virtualx-engine/modules/navigation/nav_map.cpp

756 lines
26 KiB
C++

/*************************************************************************/
/* nav_map.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "nav_map.h"
#include "nav_region.h"
#include "rvo_agent.h"
#include <algorithm>
#define THREE_POINTS_CROSS_PRODUCT(m_a, m_b, m_c) (((m_c) - (m_a)).cross((m_b) - (m_a)))
void NavMap::set_up(Vector3 p_up) {
up = p_up;
regenerate_polygons = true;
}
void NavMap::set_cell_size(float p_cell_size) {
cell_size = p_cell_size;
regenerate_polygons = true;
}
void NavMap::set_cell_height(float p_cell_height) {
cell_height = p_cell_height;
regenerate_polygons = true;
}
void NavMap::set_edge_connection_margin(float p_edge_connection_margin) {
edge_connection_margin = p_edge_connection_margin;
regenerate_links = true;
}
gd::PointKey NavMap::get_point_key(const Vector3 &p_pos) const {
const int x = static_cast<int>(Math::round(p_pos.x / cell_size));
const int y = static_cast<int>(Math::round(p_pos.y / cell_height));
const int z = static_cast<int>(Math::round(p_pos.z / cell_size));
gd::PointKey p;
p.key = 0;
p.x = x;
p.y = y;
p.z = z;
return p;
}
Vector<Vector3> NavMap::get_path(Vector3 p_origin, Vector3 p_destination, bool p_optimize, uint32_t p_navigation_layers) const {
// Find the start poly and the end poly on this map.
const gd::Polygon *begin_poly = nullptr;
const gd::Polygon *end_poly = nullptr;
Vector3 begin_point;
Vector3 end_point;
float begin_d = 1e20;
float end_d = 1e20;
// Find the initial poly and the end poly on this map.
for (size_t i(0); i < polygons.size(); i++) {
const gd::Polygon &p = polygons[i];
// Only consider the polygon if it in a region with compatible layers.
if ((p_navigation_layers & p.owner->get_navigation_layers()) == 0) {
continue;
}
// For each face check the distance between the origin/destination
for (size_t point_id = 2; point_id < p.points.size(); point_id++) {
const Face3 face(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
Vector3 point = face.get_closest_point_to(p_origin);
float distance_to_point = point.distance_to(p_origin);
if (distance_to_point < begin_d) {
begin_d = distance_to_point;
begin_poly = &p;
begin_point = point;
}
point = face.get_closest_point_to(p_destination);
distance_to_point = point.distance_to(p_destination);
if (distance_to_point < end_d) {
end_d = distance_to_point;
end_poly = &p;
end_point = point;
}
}
}
// Check for trivial cases
if (!begin_poly || !end_poly) {
return Vector<Vector3>();
}
if (begin_poly == end_poly) {
Vector<Vector3> path;
path.resize(2);
path.write[0] = begin_point;
path.write[1] = end_point;
return path;
}
// List of all reachable navigation polys.
LocalVector<gd::NavigationPoly> navigation_polys;
navigation_polys.reserve(polygons.size() * 0.75);
// Add the start polygon to the reachable navigation polygons.
gd::NavigationPoly begin_navigation_poly = gd::NavigationPoly(begin_poly);
begin_navigation_poly.self_id = 0;
begin_navigation_poly.entry = begin_point;
begin_navigation_poly.back_navigation_edge_pathway_start = begin_point;
begin_navigation_poly.back_navigation_edge_pathway_end = begin_point;
navigation_polys.push_back(begin_navigation_poly);
// List of polygon IDs to visit.
List<uint32_t> to_visit;
to_visit.push_back(0);
// This is an implementation of the A* algorithm.
int least_cost_id = 0;
bool found_route = false;
const gd::Polygon *reachable_end = nullptr;
float reachable_d = 1e30;
bool is_reachable = true;
gd::NavigationPoly *prev_least_cost_poly = nullptr;
while (true) {
// Takes the current least_cost_poly neighbors (iterating over its edges) and compute the traveled_distance.
for (size_t i = 0; i < navigation_polys[least_cost_id].poly->edges.size(); i++) {
gd::NavigationPoly *least_cost_poly = &navigation_polys[least_cost_id];
const gd::Edge &edge = least_cost_poly->poly->edges[i];
// Iterate over connections in this edge, then compute the new optimized travel distance assigned to this polygon.
