virtualx-engine/scene/3d/vehicle_body.cpp
Rémi Verschelde a7f49ac9a1 Update copyright statements to 2020
Happy new year to the wonderful Godot community!

We're starting a new decade with a well-established, non-profit, free
and open source game engine, and tons of further improvements in the
pipeline from hundreds of contributors.

Godot will keep getting better, and we're looking forward to all the
games that the community will keep developing and releasing with it.
2020-01-01 11:16:22 +01:00

999 lines
32 KiB
C++

/*************************************************************************/
/* vehicle_body.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "vehicle_body.h"
#define ROLLING_INFLUENCE_FIX
class btVehicleJacobianEntry {
public:
Vector3 m_linearJointAxis;
Vector3 m_aJ;
Vector3 m_bJ;
Vector3 m_0MinvJt;
Vector3 m_1MinvJt;
//Optimization: can be stored in the w/last component of one of the vectors
real_t m_Adiag;
real_t getDiagonal() const { return m_Adiag; }
btVehicleJacobianEntry(){};
//constraint between two different rigidbodies
btVehicleJacobianEntry(
const Basis &world2A,
const Basis &world2B,
const Vector3 &rel_pos1,
const Vector3 &rel_pos2,
const Vector3 &jointAxis,
const Vector3 &inertiaInvA,
const real_t massInvA,
const Vector3 &inertiaInvB,
const real_t massInvB) :
m_linearJointAxis(jointAxis) {
m_aJ = world2A.xform(rel_pos1.cross(m_linearJointAxis));
m_bJ = world2B.xform(rel_pos2.cross(-m_linearJointAxis));
m_0MinvJt = inertiaInvA * m_aJ;
m_1MinvJt = inertiaInvB * m_bJ;
m_Adiag = massInvA + m_0MinvJt.dot(m_aJ) + massInvB + m_1MinvJt.dot(m_bJ);
//btAssert(m_Adiag > real_t(0.0));
}
real_t getRelativeVelocity(const Vector3 &linvelA, const Vector3 &angvelA, const Vector3 &linvelB, const Vector3 &angvelB) {
Vector3 linrel = linvelA - linvelB;
Vector3 angvela = angvelA * m_aJ;
Vector3 angvelb = angvelB * m_bJ;
linrel *= m_linearJointAxis;
angvela += angvelb;
angvela += linrel;
real_t rel_vel2 = angvela[0] + angvela[1] + angvela[2];
return rel_vel2 + CMP_EPSILON;
}
};
void VehicleWheel::_notification(int p_what) {
if (p_what == NOTIFICATION_ENTER_TREE) {
VehicleBody *cb = Object::cast_to<VehicleBody>(get_parent());
if (!cb)
return;
body = cb;
local_xform = get_transform();
cb->wheels.push_back(this);
m_chassisConnectionPointCS = get_transform().origin;
m_wheelDirectionCS = -get_transform().basis.get_axis(Vector3::AXIS_Y).normalized();
m_wheelAxleCS = get_transform().basis.get_axis(Vector3::AXIS_X).normalized();
}
if (p_what == NOTIFICATION_EXIT_TREE) {
VehicleBody *cb = Object::cast_to<VehicleBody>(get_parent());
if (!cb)
return;
cb->wheels.erase(this);
body = NULL;
}
}
String VehicleWheel::get_configuration_warning() const {
if (!Object::cast_to<VehicleBody>(get_parent())) {
return TTR("VehicleWheel serves to provide a wheel system to a VehicleBody. Please use it as a child of a VehicleBody.");
}
return String();
}
void VehicleWheel::_update(PhysicsDirectBodyState *s) {
if (m_raycastInfo.m_isInContact)
{
real_t project = m_raycastInfo.m_contactNormalWS.dot(m_raycastInfo.m_wheelDirectionWS);
Vector3 chassis_velocity_at_contactPoint;
Vector3 relpos = m_raycastInfo.m_contactPointWS - s->get_transform().origin;
chassis_velocity_at_contactPoint = s->get_linear_velocity() +
(s->get_angular_velocity()).cross(relpos); // * mPos);
real_t projVel = m_raycastInfo.m_contactNormalWS.dot(chassis_velocity_at_contactPoint);
if (project >= real_t(-0.1)) {
m_suspensionRelativeVelocity = real_t(0.0);
m_clippedInvContactDotSuspension = real_t(1.0) / real_t(0.1);
} else {
real_t inv = real_t(-1.) / project;
m_suspensionRelativeVelocity = projVel * inv;
m_clippedInvContactDotSuspension = inv;
}
}
else // Not in contact : position wheel in a nice (rest length) position
{
m_raycastInfo.m_suspensionLength = m_suspensionRestLength;
