virtualx-engine/tests/core/math/test_vector2.h
Rémi Verschelde d95794ec8a
One Copyright Update to rule them all
As many open source projects have started doing it, we're removing the
current year from the copyright notice, so that we don't need to bump
it every year.

It seems like only the first year of publication is technically
relevant for copyright notices, and even that seems to be something
that many companies stopped listing altogether (in a version controlled
codebase, the commits are a much better source of date of publication
than a hardcoded copyright statement).

We also now list Godot Engine contributors first as we're collectively
the current maintainers of the project, and we clarify that the
"exclusive" copyright of the co-founders covers the timespan before
opensourcing (their further contributions are included as part of Godot
Engine contributors).

Also fixed "cf." Frenchism - it's meant as "refer to / see".
2023-01-05 13:25:55 +01:00

496 lines
20 KiB
C++

/**************************************************************************/
/* test_vector2.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef TEST_VECTOR2_H
#define TEST_VECTOR2_H
#include "core/math/vector2.h"
#include "core/math/vector2i.h"
#include "tests/test_macros.h"
namespace TestVector2 {
TEST_CASE("[Vector2] Constructor methods") {
const Vector2 vector_empty = Vector2();
const Vector2 vector_zero = Vector2(0.0, 0.0);
CHECK_MESSAGE(
vector_empty == vector_zero,
"Vector2 Constructor with no inputs should return a zero Vector2.");
}
TEST_CASE("[Vector2] Angle methods") {
const Vector2 vector_x = Vector2(1, 0);
const Vector2 vector_y = Vector2(0, 1);
CHECK_MESSAGE(
vector_x.angle_to(vector_y) == doctest::Approx((real_t)Math_TAU / 4),
"Vector2 angle_to should work as expected.");
CHECK_MESSAGE(
vector_y.angle_to(vector_x) == doctest::Approx((real_t)-Math_TAU / 4),
"Vector2 angle_to should work as expected.");
CHECK_MESSAGE(
vector_x.angle_to_point(vector_y) == doctest::Approx((real_t)Math_TAU * 3 / 8),
"Vector2 angle_to_point should work as expected.");
CHECK_MESSAGE(
vector_y.angle_to_point(vector_x) == doctest::Approx((real_t)-Math_TAU / 8),
"Vector2 angle_to_point should work as expected.");
}
TEST_CASE("[Vector2] Axis methods") {
Vector2 vector = Vector2(1.2, 3.4);
CHECK_MESSAGE(
vector.max_axis_index() == Vector2::Axis::AXIS_Y,
"Vector2 max_axis_index should work as expected.");
CHECK_MESSAGE(
vector.min_axis_index() == Vector2::Axis::AXIS_X,
"Vector2 min_axis_index should work as expected.");
CHECK_MESSAGE(
vector[vector.min_axis_index()] == (real_t)1.2,
"Vector2 array operator should work as expected.");
vector[Vector2::Axis::AXIS_Y] = 3.7;
CHECK_MESSAGE(
vector[Vector2::Axis::AXIS_Y] == (real_t)3.7,
"Vector2 array operator setter should work as expected.");
}
TEST_CASE("[Vector2] Interpolation methods") {
const Vector2 vector1 = Vector2(1, 2);
const Vector2 vector2 = Vector2(4, 5);
CHECK_MESSAGE(
vector1.lerp(vector2, 0.5) == Vector2(2.5, 3.5),
"Vector2 lerp should work as expected.");
