c98ab5aba3
By using the render mode `world_vertex_coords` you can automatically use the vertex coordinates in world space
809 lines
24 KiB
GLSL
809 lines
24 KiB
GLSL
/* clang-format off */
|
|
#[modes]
|
|
|
|
mode_quad =
|
|
mode_ninepatch = #define USE_NINEPATCH
|
|
mode_primitive = #define USE_PRIMITIVE
|
|
mode_attributes = #define USE_ATTRIBUTES
|
|
mode_instanced = #define USE_ATTRIBUTES \n#define USE_INSTANCING
|
|
|
|
#[specializations]
|
|
|
|
DISABLE_LIGHTING = false
|
|
USE_RGBA_SHADOWS = false
|
|
SINGLE_INSTANCE = false
|
|
|
|
#[vertex]
|
|
|
|
#ifdef USE_ATTRIBUTES
|
|
layout(location = 0) in vec2 vertex_attrib;
|
|
layout(location = 3) in vec4 color_attrib;
|
|
layout(location = 4) in vec2 uv_attrib;
|
|
|
|
#ifdef USE_INSTANCING
|
|
|
|
layout(location = 1) in highp vec4 instance_xform0;
|
|
layout(location = 2) in highp vec4 instance_xform1;
|
|
layout(location = 5) in highp uvec4 instance_color_custom_data; // Color packed into xy, custom_data packed into zw for compatibility with 3D
|
|
|
|
#endif // USE_INSTANCING
|
|
|
|
#endif // USE_ATTRIBUTES
|
|
|
|
#include "stdlib_inc.glsl"
|
|
|
|
layout(location = 6) in highp vec4 attrib_A;
|
|
layout(location = 7) in highp vec4 attrib_B;
|
|
layout(location = 8) in highp vec4 attrib_C;
|
|
layout(location = 9) in highp vec4 attrib_D;
|
|
layout(location = 10) in highp vec4 attrib_E;
|
|
#ifdef USE_PRIMITIVE
|
|
layout(location = 11) in highp uvec4 attrib_F;
|
|
#else
|
|
layout(location = 11) in highp vec4 attrib_F;
|
|
#endif
|
|
layout(location = 12) in highp uvec4 attrib_G;
|
|
layout(location = 13) in highp uvec4 attrib_H;
|
|
|
|
#define read_draw_data_world_x attrib_A.xy
|
|
#define read_draw_data_world_y attrib_A.zw
|
|
#define read_draw_data_world_ofs attrib_B.xy
|
|
#define read_draw_data_color_texture_pixel_size attrib_B.zw
|
|
|
|
#ifdef USE_PRIMITIVE
|
|
|
|
#define read_draw_data_point_a attrib_C.xy
|
|
#define read_draw_data_point_b attrib_C.zw
|
|
#define read_draw_data_point_c attrib_D.xy
|
|
#define read_draw_data_uv_a attrib_D.zw
|
|
#define read_draw_data_uv_b attrib_E.xy
|
|
#define read_draw_data_uv_c attrib_E.zw
|
|
|
|
#define read_draw_data_color_a_rg attrib_F.x
|
|
#define read_draw_data_color_a_ba attrib_F.y
|
|
#define read_draw_data_color_b_rg attrib_F.z
|
|
#define read_draw_data_color_b_ba attrib_F.w
|
|
#define read_draw_data_color_c_rg attrib_G.x
|
|
#define read_draw_data_color_c_ba attrib_G.y
|
|
|
|
#else
|
|
|
|
#define read_draw_data_modulation attrib_C
|
|
#define read_draw_data_ninepatch_margins attrib_D
|
|
#define read_draw_data_dst_rect attrib_E
|
|
#define read_draw_data_src_rect attrib_F
|
|
|
|
#endif
|
|
|
|
#define read_draw_data_flags attrib_G.z
|
|
#define read_draw_data_specular_shininess attrib_G.w
|
|
#define read_draw_data_lights attrib_H
|
|
|
|
// Varyings so the per-instance info can be used in the fragment shader
|
|
flat out vec4 varying_A;
|
|
flat out vec2 varying_B;
|
|
#ifndef USE_PRIMITIVE
|
|
flat out vec4 varying_C;
|
|
#ifndef USE_ATTRIBUTES
|
|
#ifdef USE_NINEPATCH
|
|
|
|
flat out vec2 varying_D;
|
|
#endif
|
|
flat out vec4 varying_E;
|
|
#endif
|
|
#endif
|
|
flat out uvec2 varying_F;
|
|
flat out uvec4 varying_G;
|
|
|
|
// This needs to be outside clang-format so the ubo comment is in the right place
|
|
#ifdef MATERIAL_UNIFORMS_USED
|
|
