virtualx-engine/scene/animation/animation_tree_player.cpp
lawnjelly a0c6d16c90 Add editor vital redraws only option
When editor continuous redraws is switched off, the editor only redraws when a redraw_request was issued by an element in the scene. This works well in most situations, but when scenes have dynamic content they will continuously issue redraw_requests.

This can be fine on high power desktops but can be an annoyance on lower power machines.

This PR splits redraw requests into high and low priority requests, defaulting to high priority. Requests due to e.g. shaders using TIME are assigned low priority.

An extra editor setting is used to record the user preference and an extra option is added to the editor spinner menu, to allow the user to select between 3 modes:

* Continuous
* Update all changes
* Update vital changes
2022-02-02 11:26:45 +00:00

1782 lines
55 KiB
C++

/*************************************************************************/
/* animation_tree_player.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "animation_tree_player.h"
#include "animation_player.h"
#include "core/os/os.h"
#include "scene/scene_string_names.h"
void AnimationTreePlayer::set_animation_process_mode(AnimationProcessMode p_mode) {
if (animation_process_mode == p_mode) {
return;
}
bool pr = processing;
if (pr) {
_set_process(false);
}
animation_process_mode = p_mode;
if (pr) {
_set_process(true);
}
}
AnimationTreePlayer::AnimationProcessMode AnimationTreePlayer::get_animation_process_mode() const {
return animation_process_mode;
}
void AnimationTreePlayer::_set_process(bool p_process, bool p_force) {
if (processing == p_process && !p_force) {
return;
}
switch (animation_process_mode) {
case ANIMATION_PROCESS_PHYSICS:
set_physics_process_internal(p_process && active);
break;
case ANIMATION_PROCESS_IDLE:
set_process_internal(p_process && active);
break;
}
processing = p_process;
}
bool AnimationTreePlayer::_set(const StringName &p_name, const Variant &p_value) {
if (String(p_name) == "base_path") {
set_base_path(p_value);
return true;
}
if (String(p_name) == "master_player") {
set_master_player(p_value);
return true;
}
if (String(p_name) == SceneStringNames::get_singleton()->playback_active) {
set_active(p_value);
return true;
}
if (String(p_name) != "data") {
return false;
}
Dictionary data = p_value;
Array nodes = data.get_valid("nodes");
for (int i = 0; i < nodes.size(); i++) {
Dictionary node = nodes[i];
StringName id = node.get_valid("id");
Point2 pos = node.get_valid("position");
NodeType nt = NODE_MAX;
String type = node.get_valid("type");
if (type == "output") {
nt = NODE_OUTPUT;
} else if (type == "animation") {
nt = NODE_ANIMATION;
} else if (type == "oneshot") {
nt = NODE_ONESHOT;
} else if (type == "mix") {
nt = NODE_MIX;
} else if (type == "blend2") {
nt = NODE_BLEND2;
} else if (type == "blend3") {
nt = NODE_BLEND3;
} else if (type == "blend4") {
nt = NODE_BLEND4;
} else if (type == "timescale") {
nt = NODE_TIMESCALE;
} else if (type == "timeseek") {
nt = NODE_TIMESEEK;
} else if (type == "transition") {
nt = NODE_TRANSITION;
}
ERR_FAIL_COND_V(nt == NODE_MAX, false);
if (nt != NODE_OUTPUT) {
add_node(nt, id);
}
node_set_position(id, pos);
switch (nt) {
case NODE_OUTPUT: {
} break;
case NODE_ANIMATION: {
if (node.has("from")) {
animation_node_set_master_animation(id, node.get_valid("from"));
} else {
animation_node_set_animation(id, node.get_valid("animation"));
}
Array filters = node.get_valid("filter");
for (int j = 0; j < filters.size(); j++) {
animation_node_set_filter_path(id, filters[j], true);
}
} break;
case NODE_ONESHOT: {
oneshot_node_set_fadein_time(id, node.get_valid("fade_in"));
oneshot_node_set_fadeout_time(id, node.get_valid("fade_out"));
oneshot_node_set_mix_mode(id, node.get_valid("mix"));
oneshot_node_set_autorestart(id, node.get_valid("autorestart"));
oneshot_node_set_autorestart_delay(id, node.get_valid("autorestart_delay"));
oneshot_node_set_autorestart_random_delay(id, node.get_valid("autorestart_random_delay"));
Array filters = node.get_valid("filter");
for (int j = 0; j < filters.size(); j++) {
oneshot_node_set_filter_path(id, filters[j], true);
}
} break;
case NODE_MIX: {
mix_node_set_amount(id, node.get_valid("mix"));
} break;
case NODE_BLEND2: {
blend2_node_set_amount(id, node.get_valid("blend"));
Array filters = node.get_valid("filter");
for (int j = 0; j < filters.size(); j++) {
blend2_node_set_filter_path(id, filters[j], true);
}
} break;
case NODE_BLEND3: {
blend3_node_set_amount(id, node.get_valid("blend"));
} break;
case NODE_BLEND4: {
blend4_node_set_amount(id, node.get_valid("blend"));
} break;
case NODE_TIMESCALE: {
timescale_node_set_scale(id, node.get_valid("scale"));
} break;
case NODE_TIMESEEK: {
} break;
case NODE_TRANSITION: {
transition_node_set_xfade_time(id, node.get_valid("xfade"));
Array transitions = node.get_valid("transitions");
transition_node_set_input_count(id, transitions.size());
for (int x = 0; x < transitions.size(); x++) {
Dictionary d = transitions[x];
bool aa = d.get_valid("auto_advance");
transition_node_set_input_auto_advance(id, x, aa);
}
} break;
default: {
};
}
}
Array connections = data.get_valid("connections");
ERR_FAIL_COND_V(connections.size() % 3, false);
int cc = connections.size() / 3;
for (int i = 0; i < cc; i++) {
StringName src = connections[i * 3 + 0];
StringName dst = connections[i * 3 + 1];
int dst_in = connections[i * 3 + 2];
connect_nodes(src, dst, dst_in);
}
set_active(data.get_valid("active"));
set_master_player(data.get_valid("master"));
return true;
}
bool AnimationTreePlayer::_get(const StringName &p_name, Variant &r_ret) const {
if (String(p_name) == "base_path") {
r_ret = base_path;
return true;
}
if (String(p_name) == "master_player") {
r_ret = master;
return true;
}
if (String(p_name) == "playback/active") {
r_ret = is_active();
return true;
}
if (String(p_name) != "data") {
return false;
}
Dictionary data;
Array nodes;
for (Map<StringName, NodeBase *>::Element *E = node_map.front(); E; E = E->next()) {
NodeBase *n = node_map[E->key()];
Dictionary node;
node["id"] = E->key();
node["position"] = n->pos;
switch (n->type) {
case NODE_OUTPUT:
node["type"] = "output";
break;
case NODE_ANIMATION:
node["type"] = "animation";
break;
case NODE_ONESHOT:
node["type"] = "oneshot";
break;
case NODE_MIX:
node["type"] = "mix";
break;
case NODE_BLEND2:
node["type"] = "blend2";
break;
case NODE_BLEND3:
node["type"] = "blend3";
break;
case NODE_BLEND4:
node["type"] = "blend4";
break;
case NODE_TIMESCALE:
node["type"] = "timescale";
break;
case NODE_TIMESEEK:
node["type"] = "timeseek";
break;
case NODE_TRANSITION:
node["type"] = "transition";
break;
