virtualx-engine/modules/fbx/data/pivot_transform.cpp
Gordon MacPherson 6607fc7da9 Port FBX module from commit 68013d2393
Ports FBX module from 3.2 branch to 4.0

This is the only time the plugin will be updated from 3.2 and marks the final time we do this, from now on we will backport FBX to 3.2 with fixes.

Changelog:
- fixed crash importing files with buggy format (because of bad newlines in ASCII data, this is yet to be fixed fully)
- fixed const correctness with C++/C version change
- rewrote material handling to be simpler and better
- ports from 3.2 to 4.0 the fbx importer
2020-12-23 00:45:03 +00:00

294 lines
13 KiB
C++

/*************************************************************************/
/* pivot_transform.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "pivot_transform.h"
#include "tools/import_utils.h"
void PivotTransform::ReadTransformChain() {
const FBXDocParser::PropertyTable *props = fbx_model->Props();
const FBXDocParser::Model::RotOrder &rot = fbx_model->RotationOrder();
const FBXDocParser::TransformInheritance &inheritType = fbx_model->InheritType();
inherit_type = inheritType; // copy the inherit type we need it in the second step.
print_verbose("Model: " + String(fbx_model->Name().c_str()) + " Has inherit type: " + itos(fbx_model->InheritType()));
bool ok = false;
raw_pre_rotation = ImportUtils::safe_import_vector3(FBXDocParser::PropertyGet<Vector3>(props, "PreRotation", ok));
if (ok) {
pre_rotation = ImportUtils::EulerToQuaternion(rot, ImportUtils::deg2rad(raw_pre_rotation));
print_verbose("valid pre_rotation: " + raw_pre_rotation + " euler conversion: " + (pre_rotation.get_euler() * (180 / Math_PI)));
}
raw_post_rotation = ImportUtils::safe_import_vector3(FBXDocParser::PropertyGet<Vector3>(props, "PostRotation", ok));
if (ok) {
post_rotation = ImportUtils::EulerToQuaternion(FBXDocParser::Model::RotOrder_EulerXYZ, ImportUtils::deg2rad(raw_post_rotation));
print_verbose("valid post_rotation: " + raw_post_rotation + " euler conversion: " + (pre_rotation.get_euler() * (180 / Math_PI)));
}
const Vector3 &RotationPivot = ImportUtils::safe_import_vector3(FBXDocParser::PropertyGet<Vector3>(props, "RotationPivot", ok));
if (ok) {
rotation_pivot = ImportUtils::FixAxisConversions(RotationPivot);
}
const Vector3 &RotationOffset = ImportUtils::safe_import_vector3(FBXDocParser::PropertyGet<Vector3>(props, "RotationOffset", ok));
if (ok) {
rotation_offset = ImportUtils::FixAxisConversions(RotationOffset);
}
const Vector3 &ScalingOffset = ImportUtils::safe_import_vector3(FBXDocParser::PropertyGet<Vector3>(props, "ScalingOffset", ok));
if (ok) {
scaling_offset = ImportUtils::FixAxisConversions(ScalingOffset);
}
const Vector3 &ScalingPivot = ImportUtils::safe_import_vector3(FBXDocParser::PropertyGet<Vector3>(props, "ScalingPivot", ok));
if (ok) {
scaling_pivot = ImportUtils::FixAxisConversions(ScalingPivot);
}
const Vector3 &Translation = ImportUtils::safe_import_vector3(FBXDocParser::PropertyGet<Vector3>(props, "Lcl Translation", ok));
if (ok) {
translation = ImportUtils::FixAxisConversions(Translation);
}
raw_rotation = ImportUtils::safe_import_vector3(FBXDocParser::PropertyGet<Vector3>(props, "Lcl Rotation", ok));
if (ok) {
rotation = ImportUtils::EulerToQuaternion(rot, ImportUtils::deg2rad(raw_rotation));
}
const Vector3 &Scaling = ImportUtils::safe_import_vector3(FBXDocParser::PropertyGet<Vector3>(props, "Lcl Scaling", ok));
if (ok) {
scaling = Scaling;
}
const Vector3 &GeometricScaling = ImportUtils::safe_import_vector3(FBXDocParser::PropertyGet<Vector3>(props, "GeometricScaling", ok));
if (ok) {
geometric_scaling = GeometricScaling;
} else {
geometric_scaling = Vector3(0, 0, 0);
}
const Vector3 &GeometricRotation = ImportUtils::safe_import_vector3(FBXDocParser::PropertyGet<Vector3>(props, "GeometricRotation", ok));
if (ok) {
geometric_rotation = ImportUtils::EulerToQuaternion(rot, ImportUtils::deg2rad(GeometricRotation));
} else {
geometric_rotation = Quat();
}
const Vector3 &GeometricTranslation = ImportUtils::safe_import_vector3(FBXDocParser::PropertyGet<Vector3>(props, "GeometricTranslation", ok));
if (ok) {
geometric_translation = ImportUtils::FixAxisConversions(GeometricTranslation);
} else {
geometric_translation = Vector3(0, 0, 0);
}
if (geometric_rotation != Quat()) {
print_error("geometric rotation is unsupported!");
//CRASH_COND(true);
}
if (!geometric_scaling.is_equal_approx(Vector3(1, 1, 1))) {
print_error("geometric scaling is unsupported!");
//CRASH_COND(true);
}
if (!geometric_translation.is_equal_approx(Vector3(0, 0, 0))) {
print_error("geometric translation is unsupported.");
//CRASH_COND(true);
}
}
Transform PivotTransform::ComputeLocalTransform(Vector3 p_translation, Quat p_rotation, Vector3 p_scaling) const {
Transform T, Roff, Rp, Soff, Sp, S;
// Here I assume this is the operation which needs done.
