virtualx-engine/core/math/transform_2d.cpp
Rémi Verschelde d95794ec8a
One Copyright Update to rule them all
As many open source projects have started doing it, we're removing the
current year from the copyright notice, so that we don't need to bump
it every year.

It seems like only the first year of publication is technically
relevant for copyright notices, and even that seems to be something
that many companies stopped listing altogether (in a version controlled
codebase, the commits are a much better source of date of publication
than a hardcoded copyright statement).

We also now list Godot Engine contributors first as we're collectively
the current maintainers of the project, and we clarify that the
"exclusive" copyright of the co-founders covers the timespan before
opensourcing (their further contributions are included as part of Godot
Engine contributors).

Also fixed "cf." Frenchism - it's meant as "refer to / see".
2023-01-05 13:25:55 +01:00

323 lines
9.8 KiB
C++

/**************************************************************************/
/* transform_2d.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "transform_2d.h"
#include "core/string/ustring.h"
void Transform2D::invert() {
// FIXME: this function assumes the basis is a rotation matrix, with no scaling.
// Transform2D::affine_inverse can handle matrices with scaling, so GDScript should eventually use that.
SWAP(columns[0][1], columns[1][0]);
columns[2] = basis_xform(-columns[2]);
}
Transform2D Transform2D::inverse() const {
Transform2D inv = *this;
inv.invert();
return inv;
}
void Transform2D::affine_invert() {
real_t det = basis_determinant();
#ifdef MATH_CHECKS
ERR_FAIL_COND(det == 0);
#endif
real_t idet = 1.0f / det;
SWAP(columns[0][0], columns[1][1]);
columns[0] *= Vector2(idet, -idet);
columns[1] *= Vector2(-idet, idet);
columns[2] = basis_xform(-columns[2]);
}
Transform2D Transform2D::affine_inverse() const {
Transform2D inv = *this;
inv.affine_invert();
return inv;
}
void Transform2D::rotate(const real_t p_angle) {
*this = Transform2D(p_angle, Vector2()) * (*this);
}
real_t Transform2D::get_skew() const {
real_t det = basis_determinant();
return Math::acos(columns[0].normalized().dot(SIGN(det) * columns[1].normalized())) - (real_t)Math_PI * 0.5f;
}
void Transform2D::set_skew(const real_t p_angle) {
real_t det = basis_determinant();
columns[1] = SIGN(det) * columns[0].rotated(((real_t)Math_PI * 0.5f + p_angle)).normalized() * columns[1].length();
}
real_t Transform2D::get_rotation() const {
return Math::atan2(columns[0].y, columns[0].x);
}
void Transform2D::set_rotation(const real_t p_rot) {
Size2 scale = get_scale();
real_t cr = Math::cos(p_rot);
real_t sr = Math::sin(p_rot);
columns[0][0] = cr;
columns[0][1] = sr;
columns[1][0] = -sr;
columns[1][1] = cr;
set_scale(scale);
}
Transform2D::Transform2D(const real_t p_rot, const Vector2 &p_pos) {
real_t cr = Math::cos(p_rot);
real_t sr = Math::sin(p_rot);
columns[0][0] = cr;
columns[0][1] = sr;
columns[1][0] = -sr;
columns[1][1] = cr;
columns[2] = p_pos;
}
Transform2D::Transform2D(const real_t p_rot, const Size2 &p_scale, const real_t p_skew, const Vector2 &p_pos) {
columns[0][0] = Math::cos(p_rot) * p_scale.x;
columns[1][1] = Math::cos(p_rot + p_skew) * p_scale.y;
columns[1][0] = -Math::sin(p_rot + p_skew) * p_scale.y;
columns[0][1] = Math::sin(p_rot) * p_scale.x;
columns[2] = p_pos;
}
Size2 Transform2D::get_scale() const {
real_t det_sign = SIGN(basis_determinant());
return Size2(columns[0].length(), det_sign * columns[1].length());
}
void Transform2D::set_scale(const Size2 &p_scale) {
columns[0].normalize();
columns[1].normalize();
columns[0] *= p_scale.x;
columns[1] *= p_scale.y;
}
void Transform2D::scale(const Size2 &p_scale) {
scale_basis(p_scale);
columns[2] *= p_scale;
}
void Transform2D::scale_basis(const Size2 &p_scale) {
columns[0][0] *= p_scale.x;
columns[0][1] *= p_scale.y;
columns[1][0] *= p_scale.x;
columns[1][1] *= p_scale.y;
}
void Transform2D::translate_local(const real_t p_tx, const real_t p_ty) {
translate_local(Vector2(p_tx, p_ty));
}
void Transform2D::translate_local(const Vector2 &p_translation) {
columns[2] += basis_xform(p_translation);
}
void Transform2D::orthonormalize() {
// Gram-Schmidt Process
Vector2 x = columns[0];
Vector2 y = columns[1];
x.normalize();
y = (y - x * (x.dot(y)));
y.normalize();
columns[0] = x;
columns[1] = y;
}
