f7f6115f76
- Document a few more properties and methods - Add more information to many classes - Fix lots of typos and gramar mistakes - Use [code] tags for parameters consistently - Use [b] and [i] tags consistently - Put "Warning:" and "Note:" on their own line to be more visible, and make them always bold - Tweak formatting in code examples to be more readable - Use double quotes consistently - Add more links to third-party technologies
237 lines
13 KiB
XML
237 lines
13 KiB
XML
<?xml version="1.0" encoding="UTF-8" ?>
|
|
<class name="RigidBody" inherits="PhysicsBody" category="Core" version="3.2">
|
|
<brief_description>
|
|
Physics Body whose position is determined through physics simulation in 3D space.
|
|
</brief_description>
|
|
<description>
|
|
This is the node that implements full 3D physics. This means that you do not control a RigidBody directly. Instead, you can apply forces to it (gravity, impulses, etc.), and the physics simulation will calculate the resulting movement, collision, bouncing, rotating, etc.
|
|
A RigidBody has 4 behavior [member mode]s: Rigid, Static, Character, and Kinematic.
|
|
[b]Note:[/b] Don't change a RigidBody's position every frame or very often. Sporadic changes work fine, but physics runs at a different granularity (fixed Hz) than usual rendering (process callback) and maybe even in a separate thread, so changing this from a process loop may result in strange behavior. If you need to directly affect the body's state, use [method _integrate_forces], which allows you to directly access the physics state.
|
|
If you need to override the default physics behavior, you can write a custom force integration function. See [member custom_integrator].
|
|
</description>
|
|
<tutorials>
|
|
<link>https://docs.godotengine.org/en/latest/tutorials/physics/physics_introduction.html</link>
|
|
</tutorials>
|
|
<methods>
|
|
<method name="_integrate_forces" qualifiers="virtual">
|
|
<return type="void">
|
|
</return>
|
|
<argument index="0" name="state" type="PhysicsDirectBodyState">
|
|
</argument>
|
|
<description>
|
|
Called during physics processing, allowing you to read and safely modify the simulation state for the object. By default, it works in addition to the usual physics behavior, but the [member custom_integrator] property allows you to disable the default behavior and do fully custom force integration for a body.
|
|
</description>
|
|
</method>
|
|
<method name="add_central_force">
|
|
<return type="void">
|
|
</return>
|
|
<argument index="0" name="force" type="Vector3">
|
|
</argument>
|
|
<description>
|
|
Adds a constant directional force without affecting rotation.
|
|
This is equivalent to [code]add_force(force, Vector3(0,0,0))[/code].
|
|
</description>
|
|
</method>
|
|
<method name="add_force">
|
|
<return type="void">
|
|
</return>
|
|
<argument index="0" name="force" type="Vector3">
|
|
</argument>
|
|
<argument index="1" name="position" type="Vector3">
|
|
</argument>
|
|
<description>
|
|
Adds a constant force (i.e. acceleration).
|
|
</description>
|
|
</method>
|
|
<method name="add_torque">
|
|
<return type="void">
|
|
</return>
|
|
<argument index="0" name="torque" type="Vector3">
|
|
</argument>
|
|
<description>
|
|
Adds a constant rotational force (i.e. a motor) without affecting position.
|
|
</description>
|
|
</method>
|
|
<method name="apply_central_impulse">
|
|
<return type="void">
|
|
</return>
|
|
<argument index="0" name="impulse" type="Vector3">
|
|
</argument>
|
|
<description>
|
|
Applies a directional impulse without affecting rotation.
|
|
This is equivalent to [code]apply_impulse(Vector3(0,0,0), impulse)[/code].
|
|
</description>
|
|
</method>
|
|
<method name="apply_impulse">
|
|
<return type="void">
|
|
</return>
|
|
<argument index="0" name="position" type="Vector3">
|
|
</argument>
|
|
<argument index="1" name="impulse" type="Vector3">
|
|
</argument>
|
|
<description>
|
|
Applies a positioned impulse to the body. An impulse is time independent! Applying an impulse every frame would result in a framerate-dependent force. For this reason it should only be used when simulating one-time impacts. The position uses the rotation of the global coordinate system, but is centered at the object's origin.
|
|
</description>
|
|
</method>
|
|
<method name="apply_torque_impulse">
|
|
<return type="void">
|
|
</return>
|
|
<argument index="0" name="impulse" type="Vector3">
|
|
</argument>
|
|
<description>
|
|
Applies a torque impulse which will be affected by the body mass and shape. This will rotate the body around the [code]impulse[/code] vector passed.
|
|
</description>
|
|
</method>
|
|
<method name="get_colliding_bodies" qualifiers="const">
|
|
<return type="Array">
|
|
</return>
|
|
<description>
|
|
Returns a list of the bodies colliding with this one. By default, number of max contacts reported is at 0, see the [member contacts_reported] property to increase it.
