9293bc3935
* Shadow quality settings now specialization constant. * Decal and light projector filters can be set. * Changing those settings forces re-creation of the pipelines. These changes should help improve performance related to shadow mapping, and allows improving performance by sacrificing decal and light projector quality.
1907 lines
61 KiB
GLSL
1907 lines
61 KiB
GLSL
#[vertex]
|
|
|
|
#version 450
|
|
|
|
#VERSION_DEFINES
|
|
|
|
#include "scene_forward_clustered_inc.glsl"
|
|
|
|
/* INPUT ATTRIBS */
|
|
|
|
layout(location = 0) in vec3 vertex_attrib;
|
|
|
|
//only for pure render depth when normal is not used
|
|
|
|
#ifdef NORMAL_USED
|
|
layout(location = 1) in vec3 normal_attrib;
|
|
#endif
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
layout(location = 2) in vec4 tangent_attrib;
|
|
#endif
|
|
|
|
#if defined(COLOR_USED)
|
|
layout(location = 3) in vec4 color_attrib;
|
|
#endif
|
|
|
|
#ifdef UV_USED
|
|
layout(location = 4) in vec2 uv_attrib;
|
|
#endif
|
|
|
|
#if defined(UV2_USED) || defined(USE_LIGHTMAP) || defined(MODE_RENDER_MATERIAL)
|
|
layout(location = 5) in vec2 uv2_attrib;
|
|
#endif
|
|
|
|
#if defined(CUSTOM0_USED)
|
|
layout(location = 6) in vec4 custom0_attrib;
|
|
#endif
|
|
|
|
#if defined(CUSTOM1_USED)
|
|
layout(location = 7) in vec4 custom1_attrib;
|
|
#endif
|
|
|
|
#if defined(CUSTOM2_USED)
|
|
layout(location = 8) in vec4 custom2_attrib;
|
|
#endif
|
|
|
|
#if defined(CUSTOM3_USED)
|
|
layout(location = 9) in vec4 custom3_attrib;
|
|
#endif
|
|
|
|
#if defined(BONES_USED) || defined(USE_PARTICLE_TRAILS)
|
|
layout(location = 10) in uvec4 bone_attrib;
|
|
#endif
|
|
|
|
#if defined(WEIGHTS_USED) || defined(USE_PARTICLE_TRAILS)
|
|
layout(location = 11) in vec4 weight_attrib;
|
|
#endif
|
|
|
|
/* Varyings */
|
|
|
|
layout(location = 0) out vec3 vertex_interp;
|
|
|
|
#ifdef NORMAL_USED
|
|
layout(location = 1) out vec3 normal_interp;
|
|
#endif
|
|
|
|
#if defined(COLOR_USED)
|
|
layout(location = 2) out vec4 color_interp;
|
|
#endif
|
|
|
|
#ifdef UV_USED
|
|
layout(location = 3) out vec2 uv_interp;
|
|
#endif
|
|
|
|
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
|
|
layout(location = 4) out vec2 uv2_interp;
|
|
#endif
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
layout(location = 5) out vec3 tangent_interp;
|
|
layout(location = 6) out vec3 binormal_interp;
|
|
#endif
|
|
|
|
#ifdef MATERIAL_UNIFORMS_USED
|
|
layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{
|
|
|
|
#MATERIAL_UNIFORMS
|
|
|
|
} material;
|
|
#endif
|
|
|
|
#ifdef MODE_DUAL_PARABOLOID
|
|
|
|
layout(location = 8) out float dp_clip;
|
|
|
|
#endif
|
|
|
|
layout(location = 9) out flat uint instance_index;
|
|
|
|
invariant gl_Position;
|
|
|
|
#GLOBALS
|
|
|
|
void main() {
|
|
vec4 instance_custom = vec4(0.0);
|
|
#if defined(COLOR_USED)
|
|
color_interp = color_attrib;
|
|
#endif
|
|
|
|
instance_index = draw_call.instance_index;
|
|
|
|
bool is_multimesh = bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH);
|
|
if (!is_multimesh) {
|
|
instance_index += gl_InstanceIndex;
|
|
}
|
|
|
|
mat4 world_matrix = instances.data[instance_index].transform;
|
|
|
|
mat3 world_normal_matrix;
|
|
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_NON_UNIFORM_SCALE)) {
|
|
world_normal_matrix = inverse(mat3(world_matrix));
|
|
} else {
|
|
world_normal_matrix = mat3(world_matrix);
|
|
}
|
|
|
|
if (is_multimesh) {
|
|
//multimesh, instances are for it
|
|
|
|
mat4 matrix;
|
|
|
|
#ifdef USE_PARTICLE_TRAILS
|
|
uint trail_size = (instances.data[instance_index].flags >> INSTANCE_FLAGS_PARTICLE_TRAIL_SHIFT) & INSTANCE_FLAGS_PARTICLE_TRAIL_MASK;
|
|
uint stride = 3 + 1 + 1; //particles always uses this format
|
|
|
|
uint offset = trail_size * stride * gl_InstanceIndex;
|
|
|
|
#ifdef COLOR_USED
|
|
vec4 pcolor;
|
|
#endif
|
|
{
|
|
uint boffset = offset + bone_attrib.x * stride;
|
|
matrix = mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.x;
|
|
#ifdef COLOR_USED
|
|
pcolor = transforms.data[boffset + 3] * weight_attrib.x;
|
|
#endif
|
|
}
|
|
if (weight_attrib.y > 0.001) {
|
|
uint boffset = offset + bone_attrib.y * stride;
|
|
matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.y;
|
|
#ifdef COLOR_USED
|
|
pcolor += transforms.data[boffset + 3] * weight_attrib.y;
|
|
#endif
|
|
}
|
|
if (weight_attrib.z > 0.001) {
|
|
uint boffset = offset + bone_attrib.z * stride;
|
|
matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.z;
|
|
#ifdef COLOR_USED
|
|
pcolor += transforms.data[boffset + 3] * weight_attrib.z;
|
|
#endif
|
|
}
|
|
if (weight_attrib.w > 0.001) {
|
|
uint boffset = offset + bone_attrib.w * stride;
|
|
matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.w;
|
|
#ifdef COLOR_USED
|
|
pcolor += transforms.data[boffset + 3] * weight_attrib.w;
|
|
#endif
|
|
}
|
|
|
|
instance_custom = transforms.data[offset + 4];
|
|
|
|
#ifdef COLOR_USED
|
|
color_interp *= pcolor;
|
|
#endif
|
|
|
|
#else
|
|
uint stride = 0;
|
|
{
|
|
//TODO implement a small lookup table for the stride
|
|
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) {
|
|
stride += 2;
|
|
} else {
|
|
stride += 3;
|
|
}
|
|
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) {
|
|
stride += 1;
|
|
}
|
|
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) {
|
|
stride += 1;
|
|
}
|
|
}
|
|
|
|
uint offset = stride * gl_InstanceIndex;
|
|
|
|
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) {
|
|
matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0));
|
|
offset += 2;
|
|
} else {
|
|
matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], transforms.data[offset + 2], vec4(0.0, 0.0, 0.0, 1.0));
|
|
offset += 3;
|
|
}
|
|
|
|
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) {
|
|
#ifdef COLOR_USED
|
|
color_interp *= transforms.data[offset];
|
|
#endif
|
|
offset += 1;
|
|
}
|
|
|
|
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) {
|
|
instance_custom = transforms.data[offset];
|
|
}
|
|
|
|
#endif
|
|
//transpose
|
|
matrix = transpose(matrix);
|
|
world_matrix = world_matrix * matrix;
|
|
world_normal_matrix = world_normal_matrix * mat3(matrix);
|
|
}
|
|
|
|
vec3 vertex = vertex_attrib;
|
|
#ifdef NORMAL_USED
|
|
vec3 normal = normal_attrib * 2.0 - 1.0;
|
|
#endif
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
vec3 tangent = tangent_attrib.xyz * 2.0 - 1.0;
|
|
float binormalf = tangent_attrib.a * 2.0 - 1.0;
|
|
vec3 binormal = normalize(cross(normal, tangent) * binormalf);
|
|
#endif
|
|
|
|
#ifdef UV_USED
|
|
uv_interp = uv_attrib;
|
|
#endif
|
|
|
|
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
|
|
uv2_interp = uv2_attrib;
|
|
#endif
|
|
|
|
#ifdef OVERRIDE_POSITION
|
|
vec4 position;
|
|
#endif
|
|
|
|
mat4 projection_matrix = scene_data.projection_matrix;
|
|
|
|
//using world coordinates
|
|
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
|
|
|
|
vertex = (world_matrix * vec4(vertex, 1.0)).xyz;
|
|
|
|
normal = world_normal_matrix * normal;
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
|
