virtualx-engine/thirdparty/embree/kernels/geometry/curve_intersector_sweep.h
2022-11-25 13:09:04 +01:00

364 lines
15 KiB
C++

// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "../common/ray.h"
#include "cylinder.h"
#include "plane.h"
#include "line_intersector.h"
#include "curve_intersector_precalculations.h"
namespace embree
{
namespace isa
{
static const size_t numJacobianIterations = 5;
#if defined(__AVX__)
static const size_t numBezierSubdivisions = 2;
#else
static const size_t numBezierSubdivisions = 3;
#endif
struct BezierCurveHit
{
__forceinline BezierCurveHit() {}
__forceinline BezierCurveHit(const float t, const float u, const Vec3fa& Ng)
: t(t), u(u), v(0.0f), Ng(Ng) {}
__forceinline BezierCurveHit(const float t, const float u, const float v, const Vec3fa& Ng)
: t(t), u(u), v(v), Ng(Ng) {}
__forceinline void finalize() {}
public:
float t;
float u;
float v;
Vec3fa Ng;
};
template<typename NativeCurve3ff, typename Ray, typename Epilog>
__forceinline bool intersect_bezier_iterative_debug(const Ray& ray, const float dt, const NativeCurve3ff& curve, size_t i,
const vfloatx& u, const BBox<vfloatx>& tp, const BBox<vfloatx>& h0, const BBox<vfloatx>& h1,
const Vec3vfx& Ng, const Vec4vfx& dP0du, const Vec4vfx& dP3du,
const Epilog& epilog)
{
if (tp.lower[i]+dt > ray.tfar) return false;
Vec3fa Ng_o = Vec3fa(Ng.x[i],Ng.y[i],Ng.z[i]);
if (h0.lower[i] == tp.lower[i]) Ng_o = -Vec3fa(dP0du.x[i],dP0du.y[i],dP0du.z[i]);
if (h1.lower[i] == tp.lower[i]) Ng_o = +Vec3fa(dP3du.x[i],dP3du.y[i],dP3du.z[i]);
BezierCurveHit hit(tp.lower[i]+dt,u[i],Ng_o);
return epilog(hit);
}
template<typename NativeCurve3ff, typename Ray, typename Epilog>
__forceinline bool intersect_bezier_iterative_jacobian(const Ray& ray, const float dt, const NativeCurve3ff& curve, float u, float t, const Epilog& epilog)
{
const Vec3fa org = zero;
const Vec3fa dir = ray.dir;
const float length_ray_dir = length(dir);
/* error of curve evaluations is proportional to largest coordinate */
const BBox3ff box = curve.bounds();
const float P_err = 16.0f*float(ulp)*reduce_max(max(abs(box.lower),abs(box.upper)));
for (size_t i=0; i<numJacobianIterations; i++)
{
const Vec3fa Q = madd(Vec3fa(t),dir,org);
//const Vec3fa dQdu = zero;
const Vec3fa dQdt = dir;
const float Q_err = 16.0f*float(ulp)*length_ray_dir*t; // works as org=zero here
Vec3ff P,dPdu,ddPdu; curve.eval(u,P,dPdu,ddPdu);
//const Vec3fa dPdt = zero;
const Vec3fa R = Q-P;
const float len_R = length(R); //reduce_max(abs(R));
const float R_err = max(Q_err,P_err);
const Vec3fa dRdu = /*dQdu*/-dPdu;
const Vec3fa dRdt = dQdt;//-dPdt;
const Vec3fa T = normalize(dPdu);
const Vec3fa dTdu = dnormalize(dPdu,ddPdu);
//const Vec3fa dTdt = zero;
const float cos_err = P_err/length(dPdu);
/* Error estimate for dot(R,T):
dot(R,T) = cos(R,T) |R| |T|
= (cos(R,T) +- cos_error) * (|R| +- |R|_err) * (|T| +- |T|_err)
= cos(R,T)*|R|*|T|
+- cos(R,T)*(|R|*|T|_err + |T|*|R|_err)
+- cos_error*(|R| + |T|)
+- lower order terms
with cos(R,T) being in [0,1] and |T| = 1 we get:
dot(R,T)_err = |R|*|T|_err + |R|_err = cos_error*(|R|+1)
*/