layout(std140) uniform MaterialUniforms{ //ubo:4
|
|
|
|
#MATERIAL_UNIFORMS
|
|
|
|
};
|
|
#endif
|
|
/* clang-format on */
|
|
#include "canvas_uniforms_inc.glsl"
|
|
|
|
out vec2 uv_interp;
|
|
out vec4 color_interp;
|
|
out vec2 vertex_interp;
|
|
|
|
#ifdef USE_NINEPATCH
|
|
|
|
out vec2 pixel_size_interp;
|
|
|
|
#endif
|
|
|
|
#GLOBALS
|
|
|
|
void main() {
|
|
varying_A = vec4(read_draw_data_world_x, read_draw_data_world_y);
|
|
varying_B = read_draw_data_color_texture_pixel_size;
|
|
#ifndef USE_PRIMITIVE
|
|
varying_C = read_draw_data_ninepatch_margins;
|
|
|
|
#ifndef USE_ATTRIBUTES
|
|
#ifdef USE_NINEPATCH
|
|
varying_D = vec2(read_draw_data_dst_rect.z, read_draw_data_dst_rect.w);
|
|
#endif // USE_NINEPATCH
|
|
varying_E = read_draw_data_src_rect;
|
|
#endif // !USE_ATTRIBUTES
|
|
#endif // USE_PRIMITIVE
|
|
|
|
varying_F = uvec2(read_draw_data_flags, read_draw_data_specular_shininess);
|
|
varying_G = read_draw_data_lights;
|
|
|
|
vec4 instance_custom = vec4(0.0);
|
|
|
|
#ifdef USE_PRIMITIVE
|
|
vec2 vertex;
|
|
vec2 uv;
|
|
vec4 color;
|
|
|
|
if (gl_VertexID % 3 == 0) {
|
|
vertex = read_draw_data_point_a;
|
|
uv = read_draw_data_uv_a;
|
|
color = vec4(unpackHalf2x16(read_draw_data_color_a_rg), unpackHalf2x16(read_draw_data_color_a_ba));
|
|
} else if (gl_VertexID % 3 == 1) {
|
|
vertex = read_draw_data_point_b;
|
|
uv = read_draw_data_uv_b;
|
|
color = vec4(unpackHalf2x16(read_draw_data_color_b_rg), unpackHalf2x16(read_draw_data_color_b_ba));
|
|
} else {
|
|
vertex = read_draw_data_point_c;
|
|
uv = read_draw_data_uv_c;
|
|
color = vec4(unpackHalf2x16(read_draw_data_color_c_rg), unpackHalf2x16(read_draw_data_color_c_ba));
|
|
}
|
|
|
|
#elif defined(USE_ATTRIBUTES)
|
|
vec2 vertex = vertex_attrib;
|
|
vec4 color = color_attrib * read_draw_data_modulation;
|
|
vec2 uv = uv_attrib;
|
|
|
|
#ifdef USE_INSTANCING
|
|
if (bool(read_draw_data_flags & FLAGS_INSTANCING_HAS_COLORS)) {
|
|
vec4 instance_color = vec4(unpackHalf2x16(instance_color_custom_data.x), unpackHalf2x16(instance_color_custom_data.y));
|
|
color *= instance_color;
|
|
}
|
|
if (bool(read_draw_data_flags & FLAGS_INSTANCING_HAS_CUSTOM_DATA)) {
|
|
instance_custom = vec4(unpackHalf2x16(instance_color_custom_data.z), unpackHalf2x16(instance_color_custom_data.w));
|
|
}
|
|
#endif
|
|
|
|
#else
|
|
vec2 vertex_base_arr[6] = vec2[](vec2(0.0, 0.0), vec2(0.0, 1.0), vec2(1.0, 1.0), vec2(1.0, 0.0), vec2(0.0, 0.0), vec2(1.0, 1.0));
|
|
vec2 vertex_base = vertex_base_arr[gl_VertexID % 6];
|
|
|
|
vec2 uv = read_draw_data_src_rect.xy + abs(read_draw_data_src_rect.zw) * ((read_draw_data_flags & FLAGS_TRANSPOSE_RECT) != uint(0) ? vertex_base.yx : vertex_base.xy);
|
|
vec4 color = read_draw_data_modulation;
|
|
vec2 vertex = read_draw_data_dst_rect.xy + abs(read_draw_data_dst_rect.zw) * mix(vertex_base, vec2(1.0, 1.0) - vertex_base, lessThan(read_draw_data_src_rect.zw, vec2(0.0, 0.0)));
|
|
|
|
#endif
|
|
|
|
mat4 model_matrix = mat4(vec4(read_draw_data_world_x, 0.0, 0.0), vec4(read_draw_data_world_y, 0.0, 0.0), vec4(0.0, 0.0, 1.0, 0.0), vec4(read_draw_data_world_ofs, 0.0, 1.0));
|
|
|
|
#ifdef USE_INSTANCING
|
|
model_matrix = model_matrix * transpose(mat4(instance_xform0, instance_xform1, vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0)));
|
|
#endif // USE_INSTANCING
|
|
|
|
#if !defined(USE_ATTRIBUTES) && !defined(USE_PRIMITIVE)
|
|