|
tangent = world_normal_matrix * tangent;
|
|
binormal = world_normal_matrix * binormal;
|
|
|
|
#endif
|
|
#endif
|
|
|
|
float roughness = 1.0;
|
|
|
|
mat4 modelview = scene_data.inv_camera_matrix * world_matrix;
|
|
mat3 modelview_normal = mat3(scene_data.inv_camera_matrix) * world_normal_matrix;
|
|
|
|
{
|
|
#CODE : VERTEX
|
|
}
|
|
|
|
// using local coordinates (default)
|
|
#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
|
|
|
|
vertex = (modelview * vec4(vertex, 1.0)).xyz;
|
|
#ifdef NORMAL_USED
|
|
normal = modelview_normal * normal;
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
|
|
binormal = modelview_normal * binormal;
|
|
tangent = modelview_normal * tangent;
|
|
#endif
|
|
|
|
//using world coordinates
|
|
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
|
|
|
|
vertex = (scene_data.inv_camera_matrix * vec4(vertex, 1.0)).xyz;
|
|
normal = mat3(scene_data.inverse_normal_matrix) * normal;
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
|
|
binormal = mat3(scene_data.camera_inverse_binormal_matrix) * binormal;
|
|
tangent = mat3(scene_data.camera_inverse_tangent_matrix) * tangent;
|
|
#endif
|
|
#endif
|
|
|
|
vertex_interp = vertex;
|
|
#ifdef NORMAL_USED
|
|
normal_interp = normal;
|
|
#endif
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
tangent_interp = tangent;
|
|
binormal_interp = binormal;
|
|
#endif
|
|
|
|
#ifdef MODE_RENDER_DEPTH
|
|
|
|
#ifdef MODE_DUAL_PARABOLOID
|
|
|
|
vertex_interp.z *= scene_data.dual_paraboloid_side;
|
|
|
|
dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
|
|
|
|
//for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
|
|
|
|
vec3 vtx = vertex_interp;
|
|
float distance = length(vtx);
|
|
vtx = normalize(vtx);
|
|
vtx.xy /= 1.0 - vtx.z;
|
|
vtx.z = (distance / scene_data.z_far);
|
|
vtx.z = vtx.z * 2.0 - 1.0;
|
|
vertex_interp = vtx;
|
|
|
|
#endif
|
|
|
|
#endif //MODE_RENDER_DEPTH
|
|
|
|
#ifdef OVERRIDE_POSITION
|
|
gl_Position = position;
|
|
#else
|
|
gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
|
|
#endif
|
|
|
|
#ifdef MODE_RENDER_DEPTH
|
|
if (scene_data.pancake_shadows) {
|
|
if (gl_Position.z <= 0.00001) {
|
|
gl_Position.z = 0.00001;
|
|
}
|
|
}
|
|
#endif
|
|
#ifdef MODE_RENDER_MATERIAL
|
|
if (scene_data.material_uv2_mode) {
|
|
vec2 uv_offset = unpackHalf2x16(draw_call.uv_offset);
|
|
gl_Position.xy = (uv2_attrib.xy + uv_offset) * 2.0 - 1.0;
|
|
gl_Position.z = 0.00001;
|
|
gl_Position.w = 1.0;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#[fragment]
|
|
|
|
#version 450
|
|
|
|
#VERSION_DEFINES
|
|
|
|
/* Specialization Constants (Toggles) */
|
|
|
|
layout(constant_id = 0) const bool sc_use_forward_gi = false;
|
|
layout(constant_id = 1) const bool sc_use_light_projector = false;
|
|
layout(constant_id = 2) const bool sc_use_light_soft_shadows = false;
|
|
layout(constant_id = 3) const bool sc_use_directional_soft_shadows = false;
|
|
|
|
/* Specialization Constants (Values) */
|
|
|
|
layout(constant_id = 6) const uint sc_soft_shadow_samples = 4;
|
|
layout(constant_id = 7) const uint sc_penumbra_shadow_samples = 4;
|
|
|
|
layout(constant_id = 8) const uint sc_directional_soft_shadow_samples = 4;
|
|
layout(constant_id = 9) const uint sc_directional_penumbra_shadow_samples = 4;
|
|
|
|
layout(constant_id = 10) const bool sc_decal_use_mipmaps = true;
|
|
layout(constant_id = 11) const bool sc_projector_use_mipmaps = true;
|
|
|
|
#include "scene_forward_clustered_inc.glsl"
|
|
|
|
/* Varyings */
|
|
|
|
layout(location = 0) in vec3 vertex_interp;
|
|
|
|
#ifdef NORMAL_USED
|
|
layout(location = 1) in vec3 normal_interp;
|
|
#endif
|
|
|
|
#if defined(COLOR_USED)
|
|
layout(location = 2) in vec4 color_interp;
|
|
#endif
|
|
|
|
#ifdef UV_USED
|
|
layout(location = 3) in vec2 uv_interp;
|
|
#endif
|
|
|
|
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
|
|
layout(location = 4) in vec2 uv2_interp;
|
|
#endif
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
layout(location = 5) in vec3 tangent_interp;
|
|
layout(location = 6) in vec3 binormal_interp;
|
|
#endif
|
|
|
|
#ifdef MODE_DUAL_PARABOLOID
|
|
|
|
layout(location = 8) in float dp_clip;
|
|
|
|
#endif
|
|
|
|
layout(location = 9) in flat uint instance_index;
|
|
|
|
//defines to keep compatibility with vertex
|
|
|
|
#define world_matrix instances.data[instance_index].transform
|
|
#define projection_matrix scene_data.projection_matrix
|
|
|
|
#if defined(ENABLE_SSS) && defined(ENABLE_TRANSMITTANCE)
|
|
//both required for transmittance to be enabled
|
|
#define LIGHT_TRANSMITTANCE_USED
|
|
#endif
|
|
|
|
#ifdef MATERIAL_UNIFORMS_USED
|
|
layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{
|
|
|
|
#MATERIAL_UNIFORMS
|
|
|
|
} material;
|
|
#endif
|
|
|
|
#GLOBALS
|
|
|
|
#ifdef MODE_RENDER_DEPTH
|
|
|
|
#ifdef MODE_RENDER_MATERIAL
|
|
|
|
layout(location = 0) out vec4 albedo_output_buffer;
|
|
layout(location = 1) out vec4 normal_output_buffer;
|
|
layout(location = 2) out vec4 orm_output_buffer;
|
|
layout(location = 3) out vec4 emission_output_buffer;
|
|
layout(location = 4) out float depth_output_buffer;
|
|
|
|
#endif // MODE_RENDER_MATERIAL
|
|
|
|
#ifdef MODE_RENDER_NORMAL_ROUGHNESS
|
|
layout(location = 0) out vec4 normal_roughness_output_buffer;
|
|
|
|
#ifdef MODE_RENDER_VOXEL_GI
|
|
layout(location = 1) out uvec2 voxel_gi_buffer;
|
|
#endif
|
|
|
|
#endif //MODE_RENDER_NORMAL
|
|
#else // RENDER DEPTH
|
|
|
|
#ifdef MODE_MULTIPLE_RENDER_TARGETS
|
|
|
|
layout(location = 0) out vec4 diffuse_buffer; //diffuse (rgb) and roughness
|
|
layout(location = 1) out vec4 specular_buffer; //specular and SSS (subsurface scatter)
|
|
#else
|
|
|
|
layout(location = 0) out vec4 frag_color;
|
|
#endif // MODE_MULTIPLE_RENDER_TARGETS
|
|
|
|
#endif // RENDER DEPTH
|
|
|
|
#include "scene_forward_aa_inc.glsl"
|
|
|
|
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
|
|
|
#include "scene_forward_lights_inc.glsl"
|
|
|
|
#include "scene_forward_gi_inc.glsl"
|
|
|
|
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
|
|
|
#ifndef MODE_RENDER_DEPTH
|
|
|
|
vec4 volumetric_fog_process(vec2 screen_uv, float z) {
|
|
vec3 fog_pos = vec3(screen_uv, z * scene_data.volumetric_fog_inv_length);
|
|
if (fog_pos.z < 0.0) {
|
|
return vec4(0.0);
|
|
} else if (fog_pos.z < 1.0) {
|
|
fog_pos.z = pow(fog_pos.z, scene_data.volumetric_fog_detail_spread);
|
|
}
|
|
|
|
return texture(sampler3D(volumetric_fog_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), fog_pos);
|
|
}
|
|
|
|
vec4 fog_process(vec3 vertex) {
|
|
vec3 fog_color = scene_data.fog_light_color;
|
|
|
|
if (scene_data.fog_aerial_perspective > 0.0) {
|
|
vec3 sky_fog_color = vec3(0.0);
|
|
vec3 cube_view = scene_data.radiance_inverse_xform * vertex;
|
|
// mip_level always reads from the second mipmap and higher so the fog is always slightly blurred
|
|
float mip_level = mix(1.0 / MAX_ROUGHNESS_LOD, 1.0, 1.0 - (abs(vertex.z) - scene_data.z_near) / (scene_data.z_far - scene_data.z_near));
|
|
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
