virtualx-engine/core/math/bvh_cull.inc
lawnjelly 1698dbe30e
BVH - detect shrinkage within expanded bounds
Although the expanded bounds were working in normal use, for moving and growing objects, there was one case which was not dealt with properly - significant shrinkage of exact bounds within an expanded bound.

This PR detects significant shrinkage and forces a new expanded bound to be created.

(cherry picked from commit ed47570266)
2021-11-25 23:13:12 +01:00

534 lines
14 KiB
C++

public:
// cull parameters is a convenient way of passing a bunch
// of arguments through the culling functions without
// writing loads of code. Not all members are used for some cull checks
struct CullParams {
int result_count_overall; // both trees
int result_count; // this tree only
int result_max;
T **result_array;
int *subindex_array;
// nobody truly understands how masks are intended to work.
uint32_t mask;
uint32_t pairable_type;
// optional components for different tests
POINT point;
BVHABB_CLASS abb;
typename BVHABB_CLASS::ConvexHull hull;
typename BVHABB_CLASS::Segment segment;
// when collision testing, non pairable moving items
// only need to be tested against the pairable tree.
// collisions with other non pairable items are irrelevant.
bool test_pairable_only;
};
private:
void _cull_translate_hits(CullParams &p) {
int num_hits = _cull_hits.size();
int left = p.result_max - p.result_count_overall;
if (num_hits > left) {
num_hits = left;
}
int out_n = p.result_count_overall;
for (int n = 0; n < num_hits; n++) {
uint32_t ref_id = _cull_hits[n];
const ItemExtra &ex = _extra[ref_id];
p.result_array[out_n] = ex.userdata;
if (p.subindex_array) {
p.subindex_array[out_n] = ex.subindex;
}
out_n++;
}
p.result_count = num_hits;
p.result_count_overall += num_hits;
}
public:
int cull_convex(CullParams &r_params, bool p_translate_hits = true) {
_cull_hits.clear();
r_params.result_count = 0;
for (int n = 0; n < NUM_TREES; n++) {
if (_root_node_id[n] == BVHCommon::INVALID) {
continue;
}
_cull_convex_iterative(_root_node_id[n], r_params);
}
if (p_translate_hits) {
_cull_translate_hits(r_params);
}
return r_params.result_count;
}
int cull_segment(CullParams &r_params, bool p_translate_hits = true) {
_cull_hits.clear();
r_params.result_count = 0;
for (int n = 0; n < NUM_TREES; n++) {
if (_root_node_id[n] == BVHCommon::INVALID) {
continue;
}
_cull_segment_iterative(_root_node_id[n], r_params);
}
if (p_translate_hits) {
_cull_translate_hits(r_params);
}
return r_params.result_count;
}
int cull_point(CullParams &r_params, bool p_translate_hits = true) {
_cull_hits.clear();
r_params.result_count = 0;
for (int n = 0; n < NUM_TREES; n++) {
if (_root_node_id[n] == BVHCommon::INVALID) {
continue;
}
_cull_point_iterative(_root_node_id[n], r_params);
}
if (p_translate_hits) {
_cull_translate_hits(r_params);
}
return r_params.result_count;
}
int cull_aabb(CullParams &r_params, bool p_translate_hits = true) {
_cull_hits.clear();
r_params.result_count = 0;
for (int n = 0; n < NUM_TREES; n++) {
if (_root_node_id[n] == BVHCommon::INVALID) {
continue;
}
if ((n == 0) && r_params.test_pairable_only) {
continue;
}
_cull_aabb_iterative(_root_node_id[n], r_params);
}
if (p_translate_hits) {
_cull_translate_hits(r_params);
}
return r_params.result_count;
}
bool _cull_hits_full(const CullParams &p) {
// instead of checking every hit, we can do a lazy check for this condition.
// it isn't a problem if we write too much _cull_hits because they only the
// result_max amount will be translated and outputted. But we might as
// well stop our cull checks after the maximum has been reached.
return (int)_cull_hits.size() >= p.result_max;
}
// write this logic once for use in all routines
// double check this as a possible source of bugs in future.
bool _cull_pairing_mask_test_hit(uint32_t p_maskA, uint32_t p_typeA, uint32_t p_maskB, uint32_t p_typeB) const {
// double check this as a possible source of bugs in future.
