210 lines
6.1 KiB
C++
210 lines
6.1 KiB
C++
/*
|
|
Copyright (c) 2013 Advanced Micro Devices, Inc.
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
//Originally written by Erwin Coumans
|
|
|
|
#ifndef B3_GPU_SOLVER_BODY_H
|
|
#define B3_GPU_SOLVER_BODY_H
|
|
|
|
#include "Bullet3Common/b3Vector3.h"
|
|
#include "Bullet3Common/b3Matrix3x3.h"
|
|
|
|
#include "Bullet3Common/b3AlignedAllocator.h"
|
|
#include "Bullet3Common/b3TransformUtil.h"
|
|
|
|
///Until we get other contributions, only use SIMD on Windows, when using Visual Studio 2008 or later, and not double precision
|
|
#ifdef B3_USE_SSE
|
|
#define USE_SIMD 1
|
|
#endif //
|
|
|
|
///The b3SolverBody is an internal datastructure for the constraint solver. Only necessary data is packed to increase cache coherence/performance.
|
|
B3_ATTRIBUTE_ALIGNED16(struct)
|
|
b3GpuSolverBody
|
|
{
|
|
B3_DECLARE_ALIGNED_ALLOCATOR();
|
|
// b3Transform m_worldTransformUnused;
|
|
b3Vector3 m_deltaLinearVelocity;
|
|
b3Vector3 m_deltaAngularVelocity;
|
|
b3Vector3 m_angularFactor;
|
|
b3Vector3 m_linearFactor;
|
|
b3Vector3 m_invMass;
|
|
b3Vector3 m_pushVelocity;
|
|
b3Vector3 m_turnVelocity;
|
|
b3Vector3 m_linearVelocity;
|
|
b3Vector3 m_angularVelocity;
|
|
|
|
union {
|
|
void* m_originalBody;
|
|
int m_originalBodyIndex;
|
|
};
|
|
|
|
int padding[3];
|
|
|
|
/*
|
|
void setWorldTransform(const b3Transform& worldTransform)
|
|
{
|
|
m_worldTransform = worldTransform;
|
|
}
|
|
|
|
const b3Transform& getWorldTransform() const
|
|
{
|
|
return m_worldTransform;
|
|
}
|
|
*/
|
|
B3_FORCE_INLINE void getVelocityInLocalPointObsolete(const b3Vector3& rel_pos, b3Vector3& velocity) const
|
|
{
|
|
if (m_originalBody)
|
|
velocity = m_linearVelocity + m_deltaLinearVelocity + (m_angularVelocity + m_deltaAngularVelocity).cross(rel_pos);
|
|
else
|
|
velocity.setValue(0, 0, 0);
|
|
}
|
|
|
|
B3_FORCE_INLINE void getAngularVelocity(b3Vector3 & angVel) const
|
|
{
|
|
if (m_originalBody)
|
|
angVel = m_angularVelocity + m_deltaAngularVelocity;
|
|
else
|
|
angVel.setValue(0, 0, 0);
|
|
}
|
|
|
|
//Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
|
|
B3_FORCE_INLINE void applyImpulse(const b3Vector3& linearComponent, const b3Vector3& angularComponent, const b3Scalar impulseMagnitude)
|
|
{
|
|
if (m_originalBody)
|
|
{
|
|
m_deltaLinearVelocity += linearComponent * impulseMagnitude * m_linearFactor;
|
|
m_deltaAngularVelocity += angularComponent * (impulseMagnitude * m_angularFactor);
|
|
}
|
|
}
|
|
|
|
B3_FORCE_INLINE void internalApplyPushImpulse(const b3Vector3& linearComponent, const b3Vector3& angularComponent, b3Scalar impulseMagnitude)
|
|
{
|
|
if (m_originalBody)
|
|
{
|
|
m_pushVelocity += linearComponent * impulseMagnitude * m_linearFactor;
|
|
m_turnVelocity += angularComponent * (impulseMagnitude * m_angularFactor);
|
|
}
|
|
}
|
|
|
|
const b3Vector3& getDeltaLinearVelocity() const
|
|
{
|
|
return m_deltaLinearVelocity;
|
|
}
|
|
|
|