|
|
float lod, blend;
|
|
blend = modf(mip_level * MAX_ROUGHNESS_LOD, lod);
|
|
sky_fog_color = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(cube_view, lod)).rgb;
|
|
sky_fog_color = mix(sky_fog_color, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(cube_view, lod + 1)).rgb, blend);
|
|
#else
|
|
sky_fog_color = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), cube_view, mip_level * MAX_ROUGHNESS_LOD).rgb;
|
|
#endif //USE_RADIANCE_CUBEMAP_ARRAY
|
|
fog_color = mix(fog_color, sky_fog_color, scene_data.fog_aerial_perspective);
|
|
}
|
|
|
|
if (scene_data.fog_sun_scatter > 0.001) {
|
|
vec4 sun_scatter = vec4(0.0);
|
|
float sun_total = 0.0;
|
|
vec3 view = normalize(vertex);
|
|
|
|
for (uint i = 0; i < scene_data.directional_light_count; i++) {
|
|
vec3 light_color = directional_lights.data[i].color * directional_lights.data[i].energy;
|
|
float light_amount = pow(max(dot(view, directional_lights.data[i].direction), 0.0), 8.0);
|
|
fog_color += light_color * light_amount * scene_data.fog_sun_scatter;
|
|
}
|
|
}
|
|
|
|
float fog_amount = 1.0 - exp(min(0.0, vertex.z * scene_data.fog_density));
|
|
|
|
if (abs(scene_data.fog_height_density) > 0.001) {
|
|
float y = (scene_data.camera_matrix * vec4(vertex, 1.0)).y;
|
|
|
|
float y_dist = scene_data.fog_height - y;
|
|
|
|
float vfog_amount = clamp(exp(y_dist * scene_data.fog_height_density), 0.0, 1.0);
|
|
|
|
fog_amount = max(vfog_amount, fog_amount);
|
|
}
|
|
|
|
return vec4(fog_color, fog_amount);
|
|
}
|
|
|
|
void cluster_get_item_range(uint p_offset, out uint item_min, out uint item_max, out uint item_from, out uint item_to) {
|
|
uint item_min_max = cluster_buffer.data[p_offset];
|
|
item_min = item_min_max & 0xFFFF;
|
|
item_max = item_min_max >> 16;
|
|
;
|
|
|
|
item_from = item_min >> 5;
|
|
item_to = (item_max == 0) ? 0 : ((item_max - 1) >> 5) + 1; //side effect of how it is stored, as item_max 0 means no elements
|
|
}
|
|
|
|
uint cluster_get_range_clip_mask(uint i, uint z_min, uint z_max) {
|
|
int local_min = clamp(int(z_min) - int(i) * 32, 0, 31);
|
|
int mask_width = min(int(z_max) - int(z_min), 32 - local_min);
|
|
return bitfieldInsert(uint(0), uint(0xFFFFFFFF), local_min, mask_width);
|
|
}
|
|
|
|
#endif //!MODE_RENDER DEPTH
|
|
|
|
void main() {
|
|
#ifdef MODE_DUAL_PARABOLOID
|
|
|
|
if (dp_clip > 0.0)
|
|
discard;
|
|
#endif
|
|
|
|
//lay out everything, whathever is unused is optimized away anyway
|
|
vec3 vertex = vertex_interp;
|
|
vec3 view = -normalize(vertex_interp);
|
|
vec3 albedo = vec3(1.0);
|
|
vec3 backlight = vec3(0.0);
|
|
vec4 transmittance_color = vec4(0.0, 0.0, 0.0, 1.0);
|
|
float transmittance_depth = 0.0;
|
|
float transmittance_boost = 0.0;
|
|
float metallic = 0.0;
|
|
float specular = 0.5;
|
|
vec3 emission = vec3(0.0);
|
|
float roughness = 1.0;
|
|
float rim = 0.0;
|
|
float rim_tint = 0.0;
|
|
float clearcoat = 0.0;
|
|
float clearcoat_gloss = 0.0;
|
|
float anisotropy = 0.0;
|
|
vec2 anisotropy_flow = vec2(1.0, 0.0);
|
|
vec4 fog = vec4(0.0);
|
|
#if defined(CUSTOM_RADIANCE_USED)
|
|
vec4 custom_radiance = vec4(0.0);
|
|
#endif
|
|
#if defined(CUSTOM_IRRADIANCE_USED)
|
|
vec4 custom_irradiance = vec4(0.0);
|
|
#endif
|
|
|
|
float ao = 1.0;
|
|
float ao_light_affect = 0.0;
|
|
|
|
float alpha = 1.0;
|
|
|
|
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
|
|
vec3 binormal = normalize(binormal_interp);
|
|
vec3 tangent = normalize(tangent_interp);
|
|
#else
|
|
vec3 binormal = vec3(0.0);
|
|
vec3 tangent = vec3(0.0);
|
|
#endif
|
|
|
|
#ifdef NORMAL_USED
|
|
vec3 normal = normalize(normal_interp);
|
|
|
|
#if defined(DO_SIDE_CHECK)
|
|
if (!gl_FrontFacing) {
|
|
normal = -normal;
|
|
}
|
|
#endif
|
|
|
|
#endif //NORMAL_USED
|
|
|
|
#ifdef UV_USED
|
|
vec2 uv = uv_interp;
|
|
#endif
|
|
|
|
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
|
|
vec2 uv2 = uv2_interp;
|
|
#endif
|
|
|
|
#if defined(COLOR_USED)
|
|
vec4 color = color_interp;
|
|
#endif
|
|
|
|
#if defined(NORMAL_MAP_USED)
|
|
|
|
vec3 normal_map = vec3(0.5);
|
|
#endif
|
|
|
|
float normal_map_depth = 1.0;
|
|
|
|
vec2 screen_uv = gl_FragCoord.xy * scene_data.screen_pixel_size + scene_data.screen_pixel_size * 0.5; //account for center
|
|
|
|
float sss_strength = 0.0;
|
|
|
|
#ifdef ALPHA_SCISSOR_USED
|
|
float alpha_scissor_threshold = 1.0;
|
|
#endif // ALPHA_SCISSOR_USED
|
|
|
|
#ifdef ALPHA_HASH_USED
|
|
float alpha_hash_scale = 1.0;
|
|
#endif // ALPHA_HASH_USED
|
|
|
|
#ifdef ALPHA_ANTIALIASING_EDGE_USED
|
|
float alpha_antialiasing_edge = 0.0;
|
|
vec2 alpha_texture_coordinate = vec2(0.0, 0.0);
|
|
#endif // ALPHA_ANTIALIASING_EDGE_USED
|
|
|
|
{
|
|
#CODE : FRAGMENT
|
|
}
|
|
|
|
#ifdef LIGHT_TRANSMITTANCE_USED
|
|
transmittance_color.a *= sss_strength;
|
|
#endif
|
|
|
|
#ifndef USE_SHADOW_TO_OPACITY
|
|
|
|
#ifdef ALPHA_SCISSOR_USED
|
|
if (alpha < alpha_scissor_threshold) {
|
|
discard;
|
|
}
|
|
#endif // ALPHA_SCISSOR_USED
|
|
|
|
// alpha hash can be used in unison with alpha antialiasing
|
|
#ifdef ALPHA_HASH_USED
|
|
if (alpha < compute_alpha_hash_threshold(vertex, alpha_hash_scale)) {
|
|
discard;
|
|
}
|
|
#endif // ALPHA_HASH_USED
|
|
|
|
// If we are not edge antialiasing, we need to remove the output alpha channel from scissor and hash
|
|
#if (defined(ALPHA_SCISSOR_USED) || defined(ALPHA_HASH_USED)) && !defined(ALPHA_ANTIALIASING_EDGE_USED)
|
|
alpha = 1.0;
|
|
#endif
|
|
|
|
#ifdef ALPHA_ANTIALIASING_EDGE_USED
|
|
// If alpha scissor is used, we must further the edge threshold, otherwise we won't get any edge feather
|
|
#ifdef ALPHA_SCISSOR_USED
|
|
alpha_antialiasing_edge = clamp(alpha_scissor_threshold + alpha_antialiasing_edge, 0.0, 1.0);
|
|
#endif
|
|
alpha = compute_alpha_antialiasing_edge(alpha, alpha_texture_coordinate, alpha_antialiasing_edge);
|
|
#endif // ALPHA_ANTIALIASING_EDGE_USED
|
|
|
|
#ifdef USE_OPAQUE_PREPASS
|
|
if (alpha < opaque_prepass_threshold) {
|
|
discard;
|
|
}
|
|
#endif // USE_OPAQUE_PREPASS
|
|
|
|
#endif // !USE_SHADOW_TO_OPACITY
|
|
|
|
#ifdef NORMAL_MAP_USED
|
|
|
|
normal_map.xy = normal_map.xy * 2.0 - 1.0;
|
|
normal_map.z = sqrt(max(0.0, 1.0 - dot(normal_map.xy, normal_map.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
|
|
|
|
normal = normalize(mix(normal, tangent * normal_map.x + binormal * normal_map.y + normal * normal_map.z, normal_map_depth));
|
|
|
|
#endif
|
|
|
|
#ifdef LIGHT_ANISOTROPY_USED
|
|
|
|
if (anisotropy > 0.01) {
|
|
//rotation matrix
|
|
mat3 rot = mat3(tangent, binormal, normal);
|
|
//make local to space
|
|
tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0));
|
|
binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0));
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef ENABLE_CLIP_ALPHA
|
|
if (albedo.a < 0.99) {
|
|
//used for doublepass and shadowmapping
|
|
discard;
|
|
}
|
|
#endif
|
|
|
|
/////////////////////// FOG //////////////////////
|
|
#ifndef MODE_RENDER_DEPTH
|
|
|
|
#ifndef CUSTOM_FOG_USED
|
|
// fog must be processed as early as possible and then packed.