const float f = dot(R,T);
const float f_err = len_R*P_err + R_err + cos_err*(1.0f+len_R);
const float dfdu = dot(dRdu,T) + dot(R,dTdu);
const float dfdt = dot(dRdt,T);// + dot(R,dTdt);
const float K = dot(R,R)-sqr(f);
const float dKdu = /*2.0f*/(dot(R,dRdu)-f*dfdu);
const float dKdt = /*2.0f*/(dot(R,dRdt)-f*dfdt);
const float rsqrt_K = rsqrt(K);
const float g = sqrt(K)-P.w;
const float g_err = R_err + f_err + 16.0f*float(ulp)*box.upper.w;
const float dgdu = /*0.5f*/dKdu*rsqrt_K-dPdu.w;
const float dgdt = /*0.5f*/dKdt*rsqrt_K;//-dPdt.w;
const LinearSpace2f J = LinearSpace2f(dfdu,dfdt,dgdu,dgdt);
const Vec2f dut = rcp(J)*Vec2f(f,g);
const Vec2f ut = Vec2f(u,t) - dut;
u = ut.x; t = ut.y;
if (abs(f) < f_err && abs(g) < g_err)
{
t+=dt;
if (!(ray.tnear() <= t && t <= ray.tfar)) return false; // rejects NaNs
if (!(u >= 0.0f && u <= 1.0f)) return false; // rejects NaNs
const Vec3fa R = normalize(Q-P);
const Vec3fa U = madd(Vec3fa(dPdu.w),R,dPdu);
const Vec3fa V = cross(dPdu,R);
BezierCurveHit hit(t,u,cross(V,U));
return epilog(hit);
}
}
return false;
}
template<typename NativeCurve3ff, typename Ray, typename Epilog>
bool intersect_bezier_recursive_jacobian(const Ray& ray, const float dt, const NativeCurve3ff& curve,
float u0, float u1, unsigned int depth, const Epilog& epilog)
{
#if defined(__AVX__)
enum { VSIZEX_ = 8 };
typedef vbool8 vboolx; // maximally 8-wide to work around KNL issues
typedef vint8 vintx;
typedef vfloat8 vfloatx;
#else
enum { VSIZEX_ = 4 };
typedef vbool4 vboolx;
typedef vint4 vintx;
typedef vfloat4 vfloatx;
#endif
typedef Vec3<vfloatx> Vec3vfx;
typedef Vec4<vfloatx> Vec4vfx;
unsigned int maxDepth = numBezierSubdivisions;
bool found = false;
const Vec3fa org = zero;
const Vec3fa dir = ray.dir;
unsigned int sptr = 0;
const unsigned int stack_size = numBezierSubdivisions+1; // +1 because of unstable workaround below
struct StackEntry {
vboolx valid;
vfloatx tlower;
float u0;
float u1;
unsigned int depth;
};
StackEntry stack[stack_size];
goto entry;
/* terminate if stack is empty */
while (sptr)
{
/* pop from stack */
{
sptr--;
vboolx valid = stack[sptr].valid;
const vfloatx tlower = stack[sptr].tlower;
valid &= tlower+dt <= ray.tfar;
if (none(valid)) continue;
u0 = stack[sptr].u0;
u1 = stack[sptr].u1;
depth = stack[sptr].depth;
const size_t i = select_min(valid,tlower); clear(valid,i);
stack[sptr].valid = valid;
if (any(valid)) sptr++; // there are still items on the stack
/* process next segment */
const vfloatx vu0 = lerp(u0,u1,vfloatx(step)*(1.0f/(vfloatx::size-1)));
u0 = vu0[i+0];
u1 = vu0[i+1];
}
entry:
/* subdivide curve */
const float dscale = (u1-u0)*(1.0f/(3.0f*(vfloatx::size-1)));
const vfloatx vu0 = lerp(u0,u1,vfloatx(step)*(1.0f/(vfloatx::size-1)));
Vec4vfx P0, dP0du; curve.template veval<VSIZEX_>(vu0,P0,dP0du); dP0du = dP0du * Vec4vfx(dscale);
const Vec4vfx P3 = shift_right_1(P0);
const Vec4vfx dP3du = shift_right_1(dP0du);
const Vec4vfx P1 = P0 + dP0du;
const Vec4vfx P2 = P3 - dP3du;
/* calculate bounding cylinders */
const vfloatx rr1 = sqr_point_to_line_distance(Vec3vfx(dP0du),Vec3vfx(P3-P0));
