virtualx-engine/editor/import/collada.cpp
2023-05-11 16:00:59 +02:00

2384 lines
74 KiB
C++

/**************************************************************************/
/* collada.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "collada.h"
#include <stdio.h>
//#define DEBUG_DEFAULT_ANIMATION
//#define DEBUG_COLLADA
#ifdef DEBUG_COLLADA
#define COLLADA_PRINT(m_what) print_line(m_what)
#else
#define COLLADA_PRINT(m_what)
#endif
#define COLLADA_IMPORT_SCALE_SCENE
/* HELPERS */
String Collada::Effect::get_texture_path(const String &p_source, Collada &p_state) const {
const String &image = p_source;
ERR_FAIL_COND_V(!p_state.state.image_map.has(image), "");
return p_state.state.image_map[image].path;
}
Transform3D Collada::get_root_transform() const {
Transform3D unit_scale_transform;
#ifndef COLLADA_IMPORT_SCALE_SCENE
unit_scale_transform.scale(Vector3(state.unit_scale, state.unit_scale, state.unit_scale));
#endif
return unit_scale_transform;
}
void Collada::Vertex::fix_unit_scale(const Collada &p_state) {
#ifdef COLLADA_IMPORT_SCALE_SCENE
vertex *= p_state.state.unit_scale;
#endif
}
static String _uri_to_id(const String &p_uri) {
if (p_uri.begins_with("#")) {
return p_uri.substr(1, p_uri.size() - 1);
} else {
return p_uri;
}
}
/** HELPER FUNCTIONS **/
Transform3D Collada::fix_transform(const Transform3D &p_transform) {
Transform3D tr = p_transform;
#ifndef NO_UP_AXIS_SWAP
if (state.up_axis != Vector3::AXIS_Y) {
for (int i = 0; i < 3; i++) {
SWAP(tr.basis[1][i], tr.basis[state.up_axis][i]);
}
for (int i = 0; i < 3; i++) {
SWAP(tr.basis[i][1], tr.basis[i][state.up_axis]);
}
SWAP(tr.origin[1], tr.origin[state.up_axis]);
tr.basis[state.up_axis][0] = -tr.basis[state.up_axis][0];
tr.basis[state.up_axis][1] = -tr.basis[state.up_axis][1];
tr.basis[0][state.up_axis] = -tr.basis[0][state.up_axis];
tr.basis[1][state.up_axis] = -tr.basis[1][state.up_axis];
tr.origin[state.up_axis] = -tr.origin[state.up_axis];
}
#endif
//tr.scale(Vector3(state.unit_scale.unit_scale.unit_scale));
return tr;
//return state.matrix_fix * p_transform;
}
static Transform3D _read_transform_from_array(const Vector<float> &p_array, int p_ofs = 0) {
Transform3D tr;
// i wonder why collada matrices are transposed, given that's opposed to opengl..
tr.basis.rows[0][0] = p_array[0 + p_ofs];
tr.basis.rows[0][1] = p_array[1 + p_ofs];
tr.basis.rows[0][2] = p_array[2 + p_ofs];
tr.basis.rows[1][0] = p_array[4 + p_ofs];
tr.basis.rows[1][1] = p_array[5 + p_ofs];
tr.basis.rows[1][2] = p_array[6 + p_ofs];
tr.basis.rows[2][0] = p_array[8 + p_ofs];
tr.basis.rows[2][1] = p_array[9 + p_ofs];
tr.basis.rows[2][2] = p_array[10 + p_ofs];
tr.origin.x = p_array[3 + p_ofs];
tr.origin.y = p_array[7 + p_ofs];
tr.origin.z = p_array[11 + p_ofs];
return tr;
}
/* STRUCTURES */
Transform3D Collada::Node::compute_transform(const Collada &p_state) const {
Transform3D xform;
for (int i = 0; i < xform_list.size(); i++) {
Transform3D xform_step;
const XForm &xf = xform_list[i];
switch (xf.op) {
case XForm::OP_ROTATE: {
if (xf.data.size() >= 4) {
xform_step.rotate(Vector3(xf.data[0], xf.data[1], xf.data[2]), Math::deg_to_rad(xf.data[3]));
}
} break;
case XForm::OP_SCALE: {
if (xf.data.size() >= 3) {
xform_step.scale(Vector3(xf.data[0], xf.data[1], xf.data[2]));
}
} break;
case XForm::OP_TRANSLATE: {
if (xf.data.size() >= 3) {
xform_step.origin = Vector3(xf.data[0], xf.data[1], xf.data[2]);
}
} break;
case XForm::OP_MATRIX: {
if (xf.data.size() >= 16) {
xform_step = _read_transform_from_array(xf.data, 0);
}
} break;
default: {
}
}
xform = xform * xform_step;
}
#ifdef COLLADA_IMPORT_SCALE_SCENE
xform.origin *= p_state.state.unit_scale;
#endif
return xform;
}
Transform3D Collada::Node::get_transform() const {
return default_transform;
}
Transform3D Collada::Node::get_global_transform() const {
if (parent) {
return parent->get_global_transform() * default_transform;
} else {
return default_transform;
}
}
Vector<float> Collada::AnimationTrack::get_value_at_time(float p_time) const {
ERR_FAIL_COND_V(keys.size() == 0, Vector<float>());
int i = 0;
for (i = 0; i < keys.size(); i++) {
if (keys[i].time > p_time) {
break;
}
}
if (i == 0) {
return keys[0].data;
}
if (i == keys.size()) {
return keys[keys.size() - 1].data;
}
switch (keys[i].interp_type) {
case INTERP_BEZIER: //wait for bezier
case INTERP_LINEAR: {
float c = (p_time - keys[i - 1].time) / (keys[i].time - keys[i - 1].time);
if (keys[i].data.size() == 16) {
//interpolate a matrix
Transform3D src = _read_transform_from_array(keys[i - 1].data);
Transform3D dst = _read_transform_from_array(keys[i].data);
Transform3D interp = c < 0.001 ? src : src.interpolate_with(dst, c);
Vector<float> ret;
ret.resize(16);
Transform3D tr;
// i wonder why collada matrices are transposed, given that's opposed to opengl..
ret.write[0] = interp.basis.rows[0][0];
ret.write[1] = interp.basis.rows[0][1];
ret.write[2] = interp.basis.rows[0][2];
ret.write[4] = interp.basis.rows[1][0];
ret.write[5] = interp.basis.rows[1][1];
ret.write[6] = interp.basis.rows[1][2];
ret.write[8] = interp.basis.rows[2][0];
ret.write[9] = interp.basis.rows[2][1];
ret.write[10] = interp.basis.rows[2][2];
ret.write[3] = interp.origin.x;
ret.write[7] = interp.origin.y;
ret.write[11] = interp.origin.z;
ret.write[12] = 0;
ret.write[13] = 0;
ret.write[14] = 0;
ret.write[15] = 1;
return ret;
} else {
Vector<float> dest;
dest.resize(keys[i].data.size());
for (int j = 0; j < dest.size(); j++) {
dest.write[j] = keys[i].data[j] * c + keys[i - 1].data[j] * (1.0 - c);
}
return dest;
//interpolate one by one
}
} break;
}
ERR_FAIL_V(Vector<float>());
}
void Collada::_parse_asset(XMLParser &p_parser) {
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
String name = p_parser.get_node_name();
if (name == "up_axis") {
p_parser.read();
if (p_parser.get_node_data() == "X_UP") {
state.up_axis = Vector3::AXIS_X;
}
if (p_parser.get_node_data() == "Y_UP") {
state.up_axis = Vector3::AXIS_Y;
}
if (p_parser.get_node_data() == "Z_UP") {
state.up_axis = Vector3::AXIS_Z;
}
COLLADA_PRINT("up axis: " + p_parser.get_node_data());
} else if (name == "unit") {
state.unit_scale = p_parser.get_named_attribute_value("meter").to_float();
COLLADA_PRINT("unit scale: " + rtos(state.unit_scale));
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == "asset") {
break; //end of <asset>
}
}
}
void Collada::_parse_image(XMLParser &p_parser) {
String id = p_parser.get_named_attribute_value("id");
if (!(state.import_flags & IMPORT_FLAG_SCENE)) {
if (!p_parser.is_empty()) {
p_parser.skip_section();
}
return;
}
Image image;
if (state.version < State::Version(1, 4, 0)) {
/* <1.4 */
String path = p_parser.get_named_attribute_value("source").strip_edges();
if (!path.contains("://") && path.is_relative_path()) {
// path is relative to file being loaded, so convert to a resource path
image.path = ProjectSettings::get_singleton()->localize_path(state.local_path.get_base_dir().path_join(path.uri_decode()));
}
} else {
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
String name = p_parser.get_node_name();
if (name == "init_from") {
p_parser.read();
String path = p_parser.get_node_data().strip_edges().uri_decode();
if (!path.contains("://") && path.is_relative_path()) {
// path is relative to file being loaded, so convert to a resource path
path = ProjectSettings::get_singleton()->localize_path(state.local_path.get_base_dir().path_join(path));
} else if (path.find("file:///") == 0) {
path = path.replace_first("file:///", "");
path = ProjectSettings::get_singleton()->localize_path(path);
}
image.path = path;
} else if (name == "data") {
ERR_PRINT("COLLADA Embedded image data not supported!");
} else if (name == "extra" && !p_parser.is_empty()) {
p_parser.skip_section();
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == "image") {
break; //end of <asset>
}
}
}
state.image_map[id] = image;
}
void Collada::_parse_material(XMLParser &p_parser) {
if (!(state.import_flags & IMPORT_FLAG_SCENE)) {
if (!p_parser.is_empty()) {
p_parser.skip_section();
}
return;
}
Material material;
String id = p_parser.get_named_attribute_value("id");
if (p_parser.has_attribute("name")) {
material.name = p_parser.get_named_attribute_value("name");
}
if (state.version < State::Version(1, 4, 0)) {
/* <1.4 */
ERR_PRINT("Collada Materials < 1.4 are not supported (yet)");
} else {
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT && p_parser.get_node_name() == "instance_effect") {
material.instance_effect = _uri_to_id(p_parser.get_named_attribute_value("url"));
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == "material") {
break; //end of <asset>
}
}
}
state.material_map[id] = material;
}
//! reads floats from inside of xml element until end of xml element
Vector<float> Collada::_read_float_array(XMLParser &p_parser) {
if (p_parser.is_empty()) {
return Vector<float>();
}
Vector<String> splitters;
splitters.push_back(" ");
splitters.push_back("\n");
splitters.push_back("\r");
splitters.push_back("\t");
Vector<float> array;
while (p_parser.read() == OK) {
// TODO: check for comments inside the element
// and ignore them.