// Its WorldTransform * V
// Origin pivots
T.set_origin(p_translation);
Roff.set_origin(rotation_offset);
Rp.set_origin(rotation_pivot);
Soff.set_origin(scaling_offset);
Sp.set_origin(scaling_pivot);
// Scaling node
S.scale(p_scaling);
// Rotation pivots
Transform Rpre = Transform(pre_rotation);
Transform R = Transform(p_rotation);
Transform Rpost = Transform(post_rotation);
return T * Roff * Rp * Rpre * R * Rpost.affine_inverse() * Rp.affine_inverse() * Soff * Sp * S * Sp.affine_inverse();
}
Transform PivotTransform::ComputeGlobalTransform(Transform t) const {
Vector3 pos = t.origin;
Vector3 scale = t.basis.get_scale();
Quat rot = t.basis.get_rotation_quat();
return ComputeGlobalTransform(pos, rot, scale);
}
Transform PivotTransform::ComputeLocalTransform(Transform t) const {
Vector3 pos = t.origin;
Vector3 scale = t.basis.get_scale();
Quat rot = t.basis.get_rotation_quat();
return ComputeLocalTransform(pos, rot, scale);
}
Transform PivotTransform::ComputeGlobalTransform(Vector3 p_translation, Quat p_rotation, Vector3 p_scaling) const {
Transform T, Roff, Rp, Soff, Sp, S;
// Here I assume this is the operation which needs done.
// Its WorldTransform * V
// Origin pivots
T.set_origin(p_translation);
Roff.set_origin(rotation_offset);
Rp.set_origin(rotation_pivot);
Soff.set_origin(scaling_offset);
Sp.set_origin(scaling_pivot);
// Scaling node
S.scale(p_scaling);
// Rotation pivots
Transform Rpre = Transform(pre_rotation);
Transform R = Transform(p_rotation);
Transform Rpost = Transform(post_rotation);
Transform parent_global_xform;
Transform parent_local_scaling_m;
if (parent_transform.is_valid()) {
parent_global_xform = parent_transform->GlobalTransform;
parent_local_scaling_m = parent_transform->Local_Scaling_Matrix;
}
Transform local_rotation_m, parent_global_rotation_m;
Quat parent_global_rotation = parent_global_xform.basis.get_rotation_quat();
parent_global_rotation_m.basis.set_quat(parent_global_rotation);
local_rotation_m = Rpre * R * Rpost;
//Basis parent_global_rotation = Basis(parent_global_xform.get_basis().get_rotation_quat().normalized());
Transform local_shear_scaling, parent_shear_scaling, parent_shear_rotation, parent_shear_translation;
Vector3 parent_translation = parent_global_xform.get_origin();
parent_shear_translation.origin = parent_translation;
parent_shear_rotation = parent_shear_translation.affine_inverse() * parent_global_xform;
parent_shear_scaling = parent_global_rotation_m.affine_inverse() * parent_shear_rotation;
local_shear_scaling = S;
// Inherit type handler - we don't care about T here, just reordering RSrs etc.