const vfloatx rr2 = sqr_point_to_line_distance(Vec3vfx(dP3du),Vec3vfx(P3-P0));
const vfloatx maxr12 = sqrt(max(rr1,rr2));
const vfloatx one_plus_ulp = 1.0f+2.0f*float(ulp);
const vfloatx one_minus_ulp = 1.0f-2.0f*float(ulp);
vfloatx r_outer = max(P0.w,P1.w,P2.w,P3.w)+maxr12;
vfloatx r_inner = min(P0.w,P1.w,P2.w,P3.w)-maxr12;
r_outer = one_plus_ulp*r_outer;
r_inner = max(0.0f,one_minus_ulp*r_inner);
const CylinderN<vfloatx::size> cylinder_outer(Vec3vfx(P0),Vec3vfx(P3),r_outer);
const CylinderN<vfloatx::size> cylinder_inner(Vec3vfx(P0),Vec3vfx(P3),r_inner);
vboolx valid = true; clear(valid,vfloatx::size-1);
/* intersect with outer cylinder */
BBox<vfloatx> tc_outer; vfloatx u_outer0; Vec3vfx Ng_outer0; vfloatx u_outer1; Vec3vfx Ng_outer1;
valid &= cylinder_outer.intersect(org,dir,tc_outer,u_outer0,Ng_outer0,u_outer1,Ng_outer1);
if (none(valid)) continue;
/* intersect with cap-planes */
BBox<vfloatx> tp(ray.tnear()-dt,ray.tfar-dt);
tp = embree::intersect(tp,tc_outer);
BBox<vfloatx> h0 = HalfPlaneN<vfloatx::size>(Vec3vfx(P0),+Vec3vfx(dP0du)).intersect(org,dir);
tp = embree::intersect(tp,h0);
BBox<vfloatx> h1 = HalfPlaneN<vfloatx::size>(Vec3vfx(P3),-Vec3vfx(dP3du)).intersect(org,dir);
tp = embree::intersect(tp,h1);
valid &= tp.lower <= tp.upper;
if (none(valid)) continue;
/* clamp and correct u parameter */
u_outer0 = clamp(u_outer0,vfloatx(0.0f),vfloatx(1.0f));
u_outer1 = clamp(u_outer1,vfloatx(0.0f),vfloatx(1.0f));
u_outer0 = lerp(u0,u1,(vfloatx(step)+u_outer0)*(1.0f/float(vfloatx::size)));
u_outer1 = lerp(u0,u1,(vfloatx(step)+u_outer1)*(1.0f/float(vfloatx::size)));
/* intersect with inner cylinder */
BBox<vfloatx> tc_inner;
vfloatx u_inner0 = zero; Vec3vfx Ng_inner0 = zero; vfloatx u_inner1 = zero; Vec3vfx Ng_inner1 = zero;
const vboolx valid_inner = cylinder_inner.intersect(org,dir,tc_inner,u_inner0,Ng_inner0,u_inner1,Ng_inner1);
/* at the unstable area we subdivide deeper */
const vboolx unstable0 = (!valid_inner) | (abs(dot(Vec3vfx(Vec3fa(ray.dir)),Ng_inner0)) < 0.3f);
const vboolx unstable1 = (!valid_inner) | (abs(dot(Vec3vfx(Vec3fa(ray.dir)),Ng_inner1)) < 0.3f);
/* subtract the inner interval from the current hit interval */
BBox<vfloatx> tp0, tp1;
subtract(tp,tc_inner,tp0,tp1);
vboolx valid0 = valid & (tp0.lower <= tp0.upper);
vboolx valid1 = valid & (tp1.lower <= tp1.upper);
if (none(valid0 | valid1)) continue;
/* iterate over all first hits front to back */
const vintx termDepth0 = select(unstable0,vintx(maxDepth+1),vintx(maxDepth));
vboolx recursion_valid0 = valid0 & (depth < termDepth0);
valid0 &= depth >= termDepth0;
while (any(valid0))
{
const size_t i = select_min(valid0,tp0.lower); clear(valid0,i);
found = found | intersect_bezier_iterative_jacobian(ray,dt,curve,u_outer0[i],tp0.lower[i],epilog);
//found = found | intersect_bezier_iterative_debug (ray,dt,curve,i,u_outer0,tp0,h0,h1,Ng_outer0,dP0du,dP3du,epilog);
valid0 &= tp0.lower+dt <= ray.tfar;
}
valid1 &= tp1.lower+dt <= ray.tfar;
/* iterate over all second hits front to back */
const vintx termDepth1 = select(unstable1,vintx(maxDepth+1),vintx(maxDepth));