bool A_match_B = p_maskA & p_typeB;
if (!A_match_B) {
bool B_match_A = p_maskB & p_typeA;
if (!B_match_A) {
return false;
}
}
return true;
}
void _cull_hit(uint32_t p_ref_id, CullParams &p) {
// take into account masks etc
// this would be more efficient to do before plane checks,
// but done here for ease to get started
if (USE_PAIRS) {
const ItemExtra &ex = _extra[p_ref_id];
if (!_cull_pairing_mask_test_hit(p.mask, p.pairable_type, ex.pairable_mask, ex.pairable_type)) {
return;
}
}
_cull_hits.push_back(p_ref_id);
}
bool _cull_segment_iterative(uint32_t p_node_id, CullParams &r_params) {
// our function parameters to keep on a stack
struct CullSegParams {
uint32_t node_id;
};
// most of the iterative functionality is contained in this helper class
BVH_IterativeInfo<CullSegParams> ii;
// alloca must allocate the stack from this function, it cannot be allocated in the
// helper class
ii.stack = (CullSegParams *)alloca(ii.get_alloca_stacksize());
// seed the stack
ii.get_first()->node_id = p_node_id;
CullSegParams csp;
// while there are still more nodes on the stack
while (ii.pop(csp)) {
TNode &tnode = _nodes[csp.node_id];
if (tnode.is_leaf()) {
// lazy check for hits full up condition
if (_cull_hits_full(r_params)) {
return false;
}
TLeaf &leaf = _node_get_leaf(tnode);
// test children individually
for (int n = 0; n < leaf.num_items; n++) {
const BVHABB_CLASS &aabb = leaf.get_aabb(n);
if (aabb.intersects_segment(r_params.segment)) {
uint32_t child_id = leaf.get_item_ref_id(n);
// register hit
_cull_hit(child_id, r_params);
}
}
} else {
// test children individually
for (int n = 0; n < tnode.num_children; n++) {
uint32_t child_id = tnode.children[n];
const BVHABB_CLASS &child_abb = _nodes[child_id].aabb;
if (child_abb.intersects_segment(r_params.segment)) {
// add to the stack
CullSegParams *child = ii.request();
child->node_id = child_id;
}
}
}
} // while more nodes to pop
// true indicates results are not full
return true;
}
bool _cull_point_iterative(uint32_t p_node_id, CullParams &r_params) {
// our function parameters to keep on a stack
struct CullPointParams {
uint32_t node_id;
};
// most of the iterative functionality is contained in this helper class
BVH_IterativeInfo<CullPointParams> ii;
// alloca must allocate the stack from this function, it cannot be allocated in the
// helper class
ii.stack = (CullPointParams *)alloca(ii.get_alloca_stacksize());
// seed the stack
ii.get_first()->node_id = p_node_id;
CullPointParams cpp;
// while there are still more nodes on the stack
while (ii.pop(cpp)) {
TNode &tnode = _nodes[cpp.node_id];
// no hit with this node?
if (!tnode.aabb.intersects_point(r_params.point)) {
continue;
}
if (tnode.is_leaf()) {
// lazy check for hits full up condition
if (_cull_hits_full(r_params)) {
return false;
}
TLeaf &leaf = _node_get_leaf(tnode);
// test children individually
for (int n = 0; n < leaf.num_items; n++) {
if (leaf.get_aabb(n).intersects_point(r_params.point)) {
uint32_t child_id = leaf.get_item_ref_id(n);
// register hit
_cull_hit(child_id, r_params);
}
}
} else {
// test children individually
for (int n = 0; n < tnode.num_children; n++) {
uint32_t child_id = tnode.children[n];
// add to the stack
CullPointParams *child = ii.request();
child->node_id = child_id;
}
}
} // while more nodes to pop
// true indicates results are not full
return true;
}
bool _cull_aabb_iterative(uint32_t p_node_id, CullParams &r_params, bool p_fully_within = false) {
// our function parameters to keep on a stack
struct CullAABBParams {
uint32_t node_id;
bool fully_within;
};
// most of the iterative functionality is contained in this helper class
BVH_IterativeInfo<CullAABBParams> ii;
// alloca must allocate the stack from this function, it cannot be allocated in the
// helper class
ii.stack = (CullAABBParams *)alloca(ii.get_alloca_stacksize());
// seed the stack
ii.get_first()->node_id = p_node_id;
ii.get_first()->fully_within = p_fully_within;
CullAABBParams cap;
// while there are still more nodes on the stack
while (ii.pop(cap)) {
TNode &tnode = _nodes[cap.node_id];
if (tnode.is_leaf()) {
// lazy check for hits full up condition
if (_cull_hits_full(r_params)) {
return false;
}
TLeaf &leaf = _node_get_leaf(tnode);
// if fully within we can just add all items
// as long as they pass mask checks
if (cap.fully_within) {
for (int n = 0; n < leaf.num_items; n++) {
uint32_t child_id = leaf.get_item_ref_id(n);
// register hit
_cull_hit(child_id, r_params);
}
} else {
for (int n = 0; n < leaf.num_items; n++) {
const BVHABB_CLASS &aabb = leaf.get_aabb(n);
if (aabb.intersects(r_params.abb)) {
uint32_t child_id = leaf.get_item_ref_id(n);
// register hit
_cull_hit(child_id, r_params);
}
}
} // not fully within
} else {
if (!cap.fully_within) {
// test children individually
for (int n = 0; n < tnode.num_children; n++) {
uint32_t child_id = tnode.children[n];
const BVHABB_CLASS &child_abb = _nodes[child_id].aabb;
if (child_abb.intersects(r_params.abb)) {
// is the node totally within the aabb?
