virtualx-engine/servers/visual_server.cpp
2016-11-24 20:46:55 -03:00

1675 lines
38 KiB
C++

/*************************************************************************/
/* visual_server.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2016 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "visual_server.h"
#include "globals.h"
#include "method_bind_ext.inc"
VisualServer *VisualServer::singleton=NULL;
VisualServer* (*VisualServer::create_func)()=NULL;
VisualServer *VisualServer::get_singleton() {
return singleton;
}
DVector<String> VisualServer::_shader_get_param_list(RID p_shader) const {
//remove at some point
DVector<String> pl;
#if 0
List<StringName> params;
shader_get_param_list(p_shader,&params);
for(List<StringName>::Element *E=params.front();E;E=E->next()) {
pl.push_back(E->get());
}
#endif
return pl;
}
VisualServer *VisualServer::create() {
ERR_FAIL_COND_V(singleton,NULL);
if (create_func)
return create_func();
return NULL;
}
RID VisualServer::texture_create_from_image(const Image& p_image,uint32_t p_flags) {
RID texture = texture_create();
texture_allocate(texture,p_image.get_width(), p_image.get_height(), p_image.get_format(), p_flags); //if it has mipmaps, use, else generate
ERR_FAIL_COND_V(!texture.is_valid(),texture);
texture_set_data(texture, p_image );
return texture;
}
RID VisualServer::get_test_texture() {
if (test_texture.is_valid()) {
return test_texture;
};
#define TEST_TEXTURE_SIZE 256
DVector<uint8_t> test_data;
test_data.resize(TEST_TEXTURE_SIZE*TEST_TEXTURE_SIZE*3);
{
DVector<uint8_t>::Write w=test_data.write();
for (int x=0;x<TEST_TEXTURE_SIZE;x++) {
for (int y=0;y<TEST_TEXTURE_SIZE;y++) {
Color c;
int r=255-(x+y)/2;
if ((x%(TEST_TEXTURE_SIZE/8))<2 ||(y%(TEST_TEXTURE_SIZE/8))<2) {
c.r=y;
c.g=r;
c.b=x;
} else {
c.r=r;
c.g=x;
c.b=y;
}
w[(y*TEST_TEXTURE_SIZE+x)*3+0]=uint8_t(CLAMP(c.r*255,0,255));
w[(y*TEST_TEXTURE_SIZE+x)*3+1]=uint8_t(CLAMP(c.g*255,0,255));
w[(y*TEST_TEXTURE_SIZE+x)*3+2]=uint8_t(CLAMP(c.b*255,0,255));
}
}
}
Image data(TEST_TEXTURE_SIZE,TEST_TEXTURE_SIZE,false,Image::FORMAT_RGB8,test_data);
test_texture = texture_create_from_image(data);
return test_texture;
};
void VisualServer::_free_internal_rids() {
if (test_texture.is_valid())
free(test_texture);
if (white_texture.is_valid())
free(white_texture);
if (test_material.is_valid())
free(test_material);
for(int i=0;i<16;i++) {
if (material_2d[i].is_valid())
free(material_2d[i]);
}
}
RID VisualServer::_make_test_cube() {
DVector<Vector3> vertices;
DVector<Vector3> normals;
DVector<float> tangents;
DVector<Vector3> uvs;
int vtx_idx=0;
#define ADD_VTX(m_idx);\
vertices.push_back( face_points[m_idx] );\
normals.push_back( normal_points[m_idx] );\
tangents.push_back( normal_points[m_idx][1] );\
tangents.push_back( normal_points[m_idx][2] );\
tangents.push_back( normal_points[m_idx][0] );\
tangents.push_back( 1.0 );\
uvs.push_back( Vector3(uv_points[m_idx*2+0],uv_points[m_idx*2+1],0) );\
vtx_idx++;\
for (int i=0;i<6;i++) {
Vector3 face_points[4];
Vector3 normal_points[4];
float uv_points[8]={0,0,0,1,1,1,1,0};
for (int j=0;j<4;j++) {
float v[3];
v[0]=1.0;
v[1]=1-2*((j>>1)&1);
v[2]=v[1]*(1-2*(j&1));
for (int k=0;k<3;k++) {
if (i<3)
face_points[j][(i+k)%3]=v[k]*(i>=3?-1:1);
else
face_points[3-j][(i+k)%3]=v[k]*(i>=3?-1:1);
}
normal_points[j]=Vector3();
normal_points[j][i%3]=(i>=3?-1:1);
}
//tri 1
ADD_VTX(0);
ADD_VTX(1);
ADD_VTX(2);
//tri 2
ADD_VTX(2);
ADD_VTX(3);
ADD_VTX(0);
}
RID test_cube = mesh_create();
Array d;
d.resize(VS::ARRAY_MAX);
d[VisualServer::ARRAY_NORMAL]= normals ;
d[VisualServer::ARRAY_TANGENT]= tangents ;
d[VisualServer::ARRAY_TEX_UV]= uvs ;
d[VisualServer::ARRAY_VERTEX]= vertices ;
DVector<int> indices;
indices.resize(vertices.size());
for(int i=0;i<vertices.size();i++)
indices.set(i,i);
d[VisualServer::ARRAY_INDEX]=indices;
mesh_add_surface_from_arrays( test_cube, PRIMITIVE_TRIANGLES,d );
/*
test_material = fixed_material_create();
//material_set_flag(material, MATERIAL_FLAG_BILLBOARD_TOGGLE,true);
fixed_material_set_texture( test_material, FIXED_MATERIAL_PARAM_DIFFUSE, get_test_texture() );
fixed_material_set_param( test_material, FIXED_MATERIAL_PARAM_SPECULAR_EXP, 70 );