m_suspensionRelativeVelocity = real_t(0.0);
m_raycastInfo.m_contactNormalWS = -m_raycastInfo.m_wheelDirectionWS;
m_clippedInvContactDotSuspension = real_t(1.0);
}
}
void VehicleWheel::set_radius(float p_radius) {
m_wheelRadius = p_radius;
update_gizmo();
}
float VehicleWheel::get_radius() const {
return m_wheelRadius;
}
void VehicleWheel::set_suspension_rest_length(float p_length) {
m_suspensionRestLength = p_length;
update_gizmo();
}
float VehicleWheel::get_suspension_rest_length() const {
return m_suspensionRestLength;
}
void VehicleWheel::set_suspension_travel(float p_length) {
m_maxSuspensionTravelCm = p_length / 0.01;
}
float VehicleWheel::get_suspension_travel() const {
return m_maxSuspensionTravelCm * 0.01;
}
void VehicleWheel::set_suspension_stiffness(float p_value) {
m_suspensionStiffness = p_value;
}
float VehicleWheel::get_suspension_stiffness() const {
return m_suspensionStiffness;
}
void VehicleWheel::set_suspension_max_force(float p_value) {
m_maxSuspensionForce = p_value;
}
float VehicleWheel::get_suspension_max_force() const {
return m_maxSuspensionForce;
}
void VehicleWheel::set_damping_compression(float p_value) {
m_wheelsDampingCompression = p_value;
}
float VehicleWheel::get_damping_compression() const {
return m_wheelsDampingCompression;
}
void VehicleWheel::set_damping_relaxation(float p_value) {
m_wheelsDampingRelaxation = p_value;
}
float VehicleWheel::get_damping_relaxation() const {
return m_wheelsDampingRelaxation;
}
void VehicleWheel::set_friction_slip(float p_value) {
m_frictionSlip = p_value;
}
float VehicleWheel::get_friction_slip() const {
return m_frictionSlip;
}
void VehicleWheel::set_roll_influence(float p_value) {
m_rollInfluence = p_value;
}
float VehicleWheel::get_roll_influence() const {
return m_rollInfluence;
}
bool VehicleWheel::is_in_contact() const {
return m_raycastInfo.m_isInContact;
}
void VehicleWheel::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_radius", "length"), &VehicleWheel::set_radius);
ClassDB::bind_method(D_METHOD("get_radius"), &VehicleWheel::get_radius);
ClassDB::bind_method(D_METHOD("set_suspension_rest_length", "length"), &VehicleWheel::set_suspension_rest_length);
ClassDB::bind_method(D_METHOD("get_suspension_rest_length"), &VehicleWheel::get_suspension_rest_length);
ClassDB::bind_method(D_METHOD("set_suspension_travel", "length"), &VehicleWheel::set_suspension_travel);
ClassDB::bind_method(D_METHOD("get_suspension_travel"), &VehicleWheel::get_suspension_travel);
ClassDB::bind_method(D_METHOD("set_suspension_stiffness", "length"), &VehicleWheel::set_suspension_stiffness);
ClassDB::bind_method(D_METHOD("get_suspension_stiffness"), &VehicleWheel::get_suspension_stiffness);
ClassDB::bind_method(D_METHOD("set_suspension_max_force", "length"), &VehicleWheel::set_suspension_max_force);
ClassDB::bind_method(D_METHOD("get_suspension_max_force"), &VehicleWheel::get_suspension_max_force);
ClassDB::bind_method(D_METHOD("set_damping_compression", "length"), &VehicleWheel::set_damping_compression);
ClassDB::bind_method(D_METHOD("get_damping_compression"), &VehicleWheel::get_damping_compression);
ClassDB::bind_method(D_METHOD("set_damping_relaxation", "length"), &VehicleWheel::set_damping_relaxation);
ClassDB::bind_method(D_METHOD("get_damping_relaxation"), &VehicleWheel::get_damping_relaxation);
ClassDB::bind_method(D_METHOD("set_use_as_traction", "enable"), &VehicleWheel::set_use_as_traction);
ClassDB::bind_method(D_METHOD("is_used_as_traction"), &VehicleWheel::is_used_as_traction);
ClassDB::bind_method(D_METHOD("set_use_as_steering", "enable"), &VehicleWheel::set_use_as_steering);
ClassDB::bind_method(D_METHOD("is_used_as_steering"), &VehicleWheel::is_used_as_steering);
ClassDB::bind_method(D_METHOD("set_friction_slip", "length"), &VehicleWheel::set_friction_slip);