default:
node["type"] = "";
break;
}
switch (n->type) {
case NODE_OUTPUT: {
} break;
case NODE_ANIMATION: {
AnimationNode *an = static_cast<AnimationNode *>(n);
if (master != NodePath() && an->from != "") {
node["from"] = an->from;
} else {
node["animation"] = an->animation;
}
Array k;
List<NodePath> keys;
an->filter.get_key_list(&keys);
k.resize(keys.size());
int i = 0;
for (List<NodePath>::Element *F = keys.front(); F; F = F->next()) {
k[i++] = F->get();
}
node["filter"] = k;
} break;
case NODE_ONESHOT: {
OneShotNode *osn = static_cast<OneShotNode *>(n);
node["fade_in"] = osn->fade_in;
node["fade_out"] = osn->fade_out;
node["mix"] = osn->mix;
node["autorestart"] = osn->autorestart;
node["autorestart_delay"] = osn->autorestart_delay;
node["autorestart_random_delay"] = osn->autorestart_random_delay;
Array k;
List<NodePath> keys;
osn->filter.get_key_list(&keys);
k.resize(keys.size());
int i = 0;
for (List<NodePath>::Element *F = keys.front(); F; F = F->next()) {
k[i++] = F->get();
}
node["filter"] = k;
} break;
case NODE_MIX: {
MixNode *mn = static_cast<MixNode *>(n);
node["mix"] = mn->amount;
} break;
case NODE_BLEND2: {
Blend2Node *bn = static_cast<Blend2Node *>(n);
node["blend"] = bn->value;
Array k;
List<NodePath> keys;
bn->filter.get_key_list(&keys);
k.resize(keys.size());
int i = 0;
for (List<NodePath>::Element *F = keys.front(); F; F = F->next()) {
k[i++] = F->get();
}
node["filter"] = k;
} break;
case NODE_BLEND3: {
Blend3Node *bn = static_cast<Blend3Node *>(n);
node["blend"] = bn->value;
} break;
case NODE_BLEND4: {
Blend4Node *bn = static_cast<Blend4Node *>(n);
node["blend"] = bn->value;
} break;
case NODE_TIMESCALE: {
TimeScaleNode *tsn = static_cast<TimeScaleNode *>(n);
node["scale"] = tsn->scale;
} break;
case NODE_TIMESEEK: {
} break;
case NODE_TRANSITION: {
TransitionNode *tn = static_cast<TransitionNode *>(n);
node["xfade"] = tn->xfade;
Array transitions;
for (int i = 0; i < tn->input_data.size(); i++) {
Dictionary d;
d["auto_advance"] = tn->input_data[i].auto_advance;
transitions.push_back(d);
}
node["transitions"] = transitions;
} break;
default: {
};
}
nodes.push_back(node);
}
data["nodes"] = nodes;
//connectiosn
List<Connection> connections;
get_connection_list(&connections);
Array connections_arr;
connections_arr.resize(connections.size() * 3);
int idx = 0;
for (List<Connection>::Element *E = connections.front(); E; E = E->next()) {
connections_arr.set(idx + 0, E->get().src_node);
connections_arr.set(idx + 1, E->get().dst_node);
connections_arr.set(idx + 2, E->get().dst_input);
idx += 3;
}
data["connections"] = connections_arr;
data["active"] = active;
data["master"] = master;
r_ret = data;
return true;
}
void AnimationTreePlayer::_get_property_list(List<PropertyInfo> *p_list) const {
p_list->push_back(PropertyInfo(Variant::DICTIONARY, "data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_STORAGE | PROPERTY_USAGE_NETWORK));
}
void AnimationTreePlayer::advance(float p_time) {
_process_animation(p_time);
}
void AnimationTreePlayer::_notification(int p_what) {
switch (p_what) {
case NOTIFICATION_ENTER_TREE: {
WARN_DEPRECATED_MSG("AnimationTreePlayer has been deprecated. Use AnimationTree instead.");
if (!processing) {
//make sure that a previous process state was not saved
//only process if "processing" is set
set_physics_process_internal(false);
set_process_internal(false);
}
} break;
case NOTIFICATION_READY: {
dirty_caches = true;
if (master != NodePath()) {
_update_sources();
}
} break;
case NOTIFICATION_INTERNAL_PROCESS: {
if (animation_process_mode == ANIMATION_PROCESS_PHYSICS) {
break;
}
if (processing && OS::get_singleton()->is_update_pending()) {
_process_animation(get_process_delta_time());
}
} break;
case NOTIFICATION_INTERNAL_PHYSICS_PROCESS: {
if (animation_process_mode == ANIMATION_PROCESS_IDLE) {
break;
}
if (processing && OS::get_singleton()->is_update_pending()) {
_process_animation(get_physics_process_delta_time());
}
} break;
}
}
void AnimationTreePlayer::_compute_weights(float *p_fallback_weight, HashMap<NodePath, float> *p_weights, float p_coeff, const HashMap<NodePath, bool> *p_filter, float p_filtered_coeff) {
if (p_filter != nullptr) {
List<NodePath> key_list;
p_filter->get_key_list(&key_list);
for (List<NodePath>::Element *E = key_list.front(); E; E = E->next()) {
if ((*p_filter)[E->get()]) {
if (p_weights->has(E->get())) {
(*p_weights)[E->get()] *= p_filtered_coeff;
} else {
p_weights->set(E->get(), *p_fallback_weight * p_filtered_coeff);
}
} else if (p_weights->has(E->get())) {
(*p_weights)[E->get()] *= p_coeff;
}
}
}
List<NodePath> key_list;
p_weights->get_key_list(&key_list);
for (List<NodePath>::Element *E = key_list.front(); E; E = E->next()) {
if (p_filter == nullptr || !p_filter->has(E->get())) {
(*p_weights)[E->get()] *= p_coeff;
}
}
*p_fallback_weight *= p_coeff;
}
float AnimationTreePlayer::_process_node(const StringName &p_node, AnimationNode **r_prev_anim, float p_time, bool p_seek, float p_fallback_weight, HashMap<NodePath, float> *p_weights) {
ERR_FAIL_COND_V(!node_map.has(p_node), 0);
NodeBase *nb = node_map[p_node];
//transform to seconds...
switch (nb->type) {
case NODE_OUTPUT: {
NodeOut *on = static_cast<NodeOut *>(nb);
HashMap<NodePath, float> weights;
return _process_node(on->inputs[0].node, r_prev_anim, p_time, p_seek, p_fallback_weight, &weights);
} break;
case NODE_ANIMATION: {
AnimationNode *an = static_cast<AnimationNode *>(nb);
float rem = 0;
if (!an->animation.is_null()) {
//float pos = an->time;
//float delta = p_time;
//const Animation *a = an->animation.operator->();
if (p_seek) {
an->time = p_time;
an->step = 0;
} else {
an->time = MAX(0, an->time + p_time);
an->step = p_time;
}
float anim_size = an->animation->get_length();
if (an->animation->has_loop()) {
if (anim_size) {
an->time = Math::fposmod(an->time, anim_size);
}
} else if (an->time > anim_size) {
an->time = anim_size;
}
an->skip = true;
for (List<AnimationNode::TrackRef>::Element *E = an->tref.front(); E; E = E->next()) {
NodePath track_path = an->animation->track_get_path(E->get().local_track);
if (an->filter.has(track_path) && an->filter[track_path]) {
E->get().weight = 0;
} else {
if (p_weights->has(track_path)) {
float weight = (*p_weights)[track_path];
E->get().weight = weight;
} else {
E->get().weight = p_fallback_weight;
}
}
if (E->get().weight > CMP_EPSILON) {
an->skip = false;
}
}
rem = anim_size - an->time;
}
if (!(*r_prev_anim)) {
active_list = an;
} else {
(*r_prev_anim)->next = an;
}
an->next = nullptr;
*r_prev_anim = an;
return rem;
} break;
case NODE_ONESHOT: {
OneShotNode *osn = static_cast<OneShotNode *>(nb);
if (!osn->active) {
//make it as if this node doesn't exist, pass input 0 by.