for (int connection_index = 0; connection_index < edge.connections.size(); connection_index++) {
const gd::Edge::Connection &connection = edge.connections[connection_index];
// Only consider the connection to another polygon if this polygon is in a region with compatible layers.
if ((p_navigation_layers & connection.polygon->owner->get_navigation_layers()) == 0) {
continue;
}
float region_enter_cost = 0.0;
float region_travel_cost = least_cost_poly->poly->owner->get_travel_cost();
if (prev_least_cost_poly != nullptr && !(prev_least_cost_poly->poly->owner->get_self() == least_cost_poly->poly->owner->get_self())) {
region_enter_cost = least_cost_poly->poly->owner->get_enter_cost();
}
prev_least_cost_poly = least_cost_poly;
Vector3 pathway[2] = { connection.pathway_start, connection.pathway_end };
const Vector3 new_entry = Geometry::get_closest_point_to_segment(least_cost_poly->entry, pathway);
const float new_distance = (least_cost_poly->entry.distance_to(new_entry) * region_travel_cost) + region_enter_cost + least_cost_poly->traveled_distance;
int64_t already_visited_polygon_index = navigation_polys.find(gd::NavigationPoly(connection.polygon));
if (already_visited_polygon_index != -1) {
// Polygon already visited, check if we can reduce the travel cost.
gd::NavigationPoly &avp = navigation_polys[already_visited_polygon_index];
if (new_distance < avp.traveled_distance) {
avp.back_navigation_poly_id = least_cost_id;
avp.back_navigation_edge = connection.edge;
avp.back_navigation_edge_pathway_start = connection.pathway_start;
avp.back_navigation_edge_pathway_end = connection.pathway_end;
avp.traveled_distance = new_distance;
avp.entry = new_entry;
}
} else {
// Add the neighbour polygon to the reachable ones.
gd::NavigationPoly new_navigation_poly = gd::NavigationPoly(connection.polygon);
new_navigation_poly.self_id = navigation_polys.size();
new_navigation_poly.back_navigation_poly_id = least_cost_id;
new_navigation_poly.back_navigation_edge = connection.edge;
new_navigation_poly.back_navigation_edge_pathway_start = connection.pathway_start;
new_navigation_poly.back_navigation_edge_pathway_end = connection.pathway_end;
new_navigation_poly.traveled_distance = new_distance;
new_navigation_poly.entry = new_entry;
navigation_polys.push_back(new_navigation_poly);
// Add the neighbour polygon to the polygons to visit.
to_visit.push_back(navigation_polys.size() - 1);
}
}
}
// Removes the least cost polygon from the list of polygons to visit so we can advance.
to_visit.erase(least_cost_id);
// When the list of polygons to visit is empty at this point it means the End Polygon is not reachable
if (to_visit.size() == 0) {
// Thus use the further reachable polygon
ERR_BREAK_MSG(is_reachable == false, "It's not expect to not find the most reachable polygons");
is_reachable = false;
if (reachable_end == nullptr) {
// The path is not found and there is not a way out.
break;
}
// Set as end point the furthest reachable point.
end_poly = reachable_end;
end_d = 1e20;
for (size_t point_id = 2; point_id < end_poly->points.size(); point_id++) {
Face3 f(end_poly->points[0].pos, end_poly->points[point_id - 1].pos, end_poly->points[point_id].pos);
Vector3 spoint = f.get_closest_point_to(p_destination);
float dpoint = spoint.distance_to(p_destination);
if (dpoint < end_d) {
end_point = spoint;
end_d = dpoint;
}
}
// Reset open and navigation_polys
gd::NavigationPoly np = navigation_polys[0];
navigation_polys.clear();
navigation_polys.push_back(np);
to_visit.clear();
to_visit.push_back(0);
least_cost_id = 0;
reachable_end = nullptr;
continue;
}
// Find the polygon with the minimum cost from the list of polygons to visit.