CHECK_MESSAGE(
vector1.lerp(vector2, 1.0 / 3.0).is_equal_approx(Vector2(2, 3)),
"Vector2 lerp should work as expected.");
CHECK_MESSAGE(
vector1.normalized().slerp(vector2.normalized(), 0.5).is_equal_approx(Vector2(0.538953602313995361, 0.84233558177947998)),
"Vector2 slerp should work as expected.");
CHECK_MESSAGE(
vector1.normalized().slerp(vector2.normalized(), 1.0 / 3.0).is_equal_approx(Vector2(0.508990883827209473, 0.860771894454956055)),
"Vector2 slerp should work as expected.");
CHECK_MESSAGE(
Vector2(5, 0).slerp(Vector2(0, 5), 0.5).is_equal_approx(Vector2(5, 5) * Math_SQRT12),
"Vector2 slerp with non-normalized values should work as expected.");
CHECK_MESSAGE(
Vector2(1, 1).slerp(Vector2(2, 2), 0.5).is_equal_approx(Vector2(1.5, 1.5)),
"Vector2 slerp with colinear inputs should behave as expected.");
CHECK_MESSAGE(
Vector2().slerp(Vector2(), 0.5) == Vector2(),
"Vector2 slerp with both inputs as zero vectors should return a zero vector.");
CHECK_MESSAGE(
Vector2().slerp(Vector2(1, 1), 0.5) == Vector2(0.5, 0.5),
"Vector2 slerp with one input as zero should behave like a regular lerp.");
CHECK_MESSAGE(
Vector2(1, 1).slerp(Vector2(), 0.5) == Vector2(0.5, 0.5),
"Vector2 slerp with one input as zero should behave like a regular lerp.");
CHECK_MESSAGE(
Vector2(4, 6).slerp(Vector2(8, 10), 0.5).is_equal_approx(Vector2(5.9076470794008017626, 8.07918879020090480697)),
"Vector2 slerp should work as expected.");
CHECK_MESSAGE(
vector1.slerp(vector2, 0.5).length() == doctest::Approx((real_t)4.31959610746631919),
"Vector2 slerp with different length input should return a vector with an interpolated length.");
CHECK_MESSAGE(
vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2 == doctest::Approx(vector1.angle_to(vector2)),
"Vector2 slerp with different length input should return a vector with an interpolated angle.");
CHECK_MESSAGE(
vector1.cubic_interpolate(vector2, Vector2(), Vector2(7, 7), 0.5) == Vector2(2.375, 3.5),
"Vector2 cubic_interpolate should work as expected.");
CHECK_MESSAGE(
vector1.cubic_interpolate(vector2, Vector2(), Vector2(7, 7), 1.0 / 3.0).is_equal_approx(Vector2(1.851851940155029297, 2.962963104248046875)),
"Vector2 cubic_interpolate should work as expected.");
CHECK_MESSAGE(
Vector2(1, 0).move_toward(Vector2(10, 0), 3) == Vector2(4, 0),
"Vector2 move_toward should work as expected.");
}
TEST_CASE("[Vector2] Length methods") {
const Vector2 vector1 = Vector2(10, 10);
const Vector2 vector2 = Vector2(20, 30);
CHECK_MESSAGE(
vector1.length_squared() == 200,
"Vector2 length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
vector1.length() == doctest::Approx(10 * (real_t)Math_SQRT2),
"Vector2 length should work as expected.");
CHECK_MESSAGE(
vector2.length_squared() == 1300,
"Vector2 length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
vector2.length() == doctest::Approx((real_t)36.05551275463989293119),
"Vector2 length should work as expected.");
CHECK_MESSAGE(
vector1.distance_squared_to(vector2) == 500,