return _process_node(osn->inputs[0].node, r_prev_anim, p_time, p_seek, p_fallback_weight, p_weights);
}
bool os_seek = p_seek;
if (p_seek) {
osn->time = p_time;
}
if (osn->start) {
osn->time = 0;
os_seek = true;
}
float blend;
if (osn->time < osn->fade_in) {
if (osn->fade_in > 0) {
blend = osn->time / osn->fade_in;
} else {
blend = 0; //wtf
}
} else if (!osn->start && osn->remaining < osn->fade_out) {
if (osn->fade_out) {
blend = (osn->remaining / osn->fade_out);
} else {
blend = 1.0;
}
} else {
blend = 1.0;
}
float main_rem;
float os_rem;
HashMap<NodePath, float> os_weights(*p_weights);
float os_fallback_weight = p_fallback_weight;
_compute_weights(&p_fallback_weight, p_weights, osn->mix ? 1.0 : 1.0 - blend, &osn->filter, 1.0);
_compute_weights(&os_fallback_weight, &os_weights, blend, &osn->filter, 0.0);
main_rem = _process_node(osn->inputs[0].node, r_prev_anim, p_time, p_seek, p_fallback_weight, p_weights);
os_rem = _process_node(osn->inputs[1].node, r_prev_anim, p_time, os_seek, os_fallback_weight, &os_weights);
if (osn->start) {
osn->remaining = os_rem;
osn->start = false;
}
if (!p_seek) {
osn->time += p_time;
osn->remaining = os_rem;
if (osn->remaining <= 0) {
osn->active = false;
}
}
return MAX(main_rem, osn->remaining);
} break;
case NODE_MIX: {
MixNode *mn = static_cast<MixNode *>(nb);
HashMap<NodePath, float> mn_weights(*p_weights);
float mn_fallback_weight = p_fallback_weight;
_compute_weights(&mn_fallback_weight, &mn_weights, mn->amount);
float rem = _process_node(mn->inputs[0].node, r_prev_anim, p_time, p_seek, p_fallback_weight, p_weights);
_process_node(mn->inputs[1].node, r_prev_anim, p_time, p_seek, mn_fallback_weight, &mn_weights);
return rem;
} break;
case NODE_BLEND2: {
Blend2Node *bn = static_cast<Blend2Node *>(nb);
HashMap<NodePath, float> bn_weights(*p_weights);
float bn_fallback_weight = p_fallback_weight;
_compute_weights(&p_fallback_weight, p_weights, 1.0 - bn->value, &bn->filter, 1.0);
_compute_weights(&bn_fallback_weight, &bn_weights, bn->value, &bn->filter, 0.0);
float rem = _process_node(bn->inputs[0].node, r_prev_anim, p_time, p_seek, p_fallback_weight, p_weights);
_process_node(bn->inputs[1].node, r_prev_anim, p_time, p_seek, bn_fallback_weight, &bn_weights);
return rem;
} break;
case NODE_BLEND3: {
Blend3Node *bn = static_cast<Blend3Node *>(nb);
float rem;
float blend, lower_blend, upper_blend;
if (bn->value < 0) {
lower_blend = -bn->value;
blend = 1.0 - lower_blend;
upper_blend = 0;
} else {
lower_blend = 0;
blend = 1.0 - bn->value;
upper_blend = bn->value;
}
HashMap<NodePath, float> upper_weights(*p_weights);
float upper_fallback_weight = p_fallback_weight;
HashMap<NodePath, float> lower_weights(*p_weights);
float lower_fallback_weight = p_fallback_weight;
_compute_weights(&upper_fallback_weight, &upper_weights, upper_blend);
_compute_weights(&p_fallback_weight, p_weights, blend);
_compute_weights(&lower_fallback_weight, &lower_weights, lower_blend);
rem = _process_node(bn->inputs[1].node, r_prev_anim, p_time, p_seek, p_fallback_weight, p_weights);
_process_node(bn->inputs[0].node, r_prev_anim, p_time, p_seek, lower_fallback_weight, &lower_weights);
_process_node(bn->inputs[2].node, r_prev_anim, p_time, p_seek, upper_fallback_weight, &upper_weights);
return rem;
} break;
case NODE_BLEND4: {
Blend4Node *bn = static_cast<Blend4Node *>(nb);
HashMap<NodePath, float> weights1(*p_weights);
float fallback_weight1 = p_fallback_weight;
HashMap<NodePath, float> weights2(*p_weights);
float fallback_weight2 = p_fallback_weight;
HashMap<NodePath, float> weights3(*p_weights);
float fallback_weight3 = p_fallback_weight;
_compute_weights(&p_fallback_weight, p_weights, 1.0 - bn->value.x);
_compute_weights(&fallback_weight1, &weights1, bn->value.x);
_compute_weights(&fallback_weight2, &weights2, 1.0 - bn->value.y);
_compute_weights(&fallback_weight3, &weights3, bn->value.y);
float rem = _process_node(bn->inputs[0].node, r_prev_anim, p_time, p_seek, p_fallback_weight, p_weights);
_process_node(bn->inputs[1].node, r_prev_anim, p_time, p_seek, fallback_weight1, &weights1);
float rem2 = _process_node(bn->inputs[2].node, r_prev_anim, p_time, p_seek, fallback_weight2, &weights2);
_process_node(bn->inputs[3].node, r_prev_anim, p_time, p_seek, fallback_weight3, &weights3);
return MAX(rem, rem2);
} break;
case NODE_TIMESCALE: {
TimeScaleNode *tsn = static_cast<TimeScaleNode *>(nb);
float rem;
if (p_seek) {
rem = _process_node(tsn->inputs[0].node, r_prev_anim, p_time, true, p_fallback_weight, p_weights);
} else {
rem = _process_node(tsn->inputs[0].node, r_prev_anim, p_time * tsn->scale, false, p_fallback_weight, p_weights);
}
if (tsn->scale == 0) {
return Math_INF;
} else {
return rem / tsn->scale;
}
} break;
case NODE_TIMESEEK: {
TimeSeekNode *tsn = static_cast<TimeSeekNode *>(nb);
if (tsn->seek_pos >= 0 && !p_seek) {
p_time = tsn->seek_pos;
p_seek = true;
}
tsn->seek_pos = -1;
return _process_node(tsn->inputs[0].node, r_prev_anim, p_time, p_seek, p_fallback_weight, p_weights);
} break;
case NODE_TRANSITION: {
TransitionNode *tn = static_cast<TransitionNode *>(nb);
HashMap<NodePath, float> prev_weights(*p_weights);
float prev_fallback_weight = p_fallback_weight;
if (tn->prev < 0) { // process current animation, check for transition
float rem = _process_node(tn->inputs[tn->current].node, r_prev_anim, p_time, p_seek, p_fallback_weight, p_weights);
if (p_seek) {
tn->time = p_time;
} else {
tn->time += p_time;
}
if (tn->input_data[tn->current].auto_advance && rem <= tn->xfade) {
tn->set_current((tn->current + 1) % tn->inputs.size());
}
return rem;
} else { // cross-fading from tn->prev to tn->current
float blend = tn->xfade ? (tn->prev_xfading / tn->xfade) : 1;
float rem;
_compute_weights(&p_fallback_weight, p_weights, 1.0 - blend);
_compute_weights(&prev_fallback_weight, &prev_weights, blend);
if (!p_seek && tn->switched) { //just switched, seek to start of current
rem = _process_node(tn->inputs[tn->current].node, r_prev_anim, 0, true, p_fallback_weight, p_weights);
} else {
rem = _process_node(tn->inputs[tn->current].node, r_prev_anim, p_time, p_seek, p_fallback_weight, p_weights);
}
tn->switched = false;
if (p_seek) { // don't seek prev animation
_process_node(tn->inputs[tn->prev].node, r_prev_anim, 0, false, prev_fallback_weight, &prev_weights);
tn->time = p_time;
} else {
_process_node(tn->inputs[tn->prev].node, r_prev_anim, p_time, false, prev_fallback_weight, &prev_weights);
tn->time += p_time;
tn->prev_xfading -= p_time;
if (tn->prev_xfading < 0) {
tn->prev = -1;
}
}
return rem;
}
} break;
default: {
}
}
return 0;
}
void AnimationTreePlayer::_process_animation(float p_delta) {
if (last_error != CONNECT_OK) {
return;
}
if (dirty_caches) {
_recompute_caches();
}
active_list = nullptr;
AnimationNode *prev = nullptr;
if (reset_request) {
_process_node(out_name, &prev, 0, true);
reset_request = false;
} else {
_process_node(out_name, &prev, p_delta);
}
if (dirty_caches) {
//some animation changed.. ignore this pass
return;
}
//update the tracks..