fixed_material_set_param( test_material, FIXED_MATERIAL_PARAM_EMISSION, Color(0.2,0.2,0.2) );
fixed_material_set_param( test_material, FIXED_MATERIAL_PARAM_DIFFUSE, Color(1, 1, 1) );
fixed_material_set_param( test_material, FIXED_MATERIAL_PARAM_SPECULAR, Color(1,1,1) );
*/
mesh_surface_set_material(test_cube, 0, test_material );
return test_cube;
}
RID VisualServer::make_sphere_mesh(int p_lats,int p_lons,float p_radius) {
DVector<Vector3> vertices;
DVector<Vector3> normals;
for(int i = 1; i <= p_lats; i++) {
double lat0 = Math_PI * (-0.5 + (double) (i - 1) / p_lats);
double z0 = Math::sin(lat0);
double zr0 = Math::cos(lat0);
double lat1 = Math_PI * (-0.5 + (double) i / p_lats);
double z1 = Math::sin(lat1);
double zr1 = Math::cos(lat1);
for(int j = p_lons; j >= 1; j--) {
double lng0 = 2 * Math_PI * (double) (j - 1) / p_lons;
double x0 = Math::cos(lng0);
double y0 = Math::sin(lng0);
double lng1 = 2 * Math_PI * (double) (j) / p_lons;
double x1 = Math::cos(lng1);
double y1 = Math::sin(lng1);
Vector3 v[4]={
Vector3(x1 * zr0, z0, y1 *zr0),
Vector3(x1 * zr1, z1, y1 *zr1),
Vector3(x0 * zr1, z1, y0 *zr1),
Vector3(x0 * zr0, z0, y0 *zr0)
};
#define ADD_POINT(m_idx)\
normals.push_back(v[m_idx]); \
vertices.push_back(v[m_idx]*p_radius);\
ADD_POINT(0);
ADD_POINT(1);
ADD_POINT(2);
ADD_POINT(2);
ADD_POINT(3);
ADD_POINT(0);
}
}
RID mesh = mesh_create();
Array d;
d.resize(VS::ARRAY_MAX);
d[ARRAY_VERTEX]=vertices;
d[ARRAY_NORMAL]=normals;
mesh_add_surface_from_arrays(mesh,PRIMITIVE_TRIANGLES,d);
return mesh;
}
RID VisualServer::material_2d_get(bool p_shaded, bool p_transparent, bool p_cut_alpha, bool p_opaque_prepass) {
int version=0;
if (p_shaded)
version=1;
if (p_transparent)
version|=2;
if (p_cut_alpha)
version|=4;
if (p_opaque_prepass)
version|=8;
if (material_2d[version].is_valid())
return material_2d[version];
//not valid, make
/* material_2d[version]=fixed_material_create();
fixed_material_set_flag(material_2d[version],FIXED_MATERIAL_FLAG_USE_ALPHA,p_transparent);
fixed_material_set_flag(material_2d[version],FIXED_MATERIAL_FLAG_USE_COLOR_ARRAY,true);
fixed_material_set_flag(material_2d[version],FIXED_MATERIAL_FLAG_DISCARD_ALPHA,p_cut_alpha);
material_set_flag(material_2d[version],MATERIAL_FLAG_UNSHADED,!p_shaded);
material_set_flag(material_2d[version],MATERIAL_FLAG_DOUBLE_SIDED,true);
material_set_depth_draw_mode(material_2d[version],p_opaque_prepass?MATERIAL_DEPTH_DRAW_OPAQUE_PRE_PASS_ALPHA:MATERIAL_DEPTH_DRAW_OPAQUE_ONLY);
fixed_material_set_texture(material_2d[version],FIXED_MATERIAL_PARAM_DIFFUSE,get_white_texture());
//material cut alpha?*/
return material_2d[version];
}
RID VisualServer::get_white_texture() {
if (white_texture.is_valid())
return white_texture;
DVector<uint8_t> wt;
wt.resize(16*3);
{
DVector<uint8_t>::Write w =wt.write();
for(int i=0;i<16*3;i++)
w[i]=255;
}
Image white(4,4,0,Image::FORMAT_RGB8,wt);
white_texture=texture_create();
texture_allocate(white_texture,4,4,Image::FORMAT_RGB8);
texture_set_data(white_texture,white);
return white_texture;
}
Error VisualServer::_surface_set_data(Array p_arrays,uint32_t p_format,uint32_t *p_offsets,uint32_t p_stride,DVector<uint8_t> &r_vertex_array,int p_vertex_array_len,DVector<uint8_t> &r_index_array,int p_index_array_len,AABB &r_aabb,Vector<AABB> r_bone_aabb) {
DVector<uint8_t>::Write vw = r_vertex_array.write();
DVector<uint8_t>::Write iw;
if (r_index_array.size()) {
iw=r_index_array.write();
}
int max_bone=0;
for(int ai=0;ai<VS::ARRAY_MAX;ai++) {
if (!(p_format&(1<<ai))) // no array
continue;
switch(ai) {
case VS::ARRAY_VERTEX: {
if (p_format& VS::ARRAY_FLAG_USE_2D_VERTICES) {
DVector<Vector2> array = p_arrays[ai];
ERR_FAIL_COND_V( array.size() != p_vertex_array_len, ERR_INVALID_PARAMETER );
DVector<Vector2>::Read read = array.read();
const Vector2* src=read.ptr();
// setting vertices means regenerating the AABB
Rect2 aabb;
if (p_format&ARRAY_COMPRESS_VERTEX) {
for (int i=0;i<p_vertex_array_len;i++) {
uint16_t vector[2]={ Math::make_half_float(src[i].x), Math::make_half_float(src[i].y) };
copymem(&vw[p_offsets[ai]+i*p_stride], vector, sizeof(uint16_t)*2);
