412 lines
13 KiB
C++
412 lines
13 KiB
C++
/*************************************************************************/
|
|
/* particle_system_sw.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* http://www.godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
#include "particle_system_sw.h"
|
|
#include "sort.h"
|
|
|
|
|
|
ParticleSystemSW::ParticleSystemSW() {
|
|
|
|
amount=8;
|
|
emitting=true;
|
|
|
|
for (int i=0;i<VS::PARTICLE_VAR_MAX;i++) {
|
|
particle_randomness[i]=0.0;
|
|
}
|
|
|
|
particle_vars[VS::PARTICLE_LIFETIME]=2.0;//
|
|
particle_vars[VS::PARTICLE_SPREAD]=0.2;//
|
|
particle_vars[VS::PARTICLE_GRAVITY]=9.8;//
|
|
particle_vars[VS::PARTICLE_LINEAR_VELOCITY]=0.2;//
|
|
particle_vars[VS::PARTICLE_ANGULAR_VELOCITY]=0.0;//
|
|
particle_vars[VS::PARTICLE_LINEAR_ACCELERATION]=0.0;//
|
|
particle_vars[VS::PARTICLE_RADIAL_ACCELERATION]=0.0;//
|
|
particle_vars[VS::PARTICLE_TANGENTIAL_ACCELERATION]=1.0;//
|
|
particle_vars[VS::PARTICLE_DAMPING]=0.0;//
|
|
particle_vars[VS::PARTICLE_INITIAL_SIZE]=1.0;
|
|
particle_vars[VS::PARTICLE_FINAL_SIZE]=0.8;
|
|
particle_vars[VS::PARTICLE_HEIGHT]=1;
|
|
particle_vars[VS::PARTICLE_HEIGHT_SPEED_SCALE]=1;
|
|
|
|
height_from_velocity=false;
|
|
local_coordinates=false;
|
|
|
|
particle_vars[VS::PARTICLE_INITIAL_ANGLE]=0.0;//
|
|
|
|
gravity_normal=Vector3(0,-1.0,0);
|
|
//emission_half_extents=Vector3(0.1,0.1,0.1);
|
|
emission_half_extents=Vector3(1,1,1);
|
|
color_phase_count=0;
|
|
color_phases[0].pos=0.0;
|
|
color_phases[0].color=Color(1.0,0.0,0.0);
|
|
visibility_aabb=AABB(Vector3(-64,-64,-64),Vector3(128,128,128));
|
|
|
|
attractor_count=0;
|
|
|
|
}
|
|
|
|
|
|
ParticleSystemSW::~ParticleSystemSW()
|
|
{
|
|
}
|
|
|
|
|
|
#define DEFAULT_SEED 1234567
|
|
|
|
_FORCE_INLINE_ static float _rand_from_seed(uint32_t *seed) {
|
|
|
|
uint32_t k;
|
|
uint32_t s = (*seed);
|
|
if (s == 0)
|
|
s = 0x12345987;
|
|
k = s / 127773;
|
|
s = 16807 * (s - k * 127773) - 2836 * k;
|
|
if (s < 0)
|
|
s += 2147483647;
|
|
(*seed) = s;
|
|
|
|
float v=((float)((*seed) & 0xFFFFF))/(float)0xFFFFF;
|
|
v=v*2.0-1.0;
|
|
return v;
|
|
}
|
|
|
|
_FORCE_INLINE_ static uint32_t _irand_from_seed(uint32_t *seed) {
|
|
|
|
uint32_t k;
|
|
uint32_t s = (*seed);
|
|
if (s == 0)
|
|
s = 0x12345987;
|
|
k = s / 127773;
|
|
s = 16807 * (s - k * 127773) - 2836 * k;
|
|
if (s < 0)
|
|
s += 2147483647;
|
|
(*seed) = s;
|
|
|
|
return s;
|
|
}
|
|
|
|
void ParticleSystemProcessSW::process(const ParticleSystemSW *p_system,const Transform& p_transform,float p_time) {
|
|
|
|
valid=false;
|
|
if (p_system->amount<=0) {
|
|
ERR_EXPLAIN("Invalid amount of particles: "+itos(p_system->amount));
|
|
ERR_FAIL_COND(p_system->amount<=0);
|
|
}
|
|
if (p_system->attractor_count<0 || p_system->attractor_count>VS::MAX_PARTICLE_ATTRACTORS) {
|
|
ERR_EXPLAIN("Invalid amount of particle attractors.");
|
|
ERR_FAIL_COND(p_system->attractor_count<0 || p_system->attractor_count>VS::MAX_PARTICLE_ATTRACTORS);
|
|
}
|
|
float lifetime = p_system->particle_vars[VS::PARTICLE_LIFETIME];
|
|
if (lifetime<CMP_EPSILON) {
|
|
ERR_EXPLAIN("Particle system lifetime too small.");
