virtualx-engine/servers/physics_3d/shape_3d_sw.cpp
Riteo Siuga b24bba95d0 Change CapsuleShape3D's collision detection axis to vertical
This fixes an issue where its collision detection would actually work as if it had the old default orientation.
2021-03-02 08:33:44 +01:00

1711 lines
42 KiB
C++

/*************************************************************************/
/* shape_3d_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "shape_3d_sw.h"
#include "core/math/geometry_3d.h"
#include "core/math/quick_hull.h"
#include "core/templates/sort_array.h"
#define _EDGE_IS_VALID_SUPPORT_THRESHOLD 0.0002
#define _FACE_IS_VALID_SUPPORT_THRESHOLD 0.9998
#define _CYLINDER_EDGE_IS_VALID_SUPPORT_THRESHOLD 0.002
#define _CYLINDER_FACE_IS_VALID_SUPPORT_THRESHOLD 0.999
void Shape3DSW::configure(const AABB &p_aabb) {
aabb = p_aabb;
configured = true;
for (Map<ShapeOwner3DSW *, int>::Element *E = owners.front(); E; E = E->next()) {
ShapeOwner3DSW *co = (ShapeOwner3DSW *)E->key();
co->_shape_changed();
}
}
Vector3 Shape3DSW::get_support(const Vector3 &p_normal) const {
Vector3 res;
int amnt;
FeatureType type;
get_supports(p_normal, 1, &res, amnt, type);
return res;
}
void Shape3DSW::add_owner(ShapeOwner3DSW *p_owner) {
Map<ShapeOwner3DSW *, int>::Element *E = owners.find(p_owner);
if (E) {
E->get()++;
} else {
owners[p_owner] = 1;
}
}
void Shape3DSW::remove_owner(ShapeOwner3DSW *p_owner) {
Map<ShapeOwner3DSW *, int>::Element *E = owners.find(p_owner);
ERR_FAIL_COND(!E);
E->get()--;
if (E->get() == 0) {
owners.erase(E);
}
}
bool Shape3DSW::is_owner(ShapeOwner3DSW *p_owner) const {
return owners.has(p_owner);
}
const Map<ShapeOwner3DSW *, int> &Shape3DSW::get_owners() const {
return owners;
}
Shape3DSW::Shape3DSW() {
custom_bias = 0;
configured = false;
}
Shape3DSW::~Shape3DSW() {
ERR_FAIL_COND(owners.size());
}
Plane PlaneShape3DSW::get_plane() const {
return plane;
}
void PlaneShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
// gibberish, a plane is infinity
r_min = -1e7;
r_max = 1e7;
}
Vector3 PlaneShape3DSW::get_support(const Vector3 &p_normal) const {
return p_normal * 1e15;
}
bool PlaneShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
bool inters = plane.intersects_segment(p_begin, p_end, &r_result);
if (inters) {
r_normal = plane.normal;
}
return inters;
}
bool PlaneShape3DSW::intersect_point(const Vector3 &p_point) const {
return plane.distance_to(p_point) < 0;
}
Vector3 PlaneShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
if (plane.is_point_over(p_point)) {
return plane.project(p_point);
} else {
return p_point;
}
}
Vector3 PlaneShape3DSW::get_moment_of_inertia(real_t p_mass) const {
return Vector3(); //wtf
}
void PlaneShape3DSW::_setup(const Plane &p_plane) {
plane = p_plane;
configure(AABB(Vector3(-1e4, -1e4, -1e4), Vector3(1e4 * 2, 1e4 * 2, 1e4 * 2)));
}
void PlaneShape3DSW::set_data(const Variant &p_data) {
_setup(p_data);
}
Variant PlaneShape3DSW::get_data() const {
return plane;
}
PlaneShape3DSW::PlaneShape3DSW() {
}
//
real_t RayShape3DSW::get_length() const {
return length;
}
bool RayShape3DSW::get_slips_on_slope() const {
return slips_on_slope;
}
void RayShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
// don't think this will be even used
r_min = 0;
r_max = 1;
}
Vector3 RayShape3DSW::get_support(const Vector3 &p_normal) const {
if (p_normal.z > 0) {
return Vector3(0, 0, length);
} else {
return Vector3(0, 0, 0);
}
}
void RayShape3DSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const {
if (Math::abs(p_normal.z) < _EDGE_IS_VALID_SUPPORT_THRESHOLD) {
r_amount = 2;
r_type = FEATURE_EDGE;
r_supports[0] = Vector3(0, 0, 0);
r_supports[1] = Vector3(0, 0, length);
} else if (p_normal.z > 0) {
r_amount = 1;
r_type = FEATURE_POINT;
*r_supports = Vector3(0, 0, length);
} else {
r_amount = 1;
r_type = FEATURE_POINT;
*r_supports = Vector3(0, 0, 0);
}
}
bool RayShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
return false; //simply not possible
}
bool RayShape3DSW::intersect_point(const Vector3 &p_point) const {
return false; //simply not possible
}
Vector3 RayShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
Vector3 s[2] = {
Vector3(0, 0, 0),
Vector3(0, 0, length)
};
return Geometry3D::get_closest_point_to_segment(p_point, s);
}
Vector3 RayShape3DSW::get_moment_of_inertia(real_t p_mass) const {
return Vector3();
}
void RayShape3DSW::_setup(real_t p_length, bool p_slips_on_slope) {
length = p_length;
slips_on_slope = p_slips_on_slope;
configure(AABB(Vector3(0, 0, 0), Vector3(0.1, 0.1, length)));
}
void RayShape3DSW::set_data(const Variant &p_data) {
Dictionary d = p_data;
_setup(d["length"], d["slips_on_slope"]);
}
Variant RayShape3DSW::get_data() const {
Dictionary d;
d["length"] = length;