if (bool(read_draw_data_flags & FLAGS_USING_PARTICLES)) {
|
|
//scale by texture size
|
|
vertex /= read_draw_data_color_texture_pixel_size;
|
|
}
|
|
#endif
|
|
|
|
vec2 color_texture_pixel_size = read_draw_data_color_texture_pixel_size;
|
|
|
|
#ifdef USE_POINT_SIZE
|
|
float point_size = 1.0;
|
|
#endif
|
|
|
|
#ifdef USE_WORLD_VERTEX_COORDS
|
|
vertex = (model_matrix * vec4(vertex, 0.0, 1.0)).xy;
|
|
#endif
|
|
{
|
|
#CODE : VERTEX
|
|
}
|
|
|
|
#ifdef USE_NINEPATCH
|
|
pixel_size_interp = abs(read_draw_data_dst_rect.zw) * vertex_base;
|
|
#endif
|
|
|
|
#if !defined(SKIP_TRANSFORM_USED) && !defined(USE_WORLD_VERTEX_COORDS)
|
|
vertex = (model_matrix * vec4(vertex, 0.0, 1.0)).xy;
|
|
#endif
|
|
|
|
color_interp = color;
|
|
|
|
if (use_pixel_snap) {
|
|
vertex = floor(vertex + 0.5);
|
|
// precision issue on some hardware creates artifacts within texture
|
|
// offset uv by a small amount to avoid
|
|
uv += 1e-5;
|
|
}
|
|
|
|
vertex = (canvas_transform * vec4(vertex, 0.0, 1.0)).xy;
|
|
|
|
vertex_interp = vertex;
|
|
uv_interp = uv;
|
|
|
|
gl_Position = screen_transform * vec4(vertex, 0.0, 1.0);
|
|
|
|
#ifdef USE_POINT_SIZE
|
|
gl_PointSize = point_size;
|
|
#endif
|
|
}
|
|
|
|
#[fragment]
|
|
|
|
#include "canvas_uniforms_inc.glsl"
|
|
#include "stdlib_inc.glsl"
|
|
|
|
in vec2 uv_interp;
|
|
in vec2 vertex_interp;
|
|
in vec4 color_interp;
|
|
|
|
#ifdef USE_NINEPATCH
|
|
|
|
in vec2 pixel_size_interp;
|
|
|
|
#endif
|
|
|
|
// Can all be flat as they are the same for the whole batched instance
|
|
flat in vec4 varying_A;
|
|
flat in vec2 varying_B;
|
|
#define read_draw_data_world_x varying_A.xy
|
|
#define read_draw_data_world_y varying_A.zw
|
|
#define read_draw_data_color_texture_pixel_size varying_B
|
|
|
|
#ifndef USE_PRIMITIVE
|
|
flat in vec4 varying_C;
|
|
#define read_draw_data_ninepatch_margins varying_C
|
|
|
|
#ifndef USE_ATTRIBUTES
|
|
#ifdef USE_NINEPATCH
|
|
|
|
flat in vec2 varying_D;
|
|
#define read_draw_data_dst_rect_z varying_D.x
|
|
#define read_draw_data_dst_rect_w varying_D.y
|
|
#endif
|
|
|
|
flat in vec4 varying_E;
|
|
#define read_draw_data_src_rect varying_E
|
|
#endif // USE_ATTRIBUTES
|
|
#endif // USE_PRIMITIVE
|
|
|
|
flat in uvec2 varying_F;
|
|
flat in uvec4 varying_G;
|
|
#define read_draw_data_flags varying_F.x
|
|
#define read_draw_data_specular_shininess varying_F.y
|
|
#define read_draw_data_lights varying_G
|
|
|
|
#ifndef DISABLE_LIGHTING
|
|
uniform sampler2D atlas_texture; //texunit:-2
|
|
uniform sampler2D shadow_atlas_texture; //texunit:-3
|
|
#endif // DISABLE_LIGHTING
|
|
uniform sampler2D color_buffer; //texunit:-4
|
|
uniform sampler2D sdf_texture; //texunit:-5
|
|
uniform sampler2D normal_texture; //texunit:-6
|
|
uniform sampler2D specular_texture; //texunit:-7
|
|
|
|
uniform sampler2D color_texture; //texunit:0
|
|
|
|
layout(location = 0) out vec4 frag_color;
|
|
|
|
#ifdef MATERIAL_UNIFORMS_USED
|
|
layout(std140) uniform MaterialUniforms{
|
|
//ubo:4
|
|
|
|
#MATERIAL_UNIFORMS
|
|
|
|
};
|
|
#endif
|
|
|
|
#GLOBALS
|
|
|
|
float vec4_to_float(vec4 p_vec) {
|
|
return dot(p_vec, vec4(1.0 / (255.0 * 255.0 * 255.0), 1.0 / (255.0 * 255.0), 1.0 / 255.0, 1.0)) * 2.0 - 1.0;
|
|
}
|
|
|
|
vec2 screen_uv_to_sdf(vec2 p_uv) {
|
|
return screen_to_sdf * p_uv;
|
|
}
|
|
|
|
float texture_sdf(vec2 p_sdf) {
|
|
vec2 uv = p_sdf * sdf_to_tex.xy + sdf_to_tex.zw;