|
|
// to maximize VGPR usage
|
|
// Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
|
|
|
|
if (scene_data.fog_enabled) {
|
|
fog = fog_process(vertex);
|
|
}
|
|
|
|
if (scene_data.volumetric_fog_enabled) {
|
|
vec4 volumetric_fog = volumetric_fog_process(screen_uv, -vertex.z);
|
|
if (scene_data.fog_enabled) {
|
|
//must use the full blending equation here to blend fogs
|
|
vec4 res;
|
|
float sa = 1.0 - volumetric_fog.a;
|
|
res.a = fog.a * sa + volumetric_fog.a;
|
|
if (res.a == 0.0) {
|
|
res.rgb = vec3(0.0);
|
|
} else {
|
|
res.rgb = (fog.rgb * fog.a * sa + volumetric_fog.rgb * volumetric_fog.a) / res.a;
|
|
}
|
|
fog = res;
|
|
} else {
|
|
fog = volumetric_fog;
|
|
}
|
|
}
|
|
#endif //!CUSTOM_FOG_USED
|
|
|
|
uint fog_rg = packHalf2x16(fog.rg);
|
|
uint fog_ba = packHalf2x16(fog.ba);
|
|
|
|
#endif //!MODE_RENDER_DEPTH
|
|
|
|
/////////////////////// DECALS ////////////////////////////////
|
|
|
|
#ifndef MODE_RENDER_DEPTH
|
|
|
|
uvec2 cluster_pos = uvec2(gl_FragCoord.xy) >> scene_data.cluster_shift;
|
|
uint cluster_offset = (scene_data.cluster_width * cluster_pos.y + cluster_pos.x) * (scene_data.max_cluster_element_count_div_32 + 32);
|
|
|
|
uint cluster_z = uint(clamp((-vertex.z / scene_data.z_far) * 32.0, 0.0, 31.0));
|
|
|
|
//used for interpolating anything cluster related
|
|
vec3 vertex_ddx = dFdx(vertex);
|
|
vec3 vertex_ddy = dFdy(vertex);
|
|
|
|
{ // process decals
|
|
|
|
uint cluster_decal_offset = cluster_offset + scene_data.cluster_type_size * 2;
|
|
|
|
uint item_min;
|
|
uint item_max;
|
|
uint item_from;
|
|
uint item_to;
|
|
|
|
cluster_get_item_range(cluster_decal_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);
|
|
|
|
#ifdef USE_SUBGROUPS
|
|
item_from = subgroupBroadcastFirst(subgroupMin(item_from));
|
|
item_to = subgroupBroadcastFirst(subgroupMax(item_to));
|
|
#endif
|
|
|
|
for (uint i = item_from; i < item_to; i++) {
|
|
uint mask = cluster_buffer.data[cluster_decal_offset + i];
|
|
mask &= cluster_get_range_clip_mask(i, item_min, item_max);
|
|
#ifdef USE_SUBGROUPS
|
|
uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
|
|
#else
|
|
uint merged_mask = mask;
|
|
#endif
|
|
|
|
while (merged_mask != 0) {
|
|
uint bit = findMSB(merged_mask);
|
|
merged_mask &= ~(1 << bit);
|
|
#ifdef USE_SUBGROUPS
|
|
if (((1 << bit) & mask) == 0) { //do not process if not originally here
|
|
continue;
|
|
}
|
|
#endif
|
|
uint decal_index = 32 * i + bit;
|
|
|
|
if (!bool(decals.data[decal_index].mask & instances.data[instance_index].layer_mask)) {
|
|
continue; //not masked
|
|
}
|
|
|
|
vec3 uv_local = (decals.data[decal_index].xform * vec4(vertex, 1.0)).xyz;
|
|
if (any(lessThan(uv_local, vec3(0.0, -1.0, 0.0))) || any(greaterThan(uv_local, vec3(1.0)))) {
|
|
continue; //out of decal
|
|
}
|
|
|
|
float fade = pow(1.0 - (uv_local.y > 0.0 ? uv_local.y : -uv_local.y), uv_local.y > 0.0 ? decals.data[decal_index].upper_fade : decals.data[decal_index].lower_fade);
|
|
|
|
if (decals.data[decal_index].normal_fade > 0.0) {
|
|
fade *= smoothstep(decals.data[decal_index].normal_fade, 1.0, dot(normal_interp, decals.data[decal_index].normal) * 0.5 + 0.5);
|
|
}
|
|
|
|
//we need ddx/ddy for mipmaps, so simulate them
|
|
vec2 ddx = (decals.data[decal_index].xform * vec4(vertex_ddx, 0.0)).xz;
|
|
vec2 ddy = (decals.data[decal_index].xform * vec4(vertex_ddy, 0.0)).xz;
|
|
|
|
if (decals.data[decal_index].albedo_rect != vec4(0.0)) {
|
|
//has albedo
|
|
vec4 decal_albedo;
|
|
if (sc_decal_use_mipmaps) {
|
|
decal_albedo = textureGrad(sampler2D(decal_atlas_srgb, decal_sampler), uv_local.xz * decals.data[decal_index].albedo_rect.zw + decals.data[decal_index].albedo_rect.xy, ddx * decals.data[decal_index].albedo_rect.zw, ddy * decals.data[decal_index].albedo_rect.zw);
|
|
} else {
|
|
decal_albedo = textureLod(sampler2D(decal_atlas_srgb, decal_sampler), uv_local.xz * decals.data[decal_index].albedo_rect.zw + decals.data[decal_index].albedo_rect.xy, 0.0);
|
|
}
|
|
decal_albedo *= decals.data[decal_index].modulate;
|
|
decal_albedo.a *= fade;
|
|
albedo = mix(albedo, decal_albedo.rgb, decal_albedo.a * decals.data[decal_index].albedo_mix);
|
|
|
|
if (decals.data[decal_index].normal_rect != vec4(0.0)) {
|
|
vec3 decal_normal;
|
|
if (sc_decal_use_mipmaps) {
|
|
decal_normal = textureGrad(sampler2D(decal_atlas, decal_sampler), uv_local.xz * decals.data[decal_index].normal_rect.zw + decals.data[decal_index].normal_rect.xy, ddx * decals.data[decal_index].normal_rect.zw, ddy * decals.data[decal_index].normal_rect.zw).xyz;
|
|
} else {
|
|
decal_normal = textureLod(sampler2D(decal_atlas, decal_sampler), uv_local.xz * decals.data[decal_index].normal_rect.zw + decals.data[decal_index].normal_rect.xy, 0.0).xyz;
|
|
}
|
|
decal_normal.xy = decal_normal.xy * vec2(2.0, -2.0) - vec2(1.0, -1.0); //users prefer flipped y normal maps in most authoring software
|
|
decal_normal.z = sqrt(max(0.0, 1.0 - dot(decal_normal.xy, decal_normal.xy)));
|
|
//convert to view space, use xzy because y is up
|
|
decal_normal = (decals.data[decal_index].normal_xform * decal_normal.xzy).xyz;
|
|
|
|
normal = normalize(mix(normal, decal_normal, decal_albedo.a));
|
|
}
|
|
|
|
if (decals.data[decal_index].orm_rect != vec4(0.0)) {
|
|
vec3 decal_orm;
|
|
if (sc_decal_use_mipmaps) {
|
|
decal_orm = textureGrad(sampler2D(decal_atlas, decal_sampler), uv_local.xz * decals.data[decal_index].orm_rect.zw + decals.data[decal_index].orm_rect.xy, ddx * decals.data[decal_index].orm_rect.zw, ddy * decals.data[decal_index].orm_rect.zw).xyz;
|
|
} else {
|
|
decal_orm = textureLod(sampler2D(decal_atlas, decal_sampler), uv_local.xz * decals.data[decal_index].orm_rect.zw + decals.data[decal_index].orm_rect.xy, 0.0).xyz;
|
|
}
|
|
ao = mix(ao, decal_orm.r, decal_albedo.a);
|
|
roughness = mix(roughness, decal_orm.g, decal_albedo.a);
|
|
metallic = mix(metallic, decal_orm.b, decal_albedo.a);
|
|
}
|
|
}
|
|
|
|
if (decals.data[decal_index].emission_rect != vec4(0.0)) {
|
|
//emission is additive, so its independent from albedo
|
|
if (sc_decal_use_mipmaps) {
|
|
emission += textureGrad(sampler2D(decal_atlas_srgb, decal_sampler), uv_local.xz * decals.data[decal_index].emission_rect.zw + decals.data[decal_index].emission_rect.xy, ddx * decals.data[decal_index].emission_rect.zw, ddy * decals.data[decal_index].emission_rect.zw).xyz * decals.data[decal_index].emission_energy * fade;
|
|
} else {
|
|
emission += textureLod(sampler2D(decal_atlas_srgb, decal_sampler), uv_local.xz * decals.data[decal_index].emission_rect.zw + decals.data[decal_index].emission_rect.xy, 0.0).xyz * decals.data[decal_index].emission_energy * fade;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//pack albedo until needed again, saves 2 VGPRs in the meantime
|
|
|
|
#endif //not render depth
|
|
/////////////////////// LIGHTING //////////////////////////////
|
|
|
|
#ifdef NORMAL_USED
|
|
if (scene_data.roughness_limiter_enabled) {
|
|
//http://www.jp.square-enix.com/tech/library/pdf/ImprovedGeometricSpecularAA.pdf
|
|
float roughness2 = roughness * roughness;
|
|
vec3 dndu = dFdx(normal), dndv = dFdy(normal);
|
|
float variance = scene_data.roughness_limiter_amount * (dot(dndu, dndu) + dot(dndv, dndv));
|
|
float kernelRoughness2 = min(2.0 * variance, scene_data.roughness_limiter_limit); //limit effect
|
|
float filteredRoughness2 = min(1.0, roughness2 + kernelRoughness2);
|
|
roughness = sqrt(filteredRoughness2);
|
|
}
|
|
#endif
|
|
//apply energy conservation
|
|
|
|
vec3 specular_light = vec3(0.0, 0.0, 0.0);
|
|
vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
|
|
vec3 ambient_light = vec3(0.0, 0.0, 0.0);
|
|
|
|
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
|
|
|
if (scene_data.use_reflection_cubemap) {
|
|
vec3 ref_vec = reflect(-view, normal);
|
|
ref_vec = scene_data.radiance_inverse_xform * ref_vec;
|
|
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
|
|
|
|
float lod, blend;
|
|
blend = modf(roughness * MAX_ROUGHNESS_LOD, lod);
|
|
specular_light = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod)).rgb;
|
|
specular_light = mix(specular_light, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod + 1)).rgb, blend);
|
|
|
|
#else
|
|
specular_light = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ref_vec, roughness * MAX_ROUGHNESS_LOD).rgb;