vboolx recursion_valid1 = valid1 & (depth < termDepth1);
valid1 &= depth >= termDepth1;
while (any(valid1))
{
const size_t i = select_min(valid1,tp1.lower); clear(valid1,i);
found = found | intersect_bezier_iterative_jacobian(ray,dt,curve,u_outer1[i],tp1.upper[i],epilog);
//found = found | intersect_bezier_iterative_debug (ray,dt,curve,i,u_outer1,tp1,h0,h1,Ng_outer1,dP0du,dP3du,epilog);
valid1 &= tp1.lower+dt <= ray.tfar;
}
/* push valid segments to stack */
recursion_valid0 &= tp0.lower+dt <= ray.tfar;
recursion_valid1 &= tp1.lower+dt <= ray.tfar;
const vboolx recursion_valid = recursion_valid0 | recursion_valid1;
if (any(recursion_valid))
{
assert(sptr < stack_size);
stack[sptr].valid = recursion_valid;
stack[sptr].tlower = select(recursion_valid0,tp0.lower,tp1.lower);
stack[sptr].u0 = u0;
stack[sptr].u1 = u1;
stack[sptr].depth = depth+1;
sptr++;
}
}
return found;
}
template<template<typename Ty> class NativeCurve>
struct SweepCurve1Intersector1
{
typedef NativeCurve<Vec3ff> NativeCurve3ff;
template<typename Epilog>
__noinline bool intersect(const CurvePrecalculations1& pre, Ray& ray,
IntersectContext* context,
const CurveGeometry* geom, const unsigned int primID,
const Vec3ff& v0, const Vec3ff& v1, const Vec3ff& v2, const Vec3ff& v3,
const Epilog& epilog)
{
STAT3(normal.trav_prims,1,1,1);
/* move ray closer to make intersection stable */
NativeCurve3ff curve0(v0,v1,v2,v3);
curve0 = enlargeRadiusToMinWidth(context,geom,ray.org,curve0);
const float dt = dot(curve0.center()-ray.org,ray.dir)*rcp(dot(ray.dir,ray.dir));
const Vec3ff ref(madd(Vec3fa(dt),ray.dir,ray.org),0.0f);
const NativeCurve3ff curve1 = curve0-ref;
return intersect_bezier_recursive_jacobian(ray,dt,curve1,0.0f,1.0f,1,epilog);
}
};
template<template<typename Ty> class NativeCurve, int K>
struct SweepCurve1IntersectorK
{
typedef NativeCurve<Vec3ff> NativeCurve3ff;
struct Ray1
{
__forceinline Ray1(RayK<K>& ray, size_t k)
: org(ray.org.x[k],ray.org.y[k],ray.org.z[k]), dir(ray.dir.x[k],ray.dir.y[k],ray.dir.z[k]), _tnear(ray.tnear()[k]), tfar(ray.tfar[k]) {}
Vec3fa org;
Vec3fa dir;
float _tnear;
float& tfar;
__forceinline float& tnear() { return _tnear; }
//__forceinline float& tfar() { return _tfar; }
__forceinline const float& tnear() const { return _tnear; }
//__forceinline const float& tfar() const { return _tfar; }
};
template<typename Epilog>
__forceinline bool intersect(const CurvePrecalculationsK<K>& pre, RayK<K>& vray, size_t k,
IntersectContext* context,
const CurveGeometry* geom, const unsigned int primID,
const Vec3ff& v0, const Vec3ff& v1, const Vec3ff& v2, const Vec3ff& v3,
const Epilog& epilog)
{
STAT3(normal.trav_prims,1,1,1);
Ray1 ray(vray,k);
/* move ray closer to make intersection stable */
NativeCurve3ff curve0(v0,v1,v2,v3);
curve0 = enlargeRadiusToMinWidth(context,geom,ray.org,curve0);
const float dt = dot(curve0.center()-ray.org,ray.dir)*rcp(dot(ray.dir,ray.dir));
const Vec3ff ref(madd(Vec3fa(dt),ray.dir,ray.org),0.0f);
const NativeCurve3ff curve1 = curve0-ref;
return intersect_bezier_recursive_jacobian(ray,dt,curve1,0.0f,1.0f,1,epilog);
}
};
}
}