|
|
float d = vec4_to_float(texture(sdf_texture, uv));
|
|
d *= SDF_MAX_LENGTH;
|
|
return d * tex_to_sdf;
|
|
}
|
|
|
|
vec2 texture_sdf_normal(vec2 p_sdf) {
|
|
vec2 uv = p_sdf * sdf_to_tex.xy + sdf_to_tex.zw;
|
|
|
|
const float EPSILON = 0.001;
|
|
return normalize(vec2(
|
|
vec4_to_float(texture(sdf_texture, uv + vec2(EPSILON, 0.0))) - vec4_to_float(texture(sdf_texture, uv - vec2(EPSILON, 0.0))),
|
|
vec4_to_float(texture(sdf_texture, uv + vec2(0.0, EPSILON))) - vec4_to_float(texture(sdf_texture, uv - vec2(0.0, EPSILON)))));
|
|
}
|
|
|
|
vec2 sdf_to_screen_uv(vec2 p_sdf) {
|
|
return p_sdf * sdf_to_screen;
|
|
}
|
|
|
|
#ifndef DISABLE_LIGHTING
|
|
#ifdef LIGHT_CODE_USED
|
|
|
|
vec4 light_compute(
|
|
vec3 light_vertex,
|
|
vec3 light_position,
|
|
vec3 normal,
|
|
vec4 light_color,
|
|
float light_energy,
|
|
vec4 specular_shininess,
|
|
inout vec4 shadow_modulate,
|
|
vec2 screen_uv,
|
|
vec2 uv,
|
|
vec4 color, bool is_directional) {
|
|
vec4 light = vec4(0.0);
|
|
vec3 light_direction = vec3(0.0);
|
|
|
|
if (is_directional) {
|
|
light_direction = normalize(mix(vec3(light_position.xy, 0.0), vec3(0, 0, 1), light_position.z));
|
|
light_position = vec3(0.0);
|
|
} else {
|
|
light_direction = normalize(light_position - light_vertex);
|
|
}
|
|
|
|
#CODE : LIGHT
|
|
|
|
return light;
|
|
}
|
|
|
|
#endif
|
|
|
|
vec3 light_normal_compute(vec3 light_vec, vec3 normal, vec3 base_color, vec3 light_color, vec4 specular_shininess, bool specular_shininess_used) {
|
|
float cNdotL = max(0.0, dot(normal, light_vec));
|
|
|
|
if (specular_shininess_used) {
|
|
//blinn
|
|
vec3 view = vec3(0.0, 0.0, 1.0); // not great but good enough
|
|
vec3 half_vec = normalize(view + light_vec);
|
|
|
|
float cNdotV = max(dot(normal, view), 0.0);
|
|
float cNdotH = max(dot(normal, half_vec), 0.0);
|
|
float cVdotH = max(dot(view, half_vec), 0.0);
|
|
float cLdotH = max(dot(light_vec, half_vec), 0.0);
|
|
float shininess = exp2(15.0 * specular_shininess.a + 1.0) * 0.25;
|
|
float blinn = pow(cNdotH, shininess);
|
|
blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
|
|
float s = (blinn) / max(4.0 * cNdotV * cNdotL, 0.75);
|
|
|
|
return specular_shininess.rgb * light_color * s + light_color * base_color * cNdotL;
|
|
} else {
|
|
return light_color * base_color * cNdotL;
|
|
}
|
|
}
|
|
|
|
#ifdef USE_RGBA_SHADOWS
|
|
|
|
#define SHADOW_DEPTH(m_uv) (dot(textureLod(shadow_atlas_texture, (m_uv), 0.0), vec4(1.0 / (255.0 * 255.0 * 255.0), 1.0 / (255.0 * 255.0), 1.0 / 255.0, 1.0)) * 2.0 - 1.0)
|
|
|
|
#else
|
|
|
|
#define SHADOW_DEPTH(m_uv) (textureLod(shadow_atlas_texture, (m_uv), 0.0).r)
|
|
|
|
#endif
|
|
|
|
/* clang-format off */
|
|
#define SHADOW_TEST(m_uv) { highp float sd = SHADOW_DEPTH(m_uv); shadow += step(sd, shadow_uv.z / shadow_uv.w); }
|
|
/* clang-format on */
|
|
|
|
//float distance = length(shadow_pos);
|
|
vec4 light_shadow_compute(uint light_base, vec4 light_color, vec4 shadow_uv
|
|
#ifdef LIGHT_CODE_USED
|
|
,
|
|
vec3 shadow_modulate
|
|
#endif
|
|
) {
|
|
float shadow = 0.0;
|
|
uint shadow_mode = light_array[light_base].flags & LIGHT_FLAGS_FILTER_MASK;
|
|
|
|
if (shadow_mode == LIGHT_FLAGS_SHADOW_NEAREST) {
|
|
SHADOW_TEST(shadow_uv.xy);
|
|
} else if (shadow_mode == LIGHT_FLAGS_SHADOW_PCF5) {
|
|
vec2 shadow_pixel_size = vec2(light_array[light_base].shadow_pixel_size, 0.0);