"Vector2 distance_squared_to should work as expected and return exact result.");
CHECK_MESSAGE(
vector1.distance_to(vector2) == doctest::Approx((real_t)22.36067977499789696409),
"Vector2 distance_to should work as expected.");
}
TEST_CASE("[Vector2] Limiting methods") {
const Vector2 vector = Vector2(10, 10);
CHECK_MESSAGE(
vector.limit_length().is_equal_approx(Vector2(Math_SQRT12, Math_SQRT12)),
"Vector2 limit_length should work as expected.");
CHECK_MESSAGE(
vector.limit_length(5).is_equal_approx(5 * Vector2(Math_SQRT12, Math_SQRT12)),
"Vector2 limit_length should work as expected.");
CHECK_MESSAGE(
Vector2(-5, 15).clamp(Vector2(), vector).is_equal_approx(Vector2(0, 10)),
"Vector2 clamp should work as expected.");
CHECK_MESSAGE(
vector.clamp(Vector2(0, 15), Vector2(5, 20)).is_equal_approx(Vector2(5, 15)),
"Vector2 clamp should work as expected.");
}
TEST_CASE("[Vector2] Normalization methods") {
CHECK_MESSAGE(
Vector2(1, 0).is_normalized() == true,
"Vector2 is_normalized should return true for a normalized vector.");
CHECK_MESSAGE(
Vector2(1, 1).is_normalized() == false,
"Vector2 is_normalized should return false for a non-normalized vector.");
CHECK_MESSAGE(
Vector2(1, 0).normalized() == Vector2(1, 0),
"Vector2 normalized should return the same vector for a normalized vector.");
CHECK_MESSAGE(
Vector2(1, 1).normalized().is_equal_approx(Vector2(Math_SQRT12, Math_SQRT12)),
"Vector2 normalized should work as expected.");
Vector2 vector = Vector2(3.2, -5.4);
vector.normalize();
CHECK_MESSAGE(
vector == Vector2(3.2, -5.4).normalized(),
"Vector2 normalize should convert same way as Vector2 normalized.");
CHECK_MESSAGE(
vector.is_equal_approx(Vector2(0.509802390301732898898, -0.860291533634174266891)),
"Vector2 normalize should work as expected.");
}
TEST_CASE("[Vector2] Operators") {
const Vector2 decimal1 = Vector2(2.3, 4.9);
const Vector2 decimal2 = Vector2(1.2, 3.4);
const Vector2 power1 = Vector2(0.75, 1.5);
const Vector2 power2 = Vector2(0.5, 0.125);
const Vector2 int1 = Vector2(4, 5);
const Vector2 int2 = Vector2(1, 2);
CHECK_MESSAGE(
(decimal1 + decimal2).is_equal_approx(Vector2(3.5, 8.3)),
"Vector2 addition should behave as expected.");
CHECK_MESSAGE(
(power1 + power2) == Vector2(1.25, 1.625),
"Vector2 addition with powers of two should give exact results.");
CHECK_MESSAGE(
(int1 + int2) == Vector2(5, 7),
"Vector2 addition with integers should give exact results.");
CHECK_MESSAGE(
(decimal1 - decimal2).is_equal_approx(Vector2(1.1, 1.5)),
"Vector2 subtraction should behave as expected.");
CHECK_MESSAGE(
(power1 - power2) == Vector2(0.25, 1.375),
"Vector2 subtraction with powers of two should give exact results.");
CHECK_MESSAGE(
(int1 - int2) == Vector2(3, 3),
"Vector2 subtraction with integers should give exact results.");
CHECK_MESSAGE(
(decimal1 * decimal2).is_equal_approx(Vector2(2.76, 16.66)),
"Vector2 multiplication should behave as expected.");
CHECK_MESSAGE(
(power1 * power2) == Vector2(0.375, 0.1875),
"Vector2 multiplication with powers of two should give exact results.");
