts); i > 0; i = prev.elementAti(i)) {
|
||
codeUnitIdx = inString.moveIndex32(0, i);
|
||
prevCodeUnitIdx = inString.moveIndex32(0, prevIdx);
|
||
// Calculate the length by using the code unit.
|
||
length = prevCodeUnitIdx - codeUnitIdx;
|
||
prevIdx = i;
|
||
// Keep the breakpoint if the pattern is not in the fSkipSet and continuous Katakana
|
||
// characters don't occur.
|
||
if (!fSkipSet.containsKey(inString.tempSubString(codeUnitIdx, length))
|
||
&& (!isKatakana(inString.char32At(inString.moveIndex32(codeUnitIdx, -1)))
|
||
|| !isKatakana(inString.char32At(codeUnitIdx)))) {
|
||
t_boundary.addElement(i, status);
|
||
numBreaks++;
|
||
}
|
||
}
|
||
}
|
||
} else {
|
||
for (int32_t i = numCodePts; i > 0; i = prev.elementAti(i)) {
|
||
t_boundary.addElement(i, status);
|
||
numBreaks++;
|
||
}
|
||
U_ASSERT(prev.elementAti(t_boundary.elementAti(numBreaks - 1)) == 0);
|
||
}
|
||
|
||
// Add a break for the start of the dictionary range if there is not one
|
||
// there already.
|
||
if (foundBreaks.size() == 0 || foundBreaks.peeki() < rangeStart) {
|
||
t_boundary.addElement(0, status);
|
||
numBreaks++;
|
||
}
|
||
|
||
// Now that we're done, convert positions in t_boundary[] (indices in
|
||
// the normalized input string) back to indices in the original input UText
|
||
// while reversing t_boundary and pushing values to foundBreaks.
|
||
int32_t prevCPPos = -1;
|
||
int32_t prevUTextPos = -1;
|
||
int32_t correctedNumBreaks = 0;
|
||
for (int32_t i = numBreaks - 1; i >= 0; i--) {
|
||
int32_t cpPos = t_boundary.elementAti(i);
|
||
U_ASSERT(cpPos > prevCPPos);
|
||
int32_t utextPos = inputMap.isValid() ? inputMap->elementAti(cpPos) : cpPos + rangeStart;
|
||
U_ASSERT(utextPos >= prevUTextPos);
|
||
if (utextPos > prevUTextPos) {
|
||
// Boundaries are added to foundBreaks output in ascending order.
|
||
U_ASSERT(foundBreaks.size() == 0 || foundBreaks.peeki() < utextPos);
|
||
// In phrase breaking, there has to be a breakpoint between Cj character and close
|
||
// punctuation.
|
||
// E.g.[携帯電話]正しい選択 -> [携帯▁電話]▁正しい▁選択 -> breakpoint between ] and 正
|
||
if (utextPos != rangeStart
|
||
|| (isPhraseBreaking && utextPos > 0
|
||
&& fClosePunctuationSet.contains(utext_char32At(inText, utextPos - 1)))) {
|
||
foundBreaks.push(utextPos, status);
|
||
correctedNumBreaks++;
|
||
}
|
||
} else {
|
||
// Normalization expanded the input text, the dictionary found a boundary
|
||
// within the expansion, giving two boundaries with the same index in the
|
||
// original text. Ignore the second. See ticket #12918.
|
||
--numBreaks;
|
||
}
|
||
prevCPPos = cpPos;
|
||
prevUTextPos = utextPos;
|
||
}
|
||
(void)prevCPPos; // suppress compiler warnings about unused variable
|
||
|
||
UChar32 nextChar = utext_char32At(inText, rangeEnd);
|
||
if (!foundBreaks.isEmpty() && foundBreaks.peeki() == rangeEnd) {
|
||
// In phrase breaking, there has to be a breakpoint between Cj character and
|
||
// the number/open punctuation.
|
||
// E.g. る文字「そうだ、京都」->る▁文字▁「そうだ、▁京都」-> breakpoint between 字 and「
|
||
// E.g. 乗車率90%程度だろうか -> 乗車▁率▁90%▁程度だろうか -> breakpoint between 率 and 9
|
||
// E.g. しかもロゴがUnicode! -> しかも▁ロゴが▁Unicode!-> breakpoint between が and U
|
||
if (isPhraseBreaking) {
|
||
if (!fDigitOrOpenPunctuationOrAlphabetSet.contains(nextChar)) {
|
||
foundBreaks.popi();
|
||
correctedNumBreaks--;
|
||
}
|
||
} else {
|
||
foundBreaks.popi();
|
||
correctedNumBreaks--;
|
||
}
|
||
}
|
||
|
||
// inString goes out of scope
|
||
// inputMap goes out of scope
|
||
return correctedNumBreaks;
|
||
}
|
||
|
||
void CjkBreakEngine::initJapanesePhraseParameter(UErrorCode& error) {
|
||
loadJapaneseExtensions(error);
|
||
loadHiragana(error);
|
||
}
|
||
|
||
void CjkBreakEngine::loadJapaneseExtensions(UErrorCode& error) {
|
||
const char* tag = "extensions";
|
||
ResourceBundle ja(U_ICUDATA_BRKITR, "ja", error);
|
||
if (U_SUCCESS(error)) {
|
||
ResourceBundle bundle = ja.get(tag, error);
|
||
while (U_SUCCESS(error) && bundle.hasNext()) {
|
||
fSkipSet.puti(bundle.getNextString(error), 1, error);
|
||
}
|
||
}
|
||
}
|
||
|
||
void CjkBreakEngine::loadHiragana(UErrorCode& error) {
|
||
UnicodeSet hiraganaWordSet(UnicodeString(u"[:Hiragana:]"), error);
|
||
hiraganaWordSet.compact();
|
||
UnicodeSetIterator iterator(hiraganaWordSet);
|
||
while (iterator.next()) {
|
||
fSkipSet.puti(UnicodeString(iterator.getCodepoint()), 1, error);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
U_NAMESPACE_END
|
||
|
||
#endif /* #if !UCONFIG_NO_BREAK_ITERATION */
|
||
|