d["slips_on_slope"] = slips_on_slope;
return d;
}
RayShape3DSW::RayShape3DSW() {
length = 1;
slips_on_slope = false;
}
/********** SPHERE *************/
real_t SphereShape3DSW::get_radius() const {
return radius;
}
void SphereShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
real_t d = p_normal.dot(p_transform.origin);
// figure out scale at point
Vector3 local_normal = p_transform.basis.xform_inv(p_normal);
real_t scale = local_normal.length();
r_min = d - (radius)*scale;
r_max = d + (radius)*scale;
}
Vector3 SphereShape3DSW::get_support(const Vector3 &p_normal) const {
return p_normal * radius;
}
void SphereShape3DSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const {
*r_supports = p_normal * radius;
r_amount = 1;
r_type = FEATURE_POINT;
}
bool SphereShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
return Geometry3D::segment_intersects_sphere(p_begin, p_end, Vector3(), radius, &r_result, &r_normal);
}
bool SphereShape3DSW::intersect_point(const Vector3 &p_point) const {
return p_point.length() < radius;
}
Vector3 SphereShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
Vector3 p = p_point;
real_t l = p.length();
if (l < radius) {
return p_point;
}
return (p / l) * radius;
}
Vector3 SphereShape3DSW::get_moment_of_inertia(real_t p_mass) const {
real_t s = 0.4 * p_mass * radius * radius;
return Vector3(s, s, s);
}
void SphereShape3DSW::_setup(real_t p_radius) {
radius = p_radius;
configure(AABB(Vector3(-radius, -radius, -radius), Vector3(radius * 2.0, radius * 2.0, radius * 2.0)));
}
void SphereShape3DSW::set_data(const Variant &p_data) {
_setup(p_data);
}
Variant SphereShape3DSW::get_data() const {
return radius;
}
SphereShape3DSW::SphereShape3DSW() {
radius = 0;
}
/********** BOX *************/
void BoxShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
// no matter the angle, the box is mirrored anyway
Vector3 local_normal = p_transform.basis.xform_inv(p_normal);
real_t length = local_normal.abs().dot(half_extents);
real_t distance = p_normal.dot(p_transform.origin);
r_min = distance - length;
r_max = distance + length;
}
Vector3 BoxShape3DSW::get_support(const Vector3 &p_normal) const {
Vector3 point(
(p_normal.x < 0) ? -half_extents.x : half_extents.x,
(p_normal.y < 0) ? -half_extents.y : half_extents.y,
(p_normal.z < 0) ? -half_extents.z : half_extents.z);
return point;
}
void BoxShape3DSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const {
static const int next[3] = { 1, 2, 0 };
static const int next2[3] = { 2, 0, 1 };
for (int i = 0; i < 3; i++) {
Vector3 axis;
axis[i] = 1.0;
real_t dot = p_normal.dot(axis);
if (Math::abs(dot) > _FACE_IS_VALID_SUPPORT_THRESHOLD) {
//Vector3 axis_b;
bool neg = dot < 0;
r_amount = 4;
r_type = FEATURE_FACE;
Vector3 point;
point[i] = half_extents[i];
int i_n = next[i];
int i_n2 = next2[i];
static const real_t sign[4][2] = {
{ -1.0, 1.0 },
{ 1.0, 1.0 },
{ 1.0, -1.0 },
{ -1.0, -1.0 },
};
for (int j = 0; j < 4; j++) {
point[i_n] = sign[j][0] * half_extents[i_n];
point[i_n2] = sign[j][1] * half_extents[i_n2];
r_supports[j] = neg ? -point : point;
}
if (neg) {
SWAP(r_supports[1], r_supports[2]);
SWAP(r_supports[0], r_supports[3]);
}
return;
}
r_amount = 0;
}
for (int i = 0; i < 3; i++) {
Vector3 axis;
axis[i] = 1.0;
if (Math::abs(p_normal.dot(axis)) < _EDGE_IS_VALID_SUPPORT_THRESHOLD) {
r_amount = 2;
r_type = FEATURE_EDGE;
int i_n = next[i];
int i_n2 = next2[i];
Vector3 point = half_extents;
if (p_normal[i_n] < 0) {
point[i_n] = -point[i_n];
}
if (p_normal[i_n2] < 0) {
point[i_n2] = -point[i_n2];
}
r_supports[0] = point;
point[i] = -point[i];
r_supports[1] = point;
return;
}
}
/* USE POINT */
Vector3 point(
(p_normal.x < 0) ? -half_extents.x : half_extents.x,
(p_normal.y < 0) ? -half_extents.y : half_extents.y,
(p_normal.z < 0) ? -half_extents.z : half_extents.z);
r_amount = 1;
r_type = FEATURE_POINT;
r_supports[0] = point;
}
bool BoxShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
AABB aabb(-half_extents, half_extents * 2.0);
return aabb.intersects_segment(p_begin, p_end, &r_result, &r_normal);
}
bool BoxShape3DSW::intersect_point(const Vector3 &p_point) const {
return (Math::abs(p_point.x) < half_extents.x && Math::abs(p_point.y) < half_extents.y && Math::abs(p_point.z) < half_extents.z);
}
Vector3 BoxShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
int outside = 0;
Vector3 min_point;
for (int i = 0; i < 3; i++) {
if (Math::abs(p_point[i]) > half_extents[i]) {
outside++;
if (outside == 1) {
//use plane if only one side matches
Vector3 n;
n[i] = SGN(p_point[i]);
Plane p(n, half_extents[i]);
min_point = p.project(p_point);
}
}
}
if (!outside) {
return p_point; //it's inside, don't do anything else
}
if (outside == 1) { //if only above one plane, this plane clearly wins