|
|
SHADOW_TEST(shadow_uv.xy - shadow_pixel_size * 2.0);
|
|
SHADOW_TEST(shadow_uv.xy - shadow_pixel_size);
|
|
SHADOW_TEST(shadow_uv.xy);
|
|
SHADOW_TEST(shadow_uv.xy + shadow_pixel_size);
|
|
SHADOW_TEST(shadow_uv.xy + shadow_pixel_size * 2.0);
|
|
shadow /= 5.0;
|
|
} else { //PCF13
|
|
vec2 shadow_pixel_size = vec2(light_array[light_base].shadow_pixel_size, 0.0);
|
|
SHADOW_TEST(shadow_uv.xy - shadow_pixel_size * 6.0);
|
|
SHADOW_TEST(shadow_uv.xy - shadow_pixel_size * 5.0);
|
|
SHADOW_TEST(shadow_uv.xy - shadow_pixel_size * 4.0);
|
|
SHADOW_TEST(shadow_uv.xy - shadow_pixel_size * 3.0);
|
|
SHADOW_TEST(shadow_uv.xy - shadow_pixel_size * 2.0);
|
|
SHADOW_TEST(shadow_uv.xy - shadow_pixel_size);
|
|
SHADOW_TEST(shadow_uv.xy);
|
|
SHADOW_TEST(shadow_uv.xy + shadow_pixel_size);
|
|
SHADOW_TEST(shadow_uv.xy + shadow_pixel_size * 2.0);
|
|
SHADOW_TEST(shadow_uv.xy + shadow_pixel_size * 3.0);
|
|
SHADOW_TEST(shadow_uv.xy + shadow_pixel_size * 4.0);
|
|
SHADOW_TEST(shadow_uv.xy + shadow_pixel_size * 5.0);
|
|
SHADOW_TEST(shadow_uv.xy + shadow_pixel_size * 6.0);
|
|
shadow /= 13.0;
|
|
}
|
|
|
|
vec4 shadow_color = godot_unpackUnorm4x8(light_array[light_base].shadow_color);
|
|
#ifdef LIGHT_CODE_USED
|
|
shadow_color.rgb *= shadow_modulate;
|
|
#endif
|
|
|
|
shadow_color.a *= light_color.a; //respect light alpha
|
|
|
|
return mix(light_color, shadow_color, shadow);
|
|
}
|
|
|
|
void light_blend_compute(uint light_base, vec4 light_color, inout vec3 color) {
|
|
uint blend_mode = light_array[light_base].flags & LIGHT_FLAGS_BLEND_MASK;
|
|
|
|
switch (blend_mode) {
|
|
case LIGHT_FLAGS_BLEND_MODE_ADD: {
|
|
color.rgb += light_color.rgb * light_color.a;
|
|
} break;
|
|
case LIGHT_FLAGS_BLEND_MODE_SUB: {
|
|
color.rgb -= light_color.rgb * light_color.a;
|
|
} break;
|
|
case LIGHT_FLAGS_BLEND_MODE_MIX: {
|
|
color.rgb = mix(color.rgb, light_color.rgb, light_color.a);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef USE_NINEPATCH
|
|
|
|
float map_ninepatch_axis(float pixel, float draw_size, float tex_pixel_size, float margin_begin, float margin_end, int np_repeat, inout int draw_center) {
|
|
float tex_size = 1.0 / tex_pixel_size;
|
|
|
|
if (pixel < margin_begin) {
|
|
return pixel * tex_pixel_size;
|
|
} else if (pixel >= draw_size - margin_end) {
|
|
return (tex_size - (draw_size - pixel)) * tex_pixel_size;
|
|
} else {
|
|
if (!bool(read_draw_data_flags & FLAGS_NINEPACH_DRAW_CENTER)) {
|
|
draw_center--;
|
|
}
|
|
|
|
// np_repeat is passed as uniform using NinePatchRect::AxisStretchMode enum.
|
|
if (np_repeat == 0) { // Stretch.
|
|
// Convert to ratio.
|
|
float ratio = (pixel - margin_begin) / (draw_size - margin_begin - margin_end);
|
|
// Scale to source texture.
|
|
return (margin_begin + ratio * (tex_size - margin_begin - margin_end)) * tex_pixel_size;
|
|
} else if (np_repeat == 1) { // Tile.
|
|
// Convert to offset.
|
|
float ofs = mod((pixel - margin_begin), tex_size - margin_begin - margin_end);
|
|
// Scale to source texture.
|
|
return (margin_begin + ofs) * tex_pixel_size;
|
|
} else if (np_repeat == 2) { // Tile Fit.
|
|
// Calculate scale.
|
|
float src_area = draw_size - margin_begin - margin_end;
|
|
float dst_area = tex_size - margin_begin - margin_end;
|
|
float scale = max(1.0, floor(src_area / max(dst_area, 0.0000001) + 0.5));
|
|
// Convert to ratio.