ClassDB::bind_method(D_METHOD("get_friction_slip"), &VehicleWheel::get_friction_slip);
ClassDB::bind_method(D_METHOD("is_in_contact"), &VehicleWheel::is_in_contact);
ClassDB::bind_method(D_METHOD("set_roll_influence", "roll_influence"), &VehicleWheel::set_roll_influence);
ClassDB::bind_method(D_METHOD("get_roll_influence"), &VehicleWheel::get_roll_influence);
ClassDB::bind_method(D_METHOD("get_skidinfo"), &VehicleWheel::get_skidinfo);
ClassDB::bind_method(D_METHOD("get_rpm"), &VehicleWheel::get_rpm);
ClassDB::bind_method(D_METHOD("set_engine_force", "engine_force"), &VehicleWheel::set_engine_force);
ClassDB::bind_method(D_METHOD("get_engine_force"), &VehicleWheel::get_engine_force);
ClassDB::bind_method(D_METHOD("set_brake", "brake"), &VehicleWheel::set_brake);
ClassDB::bind_method(D_METHOD("get_brake"), &VehicleWheel::get_brake);
ClassDB::bind_method(D_METHOD("set_steering", "steering"), &VehicleWheel::set_steering);
ClassDB::bind_method(D_METHOD("get_steering"), &VehicleWheel::get_steering);
ADD_GROUP("Per-Wheel Motion", "");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "engine_force", PROPERTY_HINT_RANGE, "0.00,1024.0,0.01,or_greater"), "set_engine_force", "get_engine_force");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "brake", PROPERTY_HINT_RANGE, "0.0,1.0,0.01"), "set_brake", "get_brake");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "steering", PROPERTY_HINT_RANGE, "-180,180.0,0.01"), "set_steering", "get_steering");
ADD_GROUP("VehicleBody Motion", "");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_as_traction"), "set_use_as_traction", "is_used_as_traction");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_as_steering"), "set_use_as_steering", "is_used_as_steering");
ADD_GROUP("Wheel", "wheel_");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "wheel_roll_influence"), "set_roll_influence", "get_roll_influence");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "wheel_radius"), "set_radius", "get_radius");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "wheel_rest_length"), "set_suspension_rest_length", "get_suspension_rest_length");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "wheel_friction_slip"), "set_friction_slip", "get_friction_slip");
ADD_GROUP("Suspension", "suspension_");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "suspension_travel"), "set_suspension_travel", "get_suspension_travel");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "suspension_stiffness"), "set_suspension_stiffness", "get_suspension_stiffness");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "suspension_max_force"), "set_suspension_max_force", "get_suspension_max_force");
ADD_GROUP("Damping", "damping_");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "damping_compression"), "set_damping_compression", "get_damping_compression");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "damping_relaxation"), "set_damping_relaxation", "get_damping_relaxation");
}
void VehicleWheel::set_engine_force(float p_engine_force) {
m_engineForce = p_engine_force;
}
float VehicleWheel::get_engine_force() const {
return m_engineForce;
}
void VehicleWheel::set_brake(float p_brake) {
m_brake = p_brake;
}
float VehicleWheel::get_brake() const {
return m_brake;
}
void VehicleWheel::set_steering(float p_steering) {
m_steering = p_steering;
}
float VehicleWheel::get_steering() const {
return m_steering;
}
void VehicleWheel::set_use_as_traction(bool p_enable) {
engine_traction = p_enable;
}
bool VehicleWheel::is_used_as_traction() const {
return engine_traction;
}
void VehicleWheel::set_use_as_steering(bool p_enabled) {
steers = p_enabled;
}
bool VehicleWheel::is_used_as_steering() const {
return steers;
}
float VehicleWheel::get_skidinfo() const {
return m_skidInfo;
}
float VehicleWheel::get_rpm() const {
return m_rpm;