|
|
[b]Note:[/b] The result of this test is not immediate after moving objects. For performance, list of collisions is updated once per frame and before the physics step. Consider using signals instead.
|
|
</description>
|
|
</method>
|
|
<method name="set_axis_velocity">
|
|
<return type="void">
|
|
</return>
|
|
<argument index="0" name="axis_velocity" type="Vector3">
|
|
</argument>
|
|
<description>
|
|
Sets an axis velocity. The velocity in the given vector axis will be set as the given vector length. This is useful for jumping behavior.
|
|
</description>
|
|
</method>
|
|
</methods>
|
|
<members>
|
|
<member name="angular_damp" type="float" setter="set_angular_damp" getter="get_angular_damp">
|
|
Damps RigidBody's rotational forces.
|
|
</member>
|
|
<member name="angular_velocity" type="Vector3" setter="set_angular_velocity" getter="get_angular_velocity">
|
|
RigidBody's rotational velocity.
|
|
</member>
|
|
<member name="axis_lock_angular_x" type="bool" setter="set_axis_lock" getter="get_axis_lock">
|
|
Lock the body's rotation in the X axis.
|
|
</member>
|
|
<member name="axis_lock_angular_y" type="bool" setter="set_axis_lock" getter="get_axis_lock">
|
|
Lock the body's rotation in the Y axis.
|
|
</member>
|
|
<member name="axis_lock_angular_z" type="bool" setter="set_axis_lock" getter="get_axis_lock">
|
|
Lock the body's rotation in the Z axis.
|
|
</member>
|
|
<member name="axis_lock_linear_x" type="bool" setter="set_axis_lock" getter="get_axis_lock">
|
|
Lock the body's movement in the X axis.
|
|
</member>
|
|
<member name="axis_lock_linear_y" type="bool" setter="set_axis_lock" getter="get_axis_lock">
|
|
Lock the body's movement in the Y axis.
|
|
</member>
|
|
<member name="axis_lock_linear_z" type="bool" setter="set_axis_lock" getter="get_axis_lock">
|
|
Lock the body's movement in the Z axis.
|
|
</member>
|
|
<member name="bounce" type="float" setter="set_bounce" getter="get_bounce">
|
|
RigidBody's bounciness.
|
|
</member>
|
|
<member name="can_sleep" type="bool" setter="set_can_sleep" getter="is_able_to_sleep">
|
|
If [code]true[/code], the RigidBody will not calculate forces and will act as a static body while there is no movement. It will wake up when forces are applied through other collisions or when the [code]apply_impulse[/code] method is used.
|
|
</member>
|
|
<member name="contact_monitor" type="bool" setter="set_contact_monitor" getter="is_contact_monitor_enabled">
|
|
If [code]true[/code], the RigidBody will emit signals when it collides with another RigidBody.
|
|
</member>
|
|
<member name="contacts_reported" type="int" setter="set_max_contacts_reported" getter="get_max_contacts_reported">
|
|
The maximum contacts to report. Bodies can keep a log of the contacts with other bodies, this is enabled by setting the maximum amount of contacts reported to a number greater than 0.
|
|
</member>
|
|
<member name="continuous_cd" type="bool" setter="set_use_continuous_collision_detection" getter="is_using_continuous_collision_detection">
|
|
If [code]true[/code], continuous collision detection is used.
|
|
Continuous collision detection tries to predict where a moving body will collide, instead of moving it and correcting its movement if it collided. Continuous collision detection is more precise, and misses fewer impacts by small, fast-moving objects. Not using continuous collision detection is faster to compute, but can miss small, fast-moving objects.
|
|
</member>
|
|
<member name="custom_integrator" type="bool" setter="set_use_custom_integrator" getter="is_using_custom_integrator">
|
|
If [code]true[/code], internal force integration will be disabled (like gravity or air friction) for this body. Other than collision response, the body will only move as determined by the [method _integrate_forces] function, if defined.
|
|
</member>
|
|
<member name="friction" type="float" setter="set_friction" getter="get_friction">
|
|
The body's friction, from 0 (frictionless) to 1 (max friction).
|
|
</member>
|
|
<member name="gravity_scale" type="float" setter="set_gravity_scale" getter="get_gravity_scale">
|
|
This is multiplied by the global 3D gravity setting found in [b]Project > Project Settings > Physics > 3d[/b] to produce RigidBody's gravity. For example, a value of 1 will be normal gravity, 2 will apply double gravity, and 0.5 will apply half gravity to this object.