Transform global_rotation_scale;
if (inherit_type == FBXDocParser::Transform_RrSs) {
global_rotation_scale = parent_global_rotation_m * local_rotation_m * parent_shear_scaling * local_shear_scaling;
} else if (inherit_type == FBXDocParser::Transform_RSrs) {
global_rotation_scale = parent_global_rotation_m * parent_shear_scaling * local_rotation_m * local_shear_scaling;
} else if (inherit_type == FBXDocParser::Transform_Rrs) {
Transform parent_global_shear_m_noLocal = parent_shear_scaling * parent_local_scaling_m.affine_inverse();
global_rotation_scale = parent_global_rotation_m * local_rotation_m * parent_global_shear_m_noLocal * local_shear_scaling;
}
Transform local_transform = T * Roff * Rp * Rpre * R * Rpost.affine_inverse() * Rp.affine_inverse() * Soff * Sp * S * Sp.affine_inverse();
//Transform local_translation_pivoted = Transform(Basis(), LocalTransform.origin);
// manual hack to force SSC not to be compensated for - until we can handle it properly with tests
return parent_global_xform * local_transform;
}
void PivotTransform::ComputePivotTransform() {
Transform T, Roff, Rp, Soff, Sp, S;
// Here I assume this is the operation which needs done.
// Its WorldTransform * V
// Origin pivots
T.set_origin(translation);
Roff.set_origin(rotation_offset);
Rp.set_origin(rotation_pivot);
Soff.set_origin(scaling_offset);
Sp.set_origin(scaling_pivot);
// Scaling node
if (!scaling.is_equal_approx(Vector3())) {
S.scale(scaling);
} else {
S.scale(Vector3(1, 1, 1));
}
Local_Scaling_Matrix = S; // copy for when node / child is looking for the value of this.
// Rotation pivots
Transform Rpre = Transform(pre_rotation);
Transform R = Transform(rotation);
Transform Rpost = Transform(post_rotation);
Transform parent_global_xform;
Transform parent_local_scaling_m;
if (parent_transform.is_valid()) {
parent_global_xform = parent_transform->GlobalTransform;
parent_local_scaling_m = parent_transform->Local_Scaling_Matrix;
}
Transform local_rotation_m, parent_global_rotation_m;
Quat parent_global_rotation = parent_global_xform.basis.get_rotation_quat();
parent_global_rotation_m.basis.set_quat(parent_global_rotation);
local_rotation_m = Rpre * R * Rpost;
//Basis parent_global_rotation = Basis(parent_global_xform.get_basis().get_rotation_quat().normalized());
Transform local_shear_scaling, parent_shear_scaling, parent_shear_rotation, parent_shear_translation;
Vector3 parent_translation = parent_global_xform.get_origin();
parent_shear_translation.origin = parent_translation;
parent_shear_rotation = parent_shear_translation.affine_inverse() * parent_global_xform;
parent_shear_scaling = parent_global_rotation_m.affine_inverse() * parent_shear_rotation;
local_shear_scaling = S;
// Inherit type handler - we don't care about T here, just reordering RSrs etc.
Transform global_rotation_scale;
if (inherit_type == FBXDocParser::Transform_RrSs) {
global_rotation_scale = parent_global_rotation_m * local_rotation_m * parent_shear_scaling * local_shear_scaling;
} else if (inherit_type == FBXDocParser::Transform_RSrs) {
global_rotation_scale = parent_global_rotation_m * parent_shear_scaling * local_rotation_m * local_shear_scaling;
} else if (inherit_type == FBXDocParser::Transform_Rrs) {
Transform parent_global_shear_m_noLocal = parent_shear_scaling * parent_local_scaling_m.inverse();
global_rotation_scale = parent_global_rotation_m * local_rotation_m * parent_global_shear_m_noLocal * local_shear_scaling;
}
LocalTransform = Transform();
LocalTransform = T * Roff * Rp * Rpre * R * Rpost.affine_inverse() * Rp.affine_inverse() * Soff * Sp * S * Sp.affine_inverse();
ERR_FAIL_COND_MSG(LocalTransform.basis.determinant() == 0, "invalid scale reset");
Transform local_translation_pivoted = Transform(Basis(), LocalTransform.origin);
GlobalTransform = Transform();
//GlobalTransform = parent_global_xform * LocalTransform;
Transform global_origin = Transform(Basis(), parent_translation);
GlobalTransform = (global_origin * local_translation_pivoted) * global_rotation_scale;
ImportUtils::debug_xform("local xform calculation", LocalTransform);
print_verbose("scale of node: " + S.basis.get_scale_local());
print_verbose("---------------------------------------------------------------");
}
void PivotTransform::Execute() {
ReadTransformChain();
ComputePivotTransform();
ImportUtils::debug_xform("global xform: ", GlobalTransform);
computed_global_xform = true;
}