|
|
|
|
#endif //USE_RADIANCE_CUBEMAP_ARRAY
|
|
specular_light *= scene_data.ambient_light_color_energy.a;
|
|
}
|
|
|
|
#if defined(CUSTOM_RADIANCE_USED)
|
|
specular_light = mix(specular_light, custom_radiance.rgb, custom_radiance.a);
|
|
#endif
|
|
|
|
#ifndef USE_LIGHTMAP
|
|
//lightmap overrides everything
|
|
if (scene_data.use_ambient_light) {
|
|
ambient_light = scene_data.ambient_light_color_energy.rgb;
|
|
|
|
if (scene_data.use_ambient_cubemap) {
|
|
vec3 ambient_dir = scene_data.radiance_inverse_xform * normal;
|
|
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
|
|
vec3 cubemap_ambient = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ambient_dir, MAX_ROUGHNESS_LOD)).rgb;
|
|
#else
|
|
vec3 cubemap_ambient = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ambient_dir, MAX_ROUGHNESS_LOD).rgb;
|
|
#endif //USE_RADIANCE_CUBEMAP_ARRAY
|
|
|
|
ambient_light = mix(ambient_light, cubemap_ambient * scene_data.ambient_light_color_energy.a, scene_data.ambient_color_sky_mix);
|
|
}
|
|
}
|
|
#endif // USE_LIGHTMAP
|
|
#if defined(CUSTOM_IRRADIANCE_USED)
|
|
ambient_light = mix(ambient_light, custom_irradiance.rgb, custom_irradiance.a);
|
|
#endif
|
|
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
|
|
|
//radiance
|
|
|
|
/// GI ///
|
|
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
|
|
|
#ifdef USE_LIGHTMAP
|
|
|
|
//lightmap
|
|
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP_CAPTURE)) { //has lightmap capture
|
|
uint index = instances.data[instance_index].gi_offset;
|
|
|
|
vec3 wnormal = mat3(scene_data.camera_matrix) * normal;
|
|
const float c1 = 0.429043;
|
|
const float c2 = 0.511664;
|
|
const float c3 = 0.743125;
|
|
const float c4 = 0.886227;
|
|
const float c5 = 0.247708;
|
|
ambient_light += (c1 * lightmap_captures.data[index].sh[8].rgb * (wnormal.x * wnormal.x - wnormal.y * wnormal.y) +
|
|
c3 * lightmap_captures.data[index].sh[6].rgb * wnormal.z * wnormal.z +
|
|
c4 * lightmap_captures.data[index].sh[0].rgb -
|
|
c5 * lightmap_captures.data[index].sh[6].rgb +
|
|
2.0 * c1 * lightmap_captures.data[index].sh[4].rgb * wnormal.x * wnormal.y +
|
|
2.0 * c1 * lightmap_captures.data[index].sh[7].rgb * wnormal.x * wnormal.z +
|
|
2.0 * c1 * lightmap_captures.data[index].sh[5].rgb * wnormal.y * wnormal.z +
|
|
2.0 * c2 * lightmap_captures.data[index].sh[3].rgb * wnormal.x +
|
|
2.0 * c2 * lightmap_captures.data[index].sh[1].rgb * wnormal.y +
|
|
2.0 * c2 * lightmap_captures.data[index].sh[2].rgb * wnormal.z);
|
|
|
|
} else if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) { // has actual lightmap
|
|
bool uses_sh = bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_SH_LIGHTMAP);
|
|
uint ofs = instances.data[instance_index].gi_offset & 0xFFFF;
|
|
vec3 uvw;
|
|
uvw.xy = uv2 * instances.data[instance_index].lightmap_uv_scale.zw + instances.data[instance_index].lightmap_uv_scale.xy;
|
|
uvw.z = float((instances.data[instance_index].gi_offset >> 16) & 0xFFFF);
|
|
|
|
if (uses_sh) {
|
|
uvw.z *= 4.0; //SH textures use 4 times more data
|
|
vec3 lm_light_l0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 0.0), 0.0).rgb;
|
|
vec3 lm_light_l1n1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 1.0), 0.0).rgb;
|
|
vec3 lm_light_l1_0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 2.0), 0.0).rgb;
|
|
vec3 lm_light_l1p1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 3.0), 0.0).rgb;
|
|
|
|
uint idx = instances.data[instance_index].gi_offset >> 20;
|
|
vec3 n = normalize(lightmaps.data[idx].normal_xform * normal);
|
|
|
|
ambient_light += lm_light_l0 * 0.282095f;
|
|
ambient_light += lm_light_l1n1 * 0.32573 * n.y;
|
|
ambient_light += lm_light_l1_0 * 0.32573 * n.z;
|
|
ambient_light += lm_light_l1p1 * 0.32573 * n.x;
|
|
if (metallic > 0.01) { // since the more direct bounced light is lost, we can kind of fake it with this trick
|
|
vec3 r = reflect(normalize(-vertex), normal);
|
|
specular_light += lm_light_l1n1 * 0.32573 * r.y;
|
|
specular_light += lm_light_l1_0 * 0.32573 * r.z;
|
|
specular_light += lm_light_l1p1 * 0.32573 * r.x;
|
|
}
|
|
|
|
} else {
|
|
ambient_light += textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw, 0.0).rgb;
|
|
}
|
|
}
|
|
#else
|
|
|
|
if (sc_use_forward_gi && bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_SDFGI)) { //has lightmap capture
|
|
|
|
//make vertex orientation the world one, but still align to camera
|
|
vec3 cam_pos = mat3(scene_data.camera_matrix) * vertex;
|
|
vec3 cam_normal = mat3(scene_data.camera_matrix) * normal;
|
|
vec3 cam_reflection = mat3(scene_data.camera_matrix) * reflect(-view, normal);
|
|
|
|
//apply y-mult
|
|
cam_pos.y *= sdfgi.y_mult;
|
|
cam_normal.y *= sdfgi.y_mult;
|
|
cam_normal = normalize(cam_normal);
|
|
cam_reflection.y *= sdfgi.y_mult;
|
|
cam_normal = normalize(cam_normal);
|
|
cam_reflection = normalize(cam_reflection);
|
|
|
|
vec4 light_accum = vec4(0.0);
|
|
float weight_accum = 0.0;
|
|
|
|
vec4 light_blend_accum = vec4(0.0);
|
|
float weight_blend_accum = 0.0;
|
|
|
|
float blend = -1.0;
|
|
|
|
// helper constants, compute once
|
|
|
|
uint cascade = 0xFFFFFFFF;
|
|
vec3 cascade_pos;
|
|
vec3 cascade_normal;
|
|
|
|
for (uint i = 0; i < sdfgi.max_cascades; i++) {
|
|
cascade_pos = (cam_pos - sdfgi.cascades[i].position) * sdfgi.cascades[i].to_probe;
|
|
|
|
if (any(lessThan(cascade_pos, vec3(0.0))) || any(greaterThanEqual(cascade_pos, sdfgi.cascade_probe_size))) {
|
|
continue; //skip cascade
|
|
}
|
|
|
|
cascade = i;
|
|
break;
|
|
}
|
|
|
|
if (cascade < SDFGI_MAX_CASCADES) {
|
|
bool use_specular = true;
|
|
float blend;
|
|
vec3 diffuse, specular;
|
|
sdfgi_process(cascade, cascade_pos, cam_pos, cam_normal, cam_reflection, use_specular, roughness, diffuse, specular, blend);
|
|
|
|
if (blend > 0.0) {
|
|
//blend
|
|
if (cascade == sdfgi.max_cascades - 1) {
|
|
diffuse = mix(diffuse, ambient_light, blend);
|
|
if (use_specular) {
|
|
specular = mix(specular, specular_light, blend);
|
|
}
|
|
} else {
|
|
vec3 diffuse2, specular2;
|
|
float blend2;
|
|
cascade_pos = (cam_pos - sdfgi.cascades[cascade + 1].position) * sdfgi.cascades[cascade + 1].to_probe;
|
|
sdfgi_process(cascade + 1, cascade_pos, cam_pos, cam_normal, cam_reflection, use_specular, roughness, diffuse2, specular2, blend2);
|
|
diffuse = mix(diffuse, diffuse2, blend);
|
|
if (use_specular) {
|
|
specular = mix(specular, specular2, blend);
|
|
}
|
|
}
|
|
}
|
|
|
|
ambient_light = diffuse;
|
|
if (use_specular) {
|
|
specular_light = specular;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (sc_use_forward_gi && bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_VOXEL_GI)) { // process voxel_gi_instances
|
|
|
|
uint index1 = instances.data[instance_index].gi_offset & 0xFFFF;
|
|
vec3 ref_vec = normalize(reflect(normalize(vertex), normal));
|
|
//find arbitrary tangent and bitangent, then build a matrix
|
|
vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
|
|
vec3 tangent = normalize(cross(v0, normal));
|
|
vec3 bitangent = normalize(cross(tangent, normal));
|
|
mat3 normal_mat = mat3(tangent, bitangent, normal);
|
|
|
|
vec4 amb_accum = vec4(0.0);
|
|
vec4 spec_accum = vec4(0.0);
|
|
voxel_gi_compute(index1, vertex, normal, ref_vec, normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum);
|
|
|
|
uint index2 = instances.data[instance_index].gi_offset >> 16;
|
|
|
|
if (index2 != 0xFFFF) {
|
|
voxel_gi_compute(index2, vertex, normal, ref_vec, normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum);
|
|
}
|
|
|
|
if (amb_accum.a > 0.0) {
|
|
amb_accum.rgb /= amb_accum.a;
|
|
}
|
|
|
|
if (spec_accum.a > 0.0) {
|
|
spec_accum.rgb /= spec_accum.a;
|
|
}
|
|
|
|
specular_light = spec_accum.rgb;
|
|
ambient_light = amb_accum.rgb;
|
|
}
|
|
|
|
if (!sc_use_forward_gi && bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GI_BUFFERS)) { //use GI buffers
|
|
|
|
vec2 coord;
|
|
|
|
if (scene_data.gi_upscale_for_msaa) {
|
|
vec2 base_coord = screen_uv;
|
|
vec2 closest_coord = base_coord;
|
|
float closest_ang = dot(normal, textureLod(sampler2D(normal_roughness_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), base_coord, 0.0).xyz * 2.0 - 1.0);
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