if (p_parser.get_node_type() == XMLParser::NODE_TEXT) {
// parse float data
String str = p_parser.get_node_data();
array = str.split_floats_mk(splitters, false);
//array=str.split_floats(" ",false);
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END) {
break; // end parsing text
}
}
return array;
}
Vector<String> Collada::_read_string_array(XMLParser &p_parser) {
if (p_parser.is_empty()) {
return Vector<String>();
}
Vector<String> array;
while (p_parser.read() == OK) {
// TODO: check for comments inside the element
// and ignore them.
if (p_parser.get_node_type() == XMLParser::NODE_TEXT) {
// parse String data
String str = p_parser.get_node_data();
array = str.split_spaces();
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END) {
break; // end parsing text
}
}
return array;
}
Transform3D Collada::_read_transform(XMLParser &p_parser) {
if (p_parser.is_empty()) {
return Transform3D();
}
Vector<String> array;
while (p_parser.read() == OK) {
// TODO: check for comments inside the element
// and ignore them.
if (p_parser.get_node_type() == XMLParser::NODE_TEXT) {
// parse float data
String str = p_parser.get_node_data();
array = str.split_spaces();
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END) {
break; // end parsing text
}
}
ERR_FAIL_COND_V(array.size() != 16, Transform3D());
Vector<float> farr;
farr.resize(16);
for (int i = 0; i < 16; i++) {
farr.write[i] = array[i].to_float();
}
return _read_transform_from_array(farr);
}
String Collada::_read_empty_draw_type(XMLParser &p_parser) {
String empty_draw_type = "";
if (p_parser.is_empty()) {
return empty_draw_type;
}
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_TEXT) {
empty_draw_type = p_parser.get_node_data();
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END) {
break; // end parsing text
}
}
return empty_draw_type;
}
Variant Collada::_parse_param(XMLParser &p_parser) {
if (p_parser.is_empty()) {
return Variant();
}
String from = p_parser.get_node_name();
Variant data;
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
if (p_parser.get_node_name() == "float") {
p_parser.read();
if (p_parser.get_node_type() == XMLParser::NODE_TEXT) {
data = p_parser.get_node_data().to_float();
}
} else if (p_parser.get_node_name() == "float2") {
Vector<float> v2 = _read_float_array(p_parser);
if (v2.size() >= 2) {
data = Vector2(v2[0], v2[1]);
}
} else if (p_parser.get_node_name() == "float3") {
Vector<float> v3 = _read_float_array(p_parser);
if (v3.size() >= 3) {
data = Vector3(v3[0], v3[1], v3[2]);
}
} else if (p_parser.get_node_name() == "float4") {
Vector<float> v4 = _read_float_array(p_parser);
if (v4.size() >= 4) {
data = Color(v4[0], v4[1], v4[2], v4[3]);
}
} else if (p_parser.get_node_name() == "sampler2D") {
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
if (p_parser.get_node_name() == "source") {
p_parser.read();
if (p_parser.get_node_type() == XMLParser::NODE_TEXT) {
data = p_parser.get_node_data();
}
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == "sampler2D") {
break;
}
}
} else if (p_parser.get_node_name() == "surface") {
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
if (p_parser.get_node_name() == "init_from") {
p_parser.read();
if (p_parser.get_node_type() == XMLParser::NODE_TEXT) {
data = p_parser.get_node_data();
}
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == "surface") {
break;
}
}
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == from) {
break;
}
}
COLLADA_PRINT("newparam ending " + p_parser.get_node_name());
return data;
}
void Collada::_parse_effect_material(XMLParser &p_parser, Effect &p_effect, String &p_id) {
if (!(state.import_flags & IMPORT_FLAG_SCENE)) {
if (!p_parser.is_empty()) {
p_parser.skip_section();
}
return;
}
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
// first come the tags we descend, but ignore the top-levels
COLLADA_PRINT("node name: " + p_parser.get_node_name());
if (!p_parser.is_empty() &&
(p_parser.get_node_name() == "profile_COMMON" ||
p_parser.get_node_name() == "technique" ||
p_parser.get_node_name() == "extra")) {
_parse_effect_material(p_parser, p_effect, p_id); // try again
} else if (p_parser.get_node_name() == "newparam") {
String name = p_parser.get_named_attribute_value("sid");
Variant value = _parse_param(p_parser);
p_effect.params[name] = value;
COLLADA_PRINT("param: " + name + " value:" + String(value));
} else if (p_parser.get_node_name() == "constant" ||
p_parser.get_node_name() == "lambert" ||
p_parser.get_node_name() == "phong" ||
p_parser.get_node_name() == "blinn") {
COLLADA_PRINT("shade model: " + p_parser.get_node_name());
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
String what = p_parser.get_node_name();
if (what == "emission" ||
what == "diffuse" ||
what == "specular" ||
what == "reflective") {
// color or texture types
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
if (p_parser.get_node_name() == "color") {
Vector<float> colorarr = _read_float_array(p_parser);
COLLADA_PRINT("colorarr size: " + rtos(colorarr.size()));
if (colorarr.size() >= 3) {
// alpha strangely not alright? maybe it needs to be multiplied by value as a channel intensity
Color color(colorarr[0], colorarr[1], colorarr[2], 1.0);
if (what == "diffuse") {
p_effect.diffuse.color = color;
}
if (what == "specular") {
p_effect.specular.color = color;
}
if (what == "emission") {
p_effect.emission.color = color;
}
COLLADA_PRINT(what + " color: " + color);
}
} else if (p_parser.get_node_name() == "texture") {
String sampler = p_parser.get_named_attribute_value("texture");
if (!p_effect.params.has(sampler)) {
ERR_PRINT(String("Couldn't find sampler: " + sampler + " in material:" + p_id).utf8().get_data());
} else {
String surface = p_effect.params[sampler];
if (!p_effect.params.has(surface)) {
ERR_PRINT(String("Couldn't find surface: " + surface + " in material:" + p_id).utf8().get_data());
} else {
String uri = p_effect.params[surface];
if (what == "diffuse") {
p_effect.diffuse.texture = uri;
} else if (what == "specular") {
p_effect.specular.texture = uri;
} else if (what == "emission") {
p_effect.emission.texture = uri;
} else if (what == "bump") {
if (p_parser.has_attribute("bumptype") && p_parser.get_named_attribute_value("bumptype") != "NORMALMAP") {
WARN_PRINT("'bump' texture type is not NORMALMAP, only NORMALMAP is supported.");
}
p_effect.bump.texture = uri;
}
COLLADA_PRINT(what + " texture: " + uri);
}
}
} else if (!p_parser.is_empty()) {
p_parser.skip_section();
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == what) {
break;
}
}
} else if (what == "shininess") {
p_effect.shininess = _parse_param(p_parser);
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END &&
(p_parser.get_node_name() == "constant" ||
p_parser.get_node_name() == "lambert" ||
p_parser.get_node_name() == "phong" ||
p_parser.get_node_name() == "blinn")) {
break;
}
}
} else if (p_parser.get_node_name() == "double_sided" || p_parser.get_node_name() == "show_double_sided") { // colladamax / google earth
// 3DS Max / Google Earth double sided extension
p_parser.read();
p_effect.found_double_sided = true;
p_effect.double_sided = p_parser.get_node_data().to_int();
COLLADA_PRINT("double sided: " + itos(p_parser.get_node_data().to_int()));
} else if (p_parser.get_node_name() == "unshaded") {
p_parser.read();
p_effect.unshaded = p_parser.get_node_data().to_int();
} else if (p_parser.get_node_name() == "bump") {
// color or texture types
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
if (p_parser.get_node_name() == "texture") {
String sampler = p_parser.get_named_attribute_value("texture");
if (!p_effect.params.has(sampler)) {
ERR_PRINT(String("Couldn't find sampler: " + sampler + " in material:" + p_id).utf8().get_data());
} else {
String surface = p_effect.params[sampler];
if (!p_effect.params.has(surface)) {
ERR_PRINT(String("Couldn't find surface: " + surface + " in material:" + p_id).utf8().get_data());
} else {
