c7bc44d5ad
That year should bring the long-awaited OpenGL ES 3.0 compatible renderer with state-of-the-art rendering techniques tuned to work as low as middle end handheld devices - without compromising with the possibilities given for higher end desktop games of course. Great times ahead for the Godot community and the gamers that will play our games!
182 lines
5.1 KiB
C++
182 lines
5.1 KiB
C++
/*************************************************************************/
|
|
/* vector3.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* http://www.godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
#include "vector3.h"
|
|
#include "matrix3.h"
|
|
|
|
|
|
void Vector3::rotate(const Vector3& p_axis,float p_phi) {
|
|
|
|
*this=Matrix3(p_axis,p_phi).xform(*this);
|
|
}
|
|
|
|
Vector3 Vector3::rotated(const Vector3& p_axis,float p_phi) const {
|
|
|
|
Vector3 r = *this;
|
|
r.rotate(p_axis,p_phi);
|
|
return r;
|
|
}
|
|
|
|
void Vector3::set_axis(int p_axis,real_t p_value) {
|
|
ERR_FAIL_INDEX(p_axis,3);
|
|
coord[p_axis]=p_value;
|
|
|
|
}
|
|
real_t Vector3::get_axis(int p_axis) const {
|
|
|
|
ERR_FAIL_INDEX_V(p_axis,3,0);
|
|
return operator[](p_axis);
|
|
}
|
|
|
|
int Vector3::min_axis() const {
|
|
|
|
return x < y ? (x < z ? 0 : 2) : (y < z ? 1 : 2);
|
|
}
|
|
int Vector3::max_axis() const {
|
|
|
|
return x < y ? (y < z ? 2 : 1) : (x < z ? 2 : 0);
|
|
}
|
|
|
|
|
|
void Vector3::snap(float p_val) {
|
|
|
|
x=Math::stepify(x,p_val);
|
|
y=Math::stepify(y,p_val);
|
|
z=Math::stepify(z,p_val);
|
|
}
|
|
Vector3 Vector3::snapped(float p_val) const {
|
|
|
|
Vector3 v=*this;
|
|
v.snap(p_val);
|
|
return v;
|
|
}
|
|
|
|
|
|
Vector3 Vector3::cubic_interpolaten(const Vector3& p_b,const Vector3& p_pre_a, const Vector3& p_post_b,float p_t) const {
|
|
|
|
Vector3 p0=p_pre_a;
|
|
Vector3 p1=*this;
|
|
Vector3 p2=p_b;
|
|
Vector3 p3=p_post_b;
|
|
|
|
{
|
|
//normalize
|
|
|
|
float ab = p0.distance_to(p1);
|
|
float bc = p1.distance_to(p2);
|
|
float cd = p2.distance_to(p3);
|
|
|
|
if (ab>0)
|
|
p0 = p1+(p0-p1)*(bc/ab);
|
|
if (cd>0)
|
|
p3 = p2+(p3-p2)*(bc/cd);
|
|
}
|
|
|
|
|
|
float t = p_t;
|
|
float t2 = t * t;
|
|
float t3 = t2 * t;
|
|
|
|
Vector3 out;
|
|
out = 0.5f * ( ( p1 * 2.0f) +
|
|
( -p0 + p2 ) * t +
|
|
( 2.0f * p0 - 5.0f * p1 + 4 * p2 - p3 ) * t2 +
|
|
( -p0 + 3.0f * p1 - 3.0f * p2 + p3 ) * t3 );
|
|
return out;
|
|
|
|
}
|
|
|
|
Vector3 Vector3::cubic_interpolate(const Vector3& p_b,const Vector3& p_pre_a, const Vector3& p_post_b,float p_t) const {
|
|
|
|
Vector3 p0=p_pre_a;
|
|
Vector3 p1=*this;
|
|
Vector3 p2=p_b;
|
|
Vector3 p3=p_post_b;
|
|
|
|
float t = p_t;
|
|
float t2 = t * t;
|
|
float t3 = t2 * t;
|
|
|
|
Vector3 out;
|
|
out = 0.5f * ( ( p1 * 2.0f) +
|
|
( -p0 + p2 ) * t +
|
|
( 2.0f * p0 - 5.0f * p1 + 4 * p2 - p3 ) * t2 +
|
|
( -p0 + 3.0f * p1 - 3.0f * p2 + p3 ) * t3 );
|
|
return out;
|
|
|
|
}
|
|
|
|
#if 0
|
|
Vector3 Vector3::cubic_interpolate(const Vector3& p_b,const Vector3& p_pre_a, const Vector3& p_post_b,float p_t) const {
|
|
|
|
Vector3 p0=p_pre_a;
|
|
Vector3 p1=*this;
|
|
Vector3 p2=p_b;
|
|
Vector3 p3=p_post_b;
|
|
|
|
if (true) {
|
|
|
|
float ab = p0.distance_to(p1);
|
|
float bc = p1.distance_to(p2);
|
|
float cd = p2.distance_to(p3);
|
|
|
|
//if (ab>bc) {
|
|
if (ab>0)
|
|
p0 = p1+(p0-p1)*(bc/ab);
|
|
//}
|
|
|
|
//if (cd>bc) {
|
|
if (cd>0)
|
|
p3 = p2+(p3-p2)*(bc/cd);
|
|
//}
|
|
}
|
|
|
|
float t = p_t;
|
|
float t2 = t * t;
|
|
float t3 = t2 * t;
|
|
|
|
Vector3 out;
|
|
out.x = 0.5f * ( ( 2.0f * p1.x ) +
|
|
( -p0.x + p2.x ) * t +
|
|
( 2.0f * p0.x - 5.0f * p1.x + 4 * p2.x - p3.x ) * t2 +
|
|
( -p0.x + 3.0f * p1.x - 3.0f * p2.x + p3.x ) * t3 );
|
|
out.y = 0.5f * ( ( 2.0f * p1.y ) +
|
|
( -p0.y + p2.y ) * t +
|
|
( 2.0f * p0.y - 5.0f * p1.y + 4 * p2.y - p3.y ) * t2 +
|
|
( -p0.y + 3.0f * p1.y - 3.0f * p2.y + p3.y ) * t3 );
|
|
out.z = 0.5f * ( ( 2.0f * p1.z ) +
|
|
( -p0.z + p2.z ) * t +
|
|
( 2.0f * p0.z - 5.0f * p1.z + 4 * p2.z - p3.z ) * t2 +
|
|
( -p0.z + 3.0f * p1.z - 3.0f * p2.z + p3.z ) * t3 );
|
|
return out;
|
|
}
|
|
# endif
|
|
Vector3::operator String() const {
|
|
|
|
return (rtos(x)+", "+rtos(y)+", "+rtos(z));
|
|
}
|