|
|
ERR_FAIL_COND(lifetime<CMP_EPSILON);
|
|
}
|
|
valid=true;
|
|
int particle_count=MIN(p_system->amount,ParticleSystemSW::MAX_PARTICLES);;
|
|
|
|
|
|
int emission_point_count = p_system->emission_points.size();
|
|
DVector<Vector3>::Read r;
|
|
if (emission_point_count)
|
|
r=p_system->emission_points.read();
|
|
|
|
if (particle_count!=particle_data.size()) {
|
|
|
|
//clear the whole system if particle amount changed
|
|
particle_data.clear();
|
|
particle_data.resize(p_system->amount);
|
|
particle_system_time=0;
|
|
}
|
|
|
|
float next_time = particle_system_time+p_time;
|
|
|
|
if (next_time > lifetime)
|
|
next_time=Math::fmod(next_time,lifetime);
|
|
|
|
|
|
ParticleData *pdata=&particle_data[0];
|
|
Vector3 attractor_positions[VS::MAX_PARTICLE_ATTRACTORS];
|
|
|
|
for(int i=0;i<p_system->attractor_count;i++) {
|
|
|
|
attractor_positions[i]=p_transform.xform(p_system->attractors[i].pos);
|
|
}
|
|
|
|
|
|
for(int i=0;i<particle_count;i++) {
|
|
|
|
ParticleData &p=pdata[i];
|
|
|
|
float restart_time = (i * lifetime / p_system->amount);
|
|
|
|
bool restart=false;
|
|
|
|
if ( next_time < particle_system_time ) {
|
|
|
|
if (restart_time > particle_system_time || restart_time < next_time )
|
|
restart=true;
|
|
|
|
} else if (restart_time > particle_system_time && restart_time < next_time ) {
|
|
restart=true;
|
|
}
|
|
|
|
if (restart) {
|
|
|
|
|
|
if (p_system->emitting) {
|
|
if (emission_point_count==0) { //use AABB
|
|
if (p_system->local_coordinates)
|
|
p.pos = p_system->emission_half_extents * Vector3( _rand_from_seed(&rand_seed), _rand_from_seed(&rand_seed), _rand_from_seed(&rand_seed) );
|
|
else
|
|
p.pos = p_transform.xform( p_system->emission_half_extents * Vector3( _rand_from_seed(&rand_seed), _rand_from_seed(&rand_seed), _rand_from_seed(&rand_seed) ) );
|
|
} else {
|
|
//use preset positions
|
|
if (p_system->local_coordinates)
|
|
p.pos = r[_irand_from_seed(&rand_seed)%emission_point_count];
|
|
else
|
|
p.pos = p_transform.xform( r[_irand_from_seed(&rand_seed)%emission_point_count] );
|
|
}
|
|
|
|
|
|
float angle1 = _rand_from_seed(&rand_seed)*p_system->particle_vars[VS::PARTICLE_SPREAD]*Math_PI;
|
|
float angle2 = _rand_from_seed(&rand_seed)*20.0*Math_PI; // make it more random like
|
|
|
|
Vector3 rot_xz=Vector3( Math::sin(angle1), 0.0, Math::cos(angle1) );
|
|
Vector3 rot = Vector3( Math::cos(angle2)*rot_xz.x,Math::sin(angle2)*rot_xz.x, rot_xz.z);
|
|
|
|
p.vel=(rot*p_system->particle_vars[VS::PARTICLE_LINEAR_VELOCITY]+rot*p_system->particle_randomness[VS::PARTICLE_LINEAR_VELOCITY]*_rand_from_seed(&rand_seed));
|
|
if (!p_system->local_coordinates)
|
|
p.vel=p_transform.basis.xform( p.vel );
|
|
|
|
p.vel+=p_system->emission_base_velocity;
|
|
|
|
p.rot=p_system->particle_vars[VS::PARTICLE_INITIAL_ANGLE]+p_system->particle_randomness[VS::PARTICLE_INITIAL_ANGLE]*_rand_from_seed(&rand_seed);
|
|
p.active=true;
|
|
for(int r=0;r<PARTICLE_RANDOM_NUMBERS;r++)
|
|
p.random[r]=_rand_from_seed(&rand_seed);
|
|
|
|
} else {
|
|
|
|
p.pos=Vector3();
|
|
p.rot=0;
|
|
p.vel=Vector3();
|
|
p.active=false;
|