least_cost_id = -1;
float least_cost = 1e30;
for (List<uint32_t>::Element *element = to_visit.front(); element != nullptr; element = element->next()) {
gd::NavigationPoly *np = &navigation_polys[element->get()];
float cost = np->traveled_distance;
cost += (np->entry.distance_to(end_point) * np->poly->owner->get_travel_cost());
if (cost < least_cost) {
least_cost_id = np->self_id;
least_cost = cost;
}
}
ERR_BREAK(least_cost_id == -1);
// Stores the further reachable end polygon, in case our goal is not reachable.
if (is_reachable) {
float d = navigation_polys[least_cost_id].entry.distance_to(p_destination) * navigation_polys[least_cost_id].poly->owner->get_travel_cost();
if (reachable_d > d) {
reachable_d = d;
reachable_end = navigation_polys[least_cost_id].poly;
}
}
// Check if we reached the end
if (navigation_polys[least_cost_id].poly == end_poly) {
found_route = true;
break;
}
}
// If we did not find a route, return an empty path.
if (!found_route) {
return Vector<Vector3>();
}
Vector<Vector3> path;
// Optimize the path.
if (p_optimize) {
// Set the apex poly/point to the end point
gd::NavigationPoly *apex_poly = &navigation_polys[least_cost_id];
Vector3 apex_point = end_point;
gd::NavigationPoly *left_poly = apex_poly;
Vector3 left_portal = apex_point;
gd::NavigationPoly *right_poly = apex_poly;
Vector3 right_portal = apex_point;
gd::NavigationPoly *p = apex_poly;
path.push_back(end_point);
while (p) {
// Set left and right points of the pathway between polygons.
Vector3 left = p->back_navigation_edge_pathway_start;
Vector3 right = p->back_navigation_edge_pathway_end;
if (THREE_POINTS_CROSS_PRODUCT(apex_point, left, right).dot(up) < 0) {
SWAP(left, right);
}
bool skip = false;
if (THREE_POINTS_CROSS_PRODUCT(apex_point, left_portal, left).dot(up) >= 0) {
//process
if (left_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, left, right_portal).dot(up) > 0) {
left_poly = p;
left_portal = left;
} else {
clip_path(navigation_polys, path, apex_poly, right_portal, right_poly);
apex_point = right_portal;
p = right_poly;
left_poly = p;
apex_poly = p;
left_portal = apex_point;
right_portal = apex_point;
path.push_back(apex_point);
skip = true;
}
}
if (!skip && THREE_POINTS_CROSS_PRODUCT(apex_point, right_portal, right).dot(up) <= 0) {
//process
if (right_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, right, left_portal).dot(up) < 0) {
right_poly = p;
right_portal = right;
} else {
clip_path(navigation_polys, path, apex_poly, left_portal, left_poly);
apex_point = left_portal;
p = left_poly;
right_poly = p;
apex_poly = p;
right_portal = apex_point;
left_portal = apex_point;
path.push_back(apex_point);
}
}
// Go to the previous polygon.
if (p->back_navigation_poly_id != -1) {
p = &navigation_polys[p->back_navigation_poly_id];
} else {
// The end
p = nullptr;
}
}
// If the last point is not the begin point, add it to the list.