bool fully_within = r_params.abb.is_other_within(child_abb);
// add to the stack
CullAABBParams *child = ii.request();
// should always return valid child
child->node_id = child_id;
child->fully_within = fully_within;
}
}
} else {
for (int n = 0; n < tnode.num_children; n++) {
uint32_t child_id = tnode.children[n];
// add to the stack
CullAABBParams *child = ii.request();
// should always return valid child
child->node_id = child_id;
child->fully_within = true;
}
}
}
} // while more nodes to pop
// true indicates results are not full
return true;
}
// returns full up with results
bool _cull_convex_iterative(uint32_t p_node_id, CullParams &r_params, bool p_fully_within = false) {
// our function parameters to keep on a stack
struct CullConvexParams {
uint32_t node_id;
bool fully_within;
};
// most of the iterative functionality is contained in this helper class
BVH_IterativeInfo<CullConvexParams> ii;
// alloca must allocate the stack from this function, it cannot be allocated in the
// helper class
ii.stack = (CullConvexParams *)alloca(ii.get_alloca_stacksize());
// seed the stack
ii.get_first()->node_id = p_node_id;
ii.get_first()->fully_within = p_fully_within;
// preallocate these as a once off to be reused
uint32_t max_planes = r_params.hull.num_planes;
uint32_t *plane_ids = (uint32_t *)alloca(sizeof(uint32_t) * max_planes);
CullConvexParams ccp;
// while there are still more nodes on the stack
while (ii.pop(ccp)) {
const TNode &tnode = _nodes[ccp.node_id];
if (!ccp.fully_within) {
typename BVHABB_CLASS::IntersectResult res = tnode.aabb.intersects_convex(r_params.hull);
switch (res) {
default: {
continue; // miss, just move on to the next node in the stack
} break;
case BVHABB_CLASS::IR_PARTIAL: {
} break;
case BVHABB_CLASS::IR_FULL: {
ccp.fully_within = true;
} break;
}
} // if not fully within already
if (tnode.is_leaf()) {
// lazy check for hits full up condition
if (_cull_hits_full(r_params)) {
return false;
}
const TLeaf &leaf = _node_get_leaf(tnode);
// if fully within, simply add all items to the result
// (taking into account masks)
if (ccp.fully_within) {
for (int n = 0; n < leaf.num_items; n++) {
uint32_t child_id = leaf.get_item_ref_id(n);
// register hit
_cull_hit(child_id, r_params);
}
} else {
// we can either use a naive check of all the planes against the AABB,
// or an optimized check, which finds in advance which of the planes can possibly
// cut the AABB, and only tests those. This can be much faster.
#define BVH_CONVEX_CULL_OPTIMIZED
#ifdef BVH_CONVEX_CULL_OPTIMIZED
// first find which planes cut the aabb
uint32_t num_planes = tnode.aabb.find_cutting_planes(r_params.hull, plane_ids);
BVH_ASSERT(num_planes <= max_planes);
//#define BVH_CONVEX_CULL_OPTIMIZED_RIGOR_CHECK
#ifdef BVH_CONVEX_CULL_OPTIMIZED_RIGOR_CHECK
// rigorous check
uint32_t results[MAX_ITEMS];
uint32_t num_results = 0;
#endif
// test children individually
for (int n = 0; n < leaf.num_items; n++) {
//const Item &item = leaf.get_item(n);
const BVHABB_CLASS &aabb = leaf.get_aabb(n);
if (aabb.intersects_convex_optimized(r_params.hull, plane_ids, num_planes)) {
uint32_t child_id = leaf.get_item_ref_id(n);
#ifdef BVH_CONVEX_CULL_OPTIMIZED_RIGOR_CHECK
results[num_results++] = child_id;
#endif
// register hit
_cull_hit(child_id, r_params);
}
}
#ifdef BVH_CONVEX_CULL_OPTIMIZED_RIGOR_CHECK
uint32_t test_count = 0;
for (int n = 0; n < leaf.num_items; n++) {
const BVHABB_CLASS &aabb = leaf.get_aabb(n);
if (aabb.intersects_convex_partial(r_params.hull)) {
uint32_t child_id = leaf.get_item_ref_id(n);
CRASH_COND(child_id != results[test_count++]);
CRASH_COND(test_count > num_results);
}
}
#endif
#else
// not BVH_CONVEX_CULL_OPTIMIZED
// test children individually
for (int n = 0; n < leaf.num_items; n++) {
const BVHABB_CLASS &aabb = leaf.get_aabb(n);
if (aabb.intersects_convex_partial(r_params.hull)) {
uint32_t child_id = leaf.get_item_ref_id(n);
// full up with results? exit early, no point in further testing
if (!_cull_hit(child_id, r_params))
return false;
}
}
#endif // BVH_CONVEX_CULL_OPTIMIZED
} // if not fully within
} else {
for (int n = 0; n < tnode.num_children; n++) {
uint32_t child_id = tnode.children[n];
// add to the stack
CullConvexParams *child = ii.request();
// should always return valid child
child->node_id = child_id;
child->fully_within = ccp.fully_within;
}
}
} // while more nodes to pop
// true indicates results are not full
return true;
}