const vec2 neighbours[4] = vec2[](vec2(-1, 0), vec2(1, 0), vec2(0, -1), vec2(0, 1));
|
|
vec2 neighbour_coord = base_coord + neighbours[i] * scene_data.screen_pixel_size;
|
|
float neighbour_ang = dot(normal, textureLod(sampler2D(normal_roughness_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), neighbour_coord, 0.0).xyz * 2.0 - 1.0);
|
|
if (neighbour_ang > closest_ang) {
|
|
closest_ang = neighbour_ang;
|
|
closest_coord = neighbour_coord;
|
|
}
|
|
}
|
|
|
|
coord = closest_coord;
|
|
|
|
} else {
|
|
coord = screen_uv;
|
|
}
|
|
|
|
vec4 buffer_ambient = textureLod(sampler2D(ambient_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), coord, 0.0);
|
|
vec4 buffer_reflection = textureLod(sampler2D(reflection_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), coord, 0.0);
|
|
|
|
ambient_light = mix(ambient_light, buffer_ambient.rgb, buffer_ambient.a);
|
|
specular_light = mix(specular_light, buffer_reflection.rgb, buffer_reflection.a);
|
|
}
|
|
#endif // !USE_LIGHTMAP
|
|
|
|
if (scene_data.ssao_enabled) {
|
|
float ssao = texture(sampler2D(ao_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), screen_uv).r;
|
|
ao = min(ao, ssao);
|
|
ao_light_affect = mix(ao_light_affect, max(ao_light_affect, scene_data.ssao_light_affect), scene_data.ssao_ao_affect);
|
|
}
|
|
|
|
{ // process reflections
|
|
|
|
vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0);
|
|
vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0);
|
|
|
|
uint cluster_reflection_offset = cluster_offset + scene_data.cluster_type_size * 3;
|
|
|
|
uint item_min;
|
|
uint item_max;
|
|
uint item_from;
|
|
uint item_to;
|
|
|
|
cluster_get_item_range(cluster_reflection_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);
|
|
|
|
#ifdef USE_SUBGROUPS
|
|
item_from = subgroupBroadcastFirst(subgroupMin(item_from));
|
|
item_to = subgroupBroadcastFirst(subgroupMax(item_to));
|
|
#endif
|
|
|
|
for (uint i = item_from; i < item_to; i++) {
|
|
uint mask = cluster_buffer.data[cluster_reflection_offset + i];
|
|
mask &= cluster_get_range_clip_mask(i, item_min, item_max);
|
|
#ifdef USE_SUBGROUPS
|
|
uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
|
|
#else
|
|
uint merged_mask = mask;
|
|
#endif
|
|
|
|
while (merged_mask != 0) {
|
|
uint bit = findMSB(merged_mask);
|
|
merged_mask &= ~(1 << bit);
|
|
#ifdef USE_SUBGROUPS
|
|
if (((1 << bit) & mask) == 0) { //do not process if not originally here
|
|
continue;
|
|
}
|
|
#endif
|
|
uint reflection_index = 32 * i + bit;
|
|
|
|
if (!bool(reflections.data[reflection_index].mask & instances.data[instance_index].layer_mask)) {
|
|
continue; //not masked
|
|
}
|
|
|
|
reflection_process(reflection_index, vertex, normal, roughness, ambient_light, specular_light, ambient_accum, reflection_accum);
|
|
}
|
|
}
|
|
|
|
if (reflection_accum.a > 0.0) {
|
|
specular_light = reflection_accum.rgb / reflection_accum.a;
|
|
}
|
|
|
|
#if !defined(USE_LIGHTMAP)
|
|
if (ambient_accum.a > 0.0) {
|
|
ambient_light = ambient_accum.rgb / ambient_accum.a;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
//finalize ambient light here
|
|
ambient_light *= albedo.rgb;
|
|
ambient_light *= ao;
|
|
|
|
// convert ao to direct light ao
|
|
ao = mix(1.0, ao, ao_light_affect);
|
|
|
|
//this saves some VGPRs
|
|
vec3 f0 = F0(metallic, specular, albedo);
|
|
|
|
{
|
|
#if defined(DIFFUSE_TOON)
|
|
//simplify for toon, as
|
|
specular_light *= specular * metallic * albedo * 2.0;
|
|
#else
|
|
|
|
// scales the specular reflections, needs to be be computed before lighting happens,
|
|
// but after environment, GI, and reflection probes are added
|
|
// Environment brdf approximation (Lazarov 2013)
|
|
// see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
|
|
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
|
|
const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
|
|
vec4 r = roughness * c0 + c1;
|
|
float ndotv = clamp(dot(normal, view), 0.0, 1.0);
|
|
float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
|
|
vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
|
|
|
|
specular_light *= env.x * f0 + env.y;
|
|
#endif
|
|
}
|
|
|
|
#endif //GI !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
|
|
|
#if !defined(MODE_RENDER_DEPTH)
|
|
//this saves some VGPRs
|
|
uint orms = packUnorm4x8(vec4(ao, roughness, metallic, specular));
|
|
#endif
|
|
|
|
// LIGHTING
|
|
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
|
|
|
{ //directional light
|
|
|
|
// Do shadow and lighting in two passes to reduce register pressure
|
|
uint shadow0 = 0;
|
|
uint shadow1 = 0;
|
|
|
|
for (uint i = 0; i < 8; i++) {
|
|
if (i >= scene_data.directional_light_count) {
|
|
break;
|
|
}
|
|
|
|
if (!bool(directional_lights.data[i].mask & instances.data[instance_index].layer_mask)) {
|
|
continue; //not masked
|
|
}
|
|
|
|
if (directional_lights.data[i].bake_mode == LIGHT_BAKE_STATIC && bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) {
|
|
continue; // Statically baked light and object uses lightmap, skip
|
|
}
|
|
|
|
float shadow = 1.0;
|
|
|
|
//version with soft shadows, more expensive
|
|
if (directional_lights.data[i].shadow_enabled) {
|
|
if (sc_use_directional_soft_shadows && directional_lights.data[i].softshadow_angle > 0) {
|
|
float depth_z = -vertex.z;
|
|
|
|
vec3 shadow_color = vec3(0.0);
|
|
vec3 light_dir = directional_lights.data[i].direction;
|
|
|
|
#define BIAS_FUNC(m_var, m_idx) \
|
|
m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \
|
|
vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp)))) * directional_lights.data[i].shadow_normal_bias[m_idx]; \
|
|
normal_bias -= light_dir * dot(light_dir, normal_bias); \
|
|
m_var.xyz += normal_bias;
|
|
|
|
uint blend_index = 0;
|
|
|
|
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
|
|
vec4 v = vec4(vertex, 1.0);
|
|
|
|
BIAS_FUNC(v, 0)
|
|
|
|
vec4 pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
|
|
pssm_coord /= pssm_coord.w;
|
|
|
|
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
|
|
float range_begin = directional_lights.data[i].shadow_range_begin.x;
|
|
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
|
|
vec2 tex_scale = directional_lights.data[i].uv_scale1 * test_radius;
|
|
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
|
|
blend_index++;
|
|
}
|
|
|
|
if (blend_index < 2 && depth_z < directional_lights.data[i].shadow_split_offsets.y) {
|
|
vec4 v = vec4(vertex, 1.0);
|
|
|
|
BIAS_FUNC(v, 1)
|
|
|
|
vec4 pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
|
|
pssm_coord /= pssm_coord.w;
|
|
|
|
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
|
|
float range_begin = directional_lights.data[i].shadow_range_begin.y;
|
|
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
|
|
vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius;
|
|
float s = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
|
|
|
|
if (blend_index == 0) {
|
|
shadow = s;
|
|
} else {
|
|
//blend
|
|
float blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z);
|
|
shadow = mix(shadow, s, blend);
|
|
}
|
|
|
|
blend_index++;
|
|
}
|
|
|
|
if (blend_index < 2 && depth_z < directional_lights.data[i].shadow_split_offsets.z) {
|
|
vec4 v = vec4(vertex, 1.0);
|
|
|
|
BIAS_FUNC(v, 2)
|
|
|
|
vec4 pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
|
|
pssm_coord /= pssm_coord.w;
|
|
|
|
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
|
|
float range_begin = directional_lights.data[i].shadow_range_begin.z;
|
|
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
|
|
vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius;
|
|
float s = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
|
|
|
|
if (blend_index == 0) {
|
|
shadow = s;
|
|
} else {
|
|
//blend
|
|
float blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z);
|
|
shadow = mix(shadow, s, blend);
|
|
}
|
|
|
|
blend_index++;
|
|
}
|
|
|
|
if (blend_index < 2) {
|
|
vec4 v = vec4(vertex, 1.0);
|
|
|
|
BIAS_FUNC(v, 3)
|
|
|
|
vec4 pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
|
|
pssm_coord /= pssm_coord.w;
|
|
|
|
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
|
|
float range_begin = directional_lights.data[i].shadow_range_begin.w;
|
|
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