/* STEP 1 CLEAR TRACKS */
for (TrackMap::Element *E = track_map.front(); E; E = E->next()) {
Track &t = E->get();
t.loc.zero();
t.rot = Quat();
t.scale.x = 0;
t.scale.y = 0;
t.scale.z = 0;
t.value = t.object->get_indexed(t.subpath);
t.value.zero();
t.skip = false;
}
/* STEP 2 PROCESS ANIMATIONS */
AnimationNode *anim_list = active_list;
Quat empty_rot;
while (anim_list) {
if (!anim_list->animation.is_null() && !anim_list->skip) {
//check if animation is meaningful
Animation *a = anim_list->animation.operator->();
for (List<AnimationNode::TrackRef>::Element *E = anim_list->tref.front(); E; E = E->next()) {
AnimationNode::TrackRef &tr = E->get();
if (tr.track == nullptr || tr.local_track < 0 || tr.weight < CMP_EPSILON || !a->track_is_enabled(tr.local_track)) {
continue;
}
switch (a->track_get_type(tr.local_track)) {
case Animation::TYPE_TRANSFORM: { ///< Transform a node or a bone.
Vector3 loc;
Quat rot;
Vector3 scale;
a->transform_track_interpolate(tr.local_track, anim_list->time, &loc, &rot, &scale);
tr.track->loc += loc * tr.weight;
scale.x -= 1.0;
scale.y -= 1.0;
scale.z -= 1.0;
tr.track->scale += scale * tr.weight;
tr.track->rot = tr.track->rot * empty_rot.slerp(rot, tr.weight);
} break;
case Animation::TYPE_VALUE: { ///< Set a value in a property, can be interpolated.
if (a->value_track_get_update_mode(tr.local_track) == Animation::UPDATE_CONTINUOUS) {
Variant value = a->value_track_interpolate(tr.local_track, anim_list->time);
Variant::blend(tr.track->value, value, tr.weight, tr.track->value);
} else {
int index = a->track_find_key(tr.local_track, anim_list->time);
tr.track->value = a->track_get_key_value(tr.local_track, index);
}
} break;
case Animation::TYPE_METHOD: { ///< Call any method on a specific node.
List<int> indices;
a->method_track_get_key_indices(tr.local_track, anim_list->time, anim_list->step, &indices);
for (List<int>::Element *F = indices.front(); F; F = F->next()) {
StringName method = a->method_track_get_name(tr.local_track, F->get());
Vector<Variant> args = a->method_track_get_params(tr.local_track, F->get());
args.resize(VARIANT_ARG_MAX);
tr.track->object->call(method, args[0], args[1], args[2], args[3], args[4]);
}
} break;
default: {
}
}
}
}
anim_list = anim_list->next;
}
/* STEP 3 APPLY TRACKS */
for (TrackMap::Element *E = track_map.front(); E; E = E->next()) {
Track &t = E->get();
if (t.skip || !t.object) {
continue;
}
if (t.subpath.size()) { // value track
t.object->set_indexed(t.subpath, t.value);
continue;
}
Transform xform;
xform.origin = t.loc;
t.scale.x += 1.0;
t.scale.y += 1.0;
t.scale.z += 1.0;
xform.basis.set_quat_scale(t.rot, t.scale);
if (t.bone_idx >= 0) {
if (t.skeleton) {
t.skeleton->set_bone_pose(t.bone_idx, xform);
}
} else if (t.spatial) {
t.spatial->set_transform(xform);
}
}
}
void AnimationTreePlayer::add_node(NodeType p_type, const StringName &p_node) {
ERR_FAIL_COND(p_type == NODE_OUTPUT);
ERR_FAIL_COND(node_map.has(p_node));
ERR_FAIL_INDEX(p_type, NODE_MAX);
NodeBase *n = nullptr;
switch (p_type) {
case NODE_ANIMATION: {
n = memnew(AnimationNode);
} break;
case NODE_ONESHOT: {
n = memnew(OneShotNode);
} break;
case NODE_MIX: {
n = memnew(MixNode);
} break;
case NODE_BLEND2: {
n = memnew(Blend2Node);
} break;
case NODE_BLEND3: {
n = memnew(Blend3Node);
} break;
case NODE_BLEND4: {
n = memnew(Blend4Node);
} break;
case NODE_TIMESCALE: {
n = memnew(TimeScaleNode);
} break;
case NODE_TIMESEEK: {
n = memnew(TimeSeekNode);
} break;
case NODE_TRANSITION: {
n = memnew(TransitionNode);
} break;
default: {
}
}
//n->name+=" "+itos(p_node);
node_map[p_node] = n;
}
StringName AnimationTreePlayer::node_get_input_source(const StringName &p_node, int p_input) const {
ERR_FAIL_COND_V(!node_map.has(p_node), StringName());
ERR_FAIL_INDEX_V(p_input, node_map[p_node]->inputs.size(), StringName());
return node_map[p_node]->inputs[p_input].node;
}
int AnimationTreePlayer::node_get_input_count(const StringName &p_node) const {
ERR_FAIL_COND_V(!node_map.has(p_node), -1);
return node_map[p_node]->inputs.size();
}
#define GET_NODE(m_type, m_cast) \
ERR_FAIL_COND(!node_map.has(p_node)); \
ERR_FAIL_COND_MSG(node_map[p_node]->type != m_type, "Invalid parameter for node type."); \
m_cast *n = static_cast<m_cast *>(node_map[p_node]);
void AnimationTreePlayer::animation_node_set_animation(const StringName &p_node, const Ref<Animation> &p_animation) {
GET_NODE(NODE_ANIMATION, AnimationNode);
n->animation = p_animation;
dirty_caches = true;
}
void AnimationTreePlayer::animation_node_set_master_animation(const StringName &p_node, const String &p_master_animation) {
GET_NODE(NODE_ANIMATION, AnimationNode);
n->from = p_master_animation;
dirty_caches = true;
if (master != NodePath()) {
_update_sources();
}
}
void AnimationTreePlayer::animation_node_set_filter_path(const StringName &p_node, const NodePath &p_track_path, bool p_filter) {
GET_NODE(NODE_ANIMATION, AnimationNode);
if (p_filter) {
n->filter[p_track_path] = true;
} else {
n->filter.erase(p_track_path);
}
}
void AnimationTreePlayer::animation_node_set_get_filtered_paths(const StringName &p_node, List<NodePath> *r_paths) const {
GET_NODE(NODE_ANIMATION, AnimationNode);
n->filter.get_key_list(r_paths);
}
void AnimationTreePlayer::oneshot_node_set_fadein_time(const StringName &p_node, float p_time) {
GET_NODE(NODE_ONESHOT, OneShotNode);
n->fade_in = p_time;
}
void AnimationTreePlayer::oneshot_node_set_fadeout_time(const StringName &p_node, float p_time) {
GET_NODE(NODE_ONESHOT, OneShotNode);
n->fade_out = p_time;
}
void AnimationTreePlayer::oneshot_node_set_mix_mode(const StringName &p_node, bool p_mix) {
GET_NODE(NODE_ONESHOT, OneShotNode);
n->mix = p_mix;
}
void AnimationTreePlayer::oneshot_node_set_autorestart(const StringName &p_node, bool p_active) {
GET_NODE(NODE_ONESHOT, OneShotNode);
n->autorestart = p_active;
}
void AnimationTreePlayer::oneshot_node_set_autorestart_delay(const StringName &p_node, float p_time) {
GET_NODE(NODE_ONESHOT, OneShotNode);
n->autorestart_delay = p_time;
}
void AnimationTreePlayer::oneshot_node_set_autorestart_random_delay(const StringName &p_node, float p_time) {
GET_NODE(NODE_ONESHOT, OneShotNode);
n->autorestart_random_delay = p_time;
}
void AnimationTreePlayer::oneshot_node_start(const StringName &p_node) {
GET_NODE(NODE_ONESHOT, OneShotNode);
n->active = true;
n->start = true;
}