}
VehicleWheel::VehicleWheel() {
steers = false;
engine_traction = false;
m_steering = real_t(0.);
//m_engineForce = real_t(0.);
m_rotation = real_t(0.);
m_deltaRotation = real_t(0.);
m_brake = real_t(0.);
m_rollInfluence = real_t(0.1);
m_suspensionRestLength = 0.15;
m_wheelRadius = 0.5; //0.28;
m_suspensionStiffness = 5.88;
m_wheelsDampingCompression = 0.83;
m_wheelsDampingRelaxation = 0.88;
m_frictionSlip = 10.5;
m_bIsFrontWheel = false;
m_maxSuspensionTravelCm = 500;
m_maxSuspensionForce = 6000;
m_suspensionRelativeVelocity = 0;
m_clippedInvContactDotSuspension = 1.0;
m_raycastInfo.m_isInContact = false;
body = NULL;
}
void VehicleBody::_update_wheel_transform(VehicleWheel &wheel, PhysicsDirectBodyState *s) {
wheel.m_raycastInfo.m_isInContact = false;
Transform chassisTrans = s->get_transform();
/*
if (interpolatedTransform && (getRigidBody()->getMotionState())) {
getRigidBody()->getMotionState()->getWorldTransform(chassisTrans);
}
*/
wheel.m_raycastInfo.m_hardPointWS = chassisTrans.xform(wheel.m_chassisConnectionPointCS);
//wheel.m_raycastInfo.m_hardPointWS+=s->get_linear_velocity()*s->get_step();
wheel.m_raycastInfo.m_wheelDirectionWS = chassisTrans.get_basis().xform(wheel.m_wheelDirectionCS).normalized();
wheel.m_raycastInfo.m_wheelAxleWS = chassisTrans.get_basis().xform(wheel.m_wheelAxleCS).normalized();
}
void VehicleBody::_update_wheel(int p_idx, PhysicsDirectBodyState *s) {
VehicleWheel &wheel = *wheels[p_idx];
_update_wheel_transform(wheel, s);
Vector3 up = -wheel.m_raycastInfo.m_wheelDirectionWS;
const Vector3 &right = wheel.m_raycastInfo.m_wheelAxleWS;
Vector3 fwd = up.cross(right);
fwd = fwd.normalized();
Basis steeringMat(up, wheel.m_steering);
Basis rotatingMat(right, wheel.m_rotation);
Basis basis2(
right[0], up[0], fwd[0],
right[1], up[1], fwd[1],
right[2], up[2], fwd[2]);
wheel.m_worldTransform.set_basis(steeringMat * rotatingMat * basis2);
//wheel.m_worldTransform.set_basis(basis2 * (steeringMat * rotatingMat));
wheel.m_worldTransform.set_origin(
wheel.m_raycastInfo.m_hardPointWS + wheel.m_raycastInfo.m_wheelDirectionWS * wheel.m_raycastInfo.m_suspensionLength);
}
real_t VehicleBody::_ray_cast(int p_idx, PhysicsDirectBodyState *s) {
VehicleWheel &wheel = *wheels[p_idx];
_update_wheel_transform(wheel, s);
real_t depth = -1;
real_t raylen = wheel.m_suspensionRestLength + wheel.m_wheelRadius;
Vector3 rayvector = wheel.m_raycastInfo.m_wheelDirectionWS * (raylen);
Vector3 source = wheel.m_raycastInfo.m_hardPointWS;
wheel.m_raycastInfo.m_contactPointWS = source + rayvector;
const Vector3 &target = wheel.m_raycastInfo.m_contactPointWS;
source -= wheel.m_wheelRadius * wheel.m_raycastInfo.m_wheelDirectionWS;
real_t param = real_t(0.);
PhysicsDirectSpaceState::RayResult rr;
PhysicsDirectSpaceState *ss = s->get_space_state();
bool col = ss->intersect_ray(source, target, rr, exclude);
wheel.m_raycastInfo.m_groundObject = 0;
if (col) {
param = source.distance_to(rr.position) / source.distance_to(target);
depth = raylen * param;
wheel.m_raycastInfo.m_contactNormalWS = rr.normal;
wheel.m_raycastInfo.m_isInContact = true;
if (rr.collider)
wheel.m_raycastInfo.m_groundObject = Object::cast_to<PhysicsBody>(rr.collider);
real_t hitDistance = param * raylen;
wheel.m_raycastInfo.m_suspensionLength = hitDistance - wheel.m_wheelRadius;
//clamp on max suspension travel
real_t minSuspensionLength = wheel.m_suspensionRestLength - wheel.m_maxSuspensionTravelCm * real_t(0.01);
real_t maxSuspensionLength = wheel.m_suspensionRestLength + wheel.m_maxSuspensionTravelCm * real_t(0.01);
if (wheel.m_raycastInfo.m_suspensionLength < minSuspensionLength) {
wheel.m_raycastInfo.m_suspensionLength = minSuspensionLength;
}
if (wheel.m_raycastInfo.m_suspensionLength > maxSuspensionLength) {
wheel.m_raycastInfo.m_suspensionLength = maxSuspensionLength;
}