|
|
</member>
|
|
<member name="linear_damp" type="float" setter="set_linear_damp" getter="get_linear_damp">
|
|
The body's linear damp. Default value: -1, cannot be less than -1. If this value is different from -1, any linear damp derived from the world or areas will be overridden.
|
|
</member>
|
|
<member name="linear_velocity" type="Vector3" setter="set_linear_velocity" getter="get_linear_velocity">
|
|
The body's linear velocity. Can be used sporadically, but [b]don't set this every frame[/b], because physics may run in another thread and runs at a different granularity. Use [method _integrate_forces] as your process loop for precise control of the body state.
|
|
</member>
|
|
<member name="mass" type="float" setter="set_mass" getter="get_mass">
|
|
The body's mass.
|
|
</member>
|
|
<member name="mode" type="int" setter="set_mode" getter="get_mode" enum="RigidBody.Mode">
|
|
The body mode. See [enum Mode] for possible values. Default value: [code]MODE_RIGID[/code].
|
|
</member>
|
|
<member name="physics_material_override" type="PhysicsMaterial" setter="set_physics_material_override" getter="get_physics_material_override">
|
|
</member>
|
|
<member name="sleeping" type="bool" setter="set_sleeping" getter="is_sleeping">
|
|
If [code]true[/code], the body is sleeping and will not calculate forces until woken up by a collision or the [code]apply_impulse[/code] method.
|
|
</member>
|
|
<member name="weight" type="float" setter="set_weight" getter="get_weight">
|
|
The body's weight based on its mass and the global 3D gravity. Global values are set in [b]Project > Project Settings > Physics > 3d[/b].
|
|
</member>
|
|
</members>
|
|
<signals>
|
|
<signal name="body_entered">
|
|
<argument index="0" name="body" type="Node">
|
|
</argument>
|
|
<description>
|
|
Emitted when a body enters into contact with this one. Contact monitor and contacts reported must be enabled for this to work.
|
|
</description>
|
|
</signal>
|
|
<signal name="body_exited">
|
|
<argument index="0" name="body" type="Node">
|
|
</argument>
|
|
<description>
|
|
Emitted when a body shape exits contact with this one. Contact monitor and contacts reported must be enabled for this to work.
|
|
</description>
|
|
</signal>
|
|
<signal name="body_shape_entered">
|
|
<argument index="0" name="body_id" type="int">
|
|
</argument>
|
|
<argument index="1" name="body" type="Node">
|
|
</argument>
|
|
<argument index="2" name="body_shape" type="int">
|
|
</argument>
|
|
<argument index="3" name="local_shape" type="int">
|
|
</argument>
|
|
<description>
|
|
Emitted when a body enters into contact with this one. Contact monitor and contacts reported must be enabled for this to work.
|
|
This signal not only receives the body that collided with this one, but also its [RID] ([code]body_id[/code]), the shape index from the colliding body ([code]body_shape[/code]), and the shape index from this body ([code]local_shape[/code]) the other body collided with.
|
|
</description>
|
|
</signal>
|
|
<signal name="body_shape_exited">
|
|
<argument index="0" name="body_id" type="int">
|
|
</argument>
|
|
<argument index="1" name="body" type="Node">
|
|
</argument>
|
|
<argument index="2" name="body_shape" type="int">
|
|
</argument>
|
|
<argument index="3" name="local_shape" type="int">
|
|
</argument>
|
|
<description>
|
|
Emitted when a body shape exits contact with this one. Contact monitor and contacts reported must be enabled for this to work.
|
|
This signal not only receives the body that stopped colliding with this one, but also its [RID] ([code]body_id[/code]), the shape index from the colliding body ([code]body_shape[/code]), and the shape index from this body ([code]local_shape[/code]) the other body stopped colliding with.
|
|
</description>
|
|
</signal>
|
|
<signal name="sleeping_state_changed">
|
|
<description>
|
|
Emitted when the body changes its sleeping state. Either by sleeping or waking up.
|
|
</description>
|
|
</signal>
|
|
</signals>
|
|
<constants>
|
|
<constant name="MODE_RIGID" value="0" enum="Mode">
|
|
Rigid body mode. This is the "natural" state of a rigid body. It is affected by forces, and can move, rotate, and be affected by user code.
|
|
</constant>
|
|
<constant name="MODE_STATIC" value="1" enum="Mode">
|
|
Static mode. The body behaves like a [StaticBody], and can only move by user code.
|
|
</constant>
|
|
<constant name="MODE_CHARACTER" value="2" enum="Mode">
|
|
Character body mode. This behaves like a rigid body, but can not rotate.
|
|
</constant>
|
|
<constant name="MODE_KINEMATIC" value="3" enum="Mode">
|
|
Kinematic body mode. The body behaves like a [KinematicBody], and can only move by user code.
|
|
</constant>
|
|
</constants>
|
|
</class>
|