return min_point;
}
//check segments
real_t min_distance = 1e20;
Vector3 closest_vertex = half_extents * p_point.sign();
Vector3 s[2] = {
closest_vertex,
closest_vertex
};
for (int i = 0; i < 3; i++) {
s[1] = closest_vertex;
s[1][i] = -s[1][i]; //edge
Vector3 closest_edge = Geometry3D::get_closest_point_to_segment(p_point, s);
real_t d = p_point.distance_to(closest_edge);
if (d < min_distance) {
min_point = closest_edge;
min_distance = d;
}
}
return min_point;
}
Vector3 BoxShape3DSW::get_moment_of_inertia(real_t p_mass) const {
real_t lx = half_extents.x;
real_t ly = half_extents.y;
real_t lz = half_extents.z;
return Vector3((p_mass / 3.0) * (ly * ly + lz * lz), (p_mass / 3.0) * (lx * lx + lz * lz), (p_mass / 3.0) * (lx * lx + ly * ly));
}
void BoxShape3DSW::_setup(const Vector3 &p_half_extents) {
half_extents = p_half_extents.abs();
configure(AABB(-half_extents, half_extents * 2));
}
void BoxShape3DSW::set_data(const Variant &p_data) {
_setup(p_data);
}
Variant BoxShape3DSW::get_data() const {
return half_extents;
}
BoxShape3DSW::BoxShape3DSW() {
}
/********** CAPSULE *************/
void CapsuleShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
Vector3 n = p_transform.basis.xform_inv(p_normal).normalized();
real_t h = (n.y > 0) ? height : -height;
n *= radius;
n.y += h * 0.5;
r_max = p_normal.dot(p_transform.xform(n));
r_min = p_normal.dot(p_transform.xform(-n));
}
Vector3 CapsuleShape3DSW::get_support(const Vector3 &p_normal) const {
Vector3 n = p_normal;
real_t h = (n.y > 0) ? height : -height;
n *= radius;
n.y += h * 0.5;
return n;
}
void CapsuleShape3DSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const {
Vector3 n = p_normal;
real_t d = n.y;
if (Math::abs(d) < _EDGE_IS_VALID_SUPPORT_THRESHOLD) {
// make it flat
n.y = 0.0;
n.normalize();
n *= radius;
r_amount = 2;
r_type = FEATURE_EDGE;
r_supports[0] = n;
r_supports[0].y += height * 0.5;
r_supports[1] = n;
r_supports[1].y -= height * 0.5;
} else {
real_t h = (d > 0) ? height : -height;
n *= radius;
n.y += h * 0.5;
r_amount = 1;
r_type = FEATURE_POINT;
*r_supports = n;
}
}
bool CapsuleShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
Vector3 norm = (p_end - p_begin).normalized();
real_t min_d = 1e20;
Vector3 res, n;
bool collision = false;
Vector3 auxres, auxn;
bool collided;
// test against cylinder and spheres :-|
collided = Geometry3D::segment_intersects_cylinder(p_begin, p_end, height, radius, &auxres, &auxn, 1);
if (collided) {
real_t d = norm.dot(auxres);
if (d < min_d) {
min_d = d;
res = auxres;
n = auxn;
collision = true;
}
}
collided = Geometry3D::segment_intersects_sphere(p_begin, p_end, Vector3(0, height * 0.5, 0), radius, &auxres, &auxn);
if (collided) {
real_t d = norm.dot(auxres);
if (d < min_d) {
min_d = d;
res = auxres;
n = auxn;
collision = true;
}
}
collided = Geometry3D::segment_intersects_sphere(p_begin, p_end, Vector3(0, height * -0.5, 0), radius, &auxres, &auxn);
if (collided) {
real_t d = norm.dot(auxres);
if (d < min_d) {
min_d = d;
res = auxres;
n = auxn;
collision = true;
}
}
if (collision) {
r_result = res;
r_normal = n;
}
return collision;
}
bool CapsuleShape3DSW::intersect_point(const Vector3 &p_point) const {
if (Math::abs(p_point.y) < height * 0.5) {
return Vector3(p_point.x, 0, p_point.z).length() < radius;
} else {
Vector3 p = p_point;
p.y = Math::abs(p.y) - height * 0.5;
return p.length() < radius;
}
}
Vector3 CapsuleShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
Vector3 s[2] = {
Vector3(0, -height * 0.5, 0),
Vector3(0, height * 0.5, 0),
};
Vector3 p = Geometry3D::get_closest_point_to_segment(p_point, s);
if (p.distance_to(p_point) < radius) {
return p_point;
}
return p + (p_point - p).normalized() * radius;
}
Vector3 CapsuleShape3DSW::get_moment_of_inertia(real_t p_mass) const {
// use bad AABB approximation
Vector3 extents = get_aabb().size * 0.5;
return Vector3(
(p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
(p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
(p_mass / 3.0) * (extents.y * extents.y + extents.y * extents.y));
}
void CapsuleShape3DSW::_setup(real_t p_height, real_t p_radius) {
height = p_height;
radius = p_radius;
configure(AABB(Vector3(-radius, -height * 0.5 - radius, -radius), Vector3(radius * 2, height + radius * 2.0, radius * 2)));
}
void CapsuleShape3DSW::set_data(const Variant &p_data) {
Dictionary d = p_data;
ERR_FAIL_COND(!d.has("radius"));
ERR_FAIL_COND(!d.has("height"));
_setup(d["height"], d["radius"]);
}
Variant CapsuleShape3DSW::get_data() const {
Dictionary d;
d["radius"] = radius;
d["height"] = height;
return d;
}
CapsuleShape3DSW::CapsuleShape3DSW() {
height = radius = 0;
}
/********** CYLINDER *************/
void CylinderShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