wheel.m_raycastInfo.m_contactPointWS = rr.position;
real_t denominator = wheel.m_raycastInfo.m_contactNormalWS.dot(wheel.m_raycastInfo.m_wheelDirectionWS);
Vector3 chassis_velocity_at_contactPoint;
//Vector3 relpos = wheel.m_raycastInfo.m_contactPointWS-getRigidBody()->getCenterOfMassPosition();
//chassis_velocity_at_contactPoint = getRigidBody()->getVelocityInLocalPoint(relpos);
chassis_velocity_at_contactPoint = s->get_linear_velocity() +
(s->get_angular_velocity()).cross(wheel.m_raycastInfo.m_contactPointWS - s->get_transform().origin); // * mPos);
real_t projVel = wheel.m_raycastInfo.m_contactNormalWS.dot(chassis_velocity_at_contactPoint);
if (denominator >= real_t(-0.1)) {
wheel.m_suspensionRelativeVelocity = real_t(0.0);
wheel.m_clippedInvContactDotSuspension = real_t(1.0) / real_t(0.1);
} else {
real_t inv = real_t(-1.) / denominator;
wheel.m_suspensionRelativeVelocity = projVel * inv;
wheel.m_clippedInvContactDotSuspension = inv;
}
} else {
wheel.m_raycastInfo.m_isInContact = false;
//put wheel info as in rest position
wheel.m_raycastInfo.m_suspensionLength = wheel.m_suspensionRestLength;
wheel.m_suspensionRelativeVelocity = real_t(0.0);
wheel.m_raycastInfo.m_contactNormalWS = -wheel.m_raycastInfo.m_wheelDirectionWS;
wheel.m_clippedInvContactDotSuspension = real_t(1.0);
}
return depth;
}
void VehicleBody::_update_suspension(PhysicsDirectBodyState *s) {
real_t chassisMass = mass;
for (int w_it = 0; w_it < wheels.size(); w_it++) {
VehicleWheel &wheel_info = *wheels[w_it];
if (wheel_info.m_raycastInfo.m_isInContact) {
real_t force;
//Spring
{
real_t susp_length = wheel_info.m_suspensionRestLength;
real_t current_length = wheel_info.m_raycastInfo.m_suspensionLength;
real_t length_diff = (susp_length - current_length);
force = wheel_info.m_suspensionStiffness * length_diff * wheel_info.m_clippedInvContactDotSuspension;
}
// Damper
{
real_t projected_rel_vel = wheel_info.m_suspensionRelativeVelocity;
{
real_t susp_damping;
if (projected_rel_vel < real_t(0.0)) {
susp_damping = wheel_info.m_wheelsDampingCompression;
} else {
susp_damping = wheel_info.m_wheelsDampingRelaxation;
}
force -= susp_damping * projected_rel_vel;
}
}
// RESULT
wheel_info.m_wheelsSuspensionForce = force * chassisMass;
if (wheel_info.m_wheelsSuspensionForce < real_t(0.)) {
wheel_info.m_wheelsSuspensionForce = real_t(0.);
}
} else {
wheel_info.m_wheelsSuspensionForce = real_t(0.0);
}
}
}
//bilateral constraint between two dynamic objects
void VehicleBody::_resolve_single_bilateral(PhysicsDirectBodyState *s, const Vector3 &pos1,
PhysicsBody *body2, const Vector3 &pos2, const Vector3 &normal, real_t &impulse, const real_t p_rollInfluence) {
real_t normalLenSqr = normal.length_squared();
//ERR_FAIL_COND( normalLenSqr < real_t(1.1));
if (normalLenSqr > real_t(1.1)) {
impulse = real_t(0.);
return;
}
Vector3 rel_pos1 = pos1 - s->get_transform().origin;
Vector3 rel_pos2;
if (body2)
rel_pos2 = pos2 - body2->get_global_transform().origin;
//this jacobian entry could be re-used for all iterations
Vector3 vel1 = s->get_linear_velocity() + (s->get_angular_velocity()).cross(rel_pos1); // * mPos);
Vector3 vel2;
if (body2)
vel2 = body2->get_linear_velocity() + body2->get_angular_velocity().cross(rel_pos2);
Vector3 vel = vel1 - vel2;
Basis b2trans;
float b2invmass = 0;
Vector3 b2lv;
Vector3 b2av;
Vector3 b2invinertia; //todo
if (body2) {
b2trans = body2->get_global_transform().basis.transposed();
b2invmass = body2->get_inverse_mass();
b2lv = body2->get_linear_velocity();
b2av = body2->get_angular_velocity();
}
btVehicleJacobianEntry jac(s->get_transform().basis.transposed(),
b2trans,
rel_pos1,
rel_pos2,
normal,
s->get_inverse_inertia_tensor().get_main_diagonal(),
1.0 / mass,
b2invinertia,
b2invmass);
// FIXME: rel_vel assignment here is overwritten by the following assignment.
