231 lines
6.1 KiB
GLSL
231 lines
6.1 KiB
GLSL
#[vertex]
|
|
|
|
#version 450
|
|
|
|
VERSION_DEFINES
|
|
|
|
#define MAX_CASCADES 8
|
|
|
|
layout(push_constant, binding = 0, std430) uniform Params {
|
|
mat4 projection;
|
|
|
|
uint band_power;
|
|
uint sections_in_band;
|
|
uint band_mask;
|
|
float section_arc;
|
|
|
|
vec3 grid_size;
|
|
uint cascade;
|
|
|
|
uint pad;
|
|
float y_mult;
|
|
uint probe_debug_index;
|
|
int probe_axis_size;
|
|
}
|
|
params;
|
|
|
|
// http://in4k.untergrund.net/html_articles/hugi_27_-_coding_corner_polaris_sphere_tessellation_101.htm
|
|
|
|
vec3 get_sphere_vertex(uint p_vertex_id) {
|
|
float x_angle = float(p_vertex_id & 1u) + (p_vertex_id >> params.band_power);
|
|
|
|
float y_angle =
|
|
float((p_vertex_id & params.band_mask) >> 1) + ((p_vertex_id >> params.band_power) * params.sections_in_band);
|
|
|
|
x_angle *= params.section_arc * 0.5f; // remember - 180AA x rot not 360
|
|
y_angle *= -params.section_arc;
|
|
|
|
vec3 point = vec3(sin(x_angle) * sin(y_angle), cos(x_angle), sin(x_angle) * cos(y_angle));
|
|
|
|
return point;
|
|
}
|
|
|
|
#ifdef MODE_PROBES
|
|
|
|
layout(location = 0) out vec3 normal_interp;
|
|
layout(location = 1) out flat uint probe_index;
|
|
|
|
#endif
|
|
|
|
#ifdef MODE_VISIBILITY
|
|
|
|
layout(location = 0) out float visibility;
|
|
|
|
#endif
|
|
|
|
struct CascadeData {
|
|
vec3 offset; //offset of (0,0,0) in world coordinates
|
|
float to_cell; // 1/bounds * grid_size
|
|
ivec3 probe_world_offset;
|
|
uint pad;
|
|
};
|
|
|
|
layout(set = 0, binding = 1, std140) uniform Cascades {
|
|
CascadeData data[MAX_CASCADES];
|
|
}
|
|
cascades;
|
|
|
|
layout(set = 0, binding = 4) uniform texture3D occlusion_texture;
|
|
layout(set = 0, binding = 3) uniform sampler linear_sampler;
|
|
|
|
void main() {
|
|
#ifdef MODE_PROBES
|
|
probe_index = gl_InstanceIndex;
|
|
|
|
normal_interp = get_sphere_vertex(gl_VertexIndex);
|
|
|
|
vec3 vertex = normal_interp * 0.2;
|
|
|
|
float probe_cell_size = float(params.grid_size / float(params.probe_axis_size - 1)) / cascades.data[params.cascade].to_cell;
|
|
|
|
ivec3 probe_cell;
|
|
probe_cell.x = int(probe_index % params.probe_axis_size);
|
|
probe_cell.y = int(probe_index / (params.probe_axis_size * params.probe_axis_size));
|
|
probe_cell.z = int((probe_index / params.probe_axis_size) % params.probe_axis_size);
|
|
|
|
vertex += (cascades.data[params.cascade].offset + vec3(probe_cell) * probe_cell_size) / vec3(1.0, params.y_mult, 1.0);
|
|
|
|
gl_Position = params.projection * vec4(vertex, 1.0);
|
|
#endif
|
|
|
|
#ifdef MODE_VISIBILITY
|
|
|
|
int probe_index = int(params.probe_debug_index);
|
|
|
|
vec3 vertex = get_sphere_vertex(gl_VertexIndex) * 0.01;
|
|
|
|
float probe_cell_size = float(params.grid_size / float(params.probe_axis_size - 1)) / cascades.data[params.cascade].to_cell;
|
|
|
|
ivec3 probe_cell;
|
|
probe_cell.x = int(probe_index % params.probe_axis_size);
|
|
probe_cell.y = int((probe_index % (params.probe_axis_size * params.probe_axis_size)) / params.probe_axis_size);
|
|
probe_cell.z = int(probe_index / (params.probe_axis_size * params.probe_axis_size));
|
|
|
|
vertex += (cascades.data[params.cascade].offset + vec3(probe_cell) * probe_cell_size) / vec3(1.0, params.y_mult, 1.0);
|
|
|
|
int probe_voxels = int(params.grid_size.x) / int(params.probe_axis_size - 1);
|
|
int occluder_index = int(gl_InstanceIndex);
|
|
|
|
int diameter = probe_voxels * 2;
|
|
ivec3 occluder_pos;
|
|
occluder_pos.x = int(occluder_index % diameter);
|