if (i==0) {
aabb=Rect2(src[i],Vector2());
} else {
aabb.expand_to( src[i] );
}
}
} else {
for (int i=0;i<p_vertex_array_len;i++) {
float vector[2]={ src[i].x, src[i].y };
copymem(&vw[p_offsets[ai]+i*p_stride], vector, sizeof(float)*2);
if (i==0) {
aabb=Rect2(src[i],Vector2());
} else {
aabb.expand_to( src[i] );
}
}
}
r_aabb=AABB(Vector3(aabb.pos.x,aabb.pos.y,0),Vector3(aabb.size.x,aabb.size.y,0));
} else {
DVector<Vector3> array = p_arrays[ai];
ERR_FAIL_COND_V( array.size() != p_vertex_array_len, ERR_INVALID_PARAMETER );
DVector<Vector3>::Read read = array.read();
const Vector3* src=read.ptr();
// setting vertices means regenerating the AABB
AABB aabb;
if (p_format&ARRAY_COMPRESS_VERTEX) {
for (int i=0;i<p_vertex_array_len;i++) {
uint16_t vector[3]={ Math::make_half_float(src[i].x), Math::make_half_float(src[i].y), Math::make_half_float(src[i].z) };
copymem(&vw[p_offsets[ai]+i*p_stride], vector, sizeof(uint16_t)*3);
if (i==0) {
aabb=AABB(src[i],Vector3());
} else {
aabb.expand_to( src[i] );
}
}
} else {
for (int i=0;i<p_vertex_array_len;i++) {
float vector[3]={ src[i].x, src[i].y, src[i].z };
copymem(&vw[p_offsets[ai]+i*p_stride], vector, sizeof(float)*3);
if (i==0) {
aabb=AABB(src[i],Vector3());
} else {
aabb.expand_to( src[i] );
}
}
}
r_aabb=aabb;
}
} break;
case VS::ARRAY_NORMAL: {
ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::VECTOR3_ARRAY, ERR_INVALID_PARAMETER );
DVector<Vector3> array = p_arrays[ai];
ERR_FAIL_COND_V( array.size() != p_vertex_array_len, ERR_INVALID_PARAMETER );
DVector<Vector3>::Read read = array.read();
const Vector3* src=read.ptr();
// setting vertices means regenerating the AABB
if (p_format&ARRAY_COMPRESS_NORMAL) {
for (int i=0;i<p_vertex_array_len;i++) {
uint8_t vector[4]={
CLAMP(src[i].x*127,-128,127),
CLAMP(src[i].y*127,-128,127),
CLAMP(src[i].z*127,-128,127),
0,
};
copymem(&vw[p_offsets[ai]+i*p_stride], vector, 4);
}
} else {
for (int i=0;i<p_vertex_array_len;i++) {
float vector[3]={ src[i].x, src[i].y, src[i].z };
copymem(&vw[p_offsets[ai]+i*p_stride], vector, 3*4);
}
}
} break;
case VS::ARRAY_TANGENT: {
ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::REAL_ARRAY, ERR_INVALID_PARAMETER );
DVector<real_t> array = p_arrays[ai];
ERR_FAIL_COND_V( array.size() != p_vertex_array_len*4, ERR_INVALID_PARAMETER );
DVector<real_t>::Read read = array.read();
const real_t* src = read.ptr();
if (p_format&ARRAY_COMPRESS_TANGENT) {
for (int i=0;i<p_vertex_array_len;i++) {
uint8_t xyzw[4]={
CLAMP(src[i*4+0]*127,-128,127),
CLAMP(src[i*4+1]*127,-128,127),
CLAMP(src[i*4+2]*127,-128,127),
CLAMP(src[i*4+3]*127,-128,127)
};
copymem(&vw[p_offsets[ai]+i*p_stride], xyzw, 4);
}
} else {
for (int i=0;i<p_vertex_array_len;i++) {
float xyzw[4]={
src[i*4+0],
src[i*4+1],
src[i*4+2],
src[i*4+3]
};
copymem(&vw[p_offsets[ai]+i*p_stride], xyzw, 4*4);
}
}
} break;
case VS::ARRAY_COLOR: {
ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::COLOR_ARRAY, ERR_INVALID_PARAMETER );
DVector<Color> array = p_arrays[ai];
ERR_FAIL_COND_V( array.size() != p_vertex_array_len, ERR_INVALID_PARAMETER );
DVector<Color>::Read read = array.read();
const Color* src = read.ptr();
if (p_format&ARRAY_COMPRESS_COLOR) {
for (int i=0;i<p_vertex_array_len;i++) {
uint8_t colors[4];
for(int j=0;j<4;j++) {
colors[j]=CLAMP( int((src[i][j])*255.0), 0,255 );
}
copymem(&vw[p_offsets[ai]+i*p_stride], colors, 4);
}
} else {
for (int i=0;i<p_vertex_array_len;i++) {
copymem(&vw[p_offsets[ai]+i*p_stride], &src[i], 4*4);
}
}
} break;
case VS::ARRAY_TEX_UV: {
ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::VECTOR3_ARRAY && p_arrays[ai].get_type() != Variant::VECTOR2_ARRAY, ERR_INVALID_PARAMETER );
DVector<Vector2> array = p_arrays[ai];
ERR_FAIL_COND_V( array.size() != p_vertex_array_len , ERR_INVALID_PARAMETER);
DVector<Vector2>::Read read = array.read();
const Vector2 * src=read.ptr();
if (p_format&ARRAY_COMPRESS_TEX_UV) {
for (int i=0;i<p_vertex_array_len;i++) {
uint16_t uv[2]={ Math::make_half_float(src[i].x) , Math::make_half_float(src[i].y) };
copymem(&vw[p_offsets[ai]+i*p_stride], uv, 2*2);
}
} else {
for (int i=0;i<p_vertex_array_len;i++) {