// What seems to be intended in the next next assignment is: rel_vel = normal.dot(rel_vel);
// Investigate why.
real_t rel_vel = jac.getRelativeVelocity(
s->get_linear_velocity(),
s->get_transform().basis.transposed().xform(s->get_angular_velocity()),
b2lv,
b2trans.xform(b2av));
rel_vel = normal.dot(vel);
// !BAS! We had this set to 0.4, in bullet its 0.2
real_t contactDamping = real_t(0.2);
if (p_rollInfluence > 0.0) {
// !BAS! But seeing we apply this frame by frame, makes more sense to me to make this time based
// keeping in mind our anti roll factor if it is set
contactDamping = MIN(contactDamping, s->get_step() / p_rollInfluence);
}
#define ONLY_USE_LINEAR_MASS
#ifdef ONLY_USE_LINEAR_MASS
real_t massTerm = real_t(1.) / ((1.0 / mass) + b2invmass);
impulse = -contactDamping * rel_vel * massTerm;
#else
real_t velocityImpulse = -contactDamping * rel_vel * jacDiagABInv;
impulse = velocityImpulse;
#endif
}
VehicleBody::btVehicleWheelContactPoint::btVehicleWheelContactPoint(PhysicsDirectBodyState *s, PhysicsBody *body1, const Vector3 &frictionPosWorld, const Vector3 &frictionDirectionWorld, real_t maxImpulse) :
m_s(s),
m_body1(body1),
m_frictionPositionWorld(frictionPosWorld),
m_frictionDirectionWorld(frictionDirectionWorld),
m_maxImpulse(maxImpulse) {
float denom0 = 0;
float denom1 = 0;
{
Vector3 r0 = frictionPosWorld - s->get_transform().origin;
Vector3 c0 = (r0).cross(frictionDirectionWorld);
Vector3 vec = s->get_inverse_inertia_tensor().xform_inv(c0).cross(r0);
denom0 = s->get_inverse_mass() + frictionDirectionWorld.dot(vec);
}
/* TODO: Why is this code unused?
if (body1) {
Vector3 r0 = frictionPosWorld - body1->get_global_transform().origin;
Vector3 c0 = (r0).cross(frictionDirectionWorld);
Vector3 vec = s->get_inverse_inertia_tensor().xform_inv(c0).cross(r0);
//denom1= body1->get_inverse_mass() + frictionDirectionWorld.dot(vec);
}
*/
real_t relaxation = 1.f;
m_jacDiagABInv = relaxation / (denom0 + denom1);
}
real_t VehicleBody::_calc_rolling_friction(btVehicleWheelContactPoint &contactPoint) {
real_t j1 = 0.f;
const Vector3 &contactPosWorld = contactPoint.m_frictionPositionWorld;
Vector3 rel_pos1 = contactPosWorld - contactPoint.m_s->get_transform().origin;
Vector3 rel_pos2;
if (contactPoint.m_body1)
rel_pos2 = contactPosWorld - contactPoint.m_body1->get_global_transform().origin;
real_t maxImpulse = contactPoint.m_maxImpulse;
Vector3 vel1 = contactPoint.m_s->get_linear_velocity() + (contactPoint.m_s->get_angular_velocity()).cross(rel_pos1); // * mPos);
Vector3 vel2;
if (contactPoint.m_body1) {
vel2 = contactPoint.m_body1->get_linear_velocity() + contactPoint.m_body1->get_angular_velocity().cross(rel_pos2);
}
Vector3 vel = vel1 - vel2;
real_t vrel = contactPoint.m_frictionDirectionWorld.dot(vel);
// calculate j that moves us to zero relative velocity
j1 = -vrel * contactPoint.m_jacDiagABInv;
return CLAMP(j1, -maxImpulse, maxImpulse);
}
static const real_t sideFrictionStiffness2 = real_t(1.0);
void VehicleBody::_update_friction(PhysicsDirectBodyState *s) {
//calculate the impulse, so that the wheels don't move sidewards
int numWheel = wheels.size();
if (!numWheel)
return;
m_forwardWS.resize(numWheel);
m_axle.resize(numWheel);
m_forwardImpulse.resize(numWheel);
m_sideImpulse.resize(numWheel);
//collapse all those loops into one!
