virtualx-engine/core/math/math_funcs.cpp
Rémi Verschelde c7bc44d5ad Welcome in 2017, dear changelog reader!
That year should bring the long-awaited OpenGL ES 3.0 compatible renderer
with state-of-the-art rendering techniques tuned to work as low as middle
end handheld devices - without compromising with the possibilities given
for higher end desktop games of course. Great times ahead for the Godot
community and the gamers that will play our games!
2017-01-01 22:03:33 +01:00

328 lines
6.3 KiB
C++

/*************************************************************************/
/* math_funcs.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "math_funcs.h"
#include "core/os/os.h"
#include <math.h>
#include "float.h"
uint32_t Math::default_seed=1;
#define PHI 0x9e3779b9
#if 0
static uint32_t Q[4096];
#endif
uint32_t Math::rand_from_seed(uint32_t *seed) {
// Xorshift31 PRNG
if ( *seed == 0 ) *seed = Math::RANDOM_MAX;
(*seed) ^= (*seed) << 13;
(*seed) ^= (*seed) >> 17;
(*seed) ^= (*seed) << 5;
return (*seed) & Math::RANDOM_MAX;
}
void Math::seed(uint32_t x) {
default_seed=x;
}
void Math::randomize() {
OS::Time time = OS::get_singleton()->get_time();
seed(OS::get_singleton()->get_ticks_usec()*(time.hour+1)*(time.min+1)*(time.sec+1)*rand()); /* *OS::get_singleton()->get_time().sec); // windows doesn't have get_time(), returns always 0 */
}
uint32_t Math::rand() {
return rand_from_seed(&default_seed);
}
double Math::randf() {
return (double)rand() / (double)Math::RANDOM_MAX;
}
double Math::sin(double p_x) {
return ::sin(p_x);
}
double Math::cos(double p_x) {
return ::cos(p_x);
}
double Math::tan(double p_x) {
return ::tan(p_x);
}
double Math::sinh(double p_x) {
return ::sinh(p_x);
}
double Math::cosh(double p_x) {
return ::cosh(p_x);
}
double Math::tanh(double p_x) {
return ::tanh(p_x);
}
double Math::deg2rad(double p_y) {
return p_y*Math_PI/180.0;
}
double Math::rad2deg(double p_y) {
return p_y*180.0/Math_PI;
}
double Math::round(double p_val) {
if (p_val>=0) {
return ::floor(p_val+0.5);
} else {
p_val=-p_val;
return -::floor(p_val+0.5);
}
}
double Math::asin(double p_x) {
return ::asin(p_x);
}
double Math::acos(double p_x) {
return ::acos(p_x);
}
double Math::atan(double p_x) {
return ::atan(p_x);
}
double Math::dectime(double p_value,double p_amount, double p_step) {
float sgn = p_value < 0 ? -1.0 : 1.0;
float val = absf(p_value);
val-=p_amount*p_step;
if (val<0.0)
val=0.0;
return val*sgn;
}
double Math::atan2(double p_y, double p_x) {
return ::atan2(p_y,p_x);
}
double Math::sqrt(double p_x) {
return ::sqrt(p_x);
}
double Math::fmod(double p_x,double p_y) {
return ::fmod(p_x,p_y);
}
double Math::fposmod(double p_x,double p_y) {
if (p_x>=0) {
return Math::fmod(p_x,p_y);
} else {
return p_y-Math::fmod(-p_x,p_y);
}
}
double Math::floor(double p_x) {
return ::floor(p_x);
}
double Math::ceil(double p_x) {
return ::ceil(p_x);
}
int Math::step_decimals(double p_step) {
static const int maxn=9;
static const double sd[maxn]={
0.9999, // somehow compensate for floating point error
0.09999,
0.009999,
0.0009999,
0.00009999,
0.000009999,
0.0000009999,
0.00000009999,
0.000000009999
};
double as=absf(p_step);
for(int i=0;i<maxn;i++) {
if (as>=sd[i]) {
return i;
}
}
return maxn;
}
double Math::ease(double p_x, double p_c) {
if (p_x<0)
p_x=0;
else if (p_x>1.0)
p_x=1.0;
if (p_c>0) {
if (p_c<1.0) {
return 1.0-Math::pow(1.0-p_x,1.0/p_c);
} else {
return Math::pow(p_x,p_c);
}
} else if (p_c<0) {
//inout ease
if (p_x<0.5) {
return Math::pow(p_x*2.0,-p_c)*0.5;
} else {
return (1.0-Math::pow(1.0-(p_x-0.5)*2.0,-p_c))*0.5+0.5;
}
} else
return 0; // no ease (raw)
}
double Math::stepify(double p_value,double p_step) {
if (p_step!=0) {
p_value=floor( p_value / p_step + 0.5 ) * p_step;
}
return p_value;
}
bool Math::is_nan(double p_val) {
return (p_val!=p_val);
}
bool Math::is_inf(double p_val) {
#ifdef _MSC_VER
return !_finite(p_val);
#else
return isinf(p_val);
#endif
}
uint32_t Math::larger_prime(uint32_t p_val) {
static const uint32_t primes[] = {
5,
13,
23,
47,
97,
193,
389,
769,
1543,
3079,
6151,
12289,
24593,
49157,
98317,
196613,
393241,
786433,
1572869,
3145739,
6291469,
12582917,
25165843,
50331653,
100663319,
201326611,
402653189,
805306457,
1610612741,
0,
};
int idx=0;
while (true) {
ERR_FAIL_COND_V(primes[idx]==0,0);
if (primes[idx]>p_val)
return primes[idx];
idx++;
}
return 0;
}
double Math::random(double from, double to) {
unsigned int r = Math::rand();
double ret = (double)r/(double)RANDOM_MAX;
return (ret)*(to-from) + from;
}
double Math::pow(double x, double y) {
return ::pow(x,y);
}
double Math::log(double x) {
return ::log(x);
}
double Math::exp(double x) {
return ::exp(x);
}