String uri = p_effect.params[surface];
if (p_parser.has_attribute("bumptype") && p_parser.get_named_attribute_value("bumptype") != "NORMALMAP") {
WARN_PRINT("'bump' texture type is not NORMALMAP, only NORMALMAP is supported.");
}
p_effect.bump.texture = uri;
COLLADA_PRINT(" bump: " + uri);
}
}
} else if (!p_parser.is_empty()) {
p_parser.skip_section();
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == "bump") {
break;
}
}
} else if (!p_parser.is_empty()) {
p_parser.skip_section();
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END &&
(p_parser.get_node_name() == "effect" ||
p_parser.get_node_name() == "profile_COMMON" ||
p_parser.get_node_name() == "technique" ||
p_parser.get_node_name() == "extra")) {
break;
}
}
}
void Collada::_parse_effect(XMLParser &p_parser) {
if (!(state.import_flags & IMPORT_FLAG_SCENE)) {
if (!p_parser.is_empty()) {
p_parser.skip_section();
}
return;
}
String id = p_parser.get_named_attribute_value("id");
Effect effect;
if (p_parser.has_attribute("name")) {
effect.name = p_parser.get_named_attribute_value("name");
}
_parse_effect_material(p_parser, effect, id);
state.effect_map[id] = effect;
COLLADA_PRINT("Effect ID:" + id);
}
void Collada::_parse_camera(XMLParser &p_parser) {
if (!(state.import_flags & IMPORT_FLAG_SCENE)) {
if (!p_parser.is_empty()) {
p_parser.skip_section();
}
return;
}
String id = p_parser.get_named_attribute_value("id");
state.camera_data_map[id] = CameraData();
CameraData &camera = state.camera_data_map[id];
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
String name = p_parser.get_node_name();
if (name == "perspective") {
camera.mode = CameraData::MODE_PERSPECTIVE;
} else if (name == "orthographic") {
camera.mode = CameraData::MODE_ORTHOGONAL;
} else if (name == "xfov") {
p_parser.read();
camera.perspective.x_fov = p_parser.get_node_data().to_float();
} else if (name == "yfov") {
p_parser.read();
camera.perspective.y_fov = p_parser.get_node_data().to_float();
} else if (name == "xmag") {
p_parser.read();
camera.orthogonal.x_mag = p_parser.get_node_data().to_float();
} else if (name == "ymag") {
p_parser.read();
camera.orthogonal.y_mag = p_parser.get_node_data().to_float();
} else if (name == "aspect_ratio") {
p_parser.read();
camera.aspect = p_parser.get_node_data().to_float();
} else if (name == "znear") {
p_parser.read();
camera.z_near = p_parser.get_node_data().to_float();
} else if (name == "zfar") {
p_parser.read();
camera.z_far = p_parser.get_node_data().to_float();
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == "camera") {
break; //end of <asset>
}
}
COLLADA_PRINT("Camera ID:" + id);
}
void Collada::_parse_light(XMLParser &p_parser) {
if (!(state.import_flags & IMPORT_FLAG_SCENE)) {
if (!p_parser.is_empty()) {
p_parser.skip_section();
}
return;
}
String id = p_parser.get_named_attribute_value("id");
state.light_data_map[id] = LightData();
LightData &light = state.light_data_map[id];
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
String name = p_parser.get_node_name();
if (name == "ambient") {
light.mode = LightData::MODE_AMBIENT;
} else if (name == "directional") {
light.mode = LightData::MODE_DIRECTIONAL;
} else if (name == "point") {
light.mode = LightData::MODE_OMNI;
} else if (name == "spot") {
light.mode = LightData::MODE_SPOT;
} else if (name == "color") {
p_parser.read();
Vector<float> colorarr = _read_float_array(p_parser);
COLLADA_PRINT("colorarr size: " + rtos(colorarr.size()));
if (colorarr.size() >= 4) {
// alpha strangely not alright? maybe it needs to be multiplied by value as a channel intensity
Color color(colorarr[0], colorarr[1], colorarr[2], 1.0);
light.color = color;
}
} else if (name == "constant_attenuation") {
p_parser.read();
light.constant_att = p_parser.get_node_data().to_float();
} else if (name == "linear_attenuation") {
p_parser.read();
light.linear_att = p_parser.get_node_data().to_float();
} else if (name == "quadratic_attenuation") {
p_parser.read();
light.quad_att = p_parser.get_node_data().to_float();
} else if (name == "falloff_angle") {
p_parser.read();
light.spot_angle = p_parser.get_node_data().to_float();
} else if (name == "falloff_exponent") {
p_parser.read();
light.spot_exp = p_parser.get_node_data().to_float();
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == "light") {
break; //end of <asset>
}
}
COLLADA_PRINT("Light ID:" + id);
}
void Collada::_parse_curve_geometry(XMLParser &p_parser, String p_id, String p_name) {
if (!(state.import_flags & IMPORT_FLAG_SCENE)) {
if (!p_parser.is_empty()) {
p_parser.skip_section();
}
return;
}
//load everything into a pre dictionary
state.curve_data_map[p_id] = CurveData();
CurveData &curvedata = state.curve_data_map[p_id];
curvedata.name = p_name;
String closed = p_parser.get_named_attribute_value_safe("closed").to_lower();
curvedata.closed = closed == "true" || closed == "1";
COLLADA_PRINT("curve name: " + p_name);
String current_source;
// handles geometry node and the curve children in this loop
// read sources with arrays and accessor for each curve
if (p_parser.is_empty()) {
return;
}
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
String section = p_parser.get_node_name();
if (section == "source") {
String id = p_parser.get_named_attribute_value("id");
curvedata.sources[id] = CurveData::Source();
current_source = id;
COLLADA_PRINT("source data: " + id);
} else if (section == "float_array" || section == "array") {
// create a new array and read it.
if (curvedata.sources.has(current_source)) {
curvedata.sources[current_source].array = _read_float_array(p_parser);
COLLADA_PRINT("section: " + current_source + " read " + itos(curvedata.sources[current_source].array.size()) + " values.");
}
} else if (section == "Name_array") {
// create a new array and read it.
if (curvedata.sources.has(current_source)) {
curvedata.sources[current_source].sarray = _read_string_array(p_parser);
COLLADA_PRINT("section: " + current_source + " read " + itos(curvedata.sources[current_source].array.size()) + " values.");
}
} else if (section == "technique_common") {
//skip it
} else if (section == "accessor") { // child of source (below a technique tag)
if (curvedata.sources.has(current_source)) {
curvedata.sources[current_source].stride = p_parser.get_named_attribute_value("stride").to_int();
COLLADA_PRINT("section: " + current_source + " stride " + itos(curvedata.sources[current_source].stride));
}
} else if (section == "control_vertices") {
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
if (p_parser.get_node_name() == "input") {
String semantic = p_parser.get_named_attribute_value("semantic");
String source = _uri_to_id(p_parser.get_named_attribute_value("source"));
curvedata.control_vertices[semantic] = source;
COLLADA_PRINT(section + " input semantic: " + semantic + " source: " + source);
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == section) {
break;
}
}
} else if (!p_parser.is_empty()) {
p_parser.skip_section();
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == "spline") {
break;
}
}
}
void Collada::_parse_mesh_geometry(XMLParser &p_parser, String p_id, String p_name) {
if (!(state.import_flags & IMPORT_FLAG_SCENE)) {
if (!p_parser.is_empty()) {
p_parser.skip_section();
}
return;
}
//load everything into a pre dictionary
state.mesh_data_map[p_id] = MeshData();
MeshData &meshdata = state.mesh_data_map[p_id];
meshdata.name = p_name;
COLLADA_PRINT("mesh name: " + p_name);
String current_source;
// handles geometry node and the mesh children in this loop
// read sources with arrays and accessor for each mesh
if (p_parser.is_empty()) {
return;
}
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
String section = p_parser.get_node_name();
if (section == "source") {
String id = p_parser.get_named_attribute_value("id");
meshdata.sources[id] = MeshData::Source();
current_source = id;
COLLADA_PRINT("source data: " + id);
} else if (section == "float_array" || section == "array") {
// create a new array and read it.