|
|
float ratio = (pixel - margin_begin) / src_area;
|
|
ratio = mod(ratio * scale, 1.0);
|
|
// Scale to source texture.
|
|
return (margin_begin + ratio * dst_area) * tex_pixel_size;
|
|
} else { // Shouldn't happen, but silences compiler warning.
|
|
return 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
float msdf_median(float r, float g, float b, float a) {
|
|
return min(max(min(r, g), min(max(r, g), b)), a);
|
|
}
|
|
|
|
void main() {
|
|
vec4 color = color_interp;
|
|
vec2 uv = uv_interp;
|
|
vec2 vertex = vertex_interp;
|
|
|
|
#if !defined(USE_ATTRIBUTES) && !defined(USE_PRIMITIVE)
|
|
|
|
#ifdef USE_NINEPATCH
|
|
|
|
int draw_center = 2;
|
|
uv = vec2(
|
|
map_ninepatch_axis(pixel_size_interp.x, abs(read_draw_data_dst_rect_z), read_draw_data_color_texture_pixel_size.x, read_draw_data_ninepatch_margins.x, read_draw_data_ninepatch_margins.z, int(read_draw_data_flags >> FLAGS_NINEPATCH_H_MODE_SHIFT) & 0x3, draw_center),
|
|
map_ninepatch_axis(pixel_size_interp.y, abs(read_draw_data_dst_rect_w), read_draw_data_color_texture_pixel_size.y, read_draw_data_ninepatch_margins.y, read_draw_data_ninepatch_margins.w, int(read_draw_data_flags >> FLAGS_NINEPATCH_V_MODE_SHIFT) & 0x3, draw_center));
|
|
|
|
if (draw_center == 0) {
|
|
color.a = 0.0;
|
|
}
|
|
|
|
uv = uv * read_draw_data_src_rect.zw + read_draw_data_src_rect.xy; //apply region if needed
|
|
|
|
#endif
|
|
if (bool(read_draw_data_flags & FLAGS_CLIP_RECT_UV)) {
|
|
uv = clamp(uv, read_draw_data_src_rect.xy, read_draw_data_src_rect.xy + abs(read_draw_data_src_rect.zw));
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifndef USE_PRIMITIVE
|
|
if (bool(read_draw_data_flags & FLAGS_USE_MSDF)) {
|
|
float px_range = read_draw_data_ninepatch_margins.x;
|
|
float outline_thickness = read_draw_data_ninepatch_margins.y;
|
|
|
|
vec4 msdf_sample = texture(color_texture, uv);
|
|
vec2 msdf_size = vec2(textureSize(color_texture, 0));
|
|
vec2 dest_size = vec2(1.0) / fwidth(uv);
|
|
float px_size = max(0.5 * dot((vec2(px_range) / msdf_size), dest_size), 1.0);
|
|
float d = msdf_median(msdf_sample.r, msdf_sample.g, msdf_sample.b, msdf_sample.a) - 0.5;
|
|
|
|
if (outline_thickness > 0.0) {
|
|
float cr = clamp(outline_thickness, 0.0, px_range / 2.0) / px_range;
|
|
float a = clamp((d + cr) * px_size, 0.0, 1.0);
|
|
color.a = a * color.a;
|
|
} else {
|
|
float a = clamp(d * px_size + 0.5, 0.0, 1.0);
|
|
color.a = a * color.a;
|
|
}
|
|
} else if (bool(read_draw_data_flags & FLAGS_USE_LCD)) {
|
|
vec4 lcd_sample = texture(color_texture, uv);
|
|
if (lcd_sample.a == 1.0) {
|
|
color.rgb = lcd_sample.rgb * color.a;
|
|
} else {
|
|
color = vec4(0.0, 0.0, 0.0, 0.0);
|
|
}
|
|
} else {
|
|
#else
|
|
{
|
|
#endif
|
|
color *= texture(color_texture, uv);
|
|
}
|
|
|
|
uint light_count = (read_draw_data_flags >> uint(FLAGS_LIGHT_COUNT_SHIFT)) & uint(0xF); //max 16 lights
|
|
bool using_light = light_count > 0u || directional_light_count > 0u;
|
|
|
|
vec3 normal;
|
|
|
|
#if defined(NORMAL_USED)
|
|
bool normal_used = true;
|
|
#else
|
|
bool normal_used = false;
|
|
#endif
|
|
|
|
if (normal_used || (using_light && bool(read_draw_data_flags & FLAGS_DEFAULT_NORMAL_MAP_USED))) {
|
|
normal.xy = texture(normal_texture, uv).xy * vec2(2.0, -2.0) - vec2(1.0, -1.0);
|
|
if (bool(read_draw_data_flags & FLAGS_FLIP_H)) {
|
|
normal.x = -normal.x;
|
|
}
|
|
if (bool(read_draw_data_flags & FLAGS_FLIP_V)) {
|
|
normal.y = -normal.y;
|
|
}
|
|
normal.z = sqrt(max(0.0, 1.0 - dot(normal.xy, normal.xy)));
|
|
normal_used = true;
|
|
} else {
|
|
normal = vec3(0.0, 0.0, 1.0);
|
|
}
|
|
|
|
vec4 specular_shininess;
|
|
|
|
#if defined(SPECULAR_SHININESS_USED)
|
|
|
|
bool specular_shininess_used = true;
|
|
#else
|
|
bool specular_shininess_used = false;
|
|
#endif
|
|
|
|
if (specular_shininess_used || (using_light && normal_used && bool(read_draw_data_flags & FLAGS_DEFAULT_SPECULAR_MAP_USED))) {