void AnimationTreePlayer::oneshot_node_stop(const StringName &p_node) {
GET_NODE(NODE_ONESHOT, OneShotNode);
n->active = false;
}
void AnimationTreePlayer::oneshot_node_set_filter_path(const StringName &p_node, const NodePath &p_filter, bool p_enable) {
GET_NODE(NODE_ONESHOT, OneShotNode);
if (p_enable) {
n->filter[p_filter] = true;
} else {
n->filter.erase(p_filter);
}
}
void AnimationTreePlayer::oneshot_node_set_get_filtered_paths(const StringName &p_node, List<NodePath> *r_paths) const {
GET_NODE(NODE_ONESHOT, OneShotNode);
n->filter.get_key_list(r_paths);
}
void AnimationTreePlayer::mix_node_set_amount(const StringName &p_node, float p_amount) {
GET_NODE(NODE_MIX, MixNode);
n->amount = p_amount;
}
void AnimationTreePlayer::blend2_node_set_amount(const StringName &p_node, float p_amount) {
GET_NODE(NODE_BLEND2, Blend2Node);
n->value = p_amount;
}
void AnimationTreePlayer::blend2_node_set_filter_path(const StringName &p_node, const NodePath &p_filter, bool p_enable) {
GET_NODE(NODE_BLEND2, Blend2Node);
if (p_enable) {
n->filter[p_filter] = true;
} else {
n->filter.erase(p_filter);
}
}
void AnimationTreePlayer::blend2_node_set_get_filtered_paths(const StringName &p_node, List<NodePath> *r_paths) const {
GET_NODE(NODE_BLEND2, Blend2Node);
n->filter.get_key_list(r_paths);
}
void AnimationTreePlayer::blend3_node_set_amount(const StringName &p_node, float p_amount) {
GET_NODE(NODE_BLEND3, Blend3Node);
n->value = p_amount;
}
void AnimationTreePlayer::blend4_node_set_amount(const StringName &p_node, const Vector2 &p_amount) {
GET_NODE(NODE_BLEND4, Blend4Node);
n->value = p_amount;
}
void AnimationTreePlayer::timescale_node_set_scale(const StringName &p_node, float p_scale) {
GET_NODE(NODE_TIMESCALE, TimeScaleNode);
n->scale = p_scale;
}
void AnimationTreePlayer::timeseek_node_seek(const StringName &p_node, float p_pos) {
GET_NODE(NODE_TIMESEEK, TimeSeekNode);
n->seek_pos = p_pos;
}
void AnimationTreePlayer::transition_node_set_input_count(const StringName &p_node, int p_inputs) {
GET_NODE(NODE_TRANSITION, TransitionNode);
ERR_FAIL_COND(p_inputs < 1);
n->inputs.resize(p_inputs);
n->input_data.resize(p_inputs);
_clear_cycle_test();
last_error = _cycle_test(out_name);
}
void AnimationTreePlayer::transition_node_set_input_auto_advance(const StringName &p_node, int p_input, bool p_auto_advance) {
GET_NODE(NODE_TRANSITION, TransitionNode);
ERR_FAIL_INDEX(p_input, n->input_data.size());
n->input_data.write[p_input].auto_advance = p_auto_advance;
}
void AnimationTreePlayer::transition_node_set_xfade_time(const StringName &p_node, float p_time) {
GET_NODE(NODE_TRANSITION, TransitionNode);
n->xfade = p_time;
}
void AnimationTreePlayer::TransitionNode::set_current(int p_current) {
ERR_FAIL_INDEX(p_current, inputs.size());
if (current == p_current) {
return;
}
prev = current;
prev_xfading = xfade;
prev_time = time;
time = 0;
current = p_current;
switched = true;
}
void AnimationTreePlayer::transition_node_set_current(const StringName &p_node, int p_current) {
GET_NODE(NODE_TRANSITION, TransitionNode);
n->set_current(p_current);
}
void AnimationTreePlayer::node_set_position(const StringName &p_node, const Vector2 &p_pos) {
ERR_FAIL_COND(!node_map.has(p_node));
node_map[p_node]->pos = p_pos;
}
AnimationTreePlayer::NodeType AnimationTreePlayer::node_get_type(const StringName &p_node) const {
ERR_FAIL_COND_V(!node_map.has(p_node), NODE_OUTPUT);
return node_map[p_node]->type;
}
Point2 AnimationTreePlayer::node_get_position(const StringName &p_node) const {
ERR_FAIL_COND_V(!node_map.has(p_node), Point2());
return node_map[p_node]->pos;
}
#define GET_NODE_V(m_type, m_cast, m_ret) \
ERR_FAIL_COND_V(!node_map.has(p_node), m_ret); \
ERR_FAIL_COND_V_MSG(node_map[p_node]->type != m_type, m_ret, "Invalid parameter for node type."); \
m_cast *n = static_cast<m_cast *>(node_map[p_node]);
Ref<Animation> AnimationTreePlayer::animation_node_get_animation(const StringName &p_node) const {
GET_NODE_V(NODE_ANIMATION, AnimationNode, Ref<Animation>());
return n->animation;
}
String AnimationTreePlayer::animation_node_get_master_animation(const StringName &p_node) const {
GET_NODE_V(NODE_ANIMATION, AnimationNode, String());
return n->from;
}
float AnimationTreePlayer::animation_node_get_position(const StringName &p_node) const {
GET_NODE_V(NODE_ANIMATION, AnimationNode, 0);
return n->time;
}
bool AnimationTreePlayer::animation_node_is_path_filtered(const StringName &p_node, const NodePath &p_path) const {
GET_NODE_V(NODE_ANIMATION, AnimationNode, 0);
return n->filter.has(p_path);
}
float AnimationTreePlayer::oneshot_node_get_fadein_time(const StringName &p_node) const {
GET_NODE_V(NODE_ONESHOT, OneShotNode, 0);
return n->fade_in;
}
float AnimationTreePlayer::oneshot_node_get_fadeout_time(const StringName &p_node) const {
GET_NODE_V(NODE_ONESHOT, OneShotNode, 0);
return n->fade_out;
}
bool AnimationTreePlayer::oneshot_node_get_mix_mode(const StringName &p_node) const {
GET_NODE_V(NODE_ONESHOT, OneShotNode, 0);
return n->mix;
}
bool AnimationTreePlayer::oneshot_node_has_autorestart(const StringName &p_node) const {
GET_NODE_V(NODE_ONESHOT, OneShotNode, 0);
return n->autorestart;
}
float AnimationTreePlayer::oneshot_node_get_autorestart_delay(const StringName &p_node) const {
GET_NODE_V(NODE_ONESHOT, OneShotNode, 0);
return n->autorestart_delay;
}
float AnimationTreePlayer::oneshot_node_get_autorestart_random_delay(const StringName &p_node) const {
GET_NODE_V(NODE_ONESHOT, OneShotNode, 0);
return n->autorestart_random_delay;
}
bool AnimationTreePlayer::oneshot_node_is_active(const StringName &p_node) const {
GET_NODE_V(NODE_ONESHOT, OneShotNode, 0);
return n->active;
}
bool AnimationTreePlayer::oneshot_node_is_path_filtered(const StringName &p_node, const NodePath &p_path) const {
GET_NODE_V(NODE_ONESHOT, OneShotNode, 0);
return n->filter.has(p_path);
}
float AnimationTreePlayer::mix_node_get_amount(const StringName &p_node) const {
GET_NODE_V(NODE_MIX, MixNode, 0);
return n->amount;
}
float AnimationTreePlayer::blend2_node_get_amount(const StringName &p_node) const {
GET_NODE_V(NODE_BLEND2, Blend2Node, 0);
return n->value;
}
bool AnimationTreePlayer::blend2_node_is_path_filtered(const StringName &p_node, const NodePath &p_path) const {
GET_NODE_V(NODE_BLEND2, Blend2Node, 0);
return n->filter.has(p_path);
}
float AnimationTreePlayer::blend3_node_get_amount(const StringName &p_node) const {