for (int i = 0; i < wheels.size(); i++) {
m_sideImpulse.write[i] = real_t(0.);
m_forwardImpulse.write[i] = real_t(0.);
}
{
for (int i = 0; i < wheels.size(); i++) {
VehicleWheel &wheelInfo = *wheels[i];
if (wheelInfo.m_raycastInfo.m_isInContact) {
//const btTransform& wheelTrans = getWheelTransformWS( i );
Basis wheelBasis0 = wheelInfo.m_worldTransform.basis; //get_global_transform().basis;
m_axle.write[i] = wheelBasis0.get_axis(Vector3::AXIS_X);
//m_axle[i] = wheelInfo.m_raycastInfo.m_wheelAxleWS;
const Vector3 &surfNormalWS = wheelInfo.m_raycastInfo.m_contactNormalWS;
real_t proj = m_axle[i].dot(surfNormalWS);
m_axle.write[i] -= surfNormalWS * proj;
m_axle.write[i] = m_axle[i].normalized();
m_forwardWS.write[i] = surfNormalWS.cross(m_axle[i]);
m_forwardWS.write[i].normalize();
_resolve_single_bilateral(s, wheelInfo.m_raycastInfo.m_contactPointWS,
wheelInfo.m_raycastInfo.m_groundObject, wheelInfo.m_raycastInfo.m_contactPointWS,
m_axle[i], m_sideImpulse.write[i], wheelInfo.m_rollInfluence);
m_sideImpulse.write[i] *= sideFrictionStiffness2;
}
}
}
real_t sideFactor = real_t(1.);
real_t fwdFactor = 0.5;
bool sliding = false;
{
for (int wheel = 0; wheel < wheels.size(); wheel++) {
VehicleWheel &wheelInfo = *wheels[wheel];
//class btRigidBody* groundObject = (class btRigidBody*) wheelInfo.m_raycastInfo.m_groundObject;
real_t rollingFriction = 0.f;
if (wheelInfo.m_raycastInfo.m_isInContact) {
if (wheelInfo.m_engineForce != 0.f) {
rollingFriction = -wheelInfo.m_engineForce * s->get_step();
} else {
real_t defaultRollingFrictionImpulse = 0.f;
real_t maxImpulse = wheelInfo.m_brake ? wheelInfo.m_brake : defaultRollingFrictionImpulse;
btVehicleWheelContactPoint contactPt(s, wheelInfo.m_raycastInfo.m_groundObject, wheelInfo.m_raycastInfo.m_contactPointWS, m_forwardWS[wheel], maxImpulse);
rollingFriction = _calc_rolling_friction(contactPt);
}
}
//switch between active rolling (throttle), braking and non-active rolling friction (no throttle/break)
m_forwardImpulse.write[wheel] = real_t(0.);
wheelInfo.m_skidInfo = real_t(1.);
if (wheelInfo.m_raycastInfo.m_isInContact) {
wheelInfo.m_skidInfo = real_t(1.);
real_t maximp = wheelInfo.m_wheelsSuspensionForce * s->get_step() * wheelInfo.m_frictionSlip;
real_t maximpSide = maximp;
real_t maximpSquared = maximp * maximpSide;
m_forwardImpulse.write[wheel] = rollingFriction; //wheelInfo.m_engineForce* timeStep;
real_t x = (m_forwardImpulse[wheel]) * fwdFactor;
real_t y = (m_sideImpulse[wheel]) * sideFactor;
real_t impulseSquared = (x * x + y * y);
if (impulseSquared > maximpSquared) {
sliding = true;
real_t factor = maximp / Math::sqrt(impulseSquared);
wheelInfo.m_skidInfo *= factor;
}
}
}
}
if (sliding) {
for (int wheel = 0; wheel < wheels.size(); wheel++) {
if (m_sideImpulse[wheel] != real_t(0.)) {
if (wheels[wheel]->m_skidInfo < real_t(1.)) {
m_forwardImpulse.write[wheel] *= wheels[wheel]->m_skidInfo;
m_sideImpulse.write[wheel] *= wheels[wheel]->m_skidInfo;
}
}
}
}
// apply the impulses
{
for (int wheel = 0; wheel < wheels.size(); wheel++) {
VehicleWheel &wheelInfo = *wheels[wheel];
Vector3 rel_pos = wheelInfo.m_raycastInfo.m_contactPointWS -
s->get_transform().origin;
if (m_forwardImpulse[wheel] != real_t(0.)) {
s->apply_impulse(rel_pos, m_forwardWS[wheel] * (m_forwardImpulse[wheel]));
}
if (m_sideImpulse[wheel] != real_t(0.)) {
PhysicsBody *groundObject = wheelInfo.m_raycastInfo.m_groundObject;
Vector3 rel_pos2;
if (groundObject) {
rel_pos2 = wheelInfo.m_raycastInfo.m_contactPointWS - groundObject->get_global_transform().origin;
}
Vector3 sideImp = m_axle[wheel] * m_sideImpulse[wheel];
#if defined ROLLING_INFLUENCE_FIX // fix. It only worked if car's up was along Y - VT.
Vector3 vChassisWorldUp = s->get_transform().basis.transposed()[1]; //getRigidBody()->getCenterOfMassTransform().getBasis().getColumn(m_indexUpAxis);
rel_pos -= vChassisWorldUp * (vChassisWorldUp.dot(rel_pos) * (1.f - wheelInfo.m_rollInfluence));
#else
rel_pos[1] *= wheelInfo.m_rollInfluence; //?