|
|
specular_shininess = texture(specular_texture, uv);
|
|
specular_shininess *= godot_unpackUnorm4x8(read_draw_data_specular_shininess);
|
|
specular_shininess_used = true;
|
|
} else {
|
|
specular_shininess = vec4(1.0);
|
|
}
|
|
|
|
#if defined(SCREEN_UV_USED)
|
|
vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size;
|
|
#else
|
|
vec2 screen_uv = vec2(0.0);
|
|
#endif
|
|
|
|
vec2 color_texture_pixel_size = read_draw_data_color_texture_pixel_size.xy;
|
|
|
|
vec3 light_vertex = vec3(vertex, 0.0);
|
|
vec2 shadow_vertex = vertex;
|
|
|
|
{
|
|
float normal_map_depth = 1.0;
|
|
|
|
#if defined(NORMAL_MAP_USED)
|
|
vec3 normal_map = vec3(0.0, 0.0, 1.0);
|
|
normal_used = true;
|
|
#endif
|
|
|
|
#CODE : FRAGMENT
|
|
|
|
#if defined(NORMAL_MAP_USED)
|
|
normal = mix(vec3(0.0, 0.0, 1.0), normal_map * vec3(2.0, -2.0, 1.0) - vec3(1.0, -1.0, 0.0), normal_map_depth);
|
|
#endif
|
|
}
|
|
|
|
if (normal_used) {
|
|
//convert by item transform
|
|
normal.xy = mat2(normalize(read_draw_data_world_x), normalize(read_draw_data_world_y)) * normal.xy;
|
|
//convert by canvas transform
|
|
normal = normalize((canvas_normal_transform * vec4(normal, 0.0)).xyz);
|
|
}
|
|
|
|
vec4 base_color = color;
|
|
|
|
#ifdef MODE_LIGHT_ONLY
|
|
float light_only_alpha = 0.0;
|
|
#elif !defined(MODE_UNSHADED)
|
|
color *= canvas_modulation;
|
|
#endif
|
|
|
|
#if !defined(DISABLE_LIGHTING) && !defined(MODE_UNSHADED)
|
|
|
|
// Directional Lights
|
|
|
|
for (uint i = 0u; i < directional_light_count; i++) {
|
|
uint light_base = i;
|
|
|
|
vec2 direction = light_array[light_base].position;
|
|
vec4 light_color = light_array[light_base].color;
|
|
|
|
#ifdef LIGHT_CODE_USED
|
|
|
|
vec4 shadow_modulate = vec4(1.0);
|
|
light_color = light_compute(light_vertex, vec3(direction, light_array[light_base].height), normal, light_color, light_color.a, specular_shininess, shadow_modulate, screen_uv, uv, base_color, true);
|
|
#else
|
|
|
|
if (normal_used) {
|
|
vec3 light_vec = normalize(mix(vec3(direction, 0.0), vec3(0, 0, 1), light_array[light_base].height));
|
|
light_color.rgb = light_normal_compute(light_vec, normal, base_color.rgb, light_color.rgb, specular_shininess, specular_shininess_used);
|
|
} else {
|
|
light_color.rgb *= base_color.rgb;
|
|
}
|
|
#endif
|
|
|
|
if (bool(light_array[light_base].flags & LIGHT_FLAGS_HAS_SHADOW)) {
|
|
vec2 shadow_pos = (vec4(shadow_vertex, 0.0, 1.0) * mat4(light_array[light_base].shadow_matrix[0], light_array[light_base].shadow_matrix[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy; //multiply inverse given its transposed. Optimizer removes useless operations.
|
|
|
|
vec4 shadow_uv = vec4(shadow_pos.x, light_array[light_base].shadow_y_ofs, shadow_pos.y * light_array[light_base].shadow_zfar_inv, 1.0);
|
|
|
|
light_color = light_shadow_compute(light_base, light_color, shadow_uv
|
|
#ifdef LIGHT_CODE_USED
|
|
,
|
|
shadow_modulate.rgb
|
|
#endif
|
|
);
|
|
}
|
|
|
|
light_blend_compute(light_base, light_color, color.rgb);
|
|
#ifdef MODE_LIGHT_ONLY
|
|
light_only_alpha += light_color.a;
|
|
#endif
|
|
}
|
|
|
|
// Positional Lights
|
|
|
|
for (uint i = 0u; i < MAX_LIGHTS_PER_ITEM; i++) {
|
|
if (i >= light_count) {
|
|
break;
|
|
}
|
|
uint light_base;
|
|
if (i < 8u) {
|
|
if (i < 4u) {
|
|
light_base = read_draw_data_lights[0];
|
|
} else {
|
|
light_base = read_draw_data_lights[1];
|
|
}
|
|
} else {
|
|
if (i < 12u) {
|
|
light_base = read_draw_data_lights[2];
|
|
} else {
|
|
light_base = read_draw_data_lights[3];
|
|
}
|
|
}
|
|
light_base >>= (i & 3u) * 8u;
|
|
light_base &= uint(0xFF);
|
|
|
|
vec2 tex_uv = (vec4(vertex, 0.0, 1.0) * mat4(light_array[light_base].texture_matrix[0], light_array[light_base].texture_matrix[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy; //multiply inverse given its transposed. Optimizer removes useless operations.