if (path[path.size() - 1] != begin_point) {
path.push_back(begin_point);
}
path.invert();
} else {
path.push_back(end_point);
// Add mid points
int np_id = least_cost_id;
while (np_id != -1 && navigation_polys[np_id].back_navigation_poly_id != -1) {
int prev = navigation_polys[np_id].back_navigation_edge;
int prev_n = (navigation_polys[np_id].back_navigation_edge + 1) % navigation_polys[np_id].poly->points.size();
Vector3 point = (navigation_polys[np_id].poly->points[prev].pos + navigation_polys[np_id].poly->points[prev_n].pos) * 0.5;
path.push_back(point);
np_id = navigation_polys[np_id].back_navigation_poly_id;
}
path.push_back(begin_point);
path.invert();
}
return path;
}
Vector3 NavMap::get_closest_point_to_segment(const Vector3 &p_from, const Vector3 &p_to, const bool p_use_collision) const {
bool use_collision = p_use_collision;
Vector3 closest_point;
real_t closest_point_d = 1e20;
for (size_t i(0); i < polygons.size(); i++) {
const gd::Polygon &p = polygons[i];
// For each face check the distance to the segment
for (size_t point_id = 2; point_id < p.points.size(); point_id += 1) {
const Face3 f(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
Vector3 inters;
if (f.intersects_segment(p_from, p_to, &inters)) {
const real_t d = closest_point_d = p_from.distance_to(inters);
if (use_collision == false) {
closest_point = inters;
use_collision = true;
closest_point_d = d;
} else if (closest_point_d > d) {
closest_point = inters;
closest_point_d = d;
}
}
}
if (use_collision == false) {
for (size_t point_id = 0; point_id < p.points.size(); point_id += 1) {
Vector3 a, b;
Geometry::get_closest_points_between_segments(
p_from,
p_to,
p.points[point_id].pos,
p.points[(point_id + 1) % p.points.size()].pos,
a,
b);
const real_t d = a.distance_to(b);
if (d < closest_point_d) {
closest_point_d = d;
closest_point = b;
}
}
}
}
return closest_point;
}
Vector3 NavMap::get_closest_point(const Vector3 &p_point) const {
gd::ClosestPointQueryResult cp = get_closest_point_info(p_point);
return cp.point;
}
Vector3 NavMap::get_closest_point_normal(const Vector3 &p_point) const {
gd::ClosestPointQueryResult cp = get_closest_point_info(p_point);
return cp.normal;
}
RID NavMap::get_closest_point_owner(const Vector3 &p_point) const {
gd::ClosestPointQueryResult cp = get_closest_point_info(p_point);
return cp.owner;
}
gd::ClosestPointQueryResult NavMap::get_closest_point_info(const Vector3 &p_point) const {
gd::ClosestPointQueryResult result;
real_t closest_point_ds = 1e20;
for (size_t i(0); i < polygons.size(); i++) {
const gd::Polygon &p = polygons[i];
// For each face check the distance to the point
for (size_t point_id = 2; point_id < p.points.size(); point_id += 1) {
const Face3 f(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
const Vector3 inters = f.get_closest_point_to(p_point);
const real_t ds = inters.distance_squared_to(p_point);
if (ds < closest_point_ds) {
result.point = inters;
result.normal = f.get_plane().normal;
result.owner = p.owner->get_self();
closest_point_ds = ds;
}
}
}
return result;
}
void NavMap::add_region(NavRegion *p_region) {
regions.push_back(p_region);
regenerate_links = true;
}
void NavMap::remove_region(NavRegion *p_region) {
int64_t region_index = regions.find(p_region);
if (region_index != -1) {
regions.remove_unordered(region_index);
regenerate_links = true;
}
}
bool NavMap::has_agent(RvoAgent *agent) const {
return (agents.find(agent) != -1);
}
void NavMap::add_agent(RvoAgent *agent) {
if (!has_agent(agent)) {
agents.push_back(agent);
agents_dirty = true;
}
}
void NavMap::remove_agent(RvoAgent *agent) {
remove_agent_as_controlled(agent);
int64_t agent_index = agents.find(agent);
if (agent_index != -1) {
agents.remove_unordered(agent_index);
agents_dirty = true;
}
}
void NavMap::set_agent_as_controlled(RvoAgent *agent) {
const bool exist = (controlled_agents.find(agent) != -1);
if (!exist) {
ERR_FAIL_COND(!has_agent(agent));
controlled_agents.push_back(agent);
}
}
void NavMap::remove_agent_as_controlled(RvoAgent *agent) {
int64_t active_avoidance_agent_index = controlled_agents.find(agent);
if (active_avoidance_agent_index != -1) {
controlled_agents.remove_unordered(active_avoidance_agent_index);
agents_dirty = true;
}
}
void NavMap::sync() {
// Check if we need to update the links.
if (regenerate_polygons) {
for (uint32_t r = 0; r < regions.size(); r++) {
regions[r]->scratch_polygons();
}
regenerate_links = true;
}
for (uint32_t r = 0; r < regions.size(); r++) {
if (regions[r]->sync()) {
regenerate_links = true;
}
}
if (regenerate_links) {
// Remove regions connections.
for (uint32_t r = 0; r < regions.size(); r++) {
regions[r]->get_connections().clear();
}
// Resize the polygon count.
int count = 0;
for (uint32_t r = 0; r < regions.size(); r++) {
count += regions[r]->get_polygons().size();
}
polygons.resize(count);
// Copy all region polygons in the map.
count = 0;
for (uint32_t r = 0; r < regions.size(); r++) {
const LocalVector<gd::Polygon> &polygons_source = regions[r]->get_polygons();
for (uint32_t n = 0; n < polygons_source.size(); n++) {
polygons[count + n] = polygons_source[n];
}
count += regions[r]->get_polygons().size();
}
// Group all edges per key.