Vector3 cylinder_axis = p_transform.basis.get_axis(1).normalized();
real_t axis_dot = cylinder_axis.dot(p_normal);
Vector3 local_normal = p_transform.basis.xform_inv(p_normal);
real_t scale = local_normal.length();
real_t scaled_radius = radius * scale;
real_t scaled_height = height * scale;
real_t length;
if (Math::abs(axis_dot) > 1.0) {
length = scaled_height * 0.5;
} else {
length = Math::abs(axis_dot * scaled_height * 0.5) + scaled_radius * Math::sqrt(1.0 - axis_dot * axis_dot);
}
real_t distance = p_normal.dot(p_transform.origin);
r_min = distance - length;
r_max = distance + length;
}
Vector3 CylinderShape3DSW::get_support(const Vector3 &p_normal) const {
Vector3 n = p_normal;
real_t h = (n.y > 0) ? height : -height;
real_t s = Math::sqrt(n.x * n.x + n.z * n.z);
if (Math::is_zero_approx(s)) {
n.x = radius;
n.y = h * 0.5;
n.z = 0.0;
} else {
real_t d = radius / s;
n.x = n.x * d;
n.y = h * 0.5;
n.z = n.z * d;
}
return n;
}
void CylinderShape3DSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const {
real_t d = p_normal.y;
if (Math::abs(d) > _CYLINDER_FACE_IS_VALID_SUPPORT_THRESHOLD) {
real_t h = (d > 0) ? height : -height;
Vector3 n = p_normal;
n.x = 0.0;
n.z = 0.0;
n.y = h * 0.5;
r_amount = 3;
r_type = FEATURE_CIRCLE;
r_supports[0] = n;
r_supports[1] = n;
r_supports[1].x += radius;
r_supports[2] = n;
r_supports[2].z += radius;
} else if (Math::abs(d) < _CYLINDER_EDGE_IS_VALID_SUPPORT_THRESHOLD) {
// make it flat
Vector3 n = p_normal;
n.y = 0.0;
n.normalize();
n *= radius;
r_amount = 2;
r_type = FEATURE_EDGE;
r_supports[0] = n;
r_supports[0].y += height * 0.5;
r_supports[1] = n;
r_supports[1].y -= height * 0.5;
} else {
r_amount = 1;
r_type = FEATURE_POINT;
r_supports[0] = get_support(p_normal);
return;
Vector3 n = p_normal;
real_t h = n.y * Math::sqrt(0.25 * height * height + radius * radius);
if (Math::abs(h) > 1.0) {
// Top or bottom surface.
n.y = (n.y > 0.0) ? height * 0.5 : -height * 0.5;
} else {
// Lateral surface.
n.y = height * 0.5 * h;
}
real_t s = Math::sqrt(n.x * n.x + n.z * n.z);
if (Math::is_zero_approx(s)) {
n.x = 0.0;
n.z = 0.0;
} else {
real_t scaled_radius = radius / s;
n.x = n.x * scaled_radius;
n.z = n.z * scaled_radius;
}
r_supports[0] = n;
}
}
bool CylinderShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
return Geometry3D::segment_intersects_cylinder(p_begin, p_end, height, radius, &r_result, &r_normal, 1);
}
bool CylinderShape3DSW::intersect_point(const Vector3 &p_point) const {
if (Math::abs(p_point.y) < height * 0.5) {
return Vector3(p_point.x, 0, p_point.z).length() < radius;
}
return false;
}
Vector3 CylinderShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
if (Math::absf(p_point.y) > height * 0.5) {
// Project point to top disk.
real_t dir = p_point.y > 0.0 ? 1.0 : -1.0;
Vector3 circle_pos(0.0, dir * height * 0.5, 0.0);
Plane circle_plane(circle_pos, Vector3(0.0, dir, 0.0));
Vector3 proj_point = circle_plane.project(p_point);
// Clip position.
Vector3 delta_point_1 = proj_point - circle_pos;
real_t dist_point_1 = delta_point_1.length_squared();
if (!Math::is_zero_approx(dist_point_1)) {
dist_point_1 = Math::sqrt(dist_point_1);
proj_point = circle_pos + delta_point_1 * MIN(dist_point_1, radius) / dist_point_1;
}
return proj_point;
} else {
Vector3 s[2] = {
Vector3(0, -height * 0.5, 0),
Vector3(0, height * 0.5, 0),
};
Vector3 p = Geometry3D::get_closest_point_to_segment(p_point, s);
if (p.distance_to(p_point) < radius) {
return p_point;
}
return p + (p_point - p).normalized() * radius;
}
}
Vector3 CylinderShape3DSW::get_moment_of_inertia(real_t p_mass) const {
// use bad AABB approximation
Vector3 extents = get_aabb().size * 0.5;
return Vector3(
(p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
(p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
(p_mass / 3.0) * (extents.y * extents.y + extents.y * extents.y));
}
void CylinderShape3DSW::_setup(real_t p_height, real_t p_radius) {
height = p_height;
radius = p_radius;
configure(AABB(Vector3(-radius, -height * 0.5, -radius), Vector3(radius * 2.0, height, radius * 2.0)));
}
void CylinderShape3DSW::set_data(const Variant &p_data) {
Dictionary d = p_data;
ERR_FAIL_COND(!d.has("radius"));
ERR_FAIL_COND(!d.has("height"));
_setup(d["height"], d["radius"]);
}
Variant CylinderShape3DSW::get_data() const {
Dictionary d;
d["radius"] = radius;
d["height"] = height;
return d;
}
CylinderShape3DSW::CylinderShape3DSW() {
height = radius = 0;
}
/********** CONVEX POLYGON *************/
void ConvexPolygonShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
int vertex_count = mesh.vertices.size();
if (vertex_count == 0) {
return;
}
const Vector3 *vrts = &mesh.vertices[0];
for (int i = 0; i < vertex_count; i++) {