float uv[2]={ src[i].x , src[i].y };
copymem(&vw[p_offsets[ai]+i*p_stride], uv, 2*4);
}
}
} break;
case VS::ARRAY_TEX_UV2: {
ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::VECTOR3_ARRAY && p_arrays[ai].get_type() != Variant::VECTOR2_ARRAY, ERR_INVALID_PARAMETER );
DVector<Vector2> array = p_arrays[ai];
ERR_FAIL_COND_V( array.size() != p_vertex_array_len , ERR_INVALID_PARAMETER);
DVector<Vector2>::Read read = array.read();
const Vector2 * src=read.ptr();
if (p_format&ARRAY_COMPRESS_TEX_UV2) {
for (int i=0;i<p_vertex_array_len;i++) {
uint16_t uv[2]={ Math::make_half_float(src[i].x) , Math::make_half_float(src[i].y) };
copymem(&vw[p_offsets[ai]+i*p_stride], uv, 2*2);
}
} else {
for (int i=0;i<p_vertex_array_len;i++) {
float uv[2]={ src[i].x , src[i].y };
copymem(&vw[p_offsets[ai]+i*p_stride], uv, 2*4);
}
}
} break;
case VS::ARRAY_WEIGHTS: {
ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::REAL_ARRAY, ERR_INVALID_PARAMETER );
DVector<real_t> array = p_arrays[ai];
ERR_FAIL_COND_V( array.size() != p_vertex_array_len*VS::ARRAY_WEIGHTS_SIZE, ERR_INVALID_PARAMETER );
DVector<real_t>::Read read = array.read();
const real_t * src = read.ptr();
if (p_format&ARRAY_COMPRESS_WEIGHTS) {
for (int i=0;i<p_vertex_array_len;i++) {
uint16_t data[VS::ARRAY_WEIGHTS_SIZE];
for (int j=0;j<VS::ARRAY_WEIGHTS_SIZE;j++) {
data[j]=CLAMP(src[i*VS::ARRAY_WEIGHTS_SIZE+j]*65535,0,65535);
}
copymem(&vw[p_offsets[ai]+i*p_stride], data, 2*4);
}
} else {
for (int i=0;i<p_vertex_array_len;i++) {
float data[VS::ARRAY_WEIGHTS_SIZE];
for (int j=0;j<VS::ARRAY_WEIGHTS_SIZE;j++) {
data[j]=src[i*VS::ARRAY_WEIGHTS_SIZE+j];
}
copymem(&vw[p_offsets[ai]+i*p_stride], data, 4*4);
}
}
} break;
case VS::ARRAY_BONES: {
ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::INT_ARRAY, ERR_INVALID_PARAMETER );
DVector<int> array = p_arrays[ai];
ERR_FAIL_COND_V( array.size() != p_vertex_array_len*VS::ARRAY_WEIGHTS_SIZE, ERR_INVALID_PARAMETER );
DVector<int>::Read read = array.read();
const int * src = read.ptr();
if (!(p_format&ARRAY_FLAG_USE_16_BIT_BONES)) {
for (int i=0;i<p_vertex_array_len;i++) {
uint8_t data[VS::ARRAY_WEIGHTS_SIZE];
for (int j=0;j<VS::ARRAY_WEIGHTS_SIZE;j++) {
data[j]=CLAMP(src[i*VS::ARRAY_WEIGHTS_SIZE+j],0,255);
max_bone=MAX(data[j],max_bone);
}
copymem(&vw[p_offsets[ai]+i*p_stride], data, 4);
}
} else {
for (int i=0;i<p_vertex_array_len;i++) {
uint16_t data[VS::ARRAY_WEIGHTS_SIZE];
for (int j=0;j<VS::ARRAY_WEIGHTS_SIZE;j++) {
data[j]=src[i*VS::ARRAY_WEIGHTS_SIZE+j];
max_bone=MAX(data[j],max_bone);
}
copymem(&vw[p_offsets[ai]+i*p_stride], data, 2*4);
}
}
} break;
case VS::ARRAY_INDEX: {
ERR_FAIL_COND_V( p_index_array_len<=0, ERR_INVALID_DATA );
ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::INT_ARRAY, ERR_INVALID_PARAMETER );
DVector<int> indices = p_arrays[ai];
ERR_FAIL_COND_V( indices.size() == 0, ERR_INVALID_PARAMETER );
ERR_FAIL_COND_V( indices.size() != p_index_array_len, ERR_INVALID_PARAMETER );
/* determine wether using 16 or 32 bits indices */
DVector<int>::Read read = indices.read();
const int *src=read.ptr();
for (int i=0;i<p_index_array_len;i++) {
if (p_vertex_array_len<(1<<16)) {
uint16_t v=src[i];
copymem(&iw[i*2], &v, 2);
} else {
uint32_t v=src[i];
copymem(&iw[i*4], &v, 4);
}
}
} break;
default: {
ERR_FAIL_V( ERR_INVALID_DATA );
}
}
}
if (p_format&VS::ARRAY_FORMAT_BONES) {
//create AABBs for each detected bone
int total_bones = max_bone+1;
bool first = r_bone_aabb.size()==0;
r_bone_aabb.resize(total_bones);
if (first) {
for(int i=0;i<total_bones;i++) {
r_bone_aabb[i].size==Vector3(-1,-1,-1); //negative means unused
}
}
DVector<Vector3> vertices = p_arrays[VS::ARRAY_VERTEX];
DVector<int> bones = p_arrays[VS::ARRAY_BONES];
DVector<float> weights = p_arrays[VS::ARRAY_WEIGHTS];
bool any_valid=false;
if (vertices.size() && bones.size()==vertices.size()*4 && weights.size()==bones.size()) {
int vs = vertices.size();
DVector<Vector3>::Read rv =vertices.read();
DVector<int>::Read rb=bones.read();
DVector<float>::Read rw=weights.read();
AABB *bptr = r_bone_aabb.ptr();
for(int i=0;i<vs;i++) {
Vector3 v = rv[i];
for(int j=0;j<4;j++) {
int idx = rb[i*4+j];