Transform2D Transform2D::orthonormalized() const {
Transform2D on = *this;
on.orthonormalize();
return on;
}
bool Transform2D::is_equal_approx(const Transform2D &p_transform) const {
return columns[0].is_equal_approx(p_transform.columns[0]) && columns[1].is_equal_approx(p_transform.columns[1]) && columns[2].is_equal_approx(p_transform.columns[2]);
}
bool Transform2D::is_finite() const {
return columns[0].is_finite() && columns[1].is_finite() && columns[2].is_finite();
}
Transform2D Transform2D::looking_at(const Vector2 &p_target) const {
Transform2D return_trans = Transform2D(get_rotation(), get_origin());
Vector2 target_position = affine_inverse().xform(p_target);
return_trans.set_rotation(return_trans.get_rotation() + (target_position * get_scale()).angle());
return return_trans;
}
bool Transform2D::operator==(const Transform2D &p_transform) const {
for (int i = 0; i < 3; i++) {
if (columns[i] != p_transform.columns[i]) {
return false;
}
}
return true;
}
bool Transform2D::operator!=(const Transform2D &p_transform) const {
for (int i = 0; i < 3; i++) {
if (columns[i] != p_transform.columns[i]) {
return true;
}
}
return false;
}
void Transform2D::operator*=(const Transform2D &p_transform) {
columns[2] = xform(p_transform.columns[2]);
real_t x0, x1, y0, y1;
x0 = tdotx(p_transform.columns[0]);
x1 = tdoty(p_transform.columns[0]);
y0 = tdotx(p_transform.columns[1]);
y1 = tdoty(p_transform.columns[1]);
columns[0][0] = x0;
columns[0][1] = x1;
columns[1][0] = y0;
columns[1][1] = y1;
}
Transform2D Transform2D::operator*(const Transform2D &p_transform) const {
Transform2D t = *this;
t *= p_transform;
return t;
}
Transform2D Transform2D::basis_scaled(const Size2 &p_scale) const {
Transform2D copy = *this;
copy.scale_basis(p_scale);
return copy;
}
Transform2D Transform2D::scaled(const Size2 &p_scale) const {
// Equivalent to left multiplication
Transform2D copy = *this;
copy.scale(p_scale);
return copy;
}
Transform2D Transform2D::scaled_local(const Size2 &p_scale) const {
// Equivalent to right multiplication
return Transform2D(columns[0] * p_scale.x, columns[1] * p_scale.y, columns[2]);
}
Transform2D Transform2D::untranslated() const {
Transform2D copy = *this;
copy.columns[2] = Vector2();
return copy;
}
Transform2D Transform2D::translated(const Vector2 &p_offset) const {
// Equivalent to left multiplication
return Transform2D(columns[0], columns[1], columns[2] + p_offset);
}
Transform2D Transform2D::translated_local(const Vector2 &p_offset) const {
// Equivalent to right multiplication
return Transform2D(columns[0], columns[1], columns[2] + basis_xform(p_offset));
}
Transform2D Transform2D::rotated(const real_t p_angle) const {
// Equivalent to left multiplication
return Transform2D(p_angle, Vector2()) * (*this);
}
Transform2D Transform2D::rotated_local(const real_t p_angle) const {
// Equivalent to right multiplication
return (*this) * Transform2D(p_angle, Vector2()); // Could be optimized, because origin transform can be skipped.
}
real_t Transform2D::basis_determinant() const {
return columns[0].x * columns[1].y - columns[0].y * columns[1].x;
}
Transform2D Transform2D::interpolate_with(const Transform2D &p_transform, const real_t p_c) const {
//extract parameters
Vector2 p1 = get_origin();
Vector2 p2 = p_transform.get_origin();
real_t r1 = get_rotation();
real_t r2 = p_transform.get_rotation();
Size2 s1 = get_scale();
Size2 s2 = p_transform.get_scale();
//slerp rotation
Vector2 v1(Math::cos(r1), Math::sin(r1));
Vector2 v2(Math::cos(r2), Math::sin(r2));
real_t dot = v1.dot(v2);
dot = CLAMP(dot, (real_t)-1.0, (real_t)1.0);
Vector2 v;
if (dot > 0.9995f) {
v = v1.lerp(v2, p_c).normalized(); //linearly interpolate to avoid numerical precision issues
} else {
real_t angle = p_c * Math::acos(dot);
Vector2 v3 = (v2 - v1 * dot).normalized();
v = v1 * Math::cos(angle) + v3 * Math::sin(angle);
}
//construct matrix
Transform2D res(v.angle(), p1.lerp(p2, p_c));
res.scale_basis(s1.lerp(s2, p_c));
return res;
}
void Transform2D::operator*=(const real_t p_val) {
columns[0] *= p_val;
columns[1] *= p_val;
columns[2] *= p_val;
}
Transform2D Transform2D::operator*(const real_t p_val) const {
Transform2D ret(*this);
ret *= p_val;
return ret;
}
Transform2D::operator String() const {
return "[X: " + columns[0].operator String() +
", Y: " + columns[1].operator String() +
", O: " + columns[2].operator String() + "]";
}