if (meshdata.sources.has(current_source)) {
meshdata.sources[current_source].array = _read_float_array(p_parser);
COLLADA_PRINT("section: " + current_source + " read " + itos(meshdata.sources[current_source].array.size()) + " values.");
}
} else if (section == "technique_common") {
//skip it
} else if (section == "accessor") { // child of source (below a technique tag)
if (meshdata.sources.has(current_source)) {
meshdata.sources[current_source].stride = p_parser.get_named_attribute_value("stride").to_int();
COLLADA_PRINT("section: " + current_source + " stride " + itos(meshdata.sources[current_source].stride));
}
} else if (section == "vertices") {
MeshData::Vertices vert;
String id = p_parser.get_named_attribute_value("id");
int last_ref = 0;
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
if (p_parser.get_node_name() == "input") {
String semantic = p_parser.get_named_attribute_value("semantic");
String source = _uri_to_id(p_parser.get_named_attribute_value("source"));
if (semantic == "TEXCOORD") {
semantic = "TEXCOORD" + itos(last_ref++);
}
vert.sources[semantic] = source;
COLLADA_PRINT(section + " input semantic: " + semantic + " source: " + source);
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == section) {
break;
}
}
meshdata.vertices[id] = vert;
} else if (section == "triangles" || section == "polylist" || section == "polygons") {
bool polygons = (section == "polygons");
if (polygons) {
WARN_PRINT("Primitive type \"polygons\" is not well supported (concave shapes may fail). To ensure that the geometry is properly imported, please re-export using \"triangles\" or \"polylist\".");
}
MeshData::Primitives prim;
if (p_parser.has_attribute("material")) {
prim.material = p_parser.get_named_attribute_value("material");
}
prim.count = p_parser.get_named_attribute_value("count").to_int();
prim.vertex_size = 0;
int last_ref = 0;
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
if (p_parser.get_node_name() == "input") {
String semantic = p_parser.get_named_attribute_value("semantic");
String source = _uri_to_id(p_parser.get_named_attribute_value("source"));
if (semantic == "TEXCOORD") {
semantic = "TEXCOORD" + itos(last_ref++);
}
int offset = p_parser.get_named_attribute_value("offset").to_int();
MeshData::Primitives::SourceRef sref;
sref.source = source;
sref.offset = offset;
prim.sources[semantic] = sref;
prim.vertex_size = MAX(prim.vertex_size, offset + 1);
COLLADA_PRINT(section + " input semantic: " + semantic + " source: " + source + " offset: " + itos(offset));
} else if (p_parser.get_node_name() == "p") { //indices
Vector<float> values = _read_float_array(p_parser);
if (polygons) {
ERR_CONTINUE(prim.vertex_size == 0);
prim.polygons.push_back(values.size() / prim.vertex_size);
int from = prim.indices.size();
prim.indices.resize(from + values.size());
for (int i = 0; i < values.size(); i++) {
prim.indices.write[from + i] = values[i];
}
} else if (prim.vertex_size > 0) {
prim.indices = values;
}
COLLADA_PRINT("read " + itos(values.size()) + " index values");
} else if (p_parser.get_node_name() == "vcount") { // primitive
Vector<float> values = _read_float_array(p_parser);
prim.polygons = values;
COLLADA_PRINT("read " + itos(values.size()) + " polygon values");
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == section) {
break;
}
}
meshdata.primitives.push_back(prim);
} else if (p_parser.get_node_name() == "double_sided") {
p_parser.read();
meshdata.found_double_sided = true;
meshdata.double_sided = p_parser.get_node_data().to_int();
} else if (p_parser.get_node_name() == "polygons") {
ERR_PRINT("Primitive type \"polygons\" not supported, re-export using \"polylist\" or \"triangles\".");
} else if (!p_parser.is_empty()) {
p_parser.skip_section();
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == "mesh") {
break;
}
}
}
void Collada::_parse_skin_controller(XMLParser &p_parser, String p_id) {
state.skin_controller_data_map[p_id] = SkinControllerData();
SkinControllerData &skindata = state.skin_controller_data_map[p_id];
skindata.base = _uri_to_id(p_parser.get_named_attribute_value("source"));
String current_source;
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
String section = p_parser.get_node_name();
if (section == "bind_shape_matrix") {
skindata.bind_shape = _read_transform(p_parser);
#ifdef COLLADA_IMPORT_SCALE_SCENE
skindata.bind_shape.origin *= state.unit_scale;
#endif
COLLADA_PRINT("skeleton bind shape transform: " + skindata.bind_shape);
} else if (section == "source") {
String id = p_parser.get_named_attribute_value("id");
skindata.sources[id] = SkinControllerData::Source();
current_source = id;
COLLADA_PRINT("source data: " + id);
} else if (section == "float_array" || section == "array") {
// create a new array and read it.
if (skindata.sources.has(current_source)) {
skindata.sources[current_source].array = _read_float_array(p_parser);
COLLADA_PRINT("section: " + current_source + " read " + itos(skindata.sources[current_source].array.size()) + " values.");
}
} else if (section == "Name_array" || section == "IDREF_array") {
// create a new array and read it.
if (section == "IDREF_array") {
skindata.use_idrefs = true;
}
if (skindata.sources.has(current_source)) {
skindata.sources[current_source].sarray = _read_string_array(p_parser);
if (section == "IDREF_array") {
Vector<String> sa = skindata.sources[current_source].sarray;
for (int i = 0; i < sa.size(); i++) {
state.idref_joints.insert(sa[i]);
}
}
COLLADA_PRINT("section: " + current_source + " read " + itos(skindata.sources[current_source].array.size()) + " values.");
}
} else if (section == "technique_common") {
//skip it
} else if (section == "accessor") { // child of source (below a technique tag)
if (skindata.sources.has(current_source)) {
int stride = 1;
if (p_parser.has_attribute("stride")) {
stride = p_parser.get_named_attribute_value("stride").to_int();
}
skindata.sources[current_source].stride = stride;
COLLADA_PRINT("section: " + current_source + " stride " + itos(skindata.sources[current_source].stride));
}
} else if (section == "joints") {
SkinControllerData::Joints joint;
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
if (p_parser.get_node_name() == "input") {
String semantic = p_parser.get_named_attribute_value("semantic");
String source = _uri_to_id(p_parser.get_named_attribute_value("source"));
joint.sources[semantic] = source;
COLLADA_PRINT(section + " input semantic: " + semantic + " source: " + source);
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == section) {
break;
}
}
skindata.joints = joint;
} else if (section == "vertex_weights") {
SkinControllerData::Weights weights;
weights.count = p_parser.get_named_attribute_value("count").to_int();
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
if (p_parser.get_node_name() == "input") {
String semantic = p_parser.get_named_attribute_value("semantic");
String source = _uri_to_id(p_parser.get_named_attribute_value("source"));
int offset = p_parser.get_named_attribute_value("offset").to_int();
SkinControllerData::Weights::SourceRef sref;
sref.source = source;
sref.offset = offset;
weights.sources[semantic] = sref;
COLLADA_PRINT(section + " input semantic: " + semantic + " source: " + source + " offset: " + itos(offset));
} else if (p_parser.get_node_name() == "v") { //indices
Vector<float> values = _read_float_array(p_parser);
weights.indices = values;
COLLADA_PRINT("read " + itos(values.size()) + " index values");
} else if (p_parser.get_node_name() == "vcount") { // weightsitive
Vector<float> values = _read_float_array(p_parser);
weights.sets = values;
COLLADA_PRINT("read " + itos(values.size()) + " polygon values");
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == section) {
break;
}
}
skindata.weights = weights;
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == "skin") {
break;
}
}
/* STORE REST MATRICES */
Vector<Transform3D> rests;
ERR_FAIL_COND(!skindata.joints.sources.has("JOINT"));
ERR_FAIL_COND(!skindata.joints.sources.has("INV_BIND_MATRIX"));
String joint_arr = skindata.joints.sources["JOINT"];
String ibm = skindata.joints.sources["INV_BIND_MATRIX"];
ERR_FAIL_COND(!skindata.sources.has(joint_arr));
ERR_FAIL_COND(!skindata.sources.has(ibm));
SkinControllerData::Source &joint_source = skindata.sources[joint_arr];
SkinControllerData::Source &ibm_source = skindata.sources[ibm];
ERR_FAIL_COND(joint_source.sarray.size() != ibm_source.array.size() / 16);
for (int i = 0; i < joint_source.sarray.size(); i++) {
String name = joint_source.sarray[i];
Transform3D xform = _read_transform_from_array(ibm_source.array, i * 16); //<- this is a mistake, it must be applied to vertices
xform.affine_invert(); // inverse for rest, because it's an inverse
#ifdef COLLADA_IMPORT_SCALE_SCENE
xform.origin *= state.unit_scale;
#endif
skindata.bone_rest_map[name] = xform;
}
}
void Collada::_parse_morph_controller(XMLParser &p_parser, String p_id) {
state.morph_controller_data_map[p_id] = MorphControllerData();
MorphControllerData &morphdata = state.morph_controller_data_map[p_id];
morphdata.mesh = _uri_to_id(p_parser.get_named_attribute_value("source"));
morphdata.mode = p_parser.get_named_attribute_value("method");
String current_source;
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
String section = p_parser.get_node_name();
if (section == "source") {
String id = p_parser.get_named_attribute_value("id");
morphdata.sources[id] = MorphControllerData::Source();
current_source = id;
COLLADA_PRINT("source data: " + id);
} else if (section == "float_array" || section == "array") {
// create a new array and read it.