real_t d = p_normal.dot(p_transform.xform(vrts[i]));
if (i == 0 || d > r_max) {
r_max = d;
}
if (i == 0 || d < r_min) {
r_min = d;
}
}
}
Vector3 ConvexPolygonShape3DSW::get_support(const Vector3 &p_normal) const {
Vector3 n = p_normal;
int vert_support_idx = -1;
real_t support_max = 0;
int vertex_count = mesh.vertices.size();
if (vertex_count == 0) {
return Vector3();
}
const Vector3 *vrts = &mesh.vertices[0];
for (int i = 0; i < vertex_count; i++) {
real_t d = n.dot(vrts[i]);
if (i == 0 || d > support_max) {
support_max = d;
vert_support_idx = i;
}
}
return vrts[vert_support_idx];
}
void ConvexPolygonShape3DSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const {
const Geometry3D::MeshData::Face *faces = mesh.faces.ptr();
int fc = mesh.faces.size();
const Geometry3D::MeshData::Edge *edges = mesh.edges.ptr();
int ec = mesh.edges.size();
const Vector3 *vertices = mesh.vertices.ptr();
int vc = mesh.vertices.size();
//find vertex first
real_t max = 0;
int vtx = 0;
for (int i = 0; i < vc; i++) {
real_t d = p_normal.dot(vertices[i]);
if (i == 0 || d > max) {
max = d;
vtx = i;
}
}
for (int i = 0; i < fc; i++) {
if (faces[i].plane.normal.dot(p_normal) > _FACE_IS_VALID_SUPPORT_THRESHOLD) {
int ic = faces[i].indices.size();
const int *ind = faces[i].indices.ptr();
bool valid = false;
for (int j = 0; j < ic; j++) {
if (ind[j] == vtx) {
valid = true;
break;
}
}
if (!valid) {
continue;
}
int m = MIN(p_max, ic);
for (int j = 0; j < m; j++) {
r_supports[j] = vertices[ind[j]];
}
r_amount = m;
r_type = FEATURE_FACE;
return;
}
}
for (int i = 0; i < ec; i++) {
real_t dot = (vertices[edges[i].a] - vertices[edges[i].b]).normalized().dot(p_normal);
dot = ABS(dot);
if (dot < _EDGE_IS_VALID_SUPPORT_THRESHOLD && (edges[i].a == vtx || edges[i].b == vtx)) {
r_amount = 2;
r_type = FEATURE_EDGE;
r_supports[0] = vertices[edges[i].a];
r_supports[1] = vertices[edges[i].b];
return;
}
}
r_supports[0] = vertices[vtx];
r_amount = 1;
r_type = FEATURE_POINT;
}
bool ConvexPolygonShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
const Geometry3D::MeshData::Face *faces = mesh.faces.ptr();
int fc = mesh.faces.size();
const Vector3 *vertices = mesh.vertices.ptr();
Vector3 n = p_end - p_begin;
real_t min = 1e20;
bool col = false;
for (int i = 0; i < fc; i++) {
if (faces[i].plane.normal.dot(n) > 0) {
continue; //opposing face
}
int ic = faces[i].indices.size();
const int *ind = faces[i].indices.ptr();
for (int j = 1; j < ic - 1; j++) {
Face3 f(vertices[ind[0]], vertices[ind[j]], vertices[ind[j + 1]]);
Vector3 result;
if (f.intersects_segment(p_begin, p_end, &result)) {
real_t d = n.dot(result);
if (d < min) {
min = d;
r_result = result;
r_normal = faces[i].plane.normal;
col = true;
}
break;
}
}
}
return col;
}
bool ConvexPolygonShape3DSW::intersect_point(const Vector3 &p_point) const {
const Geometry3D::MeshData::Face *faces = mesh.faces.ptr();
int fc = mesh.faces.size();
for (int i = 0; i < fc; i++) {
if (faces[i].plane.distance_to(p_point) >= 0) {
return false;
}
}
return true;
}
Vector3 ConvexPolygonShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
const Geometry3D::MeshData::Face *faces = mesh.faces.ptr();
int fc = mesh.faces.size();
const Vector3 *vertices = mesh.vertices.ptr();
bool all_inside = true;
for (int i = 0; i < fc; i++) {
if (!faces[i].plane.is_point_over(p_point)) {
continue;
}
all_inside = false;
bool is_inside = true;
int ic = faces[i].indices.size();
const int *indices = faces[i].indices.ptr();
for (int j = 0; j < ic; j++) {
Vector3 a = vertices[indices[j]];
Vector3 b = vertices[indices[(j + 1) % ic]];
Vector3 n = (a - b).cross(faces[i].plane.normal).normalized();
if (Plane(a, n).is_point_over(p_point)) {
is_inside = false;
break;
}
}
if (is_inside) {
return faces[i].plane.project(p_point);
}
}
if (all_inside) {
return p_point;
}
real_t min_distance = 1e20;
Vector3 min_point;
//check edges
const Geometry3D::MeshData::Edge *edges = mesh.edges.ptr();
int ec = mesh.edges.size();
for (int i = 0; i < ec; i++) {
Vector3 s[2] = {
vertices[edges[i].a],
vertices[edges[i].b]
};
Vector3 closest = Geometry3D::get_closest_point_to_segment(p_point, s);
real_t d = closest.distance_to(p_point);
if (d < min_distance) {
min_distance = d;
min_point = closest;
}
}
return min_point;
}
Vector3 ConvexPolygonShape3DSW::get_moment_of_inertia(real_t p_mass) const {
// use bad AABB approximation
Vector3 extents = get_aabb().size * 0.5;
return Vector3(
(p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
(p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
(p_mass / 3.0) * (extents.y * extents.y + extents.y * extents.y));
}
void ConvexPolygonShape3DSW::_setup(const Vector<Vector3> &p_vertices) {
Error err = QuickHull::build(p_vertices, mesh);
if (err != OK) {