CHECK_MESSAGE(
(int1 * int2) == Vector2(4, 10),
"Vector2 multiplication with integers should give exact results.");
CHECK_MESSAGE(
(decimal1 / decimal2).is_equal_approx(Vector2(1.91666666666666666, 1.44117647058823529)),
"Vector2 division should behave as expected.");
CHECK_MESSAGE(
(power1 / power2) == Vector2(1.5, 12.0),
"Vector2 division with powers of two should give exact results.");
CHECK_MESSAGE(
(int1 / int2) == Vector2(4, 2.5),
"Vector2 division with integers should give exact results.");
CHECK_MESSAGE(
(decimal1 * 2).is_equal_approx(Vector2(4.6, 9.8)),
"Vector2 multiplication should behave as expected.");
CHECK_MESSAGE(
(power1 * 2) == Vector2(1.5, 3),
"Vector2 multiplication with powers of two should give exact results.");
CHECK_MESSAGE(
(int1 * 2) == Vector2(8, 10),
"Vector2 multiplication with integers should give exact results.");
CHECK_MESSAGE(
(decimal1 / 2).is_equal_approx(Vector2(1.15, 2.45)),
"Vector2 division should behave as expected.");
CHECK_MESSAGE(
(power1 / 2) == Vector2(0.375, 0.75),
"Vector2 division with powers of two should give exact results.");
CHECK_MESSAGE(
(int1 / 2) == Vector2(2, 2.5),
"Vector2 division with integers should give exact results.");
CHECK_MESSAGE(
((Vector2i)decimal1) == Vector2i(2, 4),
"Vector2 cast to Vector2i should work as expected.");
CHECK_MESSAGE(
((Vector2i)decimal2) == Vector2i(1, 3),
"Vector2 cast to Vector2i should work as expected.");
CHECK_MESSAGE(
Vector2(Vector2i(1, 2)) == Vector2(1, 2),
"Vector2 constructed from Vector2i should work as expected.");
CHECK_MESSAGE(
((String)decimal1) == "(2.3, 4.9)",
"Vector2 cast to String should work as expected.");
CHECK_MESSAGE(
((String)decimal2) == "(1.2, 3.4)",
"Vector2 cast to String should work as expected.");
CHECK_MESSAGE(
((String)Vector2(9.8, 9.9)) == "(9.8, 9.9)",
"Vector2 cast to String should work as expected.");
#ifdef REAL_T_IS_DOUBLE
CHECK_MESSAGE(
((String)Vector2(Math_PI, Math_TAU)) == "(3.14159265358979, 6.28318530717959)",
"Vector2 cast to String should print the correct amount of digits for real_t = double.");
#else
CHECK_MESSAGE(
((String)Vector2(Math_PI, Math_TAU)) == "(3.141593, 6.283185)",
"Vector2 cast to String should print the correct amount of digits for real_t = float.");
#endif // REAL_T_IS_DOUBLE
}
TEST_CASE("[Vector2] Other methods") {
const Vector2 vector = Vector2(1.2, 3.4);
CHECK_MESSAGE(
vector.aspect() == doctest::Approx((real_t)1.2 / (real_t)3.4),
"Vector2 aspect should work as expected.");
CHECK_MESSAGE(
vector.direction_to(Vector2()).is_equal_approx(-vector.normalized()),
"Vector2 direction_to should work as expected.");
CHECK_MESSAGE(
Vector2(1, 1).direction_to(Vector2(2, 2)).is_equal_approx(Vector2(Math_SQRT12, Math_SQRT12)),
"Vector2 direction_to should work as expected.");
CHECK_MESSAGE(
vector.posmod(2).is_equal_approx(Vector2(1.2, 1.4)),
"Vector2 posmod should work as expected.");
CHECK_MESSAGE(
(-vector).posmod(2).is_equal_approx(Vector2(0.8, 0.6)),
"Vector2 posmod should work as expected.");
CHECK_MESSAGE(