if (morphdata.sources.has(current_source)) {
morphdata.sources[current_source].array = _read_float_array(p_parser);
COLLADA_PRINT("section: " + current_source + " read " + itos(morphdata.sources[current_source].array.size()) + " values.");
}
} else if (section == "Name_array" || section == "IDREF_array") {
// create a new array and read it.
if (morphdata.sources.has(current_source)) {
morphdata.sources[current_source].sarray = _read_string_array(p_parser);
COLLADA_PRINT("section: " + current_source + " read " + itos(morphdata.sources[current_source].array.size()) + " values.");
}
} else if (section == "technique_common") {
//skip it
} else if (section == "accessor") { // child of source (below a technique tag)
if (morphdata.sources.has(current_source)) {
int stride = 1;
if (p_parser.has_attribute("stride")) {
stride = p_parser.get_named_attribute_value("stride").to_int();
}
morphdata.sources[current_source].stride = stride;
COLLADA_PRINT("section: " + current_source + " stride " + itos(morphdata.sources[current_source].stride));
}
} else if (section == "targets") {
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
if (p_parser.get_node_name() == "input") {
String semantic = p_parser.get_named_attribute_value("semantic");
String source = _uri_to_id(p_parser.get_named_attribute_value("source"));
morphdata.targets[semantic] = source;
COLLADA_PRINT(section + " input semantic: " + semantic + " source: " + source);
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == section) {
break;
}
}
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == "morph") {
break;
}
}
if (morphdata.targets.has("MORPH_WEIGHT")) {
state.morph_name_map[morphdata.targets["MORPH_WEIGHT"]] = p_id;
}
}
void Collada::_parse_controller(XMLParser &p_parser) {
String id = p_parser.get_named_attribute_value("id");
if (p_parser.is_empty()) {
return;
}
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
String section = p_parser.get_node_name();
if (section == "skin") {
_parse_skin_controller(p_parser, id);
} else if (section == "morph") {
_parse_morph_controller(p_parser, id);
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == "controller") {
break;
}
}
}
Collada::Node *Collada::_parse_visual_instance_geometry(XMLParser &p_parser) {
String type = p_parser.get_node_name();
NodeGeometry *geom = memnew(NodeGeometry);
geom->controller = type == "instance_controller";
geom->source = _uri_to_id(p_parser.get_named_attribute_value_safe("url"));
if (p_parser.is_empty()) { //nothing else to parse...
return geom;
}
// try to find also many materials and skeletons!
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
if (p_parser.get_node_name() == "instance_material") {
String symbol = p_parser.get_named_attribute_value("symbol");
String target = _uri_to_id(p_parser.get_named_attribute_value("target"));
NodeGeometry::Material mat;
mat.target = target;
geom->material_map[symbol] = mat;
COLLADA_PRINT("uses material: '" + target + "' on primitive'" + symbol + "'");
} else if (p_parser.get_node_name() == "skeleton") {
p_parser.read();
String uri = _uri_to_id(p_parser.get_node_data());
if (!uri.is_empty()) {
geom->skeletons.push_back(uri);
}
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == type) {
break;
}
}
if (geom->controller) {
if (geom->skeletons.is_empty()) {
//XSI style
if (state.skin_controller_data_map.has(geom->source)) {
SkinControllerData *skin = &state.skin_controller_data_map[geom->source];
//case where skeletons reference bones with IDREF (XSI)
ERR_FAIL_COND_V(!skin->joints.sources.has("JOINT"), geom);
String joint_arr = skin->joints.sources["JOINT"];
ERR_FAIL_COND_V(!skin->sources.has(joint_arr), geom);
Collada::SkinControllerData::Source &joint_source = skin->sources[joint_arr];
geom->skeletons = joint_source.sarray; //quite crazy, but should work.
}
}
}
return geom;
}
Collada::Node *Collada::_parse_visual_instance_camera(XMLParser &p_parser) {
NodeCamera *cam = memnew(NodeCamera);
cam->camera = _uri_to_id(p_parser.get_named_attribute_value_safe("url"));
if (state.up_axis == Vector3::AXIS_Z) { //collada weirdness
cam->post_transform.basis.rotate(Vector3(1, 0, 0), -Math_PI * 0.5);
}
if (p_parser.is_empty()) { //nothing else to parse...
return cam;
}
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == "instance_camera") {
break;
}
}
return cam;
}
Collada::Node *Collada::_parse_visual_instance_light(XMLParser &p_parser) {
NodeLight *cam = memnew(NodeLight);
cam->light = _uri_to_id(p_parser.get_named_attribute_value_safe("url"));
if (state.up_axis == Vector3::AXIS_Z) { //collada weirdness
cam->post_transform.basis.rotate(Vector3(1, 0, 0), -Math_PI * 0.5);
}
if (p_parser.is_empty()) { //nothing else to parse...
return cam;
}
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == "instance_light") {
break;
}
}
return cam;
}
Collada::Node *Collada::_parse_visual_node_instance_data(XMLParser &p_parser) {
String instance_type = p_parser.get_node_name();
if (instance_type == "instance_geometry" || instance_type == "instance_controller") {
return _parse_visual_instance_geometry(p_parser);
} else if (instance_type == "instance_camera") {
return _parse_visual_instance_camera(p_parser);
} else if (instance_type == "instance_light") {
return _parse_visual_instance_light(p_parser);
}
if (p_parser.is_empty()) { //nothing else to parse...
return nullptr;
}
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == instance_type) {
break;
}
}
return nullptr;
}
Collada::Node *Collada::_parse_visual_scene_node(XMLParser &p_parser) {
String name;
String id = p_parser.get_named_attribute_value_safe("id");
bool found_name = false;
if (id.is_empty()) {
id = "%NODEID%" + itos(Math::rand());
} else {
found_name = true;
}
Vector<Node::XForm> xform_list;
Vector<Node *> children;
String empty_draw_type = "";
Node *node = nullptr;
name = p_parser.has_attribute("name") ? p_parser.get_named_attribute_value_safe("name") : p_parser.get_named_attribute_value_safe("id");
if (name.is_empty()) {
name = id;
} else {
found_name = true;
}
if ((p_parser.has_attribute("type") && p_parser.get_named_attribute_value("type") == "JOINT") || state.idref_joints.has(name)) {
// handle a bone
NodeJoint *joint = memnew(NodeJoint);
if (p_parser.has_attribute("sid")) { //bones may not have sid
joint->sid = p_parser.get_named_attribute_value("sid");
//state.bone_map[joint->sid]=joint;
} else if (state.idref_joints.has(name)) {
joint->sid = name; //kind of a cheat but..