ERR_PRINT("Failed to build QuickHull");
}
AABB _aabb;
for (int i = 0; i < mesh.vertices.size(); i++) {
if (i == 0) {
_aabb.position = mesh.vertices[i];
} else {
_aabb.expand_to(mesh.vertices[i]);
}
}
configure(_aabb);
}
void ConvexPolygonShape3DSW::set_data(const Variant &p_data) {
_setup(p_data);
}
Variant ConvexPolygonShape3DSW::get_data() const {
return mesh.vertices;
}
ConvexPolygonShape3DSW::ConvexPolygonShape3DSW() {
}
/********** FACE POLYGON *************/
void FaceShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
for (int i = 0; i < 3; i++) {
Vector3 v = p_transform.xform(vertex[i]);
real_t d = p_normal.dot(v);
if (i == 0 || d > r_max) {
r_max = d;
}
if (i == 0 || d < r_min) {
r_min = d;
}
}
}
Vector3 FaceShape3DSW::get_support(const Vector3 &p_normal) const {
int vert_support_idx = -1;
real_t support_max = 0;
for (int i = 0; i < 3; i++) {
real_t d = p_normal.dot(vertex[i]);
if (i == 0 || d > support_max) {
support_max = d;
vert_support_idx = i;
}
}
return vertex[vert_support_idx];
}
void FaceShape3DSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const {
Vector3 n = p_normal;
/** TEST FACE AS SUPPORT **/
if (normal.dot(n) > _FACE_IS_VALID_SUPPORT_THRESHOLD) {
r_amount = 3;
r_type = FEATURE_FACE;
for (int i = 0; i < 3; i++) {
r_supports[i] = vertex[i];
}
return;
}
/** FIND SUPPORT VERTEX **/
int vert_support_idx = -1;
real_t support_max = 0;
for (int i = 0; i < 3; i++) {
real_t d = n.dot(vertex[i]);
if (i == 0 || d > support_max) {
support_max = d;
vert_support_idx = i;
}
}
/** TEST EDGES AS SUPPORT **/
for (int i = 0; i < 3; i++) {
int nx = (i + 1) % 3;
if (i != vert_support_idx && nx != vert_support_idx) {
continue;
}
// check if edge is valid as a support
real_t dot = (vertex[i] - vertex[nx]).normalized().dot(n);
dot = ABS(dot);
if (dot < _EDGE_IS_VALID_SUPPORT_THRESHOLD) {
r_amount = 2;
r_type = FEATURE_EDGE;
r_supports[0] = vertex[i];
r_supports[1] = vertex[nx];
return;
}
}
r_amount = 1;
r_type = FEATURE_POINT;
r_supports[0] = vertex[vert_support_idx];
}
bool FaceShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
bool c = Geometry3D::segment_intersects_triangle(p_begin, p_end, vertex[0], vertex[1], vertex[2], &r_result);
if (c) {
r_normal = Plane(vertex[0], vertex[1], vertex[2]).normal;
if (r_normal.dot(p_end - p_begin) > 0) {
r_normal = -r_normal;
}
}
return c;
}
bool FaceShape3DSW::intersect_point(const Vector3 &p_point) const {
return false; //face is flat
}
Vector3 FaceShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
return Face3(vertex[0], vertex[1], vertex[2]).get_closest_point_to(p_point);
}
Vector3 FaceShape3DSW::get_moment_of_inertia(real_t p_mass) const {
return Vector3(); // Sorry, but i don't think anyone cares, FaceShape!
}
FaceShape3DSW::FaceShape3DSW() {
configure(AABB());
}
Vector<Vector3> ConcavePolygonShape3DSW::get_faces() const {
Vector<Vector3> rfaces;
rfaces.resize(faces.size() * 3);
for (int i = 0; i < faces.size(); i++) {
Face f = faces.get(i);
for (int j = 0; j < 3; j++) {
rfaces.set(i * 3 + j, vertices.get(f.indices[j]));
}
}
return rfaces;
}
void ConcavePolygonShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
int count = vertices.size();
if (count == 0) {
r_min = 0;
r_max = 0;
return;
}
const Vector3 *vptr = vertices.ptr();
for (int i = 0; i < count; i++) {
real_t d = p_normal.dot(p_transform.xform(vptr[i]));
if (i == 0 || d > r_max) {
r_max = d;
}
if (i == 0 || d < r_min) {
r_min = d;
}
}
}
Vector3 ConcavePolygonShape3DSW::get_support(const Vector3 &p_normal) const {
int count = vertices.size();
if (count == 0) {
return Vector3();
}
const Vector3 *vptr = vertices.ptr();
Vector3 n = p_normal;
int vert_support_idx = -1;
real_t support_max = 0;
for (int i = 0; i < count; i++) {
real_t d = n.dot(vptr[i]);
if (i == 0 || d > support_max) {
support_max = d;
vert_support_idx = i;
}
}
return vptr[vert_support_idx];
}
void ConcavePolygonShape3DSW::_cull_segment(int p_idx, _SegmentCullParams *p_params) const {
const BVH *bvh = &p_params->bvh[p_idx];
/*
if (p_params->dir.dot(bvh->aabb.get_support(-p_params->dir))>p_params->min_d)
return; //test against whole AABB, which isn't very costly
*/
//printf("addr: %p\n",bvh);
if (!bvh->aabb.intersects_segment(p_params->from, p_params->to)) {
return;
}
if (bvh->face_index >= 0) {
Vector3 res;
Vector3 vertices[3] = {
p_params->vertices[p_params->faces[bvh->face_index].indices[0]],
p_params->vertices[p_params->faces[bvh->face_index].indices[1]],
p_params->vertices[p_params->faces[bvh->face_index].indices[2]]
};
if (Geometry3D::segment_intersects_triangle(
p_params->from,
p_params->to,
vertices[0],
vertices[1],
vertices[2],
&res)) {
real_t d = p_params->dir.dot(res) - p_params->dir.dot(p_params->from);
//TODO, seems segmen/triangle intersection is broken :(