float w = rw[i*4+j];
if (w==0)
continue;//break;
ERR_FAIL_INDEX_V(idx,total_bones,ERR_INVALID_DATA);
if (bptr->size.x<0) {
//first
bptr[idx]=AABB();
bptr[idx].pos=v;
any_valid=true;
} else {
bptr[idx].expand_to(v);
}
}
}
}
if (!any_valid && first) {
r_bone_aabb.clear();
}
}
return OK;
}
void VisualServer::mesh_add_surface_from_arrays(RID p_mesh,PrimitiveType p_primitive,const Array& p_arrays,const Array& p_blend_shapes,uint32_t p_compress_format) {
ERR_FAIL_INDEX( p_primitive, VS::PRIMITIVE_MAX );
ERR_FAIL_COND(p_arrays.size()!=VS::ARRAY_MAX);
uint32_t format=0;
// validation
int index_array_len=0;
int array_len=0;
for(int i=0;i<p_arrays.size();i++) {
if (p_arrays[i].get_type()==Variant::NIL)
continue;
format|=(1<<i);
if (i==VS::ARRAY_VERTEX) {
Variant var = p_arrays[i];
switch(var.get_type()) {
case Variant::VECTOR2_ARRAY: {
DVector<Vector2> v2 = var;
array_len=v2.size();
} break;
case Variant::VECTOR3_ARRAY: {
DVector<Vector3> v3 = var;
array_len=v3.size();
} break;
default: {
Array v = var;
array_len=v.size();
} break;
}
array_len=Vector3Array(p_arrays[i]).size();
ERR_FAIL_COND(array_len==0);
} else if (i==VS::ARRAY_INDEX) {
index_array_len=IntArray(p_arrays[i]).size();
}
}
ERR_FAIL_COND((format&VS::ARRAY_FORMAT_VERTEX)==0); // mandatory
if (p_blend_shapes.size()) {
//validate format for morphs
for(int i=0;i<p_blend_shapes.size();i++) {
uint32_t bsformat=0;
Array arr = p_blend_shapes[i];
for(int j=0;j<arr.size();j++) {
if (arr[j].get_type()!=Variant::NIL)
bsformat|=(1<<j);
}
ERR_FAIL_COND( (bsformat)!=(format&(VS::ARRAY_FORMAT_INDEX-1)));
}
}
uint32_t offsets[VS::ARRAY_MAX];
int total_elem_size=0;
for (int i=0;i<VS::ARRAY_MAX;i++) {
offsets[i]=0; //reset
if (!(format&(1<<i))) // no array
continue;
int elem_size=0;
switch(i) {
case VS::ARRAY_VERTEX: {
Variant arr = p_arrays[0];
if (arr.get_type()==Variant::VECTOR2_ARRAY) {
elem_size=2;
p_compress_format|=ARRAY_FLAG_USE_2D_VERTICES;
} else if (arr.get_type()==Variant::VECTOR3_ARRAY) {
p_compress_format&=~ARRAY_FLAG_USE_2D_VERTICES;
elem_size=3;
} else {
elem_size=(p_compress_format&ARRAY_FLAG_USE_2D_VERTICES)?2:3;
}
if (p_compress_format&ARRAY_COMPRESS_VERTEX) {
elem_size*=sizeof(int16_t);
} else {
elem_size*=sizeof(float);
}
} break;
case VS::ARRAY_NORMAL: {
if (p_compress_format&ARRAY_COMPRESS_NORMAL) {
elem_size=sizeof(uint32_t);
} else {
elem_size=sizeof(float)*3;
}
} break;
case VS::ARRAY_TANGENT: {
if (p_compress_format&ARRAY_COMPRESS_TANGENT) {
elem_size=sizeof(uint32_t);
} else {
elem_size=sizeof(float)*4;
}
} break;
case VS::ARRAY_COLOR: {
if (p_compress_format&ARRAY_COMPRESS_COLOR) {
elem_size=sizeof(uint32_t);
} else {
elem_size=sizeof(float)*4;
}
} break;
case VS::ARRAY_TEX_UV: {
if (p_compress_format&ARRAY_COMPRESS_TEX_UV) {
elem_size=sizeof(uint32_t);
} else {
elem_size=sizeof(float)*2;
}
} break;
case VS::ARRAY_TEX_UV2: {
if (p_compress_format&ARRAY_COMPRESS_TEX_UV2) {
elem_size=sizeof(uint32_t);
} else {
elem_size=sizeof(float)*2;
}
} break;
case VS::ARRAY_WEIGHTS: {
if (p_compress_format&ARRAY_COMPRESS_WEIGHTS) {
elem_size=sizeof(uint16_t)*4;
} else {
elem_size=sizeof(float)*4;
}
} break;
case VS::ARRAY_BONES: {
DVector<int> bones = p_arrays[VS::ARRAY_BONES];
int max_bone=0;
{
int bc = bones.size();
DVector<int>::Read r=bones.read();
for(int j=0;j<bc;j++) {
max_bone=MAX(r[j],max_bone);
}
}
if (max_bone > 255) {
p_compress_format|=ARRAY_FLAG_USE_16_BIT_BONES;
elem_size=sizeof(uint16_t)*4;
} else {
p_compress_format&=~ARRAY_FLAG_USE_16_BIT_BONES;
elem_size=sizeof(uint32_t);
}
} break;
case VS::ARRAY_INDEX: {
if (index_array_len<=0) {
ERR_PRINT("index_array_len==NO_INDEX_ARRAY");
break;
}
/* determine wether using 16 or 32 bits indices */
if (array_len>=(1<<16)) {
elem_size=4;
} else {
elem_size=2;
}
offsets[i]=elem_size;
continue;
} break;
default: {
ERR_FAIL( );
}
}
offsets[i]=total_elem_size;
total_elem_size+=elem_size;
}
uint32_t mask = (1<<ARRAY_MAX)-1;
format|=(~mask)&p_compress_format; //make the full format
int array_size = total_elem_size * array_len;
DVector<uint8_t> vertex_array;
vertex_array.resize(array_size);
int index_array_size = offsets[VS::ARRAY_INDEX]*index_array_len;