|
}
|
|
|
|
} else {
|
|
|
|
if (!p.active)
|
|
continue;
|
|
|
|
Vector3 force;
|
|
//apply gravity
|
|
force=p_system->gravity_normal * (p_system->particle_vars[VS::PARTICLE_GRAVITY]+(p_system->particle_randomness[VS::PARTICLE_GRAVITY]*p.random[0]));
|
|
//apply linear acceleration
|
|
force+=p.vel.normalized() * (p_system->particle_vars[VS::PARTICLE_LINEAR_ACCELERATION]+p_system->particle_randomness[VS::PARTICLE_LINEAR_ACCELERATION]*p.random[1]);
|
|
//apply radial acceleration
|
|
Vector3 org;
|
|
if (!p_system->local_coordinates)
|
|
org=p_transform.origin;
|
|
force+=(p.pos-org).normalized() * (p_system->particle_vars[VS::PARTICLE_RADIAL_ACCELERATION]+p_system->particle_randomness[VS::PARTICLE_RADIAL_ACCELERATION]*p.random[2]);
|
|
//apply tangential acceleration
|
|
force+=(p.pos-org).cross(p_system->gravity_normal).normalized() * (p_system->particle_vars[VS::PARTICLE_TANGENTIAL_ACCELERATION]+p_system->particle_randomness[VS::PARTICLE_TANGENTIAL_ACCELERATION]*p.random[3]);
|
|
//apply attractor forces
|
|
for(int a=0;a<p_system->attractor_count;a++) {
|
|
|
|
force+=(p.pos-attractor_positions[a]).normalized() * p_system->attractors[a].force;
|
|
}
|
|
|
|
|
|
p.vel+=force * p_time;
|
|
if (p_system->particle_vars[VS::PARTICLE_DAMPING]) {
|
|
|
|
float v = p.vel.length();
|
|
float damp = p_system->particle_vars[VS::PARTICLE_DAMPING] + p_system->particle_vars[VS::PARTICLE_DAMPING] * p_system->particle_randomness[VS::PARTICLE_DAMPING];
|
|
v -= damp * p_time;
|
|
if (v<0) {
|
|
p.vel=Vector3();
|
|
} else {
|
|
p.vel=p.vel.normalized() * v;
|
|
}
|
|
|
|
}
|
|
p.rot+=(p_system->particle_vars[VS::PARTICLE_ANGULAR_VELOCITY]+p_system->particle_randomness[VS::PARTICLE_ANGULAR_VELOCITY]*p.random[4]) *p_time;
|
|
p.pos+=p.vel * p_time;
|
|
}
|
|
}
|
|
|
|
particle_system_time=Math::fmod( particle_system_time+p_time, lifetime );
|
|
|
|
|
|
}
|
|
|
|
ParticleSystemProcessSW::ParticleSystemProcessSW() {
|
|
|
|
particle_system_time=0;
|
|
rand_seed=1234567;
|
|
valid=false;
|
|
}
|
|
|
|
|
|
struct _ParticleSorterSW {
|
|
|
|
|
|
_FORCE_INLINE_ bool operator()(const ParticleSystemDrawInfoSW::ParticleDrawInfo *p_a,const ParticleSystemDrawInfoSW::ParticleDrawInfo *p_b) const {
|
|
|
|
return p_a->d > p_b->d; // draw from further away to closest
|
|
}
|
|
};
|
|
|
|
void ParticleSystemDrawInfoSW::prepare(const ParticleSystemSW *p_system,const ParticleSystemProcessSW *p_process,const Transform& p_system_transform,const Transform& p_camera_transform) {
|
|
|
|
ERR_FAIL_COND(p_process->particle_data.size() != p_system->amount);
|
|
ERR_FAIL_COND(p_system->amount<=0 || p_system->amount>=ParticleSystemSW::MAX_PARTICLES);
|
|
|
|
const ParticleSystemProcessSW::ParticleData *pdata=&p_process->particle_data[0];
|
|
float time_pos=p_process->particle_system_time/p_system->particle_vars[VS::PARTICLE_LIFETIME];
|
|
|
|
ParticleSystemSW::ColorPhase cphase[VS::MAX_PARTICLE_COLOR_PHASES];
|
|
|
|
float last=-1;
|
|
int col_count=0;
|
|
|
|
for(int i=0;i<p_system->color_phase_count;i++) {
|
|
|
|
if (p_system->color_phases[i].pos<=last)
|
|
break;
|
|
cphase[i]=p_system->color_phases[i];
