virtualx-engine/core/math/quat.h
lawnjelly d24c715678 Float literals - fix math classes to allow 32 bit calculations
Converts float literals from double format (e.g. 0.0) to float format (e.g. 0.0f) where appropriate for 32 bit calculations, and cast to (real_t) or (float) as appropriate.

This ensures that appropriate calculations will be done at 32 bits when real_t is compiled as float, rather than promoted to 64 bits.
2022-02-24 16:46:02 +00:00

231 lines
6.8 KiB
C++

/*************************************************************************/
/* quat.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef QUAT_H
#define QUAT_H
#include "core/math/math_defs.h"
#include "core/math/math_funcs.h"
#include "core/math/vector3.h"
#include "core/ustring.h"
class _NO_DISCARD_CLASS_ Quat {
public:
real_t x, y, z, w;
_FORCE_INLINE_ real_t length_squared() const;
bool is_equal_approx(const Quat &p_quat) const;
real_t length() const;
void normalize();
Quat normalized() const;
bool is_normalized() const;
Quat inverse() const;
_FORCE_INLINE_ real_t dot(const Quat &p_q) const;
real_t angle_to(const Quat &p_to) const;
void set_euler_xyz(const Vector3 &p_euler);
Vector3 get_euler_xyz() const;
void set_euler_yxz(const Vector3 &p_euler);
Vector3 get_euler_yxz() const;
void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); };
Vector3 get_euler() const { return get_euler_yxz(); };
Quat slerp(const Quat &p_to, const real_t &p_weight) const;
Quat slerpni(const Quat &p_to, const real_t &p_weight) const;
Quat cubic_slerp(const Quat &p_b, const Quat &p_pre_a, const Quat &p_post_b, const real_t &p_weight) const;
void set_axis_angle(const Vector3 &axis, const real_t &angle);
_FORCE_INLINE_ void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
r_angle = 2 * Math::acos(w);
real_t r = ((real_t)1) / Math::sqrt(1 - w * w);
r_axis.x = x * r;
r_axis.y = y * r;
r_axis.z = z * r;
}
void operator*=(const Quat &p_q);
Quat operator*(const Quat &p_q) const;
Quat operator*(const Vector3 &v) const {
return Quat(w * v.x + y * v.z - z * v.y,
w * v.y + z * v.x - x * v.z,
w * v.z + x * v.y - y * v.x,
-x * v.x - y * v.y - z * v.z);
}
_FORCE_INLINE_ Vector3 xform(const Vector3 &v) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V_MSG(!is_normalized(), v, "The quaternion must be normalized.");
#endif
Vector3 u(x, y, z);
Vector3 uv = u.cross(v);
return v + ((uv * w) + u.cross(uv)) * ((real_t)2);
}
_FORCE_INLINE_ void operator+=(const Quat &p_q);
_FORCE_INLINE_ void operator-=(const Quat &p_q);
_FORCE_INLINE_ void operator*=(const real_t &s);
_FORCE_INLINE_ void operator/=(const real_t &s);
_FORCE_INLINE_ Quat operator+(const Quat &q2) const;
_FORCE_INLINE_ Quat operator-(const Quat &q2) const;
_FORCE_INLINE_ Quat operator-() const;
_FORCE_INLINE_ Quat operator*(const real_t &s) const;
_FORCE_INLINE_ Quat operator/(const real_t &s) const;
_FORCE_INLINE_ bool operator==(const Quat &p_quat) const;
_FORCE_INLINE_ bool operator!=(const Quat &p_quat) const;
operator String() const;
inline void set(real_t p_x, real_t p_y, real_t p_z, real_t p_w) {
x = p_x;
y = p_y;
z = p_z;
w = p_w;
}
inline Quat(real_t p_x, real_t p_y, real_t p_z, real_t p_w) :
x(p_x),
y(p_y),
z(p_z),
w(p_w) {
}
Quat(const Vector3 &axis, const real_t &angle) { set_axis_angle(axis, angle); }
Quat(const Vector3 &euler) { set_euler(euler); }
Quat(const Quat &p_q) :
x(p_q.x),
y(p_q.y),
z(p_q.z),
w(p_q.w) {
}
Quat &operator=(const Quat &p_q) {
x = p_q.x;
y = p_q.y;
z = p_q.z;
w = p_q.w;
return *this;
}
Quat(const Vector3 &v0, const Vector3 &v1) // shortest arc
{
Vector3 c = v0.cross(v1);
real_t d = v0.dot(v1);
if (d < -1 + (real_t)CMP_EPSILON) {
x = 0;
y = 1;
z = 0;
w = 0;
} else {
real_t s = Math::sqrt((1 + d) * 2);
real_t rs = 1 / s;
x = c.x * rs;
y = c.y * rs;
z = c.z * rs;
w = s * 0.5f;
}
}
inline Quat() :
x(0),
y(0),
z(0),
w(1) {
}
};
real_t Quat::dot(const Quat &p_q) const {
return x * p_q.x + y * p_q.y + z * p_q.z + w * p_q.w;
}
real_t Quat::length_squared() const {
return dot(*this);
}
void Quat::operator+=(const Quat &p_q) {
x += p_q.x;
y += p_q.y;
z += p_q.z;
w += p_q.w;
}
void Quat::operator-=(const Quat &p_q) {
x -= p_q.x;
y -= p_q.y;
z -= p_q.z;
w -= p_q.w;
}
void Quat::operator*=(const real_t &s) {
x *= s;
y *= s;
z *= s;
w *= s;
}
void Quat::operator/=(const real_t &s) {
*this *= 1 / s;
}
Quat Quat::operator+(const Quat &q2) const {
const Quat &q1 = *this;
return Quat(q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w);
}
Quat Quat::operator-(const Quat &q2) const {
const Quat &q1 = *this;
return Quat(q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w);
}
Quat Quat::operator-() const {
const Quat &q2 = *this;
return Quat(-q2.x, -q2.y, -q2.z, -q2.w);
}
Quat Quat::operator*(const real_t &s) const {
return Quat(x * s, y * s, z * s, w * s);
}
Quat Quat::operator/(const real_t &s) const {
return *this * (1 / s);
}
bool Quat::operator==(const Quat &p_quat) const {
return x == p_quat.x && y == p_quat.y && z == p_quat.z && w == p_quat.w;
}
bool Quat::operator!=(const Quat &p_quat) const {
return x != p_quat.x || y != p_quat.y || z != p_quat.z || w != p_quat.w;
}
#endif