vector.posmodv(Vector2(1, 2)).is_equal_approx(Vector2(0.2, 1.4)),
"Vector2 posmodv should work as expected.");
CHECK_MESSAGE(
(-vector).posmodv(Vector2(2, 3)).is_equal_approx(Vector2(0.8, 2.6)),
"Vector2 posmodv should work as expected.");
CHECK_MESSAGE(
vector.rotated(Math_TAU).is_equal_approx(Vector2(1.2, 3.4)),
"Vector2 rotated should work as expected.");
CHECK_MESSAGE(
vector.rotated(Math_TAU / 4).is_equal_approx(Vector2(-3.4, 1.2)),
"Vector2 rotated should work as expected.");
CHECK_MESSAGE(
vector.rotated(Math_TAU / 3).is_equal_approx(Vector2(-3.544486372867091398996, -0.660769515458673623883)),
"Vector2 rotated should work as expected.");
CHECK_MESSAGE(
vector.rotated(Math_TAU / 2).is_equal_approx(vector.rotated(Math_TAU / -2)),
"Vector2 rotated should work as expected.");
CHECK_MESSAGE(
vector.snapped(Vector2(1, 1)) == Vector2(1, 3),
"Vector2 snapped to integers should be the same as rounding.");
CHECK_MESSAGE(
Vector2(3.4, 5.6).snapped(Vector2(1, 1)) == Vector2(3, 6),
"Vector2 snapped to integers should be the same as rounding.");
CHECK_MESSAGE(
vector.snapped(Vector2(0.25, 0.25)) == Vector2(1.25, 3.5),
"Vector2 snapped to 0.25 should give exact results.");
CHECK_MESSAGE(
Vector2(1.2, 2.5).is_equal_approx(vector.min(Vector2(3.0, 2.5))),
"Vector2 min should return expected value.");
CHECK_MESSAGE(
Vector2(5.3, 3.4).is_equal_approx(vector.max(Vector2(5.3, 2.0))),
"Vector2 max should return expected value.");
}
TEST_CASE("[Vector2] Plane methods") {
const Vector2 vector = Vector2(1.2, 3.4);
const Vector2 vector_y = Vector2(0, 1);
const Vector2 vector_normal = Vector2(0.95879811270838721622267, 0.2840883296913739899919);
const Vector2 vector_non_normal = Vector2(5.4, 1.6);
CHECK_MESSAGE(
vector.bounce(vector_y) == Vector2(1.2, -3.4),
"Vector2 bounce on a plane with normal of the Y axis should.");
CHECK_MESSAGE(
vector.bounce(vector_normal).is_equal_approx(Vector2(-2.85851197982345523329, 2.197477931904161412358)),
"Vector2 bounce with normal should return expected value.");
CHECK_MESSAGE(
vector.reflect(vector_y) == Vector2(-1.2, 3.4),
"Vector2 reflect on a plane with normal of the Y axis should.");
CHECK_MESSAGE(
vector.reflect(vector_normal).is_equal_approx(Vector2(2.85851197982345523329, -2.197477931904161412358)),
"Vector2 reflect with normal should return expected value.");
CHECK_MESSAGE(
vector.project(vector_y) == Vector2(0, 3.4),
"Vector2 projected on the Y axis should only give the Y component.");
CHECK_MESSAGE(
vector.project(vector_normal).is_equal_approx(Vector2(2.0292559899117276166, 0.60126103404791929382)),
"Vector2 projected on a normal should return expected value.");
CHECK_MESSAGE(
vector.slide(vector_y) == Vector2(1.2, 0),
"Vector2 slide on a plane with normal of the Y axis should set the Y to zero.");
CHECK_MESSAGE(
vector.slide(vector_normal).is_equal_approx(Vector2(-0.8292559899117276166456, 2.798738965952080706179)),
"Vector2 slide with normal should return expected value.");
// There's probably a better way to test these ones?