|
|
vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius;
|
|
float s = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
|
|
|
|
if (blend_index == 0) {
|
|
shadow = s;
|
|
} else {
|
|
//blend
|
|
float blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z);
|
|
shadow = mix(shadow, s, blend);
|
|
}
|
|
}
|
|
|
|
#undef BIAS_FUNC
|
|
} else { //no soft shadows
|
|
|
|
float depth_z = -vertex.z;
|
|
|
|
vec4 pssm_coord;
|
|
vec3 light_dir = directional_lights.data[i].direction;
|
|
vec3 base_normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp))));
|
|
|
|
#define BIAS_FUNC(m_var, m_idx) \
|
|
m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \
|
|
vec3 normal_bias = base_normal_bias * directional_lights.data[i].shadow_normal_bias[m_idx]; \
|
|
normal_bias -= light_dir * dot(light_dir, normal_bias); \
|
|
m_var.xyz += normal_bias;
|
|
|
|
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
|
|
vec4 v = vec4(vertex, 1.0);
|
|
|
|
BIAS_FUNC(v, 0)
|
|
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
|
|
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
|
|
vec4 v = vec4(vertex, 1.0);
|
|
|
|
BIAS_FUNC(v, 1)
|
|
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
|
|
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
|
|
vec4 v = vec4(vertex, 1.0);
|
|
|
|
BIAS_FUNC(v, 2)
|
|
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
|
|
|
|
} else {
|
|
vec4 v = vec4(vertex, 1.0);
|
|
|
|
BIAS_FUNC(v, 3)
|
|
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
|
|
}
|
|
|
|
pssm_coord /= pssm_coord.w;
|
|
|
|
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
|
|
|
|
if (directional_lights.data[i].blend_splits) {
|
|
float pssm_blend;
|
|
|
|
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
|
|
vec4 v = vec4(vertex, 1.0);
|
|
BIAS_FUNC(v, 1)
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
|
|
pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z);
|
|
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
|
|
vec4 v = vec4(vertex, 1.0);
|
|
BIAS_FUNC(v, 2)
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
|
|
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z);
|
|
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
|
|
vec4 v = vec4(vertex, 1.0);
|
|
BIAS_FUNC(v, 3)
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
|
|
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z);
|
|
} else {
|
|
pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached)
|
|
}
|
|
|
|
pssm_coord /= pssm_coord.w;
|
|
|
|
float shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
|
|
shadow = mix(shadow, shadow2, pssm_blend);
|
|
}
|
|
|
|
shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
|
|
|
|
#undef BIAS_FUNC
|
|
}
|
|
} // shadows
|
|
|
|
if (i < 4) {
|
|
shadow0 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << (i * 8);
|
|
} else {
|
|
shadow1 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << ((i - 4) * 8);
|
|
}
|
|
}
|
|
|
|
for (uint i = 0; i < 8; i++) {
|
|
if (i >= scene_data.directional_light_count) {
|
|
break;
|
|
}
|
|
|
|
if (!bool(directional_lights.data[i].mask & instances.data[instance_index].layer_mask)) {
|
|
continue; //not masked
|
|
}
|
|
|
|
#ifdef LIGHT_TRANSMITTANCE_USED
|
|
float transmittance_z = transmittance_depth;
|
|
|
|
if (directional_lights.data[i].shadow_enabled) {
|
|
float depth_z = -vertex.z;
|
|
|
|
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
|
|
vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.x, 1.0);
|
|
vec4 trans_coord = directional_lights.data[i].shadow_matrix1 * trans_vertex;
|
|
trans_coord /= trans_coord.w;
|
|
|
|
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
|
|
shadow_z *= directional_lights.data[i].shadow_z_range.x;
|
|
float z = trans_coord.z * directional_lights.data[i].shadow_z_range.x;
|
|
|
|
transmittance_z = z - shadow_z;
|
|
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
|
|
vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.y, 1.0);
|
|
vec4 trans_coord = directional_lights.data[i].shadow_matrix2 * trans_vertex;
|
|
trans_coord /= trans_coord.w;
|
|
|
|
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
|
|
shadow_z *= directional_lights.data[i].shadow_z_range.y;
|
|
float z = trans_coord.z * directional_lights.data[i].shadow_z_range.y;
|
|
|
|
transmittance_z = z - shadow_z;
|
|
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
|
|
vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.z, 1.0);
|
|
vec4 trans_coord = directional_lights.data[i].shadow_matrix3 * trans_vertex;
|
|
trans_coord /= trans_coord.w;
|
|
|
|
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
|
|
shadow_z *= directional_lights.data[i].shadow_z_range.z;
|
|
float z = trans_coord.z * directional_lights.data[i].shadow_z_range.z;
|
|
|
|
transmittance_z = z - shadow_z;
|
|
|
|
} else {
|
|
vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.w, 1.0);
|
|
vec4 trans_coord = directional_lights.data[i].shadow_matrix4 * trans_vertex;
|
|
trans_coord /= trans_coord.w;
|
|
|
|
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
|
|
shadow_z *= directional_lights.data[i].shadow_z_range.w;
|
|
float z = trans_coord.z * directional_lights.data[i].shadow_z_range.w;
|
|
|
|
transmittance_z = z - shadow_z;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
float shadow = 1.0;
|
|
|
|
if (i < 4) {
|
|
shadow = float(shadow0 >> (i * 8) & 0xFF) / 255.0;
|
|
} else {
|
|
shadow = float(shadow1 >> ((i - 4) * 8) & 0xFF) / 255.0;
|
|
}
|
|
|
|
blur_shadow(shadow);
|
|
|
|
float size_A = sc_use_light_soft_shadows ? directional_lights.data[i].size : 0.0;
|
|
|
|
light_compute(normal, directional_lights.data[i].direction, normalize(view), size_A, directional_lights.data[i].color * directional_lights.data[i].energy, shadow, f0, orms, 1.0,
|
|
#ifdef LIGHT_BACKLIGHT_USED
|
|
backlight,
|
|
#endif
|
|
#ifdef LIGHT_TRANSMITTANCE_USED
|
|
transmittance_color,
|
|
transmittance_depth,
|
|
transmittance_boost,
|
|
transmittance_z,
|
|
#endif
|
|
#ifdef LIGHT_RIM_USED
|
|
rim, rim_tint, albedo,
|
|
#endif
|
|
#ifdef LIGHT_CLEARCOAT_USED
|
|
clearcoat, clearcoat_gloss,
|
|
#endif
|
|
#ifdef LIGHT_ANISOTROPY_USED
|
|
binormal, tangent, anisotropy,
|
|
#endif
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
alpha,
|
|
#endif
|
|
diffuse_light,
|
|
specular_light);
|
|
}
|
|
}
|
|
|
|
{ //omni lights
|
|
|
|
uint cluster_omni_offset = cluster_offset;
|
|
|
|
uint item_min;
|
|
uint item_max;
|
|
uint item_from;
|
|
uint item_to;
|
|
|
|
cluster_get_item_range(cluster_omni_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);
|
|
|
|
#ifdef USE_SUBGROUPS
|
|
item_from = subgroupBroadcastFirst(subgroupMin(item_from));
|
|
item_to = subgroupBroadcastFirst(subgroupMax(item_to));
|
|
#endif
|
|
|
|
for (uint i = item_from; i < item_to; i++) {
|
|
uint mask = cluster_buffer.data[cluster_omni_offset + i];
|
|
mask &= cluster_get_range_clip_mask(i, item_min, item_max);
|
|
#ifdef USE_SUBGROUPS
|
|
uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
|
|
#else
|
|
uint merged_mask = mask;
|
|
#endif
|
|
|
|
while (merged_mask != 0) {
|
|
uint bit = findMSB(merged_mask);
|
|
merged_mask &= ~(1 << bit);
|
|
#ifdef USE_SUBGROUPS
|
|
if (((1 << bit) & mask) == 0) { //do not process if not originally here
|
|
continue;
|
|
}
|
|
#endif
|
|
uint light_index = 32 * i + bit;
|
|
|
|
if (!bool(omni_lights.data[light_index].mask & instances.data[instance_index].layer_mask)) {
|
|
continue; //not masked
|
|
}
|
|
|
|
if (omni_lights.data[light_index].bake_mode == LIGHT_BAKE_STATIC && bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) {
|
|
continue; // Statically baked light and object uses lightmap, skip
|
|
}
|
|
|
|
float shadow = light_process_omni_shadow(light_index, vertex, view);
|
|
|
|
shadow = blur_shadow(shadow);
|
|
|
|
light_process_omni(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow,
|
|
#ifdef LIGHT_BACKLIGHT_USED
|
|
backlight,
|
|
#endif
|
|
#ifdef LIGHT_TRANSMITTANCE_USED
|
|
transmittance_color,
|
|
transmittance_depth,
|
|
transmittance_boost,
|
|
#endif
|
|
#ifdef LIGHT_RIM_USED
|
|
rim,
|
|
rim_tint,
|
|
albedo,
|
|
#endif
|
|
#ifdef LIGHT_CLEARCOAT_USED
|
|
clearcoat, clearcoat_gloss,
|
|
#endif
|
|
#ifdef LIGHT_ANISOTROPY_USED
|
|
tangent, binormal, anisotropy,