GET_NODE_V(NODE_BLEND3, Blend3Node, 0);
return n->value;
}
Vector2 AnimationTreePlayer::blend4_node_get_amount(const StringName &p_node) const {
GET_NODE_V(NODE_BLEND4, Blend4Node, Vector2());
return n->value;
}
float AnimationTreePlayer::timescale_node_get_scale(const StringName &p_node) const {
GET_NODE_V(NODE_TIMESCALE, TimeScaleNode, 0);
return n->scale;
}
void AnimationTreePlayer::transition_node_delete_input(const StringName &p_node, int p_input) {
GET_NODE(NODE_TRANSITION, TransitionNode);
ERR_FAIL_INDEX(p_input, n->inputs.size());
if (n->inputs.size() <= 1) {
return;
}
n->inputs.remove(p_input);
n->input_data.remove(p_input);
last_error = _cycle_test(out_name);
}
int AnimationTreePlayer::transition_node_get_input_count(const StringName &p_node) const {
GET_NODE_V(NODE_TRANSITION, TransitionNode, 0);
return n->inputs.size();
}
bool AnimationTreePlayer::transition_node_has_input_auto_advance(const StringName &p_node, int p_input) const {
GET_NODE_V(NODE_TRANSITION, TransitionNode, false);
ERR_FAIL_INDEX_V(p_input, n->inputs.size(), false);
return n->input_data[p_input].auto_advance;
}
float AnimationTreePlayer::transition_node_get_xfade_time(const StringName &p_node) const {
GET_NODE_V(NODE_TRANSITION, TransitionNode, 0);
return n->xfade;
}
int AnimationTreePlayer::transition_node_get_current(const StringName &p_node) const {
GET_NODE_V(NODE_TRANSITION, TransitionNode, -1);
return n->current;
}
/*misc */
void AnimationTreePlayer::get_node_list(List<StringName> *p_node_list) const {
for (Map<StringName, NodeBase *>::Element *E = node_map.front(); E; E = E->next()) {
p_node_list->push_back(E->key());
}
}
void AnimationTreePlayer::remove_node(const StringName &p_node) {
ERR_FAIL_COND(!node_map.has(p_node));
ERR_FAIL_COND_MSG(p_node == out_name, "Node 0 (output) can't be removed.");
for (Map<StringName, NodeBase *>::Element *E = node_map.front(); E; E = E->next()) {
NodeBase *nb = E->get();
for (int i = 0; i < nb->inputs.size(); i++) {
if (nb->inputs[i].node == p_node) {
nb->inputs.write[i].node = StringName();
}
}
}
memdelete(node_map[p_node]);
node_map.erase(p_node);
_clear_cycle_test();
// compute last error again, just in case
last_error = _cycle_test(out_name);
dirty_caches = true;
}
AnimationTreePlayer::ConnectError AnimationTreePlayer::_cycle_test(const StringName &p_at_node) {
ERR_FAIL_COND_V(!node_map.has(p_at_node), CONNECT_INCOMPLETE);
NodeBase *nb = node_map[p_at_node];
if (nb->cycletest) {
return CONNECT_CYCLE;
}
nb->cycletest = true;
for (int i = 0; i < nb->inputs.size(); i++) {
if (nb->inputs[i].node == StringName()) {
return CONNECT_INCOMPLETE;
}
ConnectError _err = _cycle_test(nb->inputs[i].node);
if (_err) {
return _err;
}
}
return CONNECT_OK;
}
// Use this function to not alter next complete _cycle_test().
void AnimationTreePlayer::_clear_cycle_test() {
for (Map<StringName, NodeBase *>::Element *E = node_map.front(); E; E = E->next()) {
NodeBase *nb = E->get();
nb->cycletest = false;
}
}
Error AnimationTreePlayer::connect_nodes(const StringName &p_src_node, const StringName &p_dst_node, int p_dst_input) {
ERR_FAIL_COND_V(!node_map.has(p_src_node), ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(!node_map.has(p_dst_node), ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(p_src_node == p_dst_node, ERR_INVALID_PARAMETER);
//NodeBase *src = node_map[p_src_node];
NodeBase *dst = node_map[p_dst_node];
ERR_FAIL_INDEX_V(p_dst_input, dst->inputs.size(), ERR_INVALID_PARAMETER);
//int oldval = dst->inputs[p_dst_input].node;
for (Map<StringName, NodeBase *>::Element *E = node_map.front(); E; E = E->next()) {
NodeBase *nb = E->get();
for (int i = 0; i < nb->inputs.size(); i++) {
if (nb->inputs[i].node == p_src_node) {
nb->inputs.write[i].node = StringName();
}
}
}
dst->inputs.write[p_dst_input].node = p_src_node;
_clear_cycle_test();
last_error = _cycle_test(out_name);
if (last_error) {
if (last_error == CONNECT_INCOMPLETE) {
return ERR_UNCONFIGURED;
} else if (last_error == CONNECT_CYCLE) {
return ERR_CYCLIC_LINK;
}
}
dirty_caches = true;
return OK;
}
bool AnimationTreePlayer::are_nodes_connected(const StringName &p_src_node, const StringName &p_dst_node, int p_dst_input) const {
ERR_FAIL_COND_V(!node_map.has(p_src_node), false);
ERR_FAIL_COND_V(!node_map.has(p_dst_node), false);
ERR_FAIL_COND_V(p_src_node == p_dst_node, false);
NodeBase *dst = node_map[p_dst_node];
return dst->inputs[p_dst_input].node == p_src_node;
}
void AnimationTreePlayer::disconnect_nodes(const StringName &p_node, int p_input) {
ERR_FAIL_COND(!node_map.has(p_node));
NodeBase *dst = node_map[p_node];
ERR_FAIL_INDEX(p_input, dst->inputs.size());
dst->inputs.write[p_input].node = StringName();
last_error = CONNECT_INCOMPLETE;
dirty_caches = true;
}
void AnimationTreePlayer::get_connection_list(List<Connection> *p_connections) const {
for (Map<StringName, NodeBase *>::Element *E = node_map.front(); E; E = E->next()) {
NodeBase *nb = E->get();
for (int i = 0; i < nb->inputs.size(); i++) {
if (nb->inputs[i].node != StringName()) {
Connection c;
c.src_node = nb->inputs[i].node;
c.dst_node = E->key();
c.dst_input = i;
p_connections->push_back(c);
}
}
}
}
AnimationTreePlayer::Track *AnimationTreePlayer::_find_track(const NodePath &p_path) {
Node *parent = get_node(base_path);
ERR_FAIL_COND_V(!parent, nullptr);
RES resource;
Vector<StringName> leftover_path;
Node *child = parent->get_node_and_resource(p_path, resource, leftover_path);
if (!child) {
String err = "Animation track references unknown Node: '" + String(p_path) + "'.";
WARN_PRINT(err.ascii().get_data());
return nullptr;
}
ObjectID id = child->get_instance_id();
int bone_idx = -1;
if (p_path.get_subname_count()) {
if (Object::cast_to<Skeleton>(child)) {
bone_idx = Object::cast_to<Skeleton>(child)->find_bone(p_path.get_subname(0));
}
}
TrackKey key;
key.id = id;
key.bone_idx = bone_idx;
key.subpath_concatenated = p_path.get_concatenated_subnames();
if (!track_map.has(key)) {
Track tr;
tr.id = id;
tr.object = resource.is_valid() ? (Object *)resource.ptr() : (Object *)child;
tr.skeleton = Object::cast_to<Skeleton>(child);
tr.spatial = Object::cast_to<Spatial>(child);
tr.bone_idx = bone_idx;
if (bone_idx == -1) {
tr.subpath = leftover_path;
}
track_map[key] = tr;
}
return &track_map[key];
}
void AnimationTreePlayer::_recompute_caches() {