ERR_PRINT_OFF;
CHECK_MESSAGE(
vector.bounce(vector_non_normal).is_equal_approx(Vector2()),
"Vector2 bounce should return empty Vector2 with non-normalized input.");
CHECK_MESSAGE(
vector.reflect(vector_non_normal).is_equal_approx(Vector2()),
"Vector2 reflect should return empty Vector2 with non-normalized input.");
CHECK_MESSAGE(
vector.slide(vector_non_normal).is_equal_approx(Vector2()),
"Vector2 slide should return empty Vector2 with non-normalized input.");
ERR_PRINT_ON;
}
TEST_CASE("[Vector2] Rounding methods") {
const Vector2 vector1 = Vector2(1.2, 5.6);
const Vector2 vector2 = Vector2(1.2, -5.6);
CHECK_MESSAGE(
vector1.abs() == vector1,
"Vector2 abs should work as expected.");
CHECK_MESSAGE(
vector2.abs() == vector1,
"Vector2 abs should work as expected.");
CHECK_MESSAGE(
vector1.ceil() == Vector2(2, 6),
"Vector2 ceil should work as expected.");
CHECK_MESSAGE(
vector2.ceil() == Vector2(2, -5),
"Vector2 ceil should work as expected.");
CHECK_MESSAGE(
vector1.floor() == Vector2(1, 5),
"Vector2 floor should work as expected.");
CHECK_MESSAGE(
vector2.floor() == Vector2(1, -6),
"Vector2 floor should work as expected.");
CHECK_MESSAGE(
vector1.round() == Vector2(1, 6),
"Vector2 round should work as expected.");
CHECK_MESSAGE(
vector2.round() == Vector2(1, -6),
"Vector2 round should work as expected.");
CHECK_MESSAGE(
vector1.sign() == Vector2(1, 1),
"Vector2 sign should work as expected.");
CHECK_MESSAGE(
vector2.sign() == Vector2(1, -1),
"Vector2 sign should work as expected.");
}
TEST_CASE("[Vector2] Linear algebra methods") {
const Vector2 vector_x = Vector2(1, 0);
const Vector2 vector_y = Vector2(0, 1);
const Vector2 a = Vector2(3.5, 8.5);
const Vector2 b = Vector2(5.2, 4.6);
CHECK_MESSAGE(
vector_x.cross(vector_y) == 1,
"Vector2 cross product of X and Y should give 1.");
CHECK_MESSAGE(
vector_y.cross(vector_x) == -1,
"Vector2 cross product of Y and X should give negative 1.");
CHECK_MESSAGE(
a.cross(b) == doctest::Approx((real_t)-28.1),
"Vector2 cross should return expected value.");
CHECK_MESSAGE(
Vector2(-a.x, a.y).cross(Vector2(b.x, -b.y)) == doctest::Approx((real_t)-28.1),
"Vector2 cross should return expected value.");
CHECK_MESSAGE(
vector_x.dot(vector_y) == 0.0,
"Vector2 dot product of perpendicular vectors should be zero.");
CHECK_MESSAGE(
vector_x.dot(vector_x) == 1.0,
"Vector2 dot product of identical unit vectors should be one.");
CHECK_MESSAGE(
(vector_x * 10).dot(vector_x * 10) == 100.0,
"Vector2 dot product of same direction vectors should behave as expected.");
CHECK_MESSAGE(
a.dot(b) == doctest::Approx((real_t)57.3),
"Vector2 dot should return expected value.");
CHECK_MESSAGE(
Vector2(-a.x, a.y).dot(Vector2(b.x, -b.y)) == doctest::Approx((real_t)-57.3),
"Vector2 dot should return expected value.");
}
TEST_CASE("[Vector2] Finite number checks") {
const double infinite[] = { NAN, INFINITY, -INFINITY };
CHECK_MESSAGE(
Vector2(0, 1).is_finite(),
"Vector2(0, 1) should be finite");
for (double x : infinite) {
CHECK_FALSE_MESSAGE(
Vector2(x, 1).is_finite(),
"Vector2 with one component infinite should not be finite.");
CHECK_FALSE_MESSAGE(
Vector2(0, x).is_finite(),
"Vector2 with one component infinite should not be finite.");
}
for (double x : infinite) {
for (double y : infinite) {
CHECK_FALSE_MESSAGE(
Vector2(x, y).is_finite(),
"Vector2 with two components infinite should not be finite.");
}
}
}
} // namespace TestVector2
#endif // TEST_VECTOR2_H