DVector<uint8_t> index_array;
index_array.resize(index_array_size);
AABB aabb;
Vector<AABB> bone_aabb;
Error err = _surface_set_data(p_arrays,format,offsets,total_elem_size,vertex_array,array_len,index_array,index_array_len,aabb,bone_aabb);
if (err) {
ERR_EXPLAIN("Invalid array format for surface");
ERR_FAIL_COND(err!=OK);
}
Vector<DVector<uint8_t> > blend_shape_data;
for(int i=0;i<p_blend_shapes.size();i++) {
DVector<uint8_t> vertex_array_shape;
vertex_array_shape.resize(array_size);
DVector<uint8_t> noindex;
AABB laabb;
Error err = _surface_set_data(p_blend_shapes[i],format&~ARRAY_FORMAT_INDEX,offsets,total_elem_size,vertex_array_shape,array_len,noindex,0,laabb,bone_aabb);
aabb.merge_with(laabb);
if (err) {
ERR_EXPLAIN("Invalid blend shape array format for surface");
ERR_FAIL_COND(err!=OK);
}
blend_shape_data.push_back(vertex_array_shape);
}
mesh_add_surface(p_mesh,format,p_primitive,vertex_array,array_len,index_array,index_array_len,aabb,blend_shape_data,bone_aabb);
}
Array VisualServer::_get_array_from_surface(uint32_t p_format,DVector<uint8_t> p_vertex_data,int p_vertex_len,DVector<uint8_t> p_index_data,int p_index_len) const {
uint32_t offsets[ARRAY_MAX];
int total_elem_size=0;
for (int i=0;i<VS::ARRAY_MAX;i++) {
offsets[i]=0; //reset
if (!(p_format&(1<<i))) // no array
continue;
int elem_size=0;
switch(i) {
case VS::ARRAY_VERTEX: {
if (p_format&ARRAY_FLAG_USE_2D_VERTICES) {
elem_size=2;
} else {
elem_size=3;
}
if (p_format&ARRAY_COMPRESS_VERTEX) {
elem_size*=sizeof(int16_t);
} else {
elem_size*=sizeof(float);
}
} break;
case VS::ARRAY_NORMAL: {
if (p_format&ARRAY_COMPRESS_NORMAL) {
elem_size=sizeof(uint32_t);
} else {
elem_size=sizeof(float)*3;
}
} break;
case VS::ARRAY_TANGENT: {
if (p_format&ARRAY_COMPRESS_TANGENT) {
elem_size=sizeof(uint32_t);
} else {
elem_size=sizeof(float)*4;
}
} break;
case VS::ARRAY_COLOR: {
if (p_format&ARRAY_COMPRESS_COLOR) {
elem_size=sizeof(uint32_t);
} else {
elem_size=sizeof(float)*4;
}
} break;
case VS::ARRAY_TEX_UV: {
if (p_format&ARRAY_COMPRESS_TEX_UV) {
elem_size=sizeof(uint32_t);
} else {
elem_size=sizeof(float)*2;
}
} break;
case VS::ARRAY_TEX_UV2: {
if (p_format&ARRAY_COMPRESS_TEX_UV2) {
elem_size=sizeof(uint32_t);
} else {
elem_size=sizeof(float)*2;
}
} break;
case VS::ARRAY_WEIGHTS: {
if (p_format&ARRAY_COMPRESS_WEIGHTS) {
elem_size=sizeof(uint16_t)*4;
} else {
elem_size=sizeof(float)*4;
}
} break;
case VS::ARRAY_BONES: {
if (p_format&ARRAY_FLAG_USE_16_BIT_BONES) {
elem_size=sizeof(uint16_t)*4;
} else {
elem_size=sizeof(uint32_t);
}
} break;
case VS::ARRAY_INDEX: {
if (p_index_len<=0) {
ERR_PRINT("index_array_len==NO_INDEX_ARRAY");
break;
}
/* determine wether using 16 or 32 bits indices */
if (p_index_len>=(1<<16)) {
elem_size=4;
} else {
elem_size=2;
}
offsets[i]=elem_size;
continue;
} break;
default: {
ERR_FAIL_V( Array() );
}
}
offsets[i]=total_elem_size;
total_elem_size+=elem_size;
}
Array ret;
ret.resize(VS::ARRAY_MAX);
DVector<uint8_t>::Read r = p_vertex_data.read();
for(int i=0;i<VS::ARRAY_MAX;i++) {
if (!(p_format&(1<<i)))
continue;
switch(i) {
case VS::ARRAY_VERTEX: {
if (p_format&ARRAY_FLAG_USE_2D_VERTICES) {
DVector<Vector2> arr_2d;
arr_2d.resize(p_vertex_len);
if (p_format&ARRAY_COMPRESS_VERTEX) {
DVector<Vector2>::Write w = arr_2d.write();
for(int j=0;j<p_vertex_len;j++) {
const uint16_t *v = (const uint16_t*)&r[j*total_elem_size+offsets[i]];
w[j]=Vector2(Math::halfptr_to_float(&v[0]),Math::halfptr_to_float(&v[1]));
}
} else {
DVector<Vector2>::Write w = arr_2d.write();
for(int j=0;j<p_vertex_len;j++) {
const float *v = (const float*)&r[j*total_elem_size+offsets[i]];
w[j]=Vector2(v[0],v[1]);
}
}
ret[i]=arr_2d;
} else {
DVector<Vector3> arr_3d;
arr_3d.resize(p_vertex_len);
if (p_format&ARRAY_COMPRESS_VERTEX) {
DVector<Vector3>::Write w = arr_3d.write();
for(int j=0;j<p_vertex_len;j++) {
const uint16_t *v = (const uint16_t*)&r[j*total_elem_size+offsets[i]];
w[j]=Vector3(Math::halfptr_to_float(&v[0]),Math::halfptr_to_float(&v[1]),Math::halfptr_to_float(&v[2]));
}
} else {
DVector<Vector3>::Write w = arr_3d.write();
for(int j=0;j<p_vertex_len;j++) {