track_map.clear();
_recompute_caches(out_name);
dirty_caches = false;
}
void AnimationTreePlayer::_recompute_caches(const StringName &p_node) {
ERR_FAIL_COND(!node_map.has(p_node));
NodeBase *nb = node_map[p_node];
if (nb->type == NODE_ANIMATION) {
AnimationNode *an = static_cast<AnimationNode *>(nb);
an->tref.clear();
if (!an->animation.is_null()) {
Ref<Animation> a = an->animation;
for (int i = 0; i < an->animation->get_track_count(); i++) {
Track *tr = _find_track(a->track_get_path(i));
if (!tr) {
continue;
}
AnimationNode::TrackRef tref;
tref.local_track = i;
tref.track = tr;
tref.weight = 0;
an->tref.push_back(tref);
}
}
}
for (int i = 0; i < nb->inputs.size(); i++) {
_recompute_caches(nb->inputs[i].node);
}
}
void AnimationTreePlayer::recompute_caches() {
dirty_caches = true;
}
/* playback */
void AnimationTreePlayer::set_active(bool p_active) {
if (active == p_active) {
return;
}
active = p_active;
processing = active;
reset_request = p_active;
_set_process(processing, true);
}
bool AnimationTreePlayer::is_active() const {
return active;
}
AnimationTreePlayer::ConnectError AnimationTreePlayer::get_last_error() const {
return last_error;
}
void AnimationTreePlayer::reset() {
reset_request = true;
}
void AnimationTreePlayer::set_base_path(const NodePath &p_path) {
base_path = p_path;
recompute_caches();
}
NodePath AnimationTreePlayer::get_base_path() const {
return base_path;
}
void AnimationTreePlayer::set_master_player(const NodePath &p_path) {
if (p_path == master) {
return;
}
master = p_path;
_update_sources();
recompute_caches();
}
NodePath AnimationTreePlayer::get_master_player() const {
return master;
}
PoolVector<String> AnimationTreePlayer::_get_node_list() {
List<StringName> nl;
get_node_list(&nl);
PoolVector<String> ret;
ret.resize(nl.size());
int idx = 0;
for (List<StringName>::Element *E = nl.front(); E; E = E->next()) {
ret.set(idx++, E->get());
}
return ret;
}
void AnimationTreePlayer::_update_sources() {
if (master == NodePath()) {
return;
}
if (!is_inside_tree()) {
return;
}
Node *m = get_node(master);
if (!m) {
master = NodePath();
ERR_FAIL_COND(!m);
}
AnimationPlayer *ap = Object::cast_to<AnimationPlayer>(m);
if (!ap) {
master = NodePath();
ERR_FAIL_COND(!ap);
}
for (Map<StringName, NodeBase *>::Element *E = node_map.front(); E; E = E->next()) {
if (E->get()->type == NODE_ANIMATION) {
AnimationNode *an = static_cast<AnimationNode *>(E->get());
if (an->from != "") {
an->animation = ap->get_animation(an->from);
}
}
}
}
bool AnimationTreePlayer::node_exists(const StringName &p_name) const {
return (node_map.has(p_name));
}
Error AnimationTreePlayer::node_rename(const StringName &p_node, const StringName &p_new_name) {
if (p_new_name == p_node) {
return OK;
}
ERR_FAIL_COND_V(!node_map.has(p_node), ERR_ALREADY_EXISTS);
ERR_FAIL_COND_V(node_map.has(p_new_name), ERR_ALREADY_EXISTS);
ERR_FAIL_COND_V(p_new_name == StringName(), ERR_INVALID_DATA);
ERR_FAIL_COND_V(p_node == out_name, ERR_INVALID_DATA);
ERR_FAIL_COND_V(p_new_name == out_name, ERR_INVALID_DATA);
for (Map<StringName, NodeBase *>::Element *E = node_map.front(); E; E = E->next()) {
NodeBase *nb = E->get();
for (int i = 0; i < nb->inputs.size(); i++) {
if (nb->inputs[i].node == p_node) {
nb->inputs.write[i].node = p_new_name;
}
}
}
node_map[p_new_name] = node_map[p_node];
node_map.erase(p_node);
return OK;
}
String AnimationTreePlayer::get_configuration_warning() const {
return TTR("This node has been deprecated. Use AnimationTree instead.");
}
void AnimationTreePlayer::_bind_methods() {
ClassDB::bind_method(D_METHOD("add_node", "type", "id"), &AnimationTreePlayer::add_node);
ClassDB::bind_method(D_METHOD("node_exists", "node"), &AnimationTreePlayer::node_exists);
ClassDB::bind_method(D_METHOD("node_rename", "node", "new_name"), &AnimationTreePlayer::node_rename);
ClassDB::bind_method(D_METHOD("node_get_type", "id"), &AnimationTreePlayer::node_get_type);
ClassDB::bind_method(D_METHOD("node_get_input_count", "id"), &AnimationTreePlayer::node_get_input_count);
ClassDB::bind_method(D_METHOD("node_get_input_source", "id", "idx"), &AnimationTreePlayer::node_get_input_source);
ClassDB::bind_method(D_METHOD("animation_node_set_animation", "id", "animation"), &AnimationTreePlayer::animation_node_set_animation);
ClassDB::bind_method(D_METHOD("animation_node_get_animation", "id"), &AnimationTreePlayer::animation_node_get_animation);
ClassDB::bind_method(D_METHOD("animation_node_set_master_animation", "id", "source"), &AnimationTreePlayer::animation_node_set_master_animation);
ClassDB::bind_method(D_METHOD("animation_node_get_master_animation", "id"), &AnimationTreePlayer::animation_node_get_master_animation);
ClassDB::bind_method(D_METHOD("animation_node_get_position", "id"), &AnimationTreePlayer::animation_node_get_position);
ClassDB::bind_method(D_METHOD("animation_node_set_filter_path", "id", "path", "enable"), &AnimationTreePlayer::animation_node_set_filter_path);
ClassDB::bind_method(D_METHOD("oneshot_node_set_fadein_time", "id", "time_sec"), &AnimationTreePlayer::oneshot_node_set_fadein_time);
ClassDB::bind_method(D_METHOD("oneshot_node_get_fadein_time", "id"), &AnimationTreePlayer::oneshot_node_get_fadein_time);
ClassDB::bind_method(D_METHOD("oneshot_node_set_fadeout_time", "id", "time_sec"), &AnimationTreePlayer::oneshot_node_set_fadeout_time);
ClassDB::bind_method(D_METHOD("oneshot_node_get_fadeout_time", "id"), &AnimationTreePlayer::oneshot_node_get_fadeout_time);
ClassDB::bind_method(D_METHOD("oneshot_node_set_autorestart", "id", "enable"), &AnimationTreePlayer::oneshot_node_set_autorestart);
ClassDB::bind_method(D_METHOD("oneshot_node_set_autorestart_delay", "id", "delay_sec"), &AnimationTreePlayer::oneshot_node_set_autorestart_delay);
ClassDB::bind_method(D_METHOD("oneshot_node_set_autorestart_random_delay", "id", "rand_sec"), &AnimationTreePlayer::oneshot_node_set_autorestart_random_delay);
ClassDB::bind_method(D_METHOD("oneshot_node_has_autorestart", "id"), &AnimationTreePlayer::oneshot_node_has_autorestart);
ClassDB::bind_method(D_METHOD("oneshot_node_get_autorestart_delay", "id"), &AnimationTreePlayer::oneshot_node_get_autorestart_delay);
ClassDB::bind_method(D_METHOD("oneshot_node_get_autorestart_random_delay", "id"), &AnimationTreePlayer::oneshot_node_get_autorestart_random_delay);