|
occluder_pos.y = int(occluder_index / (diameter * diameter));
|
|
occluder_pos.z = int((occluder_index / diameter) % diameter);
|
|
|
|
float cell_size = 1.0 / cascades.data[params.cascade].to_cell;
|
|
|
|
ivec3 occluder_offset = occluder_pos - ivec3(diameter / 2);
|
|
vertex += ((vec3(occluder_offset) + vec3(0.5)) * cell_size) / vec3(1.0, params.y_mult, 1.0);
|
|
|
|
ivec3 global_cell = probe_cell + cascades.data[params.cascade].probe_world_offset;
|
|
uint occlusion_layer = 0;
|
|
if ((global_cell.x & 1) != 0) {
|
|
occlusion_layer |= 1;
|
|
}
|
|
if ((global_cell.y & 1) != 0) {
|
|
occlusion_layer |= 2;
|
|
}
|
|
if ((global_cell.z & 1) != 0) {
|
|
occlusion_layer |= 4;
|
|
}
|
|
ivec3 tex_pos = probe_cell * probe_voxels + occluder_offset;
|
|
|
|
const vec4 layer_axis[4] = vec4[](
|
|
vec4(1, 0, 0, 0),
|
|
vec4(0, 1, 0, 0),
|
|
vec4(0, 0, 1, 0),
|
|
vec4(0, 0, 0, 1));
|
|
|
|
tex_pos.z += int(params.cascade) * int(params.grid_size);
|
|
if (occlusion_layer >= 4) {
|
|
tex_pos.x += int(params.grid_size.x);
|
|
occlusion_layer &= 3;
|
|
}
|
|
|
|
visibility = dot(texelFetch(sampler3D(occlusion_texture, linear_sampler), tex_pos, 0), layer_axis[occlusion_layer]);
|
|
|
|
gl_Position = params.projection * vec4(vertex, 1.0);
|
|
|
|
#endif
|
|
}
|
|
|
|
#[fragment]
|
|
|
|
#version 450
|
|
|
|
VERSION_DEFINES
|
|
|
|
layout(location = 0) out vec4 frag_color;
|
|
|
|
layout(set = 0, binding = 2) uniform texture2DArray lightprobe_texture;
|
|
layout(set = 0, binding = 3) uniform sampler linear_sampler;
|
|
|
|
layout(push_constant, binding = 0, std430) uniform Params {
|
|
mat4 projection;
|
|
|
|
uint band_power;
|
|
uint sections_in_band;
|
|
uint band_mask;
|
|
float section_arc;
|
|
|
|
vec3 grid_size;
|
|
uint cascade;
|
|
|
|
uint pad;
|
|
float y_mult;
|
|
uint probe_debug_index;
|
|
int probe_axis_size;
|
|
}
|
|
params;
|
|
|
|
#ifdef MODE_PROBES
|
|
|
|
layout(location = 0) in vec3 normal_interp;
|
|
layout(location = 1) in flat uint probe_index;
|
|
|
|
#endif
|
|
|
|
#ifdef MODE_VISIBILITY
|
|
layout(location = 0) in float visibility;
|
|
#endif
|
|
|
|
vec2 octahedron_wrap(vec2 v) {
|
|
vec2 signVal;
|
|
signVal.x = v.x >= 0.0 ? 1.0 : -1.0;
|
|
signVal.y = v.y >= 0.0 ? 1.0 : -1.0;
|
|
return (1.0 - abs(v.yx)) * signVal;
|
|
}
|
|
|
|
vec2 octahedron_encode(vec3 n) {
|
|
// https://twitter.com/Stubbesaurus/status/937994790553227264
|
|
n /= (abs(n.x) + abs(n.y) + abs(n.z));
|
|
n.xy = n.z >= 0.0 ? n.xy : octahedron_wrap(n.xy);
|
|
n.xy = n.xy * 0.5 + 0.5;
|
|
return n.xy;
|
|
}
|
|
|
|
void main() {
|
|
#ifdef MODE_PROBES
|
|
|
|
ivec3 tex_pos;
|
|
tex_pos.x = int(probe_index) % params.probe_axis_size; //x
|
|
tex_pos.y = int(probe_index) / (params.probe_axis_size * params.probe_axis_size);
|
|
tex_pos.x += params.probe_axis_size * ((int(probe_index) / params.probe_axis_size) % params.probe_axis_size); //z
|
|
tex_pos.z = int(params.cascade);
|
|
|
|
vec3 tex_pos_ofs = vec3(octahedron_encode(normal_interp) * float(OCT_SIZE), 0.0);
|
|
vec3 tex_posf = vec3(vec2(tex_pos.xy * (OCT_SIZE + 2) + ivec2(1)), float(tex_pos.z)) + tex_pos_ofs;
|
|
|
|
tex_posf.xy /= vec2(ivec2(params.probe_axis_size * params.probe_axis_size * (OCT_SIZE + 2), params.probe_axis_size * (OCT_SIZE + 2)));
|
|
|
|
vec4 indirect_light = textureLod(sampler2DArray(lightprobe_texture, linear_sampler), tex_posf, 0.0);
|
|
|
|
frag_color = indirect_light;
|
|
|
|
#endif
|
|
|
|
#ifdef MODE_VISIBILITY
|
|
|
|
frag_color = vec4(vec3(1, visibility, visibility), 1.0);
|
|
#endif
|
|
}
|