} else if (p_parser.has_attribute("name")) {
joint->sid = p_parser.get_named_attribute_value_safe("name");
}
if (!joint->sid.is_empty()) {
state.sid_to_node_map[joint->sid] = id;
}
node = joint;
}
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
String section = p_parser.get_node_name();
if (section == "translate") {
Node::XForm xf;
if (p_parser.has_attribute("sid")) {
xf.id = p_parser.get_named_attribute_value("sid");
}
xf.op = Node::XForm::OP_TRANSLATE;
Vector<float> xlt = _read_float_array(p_parser);
xf.data = xlt;
xform_list.push_back(xf);
} else if (section == "rotate") {
Node::XForm xf;
if (p_parser.has_attribute("sid")) {
xf.id = p_parser.get_named_attribute_value("sid");
}
xf.op = Node::XForm::OP_ROTATE;
Vector<float> rot = _read_float_array(p_parser);
xf.data = rot;
xform_list.push_back(xf);
} else if (section == "scale") {
Node::XForm xf;
if (p_parser.has_attribute("sid")) {
xf.id = p_parser.get_named_attribute_value("sid");
}
xf.op = Node::XForm::OP_SCALE;
Vector<float> scale = _read_float_array(p_parser);
xf.data = scale;
xform_list.push_back(xf);
} else if (section == "matrix") {
Node::XForm xf;
if (p_parser.has_attribute("sid")) {
xf.id = p_parser.get_named_attribute_value("sid");
}
xf.op = Node::XForm::OP_MATRIX;
Vector<float> matrix = _read_float_array(p_parser);
xf.data = matrix;
String mtx;
for (int i = 0; i < matrix.size(); i++) {
mtx += " " + rtos(matrix[i]);
}
xform_list.push_back(xf);
} else if (section == "visibility") {
Node::XForm xf;
if (p_parser.has_attribute("sid")) {
xf.id = p_parser.get_named_attribute_value("sid");
}
xf.op = Node::XForm::OP_VISIBILITY;
Vector<float> visible = _read_float_array(p_parser);
xf.data = visible;
xform_list.push_back(xf);
} else if (section == "empty_draw_type") {
empty_draw_type = _read_empty_draw_type(p_parser);
} else if (section == "technique" || section == "extra") {
} else if (section != "node") {
//usually what defines the type of node
if (section.begins_with("instance_")) {
if (!node) {
node = _parse_visual_node_instance_data(p_parser);
} else {
ERR_PRINT("Multiple instance_* not supported.");
}
}
} else {
/* Found a child node!! what to do..*/
Node *child = _parse_visual_scene_node(p_parser);
children.push_back(child);
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == "node") {
break;
}
}
if (!node) {
node = memnew(Node); //generic node, nothing of relevance found
}
node->noname = !found_name;
node->xform_list = xform_list;
node->children = children;
for (int i = 0; i < children.size(); i++) {
node->children[i]->parent = node;
}
node->name = name;
node->id = id;
node->empty_draw_type = empty_draw_type;
if (node->children.size() == 1) {
if (node->children[0]->noname && !node->noname) {
node->children[0]->name = node->name;
node->name = node->name + "-base";
}
}
node->default_transform = node->compute_transform(*this);
state.scene_map[id] = node;
return node;
}
void Collada::_parse_visual_scene(XMLParser &p_parser) {
String id = p_parser.get_named_attribute_value("id");
if (p_parser.is_empty()) {
return;
}
state.visual_scene_map[id] = VisualScene();
VisualScene &vscene = state.visual_scene_map[id];
if (p_parser.has_attribute("name")) {
vscene.name = p_parser.get_named_attribute_value("name");
}
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
String section = p_parser.get_node_name();
if (section == "node") {
vscene.root_nodes.push_back(_parse_visual_scene_node(p_parser));
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == "visual_scene") {
break;
}
}
COLLADA_PRINT("Scene ID:" + id);
}
void Collada::_parse_animation(XMLParser &p_parser) {
if (!(state.import_flags & IMPORT_FLAG_ANIMATION)) {
if (!p_parser.is_empty()) {
p_parser.skip_section();
}
return;
}
HashMap<String, Vector<float>> float_sources;
HashMap<String, Vector<String>> string_sources;
HashMap<String, int> source_strides;
HashMap<String, HashMap<String, String>> samplers;
HashMap<String, Vector<String>> source_param_names;
HashMap<String, Vector<String>> source_param_types;
String id = "";
if (p_parser.has_attribute("id")) {
id = p_parser.get_named_attribute_value("id");
}
String current_source;
String current_sampler;
Vector<String> channel_sources;
Vector<String> channel_targets;
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
String name = p_parser.get_node_name();
if (name == "source") {
current_source = p_parser.get_named_attribute_value("id");
source_param_names[current_source] = Vector<String>();
source_param_types[current_source] = Vector<String>();
} else if (name == "float_array") {
if (!current_source.is_empty()) {
float_sources[current_source] = _read_float_array(p_parser);
}
} else if (name == "Name_array") {
if (!current_source.is_empty()) {
string_sources[current_source] = _read_string_array(p_parser);
}
} else if (name == "accessor") {
if (!current_source.is_empty() && p_parser.has_attribute("stride")) {
source_strides[current_source] = p_parser.get_named_attribute_value("stride").to_int();
}
} else if (name == "sampler") {
current_sampler = p_parser.get_named_attribute_value("id");
samplers[current_sampler] = HashMap<String, String>();
} else if (name == "param") {
if (p_parser.has_attribute("name")) {
source_param_names[current_source].push_back(p_parser.get_named_attribute_value("name"));
} else {
source_param_names[current_source].push_back("");
}
if (p_parser.has_attribute("type")) {
source_param_types[current_source].push_back(p_parser.get_named_attribute_value("type"));
} else {
source_param_types[current_source].push_back("");
}
} else if (name == "input") {
if (!current_sampler.is_empty()) {
samplers[current_sampler][p_parser.get_named_attribute_value("semantic")] = p_parser.get_named_attribute_value("source");
}
} else if (name == "channel") {
channel_sources.push_back(p_parser.get_named_attribute_value("source"));
channel_targets.push_back(p_parser.get_named_attribute_value("target"));
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == "animation") {
break; //end of <asset>
}
}
for (int i = 0; i < channel_sources.size(); i++) {
String source = _uri_to_id(channel_sources[i]);
String target = channel_targets[i];
ERR_CONTINUE(!samplers.has(source));
HashMap<String, String> &sampler = samplers[source];
ERR_CONTINUE(!sampler.has("INPUT")); //no input semantic? wtf?
String input_id = _uri_to_id(sampler["INPUT"]);
COLLADA_PRINT("input id is " + input_id);
ERR_CONTINUE(!float_sources.has(input_id));
ERR_CONTINUE(!sampler.has("OUTPUT"));
String output_id = _uri_to_id(sampler["OUTPUT"]);
ERR_CONTINUE(!float_sources.has(output_id));
ERR_CONTINUE(!source_param_names.has(output_id));
Vector<String> &names = source_param_names[output_id];
for (int l = 0; l < names.size(); l++) {
String name = names[l];
Vector<float> &time_keys = float_sources[input_id];
int key_count = time_keys.size();
AnimationTrack track; //begin crating track
track.id = id;
track.keys.resize(key_count);
for (int j = 0; j < key_count; j++) {
track.keys.write[j].time = time_keys[j];
state.animation_length = MAX(state.animation_length, time_keys[j]);
}
//now read actual values
int stride = 1;
if (source_strides.has(output_id)) {
stride = source_strides[output_id];
}
int output_len = stride / names.size();
ERR_CONTINUE(output_len == 0);
ERR_CONTINUE(!float_sources.has(output_id));
Vector<float> &output = float_sources[output_id];
ERR_CONTINUE_MSG((output.size() / stride) != key_count, "Wrong number of keys in output.");
for (int j = 0; j < key_count; j++) {
track.keys.write[j].data.resize(output_len);
for (int k = 0; k < output_len; k++) {
track.keys.write[j].data.write[k] = output[l + j * stride + k]; //super weird but should work:
}
}
if (sampler.has("INTERPOLATION")) {
String interp_id = _uri_to_id(sampler["INTERPOLATION"]);
ERR_CONTINUE(!string_sources.has(interp_id));
Vector<String> &interps = string_sources[interp_id];
ERR_CONTINUE(interps.size() != key_count);
for (int j = 0; j < key_count; j++) {
if (interps[j] == "BEZIER") {
track.keys.write[j].interp_type = AnimationTrack::INTERP_BEZIER;
} else {
track.keys.write[j].interp_type = AnimationTrack::INTERP_LINEAR;
}
}
}
if (sampler.has("IN_TANGENT") && sampler.has("OUT_TANGENT")) {
//bezier control points..
String intangent_id = _uri_to_id(sampler["IN_TANGENT"]);
ERR_CONTINUE(!float_sources.has(intangent_id));
Vector<float> &intangents = float_sources[intangent_id];
ERR_CONTINUE(intangents.size() != key_count * 2 * names.size());
String outangent_id = _uri_to_id(sampler["OUT_TANGENT"]);
ERR_CONTINUE(!float_sources.has(outangent_id));
Vector<float> &outangents = float_sources[outangent_id];
ERR_CONTINUE(outangents.size() != key_count * 2 * names.size());
for (int j = 0; j < key_count; j++) {
track.keys.write[j].in_tangent = Vector2(intangents[j * 2 * names.size() + 0 + l * 2], intangents[j * 2 * names.size() + 1 + l * 2]);
track.keys.write[j].out_tangent = Vector2(outangents[j * 2 * names.size() + 0 + l * 2], outangents[j * 2 * names.size() + 1 + l * 2]);
}
}
if (target.contains("/")) { //transform component
track.target = target.get_slicec('/', 0);
track.param = target.get_slicec('/', 1);
if (track.param.contains(".")) {
track.component = track.param.get_slice(".", 1).to_upper();
}
track.param = track.param.get_slice(".", 0);
if (names.size() > 1 && track.component.is_empty()) {
//this is a guess because the collada spec is ambiguous here...