const float *v = (const float*)&r[j*total_elem_size+offsets[i]];
w[j]=Vector3(v[0],v[1],v[2]);
}
}
ret[i]=arr_3d;
}
} break;
case VS::ARRAY_NORMAL: {
DVector<Vector3> arr;
arr.resize(p_vertex_len);
if (p_format&ARRAY_COMPRESS_NORMAL) {
DVector<Vector3>::Write w = arr.write();
for(int j=0;j<p_vertex_len;j++) {
const uint8_t *v = (const uint8_t*)&r[j*total_elem_size+offsets[i]];
w[j]=Vector3( float(v[0]/255.0)*2.0-1.0, float(v[1]/255.0)*2.0-1.0, float(v[2]/255.0)*2.0-1.0 );
}
} else {
DVector<Vector3>::Write w = arr.write();
for(int j=0;j<p_vertex_len;j++) {
const float *v = (const float*)&r[j*total_elem_size+offsets[i]];
w[j]=Vector3(v[0],v[1],v[2]);
}
}
ret[i]=arr;
} break;
case VS::ARRAY_TANGENT: {
DVector<float> arr;
arr.resize(p_vertex_len*4);
if (p_format&ARRAY_COMPRESS_TANGENT) {
DVector<float>::Write w = arr.write();
for(int j=0;j<p_vertex_len;j++) {
const uint8_t *v = (const uint8_t*)&r[j*total_elem_size+offsets[i]];
for(int k=0;k<4;k++) {
w[j*4+k]=float(v[k]/255.0)*2.0-1.0;
}
}
} else {
DVector<float>::Write w = arr.write();
for(int j=0;j<p_vertex_len;j++) {
const float *v = (const float*)&r[j*total_elem_size+offsets[i]];
for(int k=0;k<4;k++) {
w[j*4+k]=v[k];
}
}
}
ret[i]=arr;
} break;
case VS::ARRAY_COLOR: {
DVector<Color> arr;
arr.resize(p_vertex_len);
if (p_format&ARRAY_COMPRESS_COLOR) {
DVector<Color>::Write w = arr.write();
for(int j=0;j<p_vertex_len;j++) {
const uint8_t *v = (const uint8_t*)&r[j*total_elem_size+offsets[i]];
w[j]=Color( float(v[0]/255.0)*2.0-1.0, float(v[1]/255.0)*2.0-1.0, float(v[2]/255.0)*2.0-1.0, float(v[3]/255.0)*2.0-1.0 );
}
} else {
DVector<Color>::Write w = arr.write();
for(int j=0;j<p_vertex_len;j++) {
const float *v = (const float*)&r[j*total_elem_size+offsets[i]];
w[j]=Color(v[0],v[1],v[2],v[3]);
}
}
ret[i]=arr;
} break;
case VS::ARRAY_TEX_UV: {
DVector<Vector2> arr;
arr.resize(p_vertex_len);
if (p_format&ARRAY_COMPRESS_TEX_UV) {
DVector<Vector2>::Write w = arr.write();
for(int j=0;j<p_vertex_len;j++) {
const uint16_t *v = (const uint16_t*)&r[j*total_elem_size+offsets[i]];
w[j]=Vector2(Math::halfptr_to_float(&v[0]),Math::halfptr_to_float(&v[1]));
}
} else {
DVector<Vector2>::Write w = arr.write();
for(int j=0;j<p_vertex_len;j++) {
const float *v = (const float*)&r[j*total_elem_size+offsets[i]];
w[j]=Vector2(v[0],v[1]);
}
}
ret[i]=arr;
} break;
case VS::ARRAY_TEX_UV2: {
DVector<Vector2> arr;
arr.resize(p_vertex_len);
if (p_format&ARRAY_COMPRESS_TEX_UV2) {
DVector<Vector2>::Write w = arr.write();
for(int j=0;j<p_vertex_len;j++) {
const uint16_t *v = (const uint16_t*)&r[j*total_elem_size+offsets[i]];
w[j]=Vector2(Math::halfptr_to_float(&v[0]),Math::halfptr_to_float(&v[1]));
}
} else {
DVector<Vector2>::Write w = arr.write();
for(int j=0;j<p_vertex_len;j++) {
const float *v = (const float*)&r[j*total_elem_size+offsets[i]];
w[j]=Vector2(v[0],v[1]);
}
}
ret[i]=arr;
} break;
case VS::ARRAY_WEIGHTS: {
DVector<float> arr;
arr.resize(p_vertex_len*4);
if (p_format&ARRAY_COMPRESS_WEIGHTS) {
DVector<float>::Write w = arr.write();
for(int j=0;j<p_vertex_len;j++) {
const uint16_t *v = (const uint16_t*)&r[j*total_elem_size+offsets[i]];
for(int k=0;k<4;k++) {
w[j*4+k]=float(v[k]/65535.0)*2.0-1.0;
}
}
} else {
DVector<float>::Write w = arr.write();
for(int j=0;j<p_vertex_len;j++) {
const float *v = (const float*)&r[j*total_elem_size+offsets[i]];
for(int k=0;k<4;k++) {
w[j*4+k]=v[k];
}
}
}
ret[i]=arr;
} break;
case VS::ARRAY_BONES: {
DVector<int> arr;
arr.resize(p_vertex_len*4);
if (p_format&ARRAY_FLAG_USE_16_BIT_BONES) {
DVector<int>::Write w = arr.write();
for(int j=0;j<p_vertex_len;j++) {
const uint16_t *v = (const uint16_t*)&r[j*total_elem_size+offsets[i]];
for(int k=0;k<4;k++) {
w[j*4+k]=v[k];
}
}
} else {
DVector<int>::Write w = arr.write();
for(int j=0;j<p_vertex_len;j++) {
const uint8_t *v = (const uint8_t*)&r[j*total_elem_size+offsets[i]];
for(int k=0;k<4;k++) {
w[j*4+k]=v[k];
}
}
}
ret[i]=arr;
} break;
case VS::ARRAY_INDEX: {
/* determine wether using 16 or 32 bits indices */
DVector<uint8_t>::Read ir = p_index_data.read();
DVector<int> arr;
arr.resize(p_index_len);
if (p_index_len<(1<<16)) {
DVector<int>::Write w = arr.write();