const b3Vector3& getDeltaAngularVelocity() const
|
|
{
|
|
return m_deltaAngularVelocity;
|
|
}
|
|
|
|
const b3Vector3& getPushVelocity() const
|
|
{
|
|
return m_pushVelocity;
|
|
}
|
|
|
|
const b3Vector3& getTurnVelocity() const
|
|
{
|
|
return m_turnVelocity;
|
|
}
|
|
|
|
////////////////////////////////////////////////
|
|
///some internal methods, don't use them
|
|
|
|
b3Vector3& internalGetDeltaLinearVelocity()
|
|
{
|
|
return m_deltaLinearVelocity;
|
|
}
|
|
|
|
b3Vector3& internalGetDeltaAngularVelocity()
|
|
{
|
|
return m_deltaAngularVelocity;
|
|
}
|
|
|
|
const b3Vector3& internalGetAngularFactor() const
|
|
{
|
|
return m_angularFactor;
|
|
}
|
|
|
|
const b3Vector3& internalGetInvMass() const
|
|
{
|
|
return m_invMass;
|
|
}
|
|
|
|
void internalSetInvMass(const b3Vector3& invMass)
|
|
{
|
|
m_invMass = invMass;
|
|
}
|
|
|
|
b3Vector3& internalGetPushVelocity()
|
|
{
|
|
return m_pushVelocity;
|
|
}
|
|
|
|
b3Vector3& internalGetTurnVelocity()
|
|
{
|
|
return m_turnVelocity;
|
|
}
|
|
|
|
B3_FORCE_INLINE void internalGetVelocityInLocalPointObsolete(const b3Vector3& rel_pos, b3Vector3& velocity) const
|
|
{
|
|
velocity = m_linearVelocity + m_deltaLinearVelocity + (m_angularVelocity + m_deltaAngularVelocity).cross(rel_pos);
|
|
}
|
|
|
|
B3_FORCE_INLINE void internalGetAngularVelocity(b3Vector3 & angVel) const
|
|
{
|
|
angVel = m_angularVelocity + m_deltaAngularVelocity;
|
|
}
|
|
|
|
//Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
|
|
B3_FORCE_INLINE void internalApplyImpulse(const b3Vector3& linearComponent, const b3Vector3& angularComponent, const b3Scalar impulseMagnitude)
|
|
{
|
|
//if (m_originalBody)
|
|
{
|
|
m_deltaLinearVelocity += linearComponent * impulseMagnitude * m_linearFactor;
|
|
m_deltaAngularVelocity += angularComponent * (impulseMagnitude * m_angularFactor);
|
|
}
|
|
}
|
|
|
|
void writebackVelocity()
|
|
{
|
|
//if (m_originalBody>=0)
|
|
{
|
|
m_linearVelocity += m_deltaLinearVelocity;
|
|
m_angularVelocity += m_deltaAngularVelocity;
|
|
|
|
//m_originalBody->setCompanionId(-1);
|
|
}
|
|
}
|
|
|
|
void writebackVelocityAndTransform(b3Scalar timeStep, b3Scalar splitImpulseTurnErp)
|
|
{
|
|
(void)timeStep;
|
|
if (m_originalBody)
|
|
{
|
|
m_linearVelocity += m_deltaLinearVelocity;
|
|
m_angularVelocity += m_deltaAngularVelocity;
|
|
|
|
//correct the position/orientation based on push/turn recovery
|
|
b3Transform newTransform;
|
|
if (m_pushVelocity[0] != 0.f || m_pushVelocity[1] != 0 || m_pushVelocity[2] != 0 || m_turnVelocity[0] != 0.f || m_turnVelocity[1] != 0 || m_turnVelocity[2] != 0)
|
|
{
|
|
// b3Quaternion orn = m_worldTransform.getRotation();
|
|
// b3TransformUtil::integrateTransform(m_worldTransform,m_pushVelocity,m_turnVelocity*splitImpulseTurnErp,timeStep,newTransform);
|
|
// m_worldTransform = newTransform;
|
|
}
|
|
//m_worldTransform.setRotation(orn);
|
|
//m_originalBody->setCompanionId(-1);
|
|
}
|
|
}
|
|
};
|
|
|
|
#endif //B3_SOLVER_BODY_H
|