//i suppose if you have many names (outputs) you can't use a component and i should abide to that.
track.component = name;
}
} else {
track.target = target;
}
state.animation_tracks.push_back(track);
if (!state.referenced_tracks.has(target)) {
state.referenced_tracks[target] = Vector<int>();
}
state.referenced_tracks[target].push_back(state.animation_tracks.size() - 1);
if (!id.is_empty()) {
if (!state.by_id_tracks.has(id)) {
state.by_id_tracks[id] = Vector<int>();
}
state.by_id_tracks[id].push_back(state.animation_tracks.size() - 1);
}
COLLADA_PRINT("loaded animation with " + itos(key_count) + " keys");
}
}
}
void Collada::_parse_animation_clip(XMLParser &p_parser) {
if (!(state.import_flags & IMPORT_FLAG_ANIMATION)) {
if (!p_parser.is_empty()) {
p_parser.skip_section();
}
return;
}
AnimationClip clip;
if (p_parser.has_attribute("name")) {
clip.name = p_parser.get_named_attribute_value("name");
} else if (p_parser.has_attribute("id")) {
clip.name = p_parser.get_named_attribute_value("id");
}
if (p_parser.has_attribute("start")) {
clip.begin = p_parser.get_named_attribute_value("start").to_float();
}
if (p_parser.has_attribute("end")) {
clip.end = p_parser.get_named_attribute_value("end").to_float();
}
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
String name = p_parser.get_node_name();
if (name == "instance_animation") {
String url = _uri_to_id(p_parser.get_named_attribute_value("url"));
clip.tracks.push_back(url);
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == "animation_clip") {
break; //end of <asset>
}
}
state.animation_clips.push_back(clip);
}
void Collada::_parse_scene(XMLParser &p_parser) {
if (p_parser.is_empty()) {
return;
}
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
String name = p_parser.get_node_name();
if (name == "instance_visual_scene") {
state.root_visual_scene = _uri_to_id(p_parser.get_named_attribute_value("url"));
} else if (name == "instance_physics_scene") {
state.root_physics_scene = _uri_to_id(p_parser.get_named_attribute_value("url"));
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == "scene") {
break; //end of <asset>
}
}
}
void Collada::_parse_library(XMLParser &p_parser) {
if (p_parser.is_empty()) {
return;
}
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
String name = p_parser.get_node_name();
COLLADA_PRINT("library name is: " + name);
if (name == "image") {
_parse_image(p_parser);
} else if (name == "material") {
_parse_material(p_parser);
} else if (name == "effect") {
_parse_effect(p_parser);
} else if (name == "camera") {
_parse_camera(p_parser);
} else if (name == "light") {
_parse_light(p_parser);
} else if (name == "geometry") {
String id = p_parser.get_named_attribute_value("id");
String name2 = p_parser.get_named_attribute_value_safe("name");
while (p_parser.read() == OK) {
if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT) {
if (p_parser.get_node_name() == "mesh") {
state.mesh_name_map[id] = (!name2.is_empty()) ? name2 : id;
_parse_mesh_geometry(p_parser, id, name2);
} else if (p_parser.get_node_name() == "spline") {
state.mesh_name_map[id] = (!name2.is_empty()) ? name2 : id;
_parse_curve_geometry(p_parser, id, name2);
} else if (!p_parser.is_empty()) {
p_parser.skip_section();
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name() == "geometry") {
break;
}
}
} else if (name == "controller") {
_parse_controller(p_parser);
} else if (name == "animation") {
_parse_animation(p_parser);
} else if (name == "animation_clip") {
_parse_animation_clip(p_parser);
} else if (name == "visual_scene") {
COLLADA_PRINT("visual scene");
_parse_visual_scene(p_parser);
} else if (!p_parser.is_empty()) {
p_parser.skip_section();
}
} else if (p_parser.get_node_type() == XMLParser::NODE_ELEMENT_END && p_parser.get_node_name().begins_with("library_")) {
break; //end of <asset>
}
}
}
void Collada::_joint_set_owner(Collada::Node *p_node, NodeSkeleton *p_owner) {
if (p_node->type == Node::TYPE_JOINT) {
NodeJoint *nj = static_cast<NodeJoint *>(p_node);
nj->owner = p_owner;
for (int i = 0; i < nj->children.size(); i++) {
_joint_set_owner(nj->children.write[i], p_owner);
}
}
}
void Collada::_create_skeletons(Collada::Node **p_node, NodeSkeleton *p_skeleton) {
Node *node = *p_node;
if (node->type == Node::TYPE_JOINT) {
if (!p_skeleton) {
// ohohohoohoo it's a joint node, time to work!
NodeSkeleton *sk = memnew(NodeSkeleton);
*p_node = sk;
sk->children.push_back(node);
sk->parent = node->parent;
node->parent = sk;
p_skeleton = sk;
}
NodeJoint *nj = static_cast<NodeJoint *>(node);
nj->owner = p_skeleton;
} else {
p_skeleton = nullptr;
}
for (int i = 0; i < node->children.size(); i++) {
_create_skeletons(&node->children.write[i], p_skeleton);
}
}
bool Collada::_remove_node(Node *p_parent, Node *p_node) {
for (int i = 0; i < p_parent->children.size(); i++) {
if (p_parent->children[i] == p_node) {
p_parent->children.remove_at(i);
return true;
}
if (_remove_node(p_parent->children[i], p_node)) {
return true;
}
}
return false;
}
void Collada::_remove_node(VisualScene *p_vscene, Node *p_node) {
for (int i = 0; i < p_vscene->root_nodes.size(); i++) {
if (p_vscene->root_nodes[i] == p_node) {
p_vscene->root_nodes.remove_at(i);
return;
}
if (_remove_node(p_vscene->root_nodes[i], p_node)) {
return;
}
}
ERR_PRINT("ERROR: Not found node to remove?");
}
void Collada::_merge_skeletons(VisualScene *p_vscene, Node *p_node) {
if (p_node->type == Node::TYPE_GEOMETRY) {
NodeGeometry *gnode = static_cast<NodeGeometry *>(p_node);
if (gnode->controller) {
// recount skeletons used
HashSet<NodeSkeleton *> skeletons;
for (int i = 0; i < gnode->skeletons.size(); i++) {
String nodeid = gnode->skeletons[i];
ERR_CONTINUE(!state.scene_map.has(nodeid)); //weird, it should have it...
NodeJoint *nj = dynamic_cast<NodeJoint *>(state.scene_map[nodeid]);
ERR_CONTINUE(!nj); //broken collada
ERR_CONTINUE(!nj->owner); //weird, node should have a skeleton owner
skeletons.insert(nj->owner);
}
if (skeletons.size() > 1) {
//do the merger!!
HashSet<NodeSkeleton *>::Iterator E = skeletons.begin();
NodeSkeleton *base = *E;
for (++E; E; ++E) {
NodeSkeleton *merged = *E;
_remove_node(p_vscene, merged);
for (int i = 0; i < merged->children.size(); i++) {
_joint_set_owner(merged->children[i], base);
base->children.push_back(merged->children[i]);
merged->children[i]->parent = base;
}
merged->children.clear(); //take children from it
memdelete(merged);
}
}
}
}
for (int i = 0; i < p_node->children.size(); i++) {
_merge_skeletons(p_vscene, p_node->children[i]);
}
}
void Collada::_merge_skeletons2(VisualScene *p_vscene) {
for (KeyValue<String, SkinControllerData> &E : state.skin_controller_data_map) {
SkinControllerData &cd = E.value;
NodeSkeleton *skeleton = nullptr;
for (const KeyValue<String, Transform3D> &F : cd.bone_rest_map) {
String name;
if (!state.sid_to_node_map.has(F.key)) {
continue;
}
name = state.sid_to_node_map[F.key];
ERR_CONTINUE(!state.scene_map.has(name));
Node *node = state.scene_map[name];
ERR_CONTINUE(node->type != Node::TYPE_JOINT);
NodeSkeleton *sk = nullptr;
while (node && !sk) {
if (node->type == Node::TYPE_SKELETON) {
sk = static_cast<NodeSkeleton *>(node);
}
node = node->parent;
}
ERR_CONTINUE(!sk);
if (!skeleton) {
skeleton = sk;
continue;
}
if (skeleton != sk) {
//whoa.. wtf, merge.