|
|
vec2 tex_uv_atlas = tex_uv * light_array[light_base].atlas_rect.zw + light_array[light_base].atlas_rect.xy;
|
|
vec4 light_color = textureLod(atlas_texture, tex_uv_atlas, 0.0);
|
|
vec4 light_base_color = light_array[light_base].color;
|
|
|
|
#ifdef LIGHT_CODE_USED
|
|
|
|
vec4 shadow_modulate = vec4(1.0);
|
|
vec3 light_position = vec3(light_array[light_base].position, light_array[light_base].height);
|
|
|
|
light_color.rgb *= light_base_color.rgb;
|
|
light_color = light_compute(light_vertex, light_position, normal, light_color, light_base_color.a, specular_shininess, shadow_modulate, screen_uv, uv, base_color, false);
|
|
#else
|
|
|
|
light_color.rgb *= light_base_color.rgb * light_base_color.a;
|
|
|
|
if (normal_used) {
|
|
vec3 light_pos = vec3(light_array[light_base].position, light_array[light_base].height);
|
|
vec3 pos = light_vertex;
|
|
vec3 light_vec = normalize(light_pos - pos);
|
|
|
|
light_color.rgb = light_normal_compute(light_vec, normal, base_color.rgb, light_color.rgb, specular_shininess, specular_shininess_used);
|
|
} else {
|
|
light_color.rgb *= base_color.rgb;
|
|
}
|
|
#endif
|
|
if (any(lessThan(tex_uv, vec2(0.0, 0.0))) || any(greaterThanEqual(tex_uv, vec2(1.0, 1.0)))) {
|
|
//if outside the light texture, light color is zero
|
|
light_color.a = 0.0;
|
|
}
|
|
|
|
if (bool(light_array[light_base].flags & LIGHT_FLAGS_HAS_SHADOW)) {
|
|
vec2 shadow_pos = (vec4(shadow_vertex, 0.0, 1.0) * mat4(light_array[light_base].shadow_matrix[0], light_array[light_base].shadow_matrix[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy; //multiply inverse given its transposed. Optimizer removes useless operations.
|
|
|
|
vec2 pos_norm = normalize(shadow_pos);
|
|
vec2 pos_abs = abs(pos_norm);
|
|
vec2 pos_box = pos_norm / max(pos_abs.x, pos_abs.y);
|
|
vec2 pos_rot = pos_norm * mat2(vec2(0.7071067811865476, -0.7071067811865476), vec2(0.7071067811865476, 0.7071067811865476)); //is there a faster way to 45 degrees rot?
|
|
float tex_ofs;
|
|
float dist;
|
|
if (pos_rot.y > 0.0) {
|
|
if (pos_rot.x > 0.0) {
|
|
tex_ofs = pos_box.y * 0.125 + 0.125;
|
|
dist = shadow_pos.x;
|
|
} else {
|
|
tex_ofs = pos_box.x * -0.125 + (0.25 + 0.125);
|
|
dist = shadow_pos.y;
|
|
}
|
|
} else {
|
|
if (pos_rot.x < 0.0) {
|
|
tex_ofs = pos_box.y * -0.125 + (0.5 + 0.125);
|
|
dist = -shadow_pos.x;
|
|
} else {
|
|
tex_ofs = pos_box.x * 0.125 + (0.75 + 0.125);
|
|
dist = -shadow_pos.y;
|
|
}
|
|
}
|
|
|
|
dist *= light_array[light_base].shadow_zfar_inv;
|
|
|
|
//float distance = length(shadow_pos);
|
|
vec4 shadow_uv = vec4(tex_ofs, light_array[light_base].shadow_y_ofs, dist, 1.0);
|
|
|
|
light_color = light_shadow_compute(light_base, light_color, shadow_uv
|
|
#ifdef LIGHT_CODE_USED
|
|
,
|
|
shadow_modulate.rgb
|
|
#endif
|
|
);
|
|
}
|
|
|
|
light_blend_compute(light_base, light_color, color.rgb);
|
|
#ifdef MODE_LIGHT_ONLY
|
|
light_only_alpha += light_color.a;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#ifdef MODE_LIGHT_ONLY
|
|
color.a *= light_only_alpha;
|
|
#endif
|
|
|
|
frag_color = color;
|
|
}
|