|
|
#endif
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
alpha,
|
|
#endif
|
|
diffuse_light, specular_light);
|
|
}
|
|
}
|
|
}
|
|
|
|
{ //spot lights
|
|
|
|
uint cluster_spot_offset = cluster_offset + scene_data.cluster_type_size;
|
|
|
|
uint item_min;
|
|
uint item_max;
|
|
uint item_from;
|
|
uint item_to;
|
|
|
|
cluster_get_item_range(cluster_spot_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);
|
|
|
|
#ifdef USE_SUBGROUPS
|
|
item_from = subgroupBroadcastFirst(subgroupMin(item_from));
|
|
item_to = subgroupBroadcastFirst(subgroupMax(item_to));
|
|
#endif
|
|
|
|
for (uint i = item_from; i < item_to; i++) {
|
|
uint mask = cluster_buffer.data[cluster_spot_offset + i];
|
|
mask &= cluster_get_range_clip_mask(i, item_min, item_max);
|
|
#ifdef USE_SUBGROUPS
|
|
uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
|
|
#else
|
|
uint merged_mask = mask;
|
|
#endif
|
|
|
|
while (merged_mask != 0) {
|
|
uint bit = findMSB(merged_mask);
|
|
merged_mask &= ~(1 << bit);
|
|
#ifdef USE_SUBGROUPS
|
|
if (((1 << bit) & mask) == 0) { //do not process if not originally here
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
uint light_index = 32 * i + bit;
|
|
|
|
if (!bool(spot_lights.data[light_index].mask & instances.data[instance_index].layer_mask)) {
|
|
continue; //not masked
|
|
}
|
|
|
|
if (spot_lights.data[light_index].bake_mode == LIGHT_BAKE_STATIC && bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) {
|
|
continue; // Statically baked light and object uses lightmap, skip
|
|
}
|
|
|
|
float shadow = light_process_spot_shadow(light_index, vertex, view);
|
|
|
|
shadow = blur_shadow(shadow);
|
|
|
|
light_process_spot(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow,
|
|
#ifdef LIGHT_BACKLIGHT_USED
|
|
backlight,
|
|
#endif
|
|
#ifdef LIGHT_TRANSMITTANCE_USED
|
|
transmittance_color,
|
|
transmittance_depth,
|
|
transmittance_boost,
|
|
#endif
|
|
#ifdef LIGHT_RIM_USED
|
|
rim,
|
|
rim_tint,
|
|
albedo,
|
|
#endif
|
|
#ifdef LIGHT_CLEARCOAT_USED
|
|
clearcoat, clearcoat_gloss,
|
|
#endif
|
|
#ifdef LIGHT_ANISOTROPY_USED
|
|
tangent, binormal, anisotropy,
|
|
#endif
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
alpha,
|
|
#endif
|
|
diffuse_light, specular_light);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef USE_SHADOW_TO_OPACITY
|
|
alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0));
|
|
|
|
#if defined(ALPHA_SCISSOR_USED)
|
|
if (alpha < alpha_scissor) {
|
|
discard;
|
|
}
|
|
#endif // ALPHA_SCISSOR_USED
|
|
|
|
#ifdef USE_OPAQUE_PREPASS
|
|
|
|
if (alpha < opaque_prepass_threshold) {
|
|
discard;
|
|
}
|
|
|
|
#endif // USE_OPAQUE_PREPASS
|
|
|
|
#endif // USE_SHADOW_TO_OPACITY
|
|
|
|
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
|
|
|
#ifdef MODE_RENDER_DEPTH
|
|
|
|
#ifdef MODE_RENDER_SDF
|
|
|
|
{
|
|
vec3 local_pos = (scene_data.sdf_to_bounds * vec4(vertex, 1.0)).xyz;
|
|
ivec3 grid_pos = scene_data.sdf_offset + ivec3(local_pos * vec3(scene_data.sdf_size));
|
|
|
|
uint albedo16 = 0x1; //solid flag
|
|
albedo16 |= clamp(uint(albedo.r * 31.0), 0, 31) << 11;
|
|
albedo16 |= clamp(uint(albedo.g * 31.0), 0, 31) << 6;
|
|
albedo16 |= clamp(uint(albedo.b * 31.0), 0, 31) << 1;
|
|
|
|
imageStore(albedo_volume_grid, grid_pos, uvec4(albedo16));
|
|
|
|
uint facing_bits = 0;
|
|
const vec3 aniso_dir[6] = vec3[](
|
|
vec3(1, 0, 0),
|
|
vec3(0, 1, 0),
|
|
vec3(0, 0, 1),
|
|
vec3(-1, 0, 0),
|
|
vec3(0, -1, 0),
|
|
vec3(0, 0, -1));
|
|
|
|
vec3 cam_normal = mat3(scene_data.camera_matrix) * normalize(normal_interp);
|
|
|
|
float closest_dist = -1e20;
|
|
|
|
for (uint i = 0; i < 6; i++) {
|
|
float d = dot(cam_normal, aniso_dir[i]);
|
|
if (d > closest_dist) {
|
|
closest_dist = d;
|
|
facing_bits = (1 << i);
|
|
}
|
|
}
|
|
|
|
imageAtomicOr(geom_facing_grid, grid_pos, facing_bits); //store facing bits
|
|
|
|
if (length(emission) > 0.001) {
|
|
float lumas[6];
|
|
vec3 light_total = vec3(0);
|
|
|
|
for (int i = 0; i < 6; i++) {
|
|
float strength = max(0.0, dot(cam_normal, aniso_dir[i]));
|
|
vec3 light = emission * strength;
|
|
light_total += light;
|
|
lumas[i] = max(light.r, max(light.g, light.b));
|
|
}
|
|
|
|
float luma_total = max(light_total.r, max(light_total.g, light_total.b));
|
|
|
|
uint light_aniso = 0;
|
|
|
|
for (int i = 0; i < 6; i++) {
|
|
light_aniso |= min(31, uint((lumas[i] / luma_total) * 31.0)) << (i * 5);
|
|
}
|
|
|
|
//compress to RGBE9995 to save space
|
|
|
|
const float pow2to9 = 512.0f;
|
|
const float B = 15.0f;
|
|
const float N = 9.0f;
|
|
const float LN2 = 0.6931471805599453094172321215;
|
|
|
|
float cRed = clamp(light_total.r, 0.0, 65408.0);
|
|
float cGreen = clamp(light_total.g, 0.0, 65408.0);
|
|
float cBlue = clamp(light_total.b, 0.0, 65408.0);
|
|
|
|
float cMax = max(cRed, max(cGreen, cBlue));
|
|
|
|
float expp = max(-B - 1.0f, floor(log(cMax) / LN2)) + 1.0f + B;
|
|
|
|
float sMax = floor((cMax / pow(2.0f, expp - B - N)) + 0.5f);
|
|
|
|
float exps = expp + 1.0f;
|
|
|
|
if (0.0 <= sMax && sMax < pow2to9) {
|
|
exps = expp;
|
|
}
|
|
|
|
float sRed = floor((cRed / pow(2.0f, exps - B - N)) + 0.5f);
|
|
float sGreen = floor((cGreen / pow(2.0f, exps - B - N)) + 0.5f);
|
|
float sBlue = floor((cBlue / pow(2.0f, exps - B - N)) + 0.5f);
|
|
//store as 8985 to have 2 extra neighbour bits
|
|
uint light_rgbe = ((uint(sRed) & 0x1FF) >> 1) | ((uint(sGreen) & 0x1FF) << 8) | (((uint(sBlue) & 0x1FF) >> 1) << 17) | ((uint(exps) & 0x1F) << 25);
|
|
|
|
imageStore(emission_grid, grid_pos, uvec4(light_rgbe));
|
|
imageStore(emission_aniso_grid, grid_pos, uvec4(light_aniso));
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef MODE_RENDER_MATERIAL
|
|
|
|
albedo_output_buffer.rgb = albedo;
|
|
albedo_output_buffer.a = alpha;
|
|
|
|
normal_output_buffer.rgb = normal * 0.5 + 0.5;
|
|
normal_output_buffer.a = 0.0;
|
|
depth_output_buffer.r = -vertex.z;
|
|
|
|
orm_output_buffer.r = ao;
|
|
orm_output_buffer.g = roughness;
|
|
orm_output_buffer.b = metallic;
|
|
orm_output_buffer.a = sss_strength;
|
|
|
|
emission_output_buffer.rgb = emission;
|
|
emission_output_buffer.a = 0.0;
|
|
#endif
|
|
|
|
#ifdef MODE_RENDER_NORMAL_ROUGHNESS
|
|
normal_roughness_output_buffer = vec4(normal * 0.5 + 0.5, roughness);
|
|
|
|
#ifdef MODE_RENDER_VOXEL_GI
|
|
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_VOXEL_GI)) { // process voxel_gi_instances
|
|
uint index1 = instances.data[instance_index].gi_offset & 0xFFFF;
|
|
uint index2 = instances.data[instance_index].gi_offset >> 16;
|
|
voxel_gi_buffer.x = index1 & 0xFF;
|
|
voxel_gi_buffer.y = index2 & 0xFF;
|
|
} else {
|
|
voxel_gi_buffer.x = 0xFF;
|
|
voxel_gi_buffer.y = 0xFF;
|
|
}
|
|
#endif
|
|
|
|
#endif //MODE_RENDER_NORMAL_ROUGHNESS
|
|
|
|
//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
|
|
#else
|
|
|
|
// multiply by albedo
|
|
diffuse_light *= albedo; // ambient must be multiplied by albedo at the end
|
|
|
|
// apply direct light AO
|
|
ao = unpackUnorm4x8(orms).x;
|
|
specular_light *= ao;
|
|
diffuse_light *= ao;
|
|
|
|
// apply metallic
|
|
metallic = unpackUnorm4x8(orms).z;
|
|
diffuse_light *= 1.0 - metallic;
|
|
ambient_light *= 1.0 - metallic;
|
|
|
|
//restore fog
|
|
fog = vec4(unpackHalf2x16(fog_rg), unpackHalf2x16(fog_ba));
|
|
|
|
#ifdef MODE_MULTIPLE_RENDER_TARGETS
|
|
|
|
#ifdef MODE_UNSHADED
|
|
diffuse_buffer = vec4(albedo.rgb, 0.0);
|
|
specular_buffer = vec4(0.0);
|
|
|
|
#else
|
|
|
|
#ifdef SSS_MODE_SKIN
|
|
sss_strength = -sss_strength;
|
|
#endif
|
|
diffuse_buffer = vec4(emission + diffuse_light + ambient_light, sss_strength);
|
|
specular_buffer = vec4(specular_light, metallic);
|
|
#endif
|
|
|
|
diffuse_buffer.rgb = mix(diffuse_buffer.rgb, fog.rgb, fog.a);
|
|
specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), fog.a);
|
|
|
|
#else //MODE_MULTIPLE_RENDER_TARGETS
|
|
|
|
#ifdef MODE_UNSHADED
|
|
frag_color = vec4(albedo, alpha);
|
|
#else
|
|
frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha);
|
|
//frag_color = vec4(1.0);
|
|
#endif //USE_NO_SHADING
|
|
|
|
// Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
|
|
frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a);
|
|
;
|
|
|
|
#endif //MODE_MULTIPLE_RENDER_TARGETS
|
|
|
|
#endif //MODE_RENDER_DEPTH
|
|
}
|