for(int j=0;j<p_index_len;j++) {
const uint16_t *v = (const uint16_t*)&ir[j*2];
w[j]=*v;
}
} else {
DVector<int>::Write w = arr.write();
for(int j=0;j<p_index_len;j++) {
const int *v = (const int*)&ir[j*4];
w[j]=*v;
}
}
ret[i]=arr;
} break;
default: {
ERR_FAIL_V( ret );
}
}
}
return ret;
}
Array VisualServer::mesh_surface_get_arrays(RID p_mesh,int p_surface) const {
DVector<uint8_t> vertex_data = mesh_surface_get_array(p_mesh,p_surface);
ERR_FAIL_COND_V(vertex_data.size()==0,Array());
int vertex_len = mesh_surface_get_array_len(p_mesh,p_surface);
DVector<uint8_t> index_data = mesh_surface_get_index_array(p_mesh,p_surface);
int index_len = mesh_surface_get_array_index_len(p_mesh,p_surface);
uint32_t format = mesh_surface_get_format(p_mesh,p_surface);
return _get_array_from_surface(format,vertex_data,vertex_len,index_data,index_len);
}
void VisualServer::_bind_methods() {
ObjectTypeDB::bind_method(_MD("texture_create"),&VisualServer::texture_create);
ObjectTypeDB::bind_method(_MD("texture_create_from_image"),&VisualServer::texture_create_from_image,DEFVAL( TEXTURE_FLAGS_DEFAULT ) );
//ObjectTypeDB::bind_method(_MD("texture_allocate"),&VisualServer::texture_allocate,DEFVAL( TEXTURE_FLAGS_DEFAULT ) );
//ObjectTypeDB::bind_method(_MD("texture_set_data"),&VisualServer::texture_blit_rect,DEFVAL( CUBEMAP_LEFT ) );
//ObjectTypeDB::bind_method(_MD("texture_get_rect"),&VisualServer::texture_get_rect );
ObjectTypeDB::bind_method(_MD("texture_set_flags"),&VisualServer::texture_set_flags );
ObjectTypeDB::bind_method(_MD("texture_get_flags"),&VisualServer::texture_get_flags );
ObjectTypeDB::bind_method(_MD("texture_get_width"),&VisualServer::texture_get_width );
ObjectTypeDB::bind_method(_MD("texture_get_height"),&VisualServer::texture_get_height );
ObjectTypeDB::bind_method(_MD("texture_set_shrink_all_x2_on_set_data","shrink"),&VisualServer::texture_set_shrink_all_x2_on_set_data );
}
void VisualServer::_canvas_item_add_style_box(RID p_item, const Rect2& p_rect, const Rect2& p_source, RID p_texture,const Vector<float>& p_margins, const Color& p_modulate) {
ERR_FAIL_COND(p_margins.size()!=4);
//canvas_item_add_style_box(p_item,p_rect,p_source,p_texture,Vector2(p_margins[0],p_margins[1]),Vector2(p_margins[2],p_margins[3]),true,p_modulate);
}
void VisualServer::_camera_set_orthogonal(RID p_camera,float p_size,float p_z_near,float p_z_far) {
camera_set_orthogonal(p_camera,p_size,p_z_near,p_z_far);
}
void VisualServer::mesh_add_surface_from_mesh_data( RID p_mesh, const Geometry::MeshData& p_mesh_data) {
#if 1
DVector<Vector3> vertices;
DVector<Vector3> normals;
for (int i=0;i<p_mesh_data.faces.size();i++) {
const Geometry::MeshData::Face& f = p_mesh_data.faces[i];
for (int j=2;j<f.indices.size();j++) {
#define _ADD_VERTEX(m_idx)\
vertices.push_back( p_mesh_data.vertices[ f.indices[m_idx] ] );\
normals.push_back( f.plane.normal );
_ADD_VERTEX( 0 );
_ADD_VERTEX( j-1 );
_ADD_VERTEX( j );
}
}
Array d;
d.resize(VS::ARRAY_MAX);
d[ARRAY_VERTEX]=vertices;
d[ARRAY_NORMAL]=normals;
mesh_add_surface_from_arrays(p_mesh,PRIMITIVE_TRIANGLES, d);
#else
DVector<Vector3> vertices;
for (int i=0;i<p_mesh_data.edges.size();i++) {
const Geometry::MeshData::Edge& f = p_mesh_data.edges[i];
vertices.push_back(p_mesh_data.vertices[ f.a]);
vertices.push_back(p_mesh_data.vertices[ f.b]);
}
Array d;
d.resize(VS::ARRAY_MAX);
d[ARRAY_VERTEX]=vertices;
mesh_add_surface(p_mesh,PRIMITIVE_LINES, d);
#endif
}
void VisualServer::mesh_add_surface_from_planes( RID p_mesh, const DVector<Plane>& p_planes) {
Geometry::MeshData mdata = Geometry::build_convex_mesh(p_planes);
mesh_add_surface_from_mesh_data(p_mesh,mdata);
}
void VisualServer::immediate_vertex_2d(RID p_immediate,const Vector2& p_vertex) {
immediate_vertex(p_immediate,Vector3(p_vertex.x,p_vertex.y,0));
}
RID VisualServer::instance_create2(RID p_base, RID p_scenario) {
RID instance = instance_create();
instance_set_base(instance,p_base);
instance_set_scenario(instance,p_scenario);
return instance;
}
VisualServer::VisualServer() {
// ERR_FAIL_COND(singleton);
singleton=this;
}
VisualServer::~VisualServer() {
singleton=NULL;
}