Map<gd::EdgeKey, Vector<gd::Edge::Connection>> connections;
for (uint32_t poly_id = 0; poly_id < polygons.size(); poly_id++) {
gd::Polygon &poly(polygons[poly_id]);
for (uint32_t p = 0; p < poly.points.size(); p++) {
int next_point = (p + 1) % poly.points.size();
gd::EdgeKey ek(poly.points[p].key, poly.points[next_point].key);
Map<gd::EdgeKey, Vector<gd::Edge::Connection>>::Element *connection = connections.find(ek);
if (!connection) {
connections[ek] = Vector<gd::Edge::Connection>();
}
if (connections[ek].size() <= 1) {
// Add the polygon/edge tuple to this key.
gd::Edge::Connection new_connection;
new_connection.polygon = &poly;
new_connection.edge = p;
new_connection.pathway_start = poly.points[p].pos;
new_connection.pathway_end = poly.points[next_point].pos;
connections[ek].push_back(new_connection);
} else {
// The edge is already connected with another edge, skip.
ERR_PRINT_ONCE("Attempted to merge a navigation mesh triangle edge with another already-merged edge. This happens when the current `cell_size` is different from the one used to generate the navigation mesh. This will cause navigation problems.");
}
}
}
Vector<gd::Edge::Connection> free_edges;
for (Map<gd::EdgeKey, Vector<gd::Edge::Connection>>::Element *E = connections.front(); E; E = E->next()) {
if (E->get().size() == 2) {
// Connect edge that are shared in different polygons.
gd::Edge::Connection &c1 = E->get().write[0];
gd::Edge::Connection &c2 = E->get().write[1];
c1.polygon->edges[c1.edge].connections.push_back(c2);
c2.polygon->edges[c2.edge].connections.push_back(c1);
// Note: The pathway_start/end are full for those connection and do not need to be modified.
} else {
CRASH_COND_MSG(E->get().size() != 1, vformat("Number of connection != 1. Found: %d", E->get().size()));
free_edges.push_back(E->get()[0]);
}
}
// Find the compatible near edges.
//
// Note:
// Considering that the edges must be compatible (for obvious reasons)
// to be connected, create new polygons to remove that small gap is
// not really useful and would result in wasteful computation during
// connection, integration and path finding.
for (int i = 0; i < free_edges.size(); i++) {
const gd::Edge::Connection &free_edge = free_edges[i];
Vector3 edge_p1 = free_edge.polygon->points[free_edge.edge].pos;
Vector3 edge_p2 = free_edge.polygon->points[(free_edge.edge + 1) % free_edge.polygon->points.size()].pos;
for (int j = 0; j < free_edges.size(); j++) {
const gd::Edge::Connection &other_edge = free_edges[j];
if (i == j || free_edge.polygon->owner == other_edge.polygon->owner) {
continue;
}
Vector3 other_edge_p1 = other_edge.polygon->points[other_edge.edge].pos;
Vector3 other_edge_p2 = other_edge.polygon->points[(other_edge.edge + 1) % other_edge.polygon->points.size()].pos;
// Compute the projection of the opposite edge on the current one
Vector3 edge_vector = edge_p2 - edge_p1;
float projected_p1_ratio = edge_vector.dot(other_edge_p1 - edge_p1) / (edge_vector.length_squared());
float projected_p2_ratio = edge_vector.dot(other_edge_p2 - edge_p1) / (edge_vector.length_squared());
if ((projected_p1_ratio < 0.0 && projected_p2_ratio < 0.0) || (projected_p1_ratio > 1.0 && projected_p2_ratio > 1.0)) {
continue;
}
// Check if the two edges are close to each other enough and compute a pathway between the two regions.