#endif
s->apply_impulse(rel_pos, sideImp);
//apply friction impulse on the ground
//todo
//groundObject->applyImpulse(-sideImp,rel_pos2);
}
}
}
}
void VehicleBody::_direct_state_changed(Object *p_state) {
RigidBody::_direct_state_changed(p_state);
state = Object::cast_to<PhysicsDirectBodyState>(p_state);
float step = state->get_step();
for (int i = 0; i < wheels.size(); i++) {
_update_wheel(i, state);
}
for (int i = 0; i < wheels.size(); i++) {
_ray_cast(i, state);
wheels[i]->set_transform(state->get_transform().inverse() * wheels[i]->m_worldTransform);
}
_update_suspension(state);
for (int i = 0; i < wheels.size(); i++) {
//apply suspension force
VehicleWheel &wheel = *wheels[i];
real_t suspensionForce = wheel.m_wheelsSuspensionForce;
if (suspensionForce > wheel.m_maxSuspensionForce) {
suspensionForce = wheel.m_maxSuspensionForce;
}
Vector3 impulse = wheel.m_raycastInfo.m_contactNormalWS * suspensionForce * step;
Vector3 relpos = wheel.m_raycastInfo.m_contactPointWS - state->get_transform().origin;
state->apply_impulse(relpos, impulse);
//getRigidBody()->applyImpulse(impulse, relpos);
}
_update_friction(state);
for (int i = 0; i < wheels.size(); i++) {
VehicleWheel &wheel = *wheels[i];
Vector3 relpos = wheel.m_raycastInfo.m_hardPointWS - state->get_transform().origin;
Vector3 vel = state->get_linear_velocity() + (state->get_angular_velocity()).cross(relpos); // * mPos);
if (wheel.m_raycastInfo.m_isInContact) {
const Transform &chassisWorldTransform = state->get_transform();
Vector3 fwd(
chassisWorldTransform.basis[0][Vector3::AXIS_Z],
chassisWorldTransform.basis[1][Vector3::AXIS_Z],
chassisWorldTransform.basis[2][Vector3::AXIS_Z]);
real_t proj = fwd.dot(wheel.m_raycastInfo.m_contactNormalWS);
fwd -= wheel.m_raycastInfo.m_contactNormalWS * proj;
real_t proj2 = fwd.dot(vel);
wheel.m_deltaRotation = (proj2 * step) / (wheel.m_wheelRadius);
}
wheel.m_rotation += wheel.m_deltaRotation;
wheel.m_rpm = ((wheel.m_deltaRotation / step) * 60) / Math_TAU;
wheel.m_deltaRotation *= real_t(0.99); //damping of rotation when not in contact
}
state = NULL;
}
void VehicleBody::set_engine_force(float p_engine_force) {
engine_force = p_engine_force;
for (int i = 0; i < wheels.size(); i++) {
VehicleWheel &wheelInfo = *wheels[i];
if (wheelInfo.engine_traction)
wheelInfo.m_engineForce = p_engine_force;
}
}
float VehicleBody::get_engine_force() const {
return engine_force;
}
void VehicleBody::set_brake(float p_brake) {
brake = p_brake;
for (int i = 0; i < wheels.size(); i++) {
VehicleWheel &wheelInfo = *wheels[i];
wheelInfo.m_brake = p_brake;
}
}
float VehicleBody::get_brake() const {
return brake;
}
void VehicleBody::set_steering(float p_steering) {
m_steeringValue = p_steering;
for (int i = 0; i < wheels.size(); i++) {
VehicleWheel &wheelInfo = *wheels[i];
if (wheelInfo.steers)
wheelInfo.m_steering = p_steering;
}
}
float VehicleBody::get_steering() const {
return m_steeringValue;
}
void VehicleBody::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_engine_force", "engine_force"), &VehicleBody::set_engine_force);
ClassDB::bind_method(D_METHOD("get_engine_force"), &VehicleBody::get_engine_force);
ClassDB::bind_method(D_METHOD("set_brake", "brake"), &VehicleBody::set_brake);
ClassDB::bind_method(D_METHOD("get_brake"), &VehicleBody::get_brake);
ClassDB::bind_method(D_METHOD("set_steering", "steering"), &VehicleBody::set_steering);
ClassDB::bind_method(D_METHOD("get_steering"), &VehicleBody::get_steering);
ADD_GROUP("Motion", "");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "engine_force", PROPERTY_HINT_RANGE, "0.00,1024.0,0.01,or_greater"), "set_engine_force", "get_engine_force");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "brake", PROPERTY_HINT_RANGE, "0.0,1.0,0.01"), "set_brake", "get_brake");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "steering", PROPERTY_HINT_RANGE, "-180,180.0,0.01"), "set_steering", "get_steering");
}
VehicleBody::VehicleBody() {
m_pitchControl = 0;
m_currentVehicleSpeedKmHour = real_t(0.);
m_steeringValue = real_t(0.);
engine_force = 0;
brake = 0;
state = NULL;
ccd = false;
exclude.insert(get_rid());
//PhysicsServer::get_singleton()->body_set_force_integration_callback(get_rid(), this, "_direct_state_changed");
set_mass(40);
}