ClassDB::bind_method(D_METHOD("oneshot_node_start", "id"), &AnimationTreePlayer::oneshot_node_start);
ClassDB::bind_method(D_METHOD("oneshot_node_stop", "id"), &AnimationTreePlayer::oneshot_node_stop);
ClassDB::bind_method(D_METHOD("oneshot_node_is_active", "id"), &AnimationTreePlayer::oneshot_node_is_active);
ClassDB::bind_method(D_METHOD("oneshot_node_set_filter_path", "id", "path", "enable"), &AnimationTreePlayer::oneshot_node_set_filter_path);
ClassDB::bind_method(D_METHOD("mix_node_set_amount", "id", "ratio"), &AnimationTreePlayer::mix_node_set_amount);
ClassDB::bind_method(D_METHOD("mix_node_get_amount", "id"), &AnimationTreePlayer::mix_node_get_amount);
ClassDB::bind_method(D_METHOD("blend2_node_set_amount", "id", "blend"), &AnimationTreePlayer::blend2_node_set_amount);
ClassDB::bind_method(D_METHOD("blend2_node_get_amount", "id"), &AnimationTreePlayer::blend2_node_get_amount);
ClassDB::bind_method(D_METHOD("blend2_node_set_filter_path", "id", "path", "enable"), &AnimationTreePlayer::blend2_node_set_filter_path);
ClassDB::bind_method(D_METHOD("blend3_node_set_amount", "id", "blend"), &AnimationTreePlayer::blend3_node_set_amount);
ClassDB::bind_method(D_METHOD("blend3_node_get_amount", "id"), &AnimationTreePlayer::blend3_node_get_amount);
ClassDB::bind_method(D_METHOD("blend4_node_set_amount", "id", "blend"), &AnimationTreePlayer::blend4_node_set_amount);
ClassDB::bind_method(D_METHOD("blend4_node_get_amount", "id"), &AnimationTreePlayer::blend4_node_get_amount);
ClassDB::bind_method(D_METHOD("timescale_node_set_scale", "id", "scale"), &AnimationTreePlayer::timescale_node_set_scale);
ClassDB::bind_method(D_METHOD("timescale_node_get_scale", "id"), &AnimationTreePlayer::timescale_node_get_scale);
ClassDB::bind_method(D_METHOD("timeseek_node_seek", "id", "seconds"), &AnimationTreePlayer::timeseek_node_seek);
ClassDB::bind_method(D_METHOD("transition_node_set_input_count", "id", "count"), &AnimationTreePlayer::transition_node_set_input_count);
ClassDB::bind_method(D_METHOD("transition_node_get_input_count", "id"), &AnimationTreePlayer::transition_node_get_input_count);
ClassDB::bind_method(D_METHOD("transition_node_delete_input", "id", "input_idx"), &AnimationTreePlayer::transition_node_delete_input);
ClassDB::bind_method(D_METHOD("transition_node_set_input_auto_advance", "id", "input_idx", "enable"), &AnimationTreePlayer::transition_node_set_input_auto_advance);
ClassDB::bind_method(D_METHOD("transition_node_has_input_auto_advance", "id", "input_idx"), &AnimationTreePlayer::transition_node_has_input_auto_advance);
ClassDB::bind_method(D_METHOD("transition_node_set_xfade_time", "id", "time_sec"), &AnimationTreePlayer::transition_node_set_xfade_time);
ClassDB::bind_method(D_METHOD("transition_node_get_xfade_time", "id"), &AnimationTreePlayer::transition_node_get_xfade_time);
ClassDB::bind_method(D_METHOD("transition_node_set_current", "id", "input_idx"), &AnimationTreePlayer::transition_node_set_current);
ClassDB::bind_method(D_METHOD("transition_node_get_current", "id"), &AnimationTreePlayer::transition_node_get_current);
ClassDB::bind_method(D_METHOD("node_set_position", "id", "screen_position"), &AnimationTreePlayer::node_set_position);
ClassDB::bind_method(D_METHOD("node_get_position", "id"), &AnimationTreePlayer::node_get_position);
ClassDB::bind_method(D_METHOD("remove_node", "id"), &AnimationTreePlayer::remove_node);
ClassDB::bind_method(D_METHOD("connect_nodes", "id", "dst_id", "dst_input_idx"), &AnimationTreePlayer::connect_nodes);
ClassDB::bind_method(D_METHOD("are_nodes_connected", "id", "dst_id", "dst_input_idx"), &AnimationTreePlayer::are_nodes_connected);
ClassDB::bind_method(D_METHOD("disconnect_nodes", "id", "dst_input_idx"), &AnimationTreePlayer::disconnect_nodes);
ClassDB::bind_method(D_METHOD("set_active", "enabled"), &AnimationTreePlayer::set_active);
ClassDB::bind_method(D_METHOD("is_active"), &AnimationTreePlayer::is_active);
ClassDB::bind_method(D_METHOD("set_base_path", "path"), &AnimationTreePlayer::set_base_path);
ClassDB::bind_method(D_METHOD("get_base_path"), &AnimationTreePlayer::get_base_path);
ClassDB::bind_method(D_METHOD("set_master_player", "nodepath"), &AnimationTreePlayer::set_master_player);
ClassDB::bind_method(D_METHOD("get_master_player"), &AnimationTreePlayer::get_master_player);
ClassDB::bind_method(D_METHOD("get_node_list"), &AnimationTreePlayer::_get_node_list);
ClassDB::bind_method(D_METHOD("set_animation_process_mode", "mode"), &AnimationTreePlayer::set_animation_process_mode);
ClassDB::bind_method(D_METHOD("get_animation_process_mode"), &AnimationTreePlayer::get_animation_process_mode);
ClassDB::bind_method(D_METHOD("advance", "delta"), &AnimationTreePlayer::advance);
ClassDB::bind_method(D_METHOD("reset"), &AnimationTreePlayer::reset);
ClassDB::bind_method(D_METHOD("recompute_caches"), &AnimationTreePlayer::recompute_caches);
ADD_GROUP("Playback", "playback_");
ADD_PROPERTY(PropertyInfo(Variant::INT, "playback_process_mode", PROPERTY_HINT_ENUM, "Physics,Idle"), "set_animation_process_mode", "get_animation_process_mode");
ADD_PROPERTY(PropertyInfo(Variant::NODE_PATH, "master_player", PROPERTY_HINT_NODE_PATH_VALID_TYPES, "AnimationPlayer"), "set_master_player", "get_master_player");
ADD_PROPERTY(PropertyInfo(Variant::NODE_PATH, "base_path"), "set_base_path", "get_base_path");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "active"), "set_active", "is_active");
BIND_ENUM_CONSTANT(NODE_OUTPUT);
BIND_ENUM_CONSTANT(NODE_ANIMATION);
BIND_ENUM_CONSTANT(NODE_ONESHOT);
BIND_ENUM_CONSTANT(NODE_MIX);
BIND_ENUM_CONSTANT(NODE_BLEND2);
BIND_ENUM_CONSTANT(NODE_BLEND3);
BIND_ENUM_CONSTANT(NODE_BLEND4);
BIND_ENUM_CONSTANT(NODE_TIMESCALE);
BIND_ENUM_CONSTANT(NODE_TIMESEEK);
BIND_ENUM_CONSTANT(NODE_TRANSITION);
BIND_ENUM_CONSTANT(ANIMATION_PROCESS_PHYSICS);
BIND_ENUM_CONSTANT(ANIMATION_PROCESS_IDLE);
}
AnimationTreePlayer::AnimationTreePlayer() {
active_list = nullptr;
out = memnew(NodeOut);
out_name = "out";
out->pos = Point2(40, 40);
node_map.insert(out_name, out);
animation_process_mode = ANIMATION_PROCESS_IDLE;
processing = false;
active = false;
dirty_caches = true;
reset_request = true;
last_error = CONNECT_INCOMPLETE;
base_path = String("..");
}
AnimationTreePlayer::~AnimationTreePlayer() {
while (node_map.size()) {
memdelete(node_map.front()->get());
node_map.erase(node_map.front());
}
}