Vector3 self1 = edge_vector * CLAMP(projected_p1_ratio, 0.0, 1.0) + edge_p1;
Vector3 other1;
if (projected_p1_ratio >= 0.0 && projected_p1_ratio <= 1.0) {
other1 = other_edge_p1;
} else {
other1 = other_edge_p1.linear_interpolate(other_edge_p2, (1.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio));
}
if (other1.distance_to(self1) > edge_connection_margin) {
continue;
}
Vector3 self2 = edge_vector * CLAMP(projected_p2_ratio, 0.0, 1.0) + edge_p1;
Vector3 other2;
if (projected_p2_ratio >= 0.0 && projected_p2_ratio <= 1.0) {
other2 = other_edge_p2;
} else {
other2 = other_edge_p1.linear_interpolate(other_edge_p2, (0.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio));
}
if (other2.distance_to(self2) > edge_connection_margin) {
continue;
}
// The edges can now be connected.
gd::Edge::Connection new_connection = other_edge;
new_connection.pathway_start = (self1 + other1) / 2.0;
new_connection.pathway_end = (self2 + other2) / 2.0;
free_edge.polygon->edges[free_edge.edge].connections.push_back(new_connection);
// Add the connection to the region_connection map.
free_edge.polygon->owner->get_connections().push_back(new_connection);
}
}
// Update the update ID.
map_update_id = (map_update_id + 1) % 9999999;
}
// Update agents tree.
if (agents_dirty) {
// cannot use LocalVector here as RVO library expects std::vector to build KdTree
std::vector<RVO::Agent *> raw_agents;
raw_agents.reserve(agents.size());
for (size_t i(0); i < agents.size(); i++) {
raw_agents.push_back(agents[i]->get_agent());
}
rvo.buildAgentTree(raw_agents);
}
regenerate_polygons = false;
regenerate_links = false;
agents_dirty = false;
}
void NavMap::compute_single_step(uint32_t index, RvoAgent **agent) {
(*(agent + index))->get_agent()->computeNeighbors(&rvo);
(*(agent + index))->get_agent()->computeNewVelocity(deltatime);
}
void NavMap::step(real_t p_deltatime) {
deltatime = p_deltatime;
if (controlled_agents.size() > 0) {
#ifndef NO_THREADS
if (step_work_pool.get_thread_count() == 0) {
step_work_pool.init();
}
step_work_pool.do_work(
controlled_agents.size(),
this,
&NavMap::compute_single_step,
controlled_agents.ptr());
#else
for (int i(0); i < static_cast<int>(controlled_agents.size()); i++) {
controlled_agents[i]->get_agent()->computeNeighbors(&rvo);
controlled_agents[i]->get_agent()->computeNewVelocity(deltatime);
}
#endif // NO_THREADS
}
}
void NavMap::dispatch_callbacks() {
for (int i(0); i < static_cast<int>(controlled_agents.size()); i++) {
controlled_agents[i]->dispatch_callback();
}
}
void NavMap::clip_path(const LocalVector<gd::NavigationPoly> &p_navigation_polys, Vector<Vector3> &path, const gd::NavigationPoly *from_poly, const Vector3 &p_to_point, const gd::NavigationPoly *p_to_poly) const {
Vector3 from = path[path.size() - 1];
if (from.is_equal_approx(p_to_point)) {
return;
}
Plane cut_plane;
cut_plane.normal = (from - p_to_point).cross(up);
if (cut_plane.normal == Vector3()) {
return;
}
cut_plane.normal.normalize();
cut_plane.d = cut_plane.normal.dot(from);
while (from_poly != p_to_poly) {
Vector3 pathway_start = from_poly->back_navigation_edge_pathway_start;
Vector3 pathway_end = from_poly->back_navigation_edge_pathway_end;
ERR_FAIL_COND(from_poly->back_navigation_poly_id == -1);
from_poly = &p_navigation_polys[from_poly->back_navigation_poly_id];
if (!pathway_start.is_equal_approx(pathway_end)) {
Vector3 inters;
if (cut_plane.intersects_segment(pathway_start, pathway_end, &inters)) {
if (!inters.is_equal_approx(p_to_point) && !inters.is_equal_approx(path[path.size() - 1])) {
path.push_back(inters);
}
}
}
}
}
NavMap::NavMap() {
}
NavMap::~NavMap() {
#ifndef NO_THREADS
step_work_pool.finish();
#endif // !NO_THREADS
}