if (d > 0 && d < p_params->min_d) {
p_params->min_d = d;
p_params->result = res;
p_params->normal = Plane(vertices[0], vertices[1], vertices[2]).normal;
p_params->collisions++;
}
}
} else {
if (bvh->left >= 0) {
_cull_segment(bvh->left, p_params);
}
if (bvh->right >= 0) {
_cull_segment(bvh->right, p_params);
}
}
}
bool ConcavePolygonShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
if (faces.size() == 0) {
return false;
}
// unlock data
const Face *fr = faces.ptr();
const Vector3 *vr = vertices.ptr();
const BVH *br = bvh.ptr();
_SegmentCullParams params;
params.from = p_begin;
params.to = p_end;
params.collisions = 0;
params.dir = (p_end - p_begin).normalized();
params.faces = fr;
params.vertices = vr;
params.bvh = br;
params.min_d = 1e20;
// cull
_cull_segment(0, &params);
if (params.collisions > 0) {
r_result = params.result;
r_normal = params.normal;
return true;
} else {
return false;
}
}
bool ConcavePolygonShape3DSW::intersect_point(const Vector3 &p_point) const {
return false; //face is flat
}
Vector3 ConcavePolygonShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
return Vector3();
}
void ConcavePolygonShape3DSW::_cull(int p_idx, _CullParams *p_params) const {
const BVH *bvh = &p_params->bvh[p_idx];
if (!p_params->aabb.intersects(bvh->aabb)) {
return;
}
if (bvh->face_index >= 0) {
const Face *f = &p_params->faces[bvh->face_index];
FaceShape3DSW *face = p_params->face;
face->normal = f->normal;
face->vertex[0] = p_params->vertices[f->indices[0]];
face->vertex[1] = p_params->vertices[f->indices[1]];
face->vertex[2] = p_params->vertices[f->indices[2]];
p_params->callback(p_params->userdata, face);
} else {
if (bvh->left >= 0) {
_cull(bvh->left, p_params);
}
if (bvh->right >= 0) {
_cull(bvh->right, p_params);
}
}
}
void ConcavePolygonShape3DSW::cull(const AABB &p_local_aabb, Callback p_callback, void *p_userdata) const {
// make matrix local to concave
if (faces.size() == 0) {
return;
}
AABB local_aabb = p_local_aabb;
// unlock data
const Face *fr = faces.ptr();
const Vector3 *vr = vertices.ptr();
const BVH *br = bvh.ptr();
FaceShape3DSW face; // use this to send in the callback
_CullParams params;
params.aabb = local_aabb;
params.face = &face;
params.faces = fr;
params.vertices = vr;
params.bvh = br;
params.callback = p_callback;
params.userdata = p_userdata;
// cull
_cull(0, &params);
}
Vector3 ConcavePolygonShape3DSW::get_moment_of_inertia(real_t p_mass) const {
// use bad AABB approximation
Vector3 extents = get_aabb().size * 0.5;
return Vector3(
(p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
(p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
(p_mass / 3.0) * (extents.y * extents.y + extents.y * extents.y));
}
struct _VolumeSW_BVH_Element {
AABB aabb;
Vector3 center;
int face_index;
};
struct _VolumeSW_BVH_CompareX {
_FORCE_INLINE_ bool operator()(const _VolumeSW_BVH_Element &a, const _VolumeSW_BVH_Element &b) const {
return a.center.x < b.center.x;
}
};
struct _VolumeSW_BVH_CompareY {
_FORCE_INLINE_ bool operator()(const _VolumeSW_BVH_Element &a, const _VolumeSW_BVH_Element &b) const {
return a.center.y < b.center.y;
}
};
struct _VolumeSW_BVH_CompareZ {
_FORCE_INLINE_ bool operator()(const _VolumeSW_BVH_Element &a, const _VolumeSW_BVH_Element &b) const {
return a.center.z < b.center.z;
}
};
struct _VolumeSW_BVH {
AABB aabb;
_VolumeSW_BVH *left;
_VolumeSW_BVH *right;
int face_index;
};
_VolumeSW_BVH *_volume_sw_build_bvh(_VolumeSW_BVH_Element *p_elements, int p_size, int &count) {
_VolumeSW_BVH *bvh = memnew(_VolumeSW_BVH);
if (p_size == 1) {
//leaf
bvh->aabb = p_elements[0].aabb;
bvh->left = nullptr;
bvh->right = nullptr;
bvh->face_index = p_elements->face_index;
count++;
return bvh;
} else {
bvh->face_index = -1;
}
AABB aabb;
for (int i = 0; i < p_size; i++) {
if (i == 0) {
aabb = p_elements[i].aabb;
} else {
aabb.merge_with(p_elements[i].aabb);
}
}
bvh->aabb = aabb;
switch (aabb.get_longest_axis_index()) {
case 0: {
SortArray<_VolumeSW_BVH_Element, _VolumeSW_BVH_CompareX> sort_x;
sort_x.sort(p_elements, p_size);
} break;
case 1: {
SortArray<_VolumeSW_BVH_Element, _VolumeSW_BVH_CompareY> sort_y;
sort_y.sort(p_elements, p_size);
} break;
case 2: {
SortArray<_VolumeSW_BVH_Element, _VolumeSW_BVH_CompareZ> sort_z;
sort_z.sort(p_elements, p_size);
} break;
}
int split = p_size / 2;
bvh->left = _volume_sw_build_bvh(p_elements, split, count);
bvh->right = _volume_sw_build_bvh(&p_elements[split], p_size - split, count);
//printf("branch at %p - %i: %i\n",bvh,count,bvh->face_index);
count++;
return bvh;
}
void ConcavePolygonShape3DSW::_fill_bvh(_VolumeSW_BVH *p_bvh_tree, BVH *p_bvh_array, int &p_idx) {
int idx = p_idx;
p_bvh_array[idx].aabb = p_bvh_tree->aabb;
p_bvh_array[idx].face_index = p_bvh_tree->face_index;