|
|
col_count++;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Vector3 camera_z_axis = p_camera_transform.basis.get_axis(2);
|
|
|
|
for(int i=0;i<p_system->amount;i++) {
|
|
|
|
ParticleDrawInfo &pdi=draw_info[i];
|
|
pdi.data=&pdata[i];
|
|
pdi.transform.origin=pdi.data->pos;
|
|
if (p_system->local_coordinates)
|
|
pdi.transform.origin=p_system_transform.xform(pdi.transform.origin);
|
|
|
|
pdi.d=-camera_z_axis.dot(pdi.transform.origin);
|
|
|
|
// adjust particle size, color and rotation
|
|
|
|
float time = ((float)i / p_system->amount);
|
|
if (time<time_pos)
|
|
time=time_pos-time;
|
|
else
|
|
time=(1.0-time)+time_pos;
|
|
|
|
Vector3 up=p_camera_transform.basis.get_axis(1); // up determines the rotation
|
|
float up_scale=1.0;
|
|
|
|
if (p_system->height_from_velocity) {
|
|
|
|
Vector3 veld = pdi.data->vel;
|
|
Vector3 cam_z = camera_z_axis.normalized();
|
|
float vc = Math::abs(veld.normalized().dot(cam_z));
|
|
|
|
if (vc<(1.0-CMP_EPSILON)) {
|
|
up = Plane(cam_z,0).project(veld).normalized();
|
|
float h = p_system->particle_vars[VS::PARTICLE_HEIGHT]+p_system->particle_randomness[VS::PARTICLE_HEIGHT]*pdi.data->random[7];
|
|
float velh = veld.length();
|
|
h+=velh*(p_system->particle_vars[VS::PARTICLE_HEIGHT_SPEED_SCALE]+p_system->particle_randomness[VS::PARTICLE_HEIGHT_SPEED_SCALE]*pdi.data->random[7]);
|
|
|
|
|
|
up_scale=Math::lerp(1.0,h,(1.0-vc));
|
|
}
|
|
|
|
} else if (pdi.data->rot) {
|
|
|
|
up.rotate(camera_z_axis,pdi.data->rot);
|
|
}
|
|
|
|
{
|
|
// matrix
|
|
Vector3 v_z = (p_camera_transform.origin-pdi.transform.origin).normalized();
|
|
// Vector3 v_z = (p_camera_transform.origin-pdi.data->pos).normalized();
|
|
Vector3 v_y = up;
|
|
Vector3 v_x = v_y.cross(v_z);
|
|
v_y = v_z.cross(v_x);
|
|
v_x.normalize();
|
|
v_y.normalize();
|
|
|
|
|
|
float initial_scale, final_scale;
|
|
initial_scale = p_system->particle_vars[VS::PARTICLE_INITIAL_SIZE]+p_system->particle_randomness[VS::PARTICLE_INITIAL_SIZE]*pdi.data->random[5];
|
|
final_scale = p_system->particle_vars[VS::PARTICLE_FINAL_SIZE]+p_system->particle_randomness[VS::PARTICLE_FINAL_SIZE]*pdi.data->random[6];
|
|
float scale = initial_scale + time * (final_scale - initial_scale);
|
|
|
|
pdi.transform.basis.set_axis(0,v_x * scale);
|
|
pdi.transform.basis.set_axis(1,v_y * scale * up_scale);
|
|
pdi.transform.basis.set_axis(2,v_z * scale);
|
|
}
|
|
|
|
|
|
|
|
int cpos=0;
|
|
|
|
while(cpos<col_count) {
|
|
|
|
if (cphase[cpos].pos > time)
|
|
break;
|
|
cpos++;
|
|
}
|
|
|
|
cpos--;
|
|
|
|
|
|
if (cpos==-1)
|
|
pdi.color=Color(1,1,1,1);
|
|
else {
|
|
if (cpos==col_count-1)
|
|
pdi.color=cphase[cpos].color;
|
|
else {
|
|
float diff = (cphase[cpos+1].pos-cphase[cpos].pos);
|
|
if (diff>0)
|
|
pdi.color=cphase[cpos].color.linear_interpolate(cphase[cpos+1].color, (time - cphase[cpos].pos) / diff );
|
|
else
|
|
pdi.color=cphase[cpos+1].color;
|
|
}
|
|
}
|
|
|
|
|
|
draw_info_order[i]=&pdi;
|
|
|
|
}
|
|
|
|
|
|
SortArray<ParticleDrawInfo*,_ParticleSorterSW> particle_sort;
|
|
particle_sort.sort(&draw_info_order[0],p_system->amount);
|
|
|
|
}
|