_remove_node(p_vscene, sk);
for (int i = 0; i < sk->children.size(); i++) {
_joint_set_owner(sk->children[i], skeleton);
skeleton->children.push_back(sk->children[i]);
sk->children[i]->parent = skeleton;
}
sk->children.clear(); //take children from it
memdelete(sk);
}
}
}
}
bool Collada::_optimize_skeletons(VisualScene *p_vscene, Node *p_node) {
Node *node = p_node;
if (node->type == Node::TYPE_SKELETON && node->parent && node->parent->type == Node::TYPE_NODE && node->parent->children.size() == 1) {
//replace parent by this...
Node *parent = node->parent;
//i wonder if this is alright.. i think it is since created skeleton (first joint) is already animated by bone..
node->id = parent->id;
node->name = parent->name;
node->xform_list = parent->xform_list;
node->default_transform = parent->default_transform;
state.scene_map[node->id] = node;
node->parent = parent->parent;
if (parent->parent) {
Node *gp = parent->parent;
bool found = false;
for (int i = 0; i < gp->children.size(); i++) {
if (gp->children[i] == parent) {
gp->children.write[i] = node;
found = true;
break;
}
}
if (!found) {
ERR_PRINT("BUG");
}
} else {
bool found = false;
for (int i = 0; i < p_vscene->root_nodes.size(); i++) {
if (p_vscene->root_nodes[i] == parent) {
p_vscene->root_nodes.write[i] = node;
found = true;
break;
}
}
if (!found) {
ERR_PRINT("BUG");
}
}
parent->children.clear();
memdelete(parent);
return true;
}
for (int i = 0; i < node->children.size(); i++) {
if (_optimize_skeletons(p_vscene, node->children[i])) {
return false; //stop processing, go up
}
}
return false;
}
bool Collada::_move_geometry_to_skeletons(VisualScene *p_vscene, Node *p_node, List<Node *> *p_mgeom) {
// Bind Shape Matrix scales the bones and makes them gigantic, so the matrix then shrinks the model?
// Solution: apply the Bind Shape Matrix to the VERTICES, and if the object comes scaled, it seems to be left alone!
if (p_node->type == Node::TYPE_GEOMETRY) {
NodeGeometry *ng = static_cast<NodeGeometry *>(p_node);
if (ng->ignore_anim) {
return false; //already made child of skeleton and processeg
}
if (ng->controller && ng->skeletons.size()) {
String nodeid = ng->skeletons[0];
ERR_FAIL_COND_V(!state.scene_map.has(nodeid), false); //weird, it should have it...
NodeJoint *nj = dynamic_cast<NodeJoint *>(state.scene_map[nodeid]);
ERR_FAIL_COND_V(!nj, false);
ERR_FAIL_COND_V(!nj->owner, false); //weird, node should have a skeleton owner
NodeSkeleton *sk = nj->owner;
Node *p = sk->parent;
bool node_is_parent_of_skeleton = false;
while (p) {
if (p == p_node) {
node_is_parent_of_skeleton = true;
break;
}
p = p->parent; // try again
}
ERR_FAIL_COND_V(node_is_parent_of_skeleton, false);
//this should be correct
ERR_FAIL_COND_V(!state.skin_controller_data_map.has(ng->source), false);
SkinControllerData &skin = state.skin_controller_data_map[ng->source];
Transform3D skel_inv = sk->get_global_transform().affine_inverse();
p_node->default_transform = skel_inv * (skin.bind_shape /* p_node->get_global_transform()*/); // i honestly have no idea what to do with a previous model xform.. most exporters ignore it
//make rests relative to the skeleton (they seem to be always relative to world)
for (KeyValue<String, Transform3D> &E : skin.bone_rest_map) {
E.value = skel_inv * E.value; //make the bone rest local to the skeleton
state.bone_rest_map[E.key] = E.value; // make it remember where the bone is globally, now that it's relative
}
//but most exporters seem to work only if i do this..
//p_node->default_transform = p_node->get_global_transform();
//p_node->default_transform=Transform3D(); //this seems to be correct, because bind shape makes the object local to the skeleton
p_node->ignore_anim = true; // collada may animate this later, if it does, then this is not supported (redo your original asset and don't animate the base mesh)
p_node->parent = sk;
//sk->children.push_back(0,p_node); //avoid INFINITE loop
p_mgeom->push_back(p_node);
return true;
}
}
for (int i = 0; i < p_node->children.size(); i++) {
if (_move_geometry_to_skeletons(p_vscene, p_node->children[i], p_mgeom)) {
p_node->children.remove_at(i);
i--;
}
}
return false;
}
void Collada::_find_morph_nodes(VisualScene *p_vscene, Node *p_node) {
if (p_node->type == Node::TYPE_GEOMETRY) {
NodeGeometry *nj = static_cast<NodeGeometry *>(p_node);
if (nj->controller) {
String base = nj->source;
while (!base.is_empty() && !state.mesh_data_map.has(base)) {
if (state.skin_controller_data_map.has(base)) {
SkinControllerData &sk = state.skin_controller_data_map[base];
base = sk.base;
} else if (state.morph_controller_data_map.has(base)) {
state.morph_ownership_map[base] = nj->id;
break;
} else {
ERR_FAIL_MSG("Invalid scene.");
}
}
}
}
for (int i = 0; i < p_node->children.size(); i++) {
_find_morph_nodes(p_vscene, p_node->children[i]);
}
}
void Collada::_optimize() {
for (KeyValue<String, VisualScene> &E : state.visual_scene_map) {
VisualScene &vs = E.value;
for (int i = 0; i < vs.root_nodes.size(); i++) {
_create_skeletons(&vs.root_nodes.write[i]);
}
for (int i = 0; i < vs.root_nodes.size(); i++) {
_merge_skeletons(&vs, vs.root_nodes[i]);
}
_merge_skeletons2(&vs);
for (int i = 0; i < vs.root_nodes.size(); i++) {
_optimize_skeletons(&vs, vs.root_nodes[i]);
}
for (int i = 0; i < vs.root_nodes.size(); i++) {
List<Node *> mgeom;
if (_move_geometry_to_skeletons(&vs, vs.root_nodes[i], &mgeom)) {
vs.root_nodes.remove_at(i);
i--;
}
while (!mgeom.is_empty()) {
Node *n = mgeom.front()->get();
n->parent->children.push_back(n);
mgeom.pop_front();
}
}
for (int i = 0; i < vs.root_nodes.size(); i++) {
_find_morph_nodes(&vs, vs.root_nodes[i]);
}
}
}
int Collada::get_uv_channel(String p_name) {
if (!channel_map.has(p_name)) {
ERR_FAIL_COND_V(channel_map.size() == 2, 0);
channel_map[p_name] = channel_map.size();
}
return channel_map[p_name];
}
Error Collada::load(const String &p_path, int p_flags) {
Ref<XMLParser> parserr = memnew(XMLParser);
XMLParser &parser = *parserr.ptr();
Error err = parser.open(p_path);
ERR_FAIL_COND_V_MSG(err, err, "Cannot open Collada file '" + p_path + "'.");
state.local_path = ProjectSettings::get_singleton()->localize_path(p_path);
state.import_flags = p_flags;
/* Skip headers */
while ((err = parser.read()) == OK) {
if (parser.get_node_type() == XMLParser::NODE_ELEMENT) {
if (parser.get_node_name() == "COLLADA") {
break;
} else if (!parser.is_empty()) {
parser.skip_section(); // unknown section, likely headers
}
}
}
ERR_FAIL_COND_V_MSG(err != OK, ERR_FILE_CORRUPT, "Corrupted Collada file '" + p_path + "'.");
/* Start loading Collada */
{
//version
String version = parser.get_named_attribute_value("version");
state.version.major = version.get_slice(".", 0).to_int();
state.version.minor = version.get_slice(".", 1).to_int();
state.version.rev = version.get_slice(".", 2).to_int();
COLLADA_PRINT("Collada VERSION: " + version);
}
while ((err = parser.read()) == OK) {
/* Read all the main sections.. */
if (parser.get_node_type() != XMLParser::NODE_ELEMENT) {
continue; //no idea what this may be, but skipping anyway
}
String section = parser.get_node_name();
COLLADA_PRINT("section: " + section);
if (section == "asset") {
_parse_asset(parser);
} else if (section.begins_with("library_")) {
_parse_library(parser);
} else if (section == "scene") {
_parse_scene(parser);
} else if (!parser.is_empty()) {
parser.skip_section(); // unknown section, likely headers
}
}
_optimize();
return OK;
}
Collada::Collada() {
}