//printf("%p - %i: %i(%p) -- %p:%p\n",%p_bvh_array[idx],p_idx,p_bvh_array[i]->face_index,&p_bvh_tree->face_index,p_bvh_tree->left,p_bvh_tree->right);
if (p_bvh_tree->left) {
p_bvh_array[idx].left = ++p_idx;
_fill_bvh(p_bvh_tree->left, p_bvh_array, p_idx);
} else {
p_bvh_array[p_idx].left = -1;
}
if (p_bvh_tree->right) {
p_bvh_array[idx].right = ++p_idx;
_fill_bvh(p_bvh_tree->right, p_bvh_array, p_idx);
} else {
p_bvh_array[p_idx].right = -1;
}
memdelete(p_bvh_tree);
}
void ConcavePolygonShape3DSW::_setup(Vector<Vector3> p_faces) {
int src_face_count = p_faces.size();
if (src_face_count == 0) {
configure(AABB());
return;
}
ERR_FAIL_COND(src_face_count % 3);
src_face_count /= 3;
const Vector3 *facesr = p_faces.ptr();
Vector<_VolumeSW_BVH_Element> bvh_array;
bvh_array.resize(src_face_count);
_VolumeSW_BVH_Element *bvh_arrayw = bvh_array.ptrw();
faces.resize(src_face_count);
Face *facesw = faces.ptrw();
vertices.resize(src_face_count * 3);
Vector3 *verticesw = vertices.ptrw();
AABB _aabb;
for (int i = 0; i < src_face_count; i++) {
Face3 face(facesr[i * 3 + 0], facesr[i * 3 + 1], facesr[i * 3 + 2]);
bvh_arrayw[i].aabb = face.get_aabb();
bvh_arrayw[i].center = bvh_arrayw[i].aabb.position + bvh_arrayw[i].aabb.size * 0.5;
bvh_arrayw[i].face_index = i;
facesw[i].indices[0] = i * 3 + 0;
facesw[i].indices[1] = i * 3 + 1;
facesw[i].indices[2] = i * 3 + 2;
facesw[i].normal = face.get_plane().normal;
verticesw[i * 3 + 0] = face.vertex[0];
verticesw[i * 3 + 1] = face.vertex[1];
verticesw[i * 3 + 2] = face.vertex[2];
if (i == 0) {
_aabb = bvh_arrayw[i].aabb;
} else {
_aabb.merge_with(bvh_arrayw[i].aabb);
}
}
int count = 0;
_VolumeSW_BVH *bvh_tree = _volume_sw_build_bvh(bvh_arrayw, src_face_count, count);
bvh.resize(count + 1);
BVH *bvh_arrayw2 = bvh.ptrw();
int idx = 0;
_fill_bvh(bvh_tree, bvh_arrayw2, idx);
configure(_aabb); // this type of shape has no margin
}
void ConcavePolygonShape3DSW::set_data(const Variant &p_data) {
_setup(p_data);
}
Variant ConcavePolygonShape3DSW::get_data() const {
return get_faces();
}
ConcavePolygonShape3DSW::ConcavePolygonShape3DSW() {
}
/* HEIGHT MAP SHAPE */
Vector<real_t> HeightMapShape3DSW::get_heights() const {
return heights;
}
int HeightMapShape3DSW::get_width() const {
return width;
}
int HeightMapShape3DSW::get_depth() const {
return depth;
}
real_t HeightMapShape3DSW::get_cell_size() const {
return cell_size;
}
void HeightMapShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
//not very useful, but not very used either
p_transform.xform(get_aabb()).project_range_in_plane(Plane(p_normal, 0), r_min, r_max);
}
Vector3 HeightMapShape3DSW::get_support(const Vector3 &p_normal) const {
//not very useful, but not very used either
return get_aabb().get_support(p_normal);
}
bool HeightMapShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_point, Vector3 &r_normal) const {
return false;
}
bool HeightMapShape3DSW::intersect_point(const Vector3 &p_point) const {
return false;
}
Vector3 HeightMapShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
return Vector3();
}
void HeightMapShape3DSW::cull(const AABB &p_local_aabb, Callback p_callback, void *p_userdata) const {
}
Vector3 HeightMapShape3DSW::get_moment_of_inertia(real_t p_mass) const {
// use bad AABB approximation
Vector3 extents = get_aabb().size * 0.5;
return Vector3(
(p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
(p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
(p_mass / 3.0) * (extents.y * extents.y + extents.y * extents.y));
}
void HeightMapShape3DSW::_setup(Vector<real_t> p_heights, int p_width, int p_depth, real_t p_cell_size) {
heights = p_heights;
width = p_width;
depth = p_depth;
cell_size = p_cell_size;
const real_t *r = heights.ptr();
AABB aabb;
for (int i = 0; i < depth; i++) {
for (int j = 0; j < width; j++) {
real_t h = r[i * width + j];
Vector3 pos(j * cell_size, h, i * cell_size);
if (i == 0 || j == 0) {
aabb.position = pos;
} else {
aabb.expand_to(pos);
}
}
}
configure(aabb);
}
void HeightMapShape3DSW::set_data(const Variant &p_data) {
ERR_FAIL_COND(p_data.get_type() != Variant::DICTIONARY);
Dictionary d = p_data;
ERR_FAIL_COND(!d.has("width"));
ERR_FAIL_COND(!d.has("depth"));
ERR_FAIL_COND(!d.has("cell_size"));
ERR_FAIL_COND(!d.has("heights"));
int width = d["width"];
int depth = d["depth"];
real_t cell_size = d["cell_size"];
Vector<real_t> heights = d["heights"];
ERR_FAIL_COND(width <= 0);
ERR_FAIL_COND(depth <= 0);
ERR_FAIL_COND(cell_size <= CMP_EPSILON);
ERR_FAIL_COND(heights.size() != (width * depth));
_setup(heights, width, depth, cell_size);
}
Variant HeightMapShape3DSW::get_data() const {
ERR_FAIL_V(Variant());
}
HeightMapShape3DSW::HeightMapShape3DSW() {
width = 0;
depth = 0;
cell_size = 0;
}