virtualx-engine/thirdparty/basis_universal/encoder/basisu_uastc_enc.cpp
K. S. Ernest (iFire) Lee 3529141b4b Update basis universal to version 1.16.3.
Enable basis universal uastc internal storage instead of etc1s for better quality.
2022-03-24 22:41:23 -07:00

4195 lines
149 KiB
C++

// basisu_uastc_enc.cpp
// Copyright (C) 2019-2021 Binomial LLC. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "basisu_uastc_enc.h"
#if BASISU_USE_ASTC_DECOMPRESS
#include "basisu_astc_decomp.h"
#endif
#include "basisu_gpu_texture.h"
#include "basisu_bc7enc.h"
#ifdef _DEBUG
// When BASISU_VALIDATE_UASTC_ENC is 1, we pack and unpack to/from UASTC and ASTC, then validate that each codec returns the exact same results. This is slower.
#define BASISU_VALIDATE_UASTC_ENC 1
#endif
#define BASISU_SUPPORT_FORCE_MODE 0
using namespace basist;
namespace basisu
{
const uint32_t MAX_ENCODE_RESULTS = 512;
#if BASISU_VALIDATE_UASTC_ENC
static void validate_func(bool condition, int line)
{
if (!condition)
{
fprintf(stderr, "basisu_uastc_enc: Internal validation failed on line %u!\n", line);
}
}
#define VALIDATE(c) validate_func(c, __LINE__);
#else
#define VALIDATE(c)
#endif
enum dxt_constants
{
cDXT1SelectorBits = 2U, cDXT1SelectorValues = 1U << cDXT1SelectorBits, cDXT1SelectorMask = cDXT1SelectorValues - 1U,
cDXT5SelectorBits = 3U, cDXT5SelectorValues = 1U << cDXT5SelectorBits, cDXT5SelectorMask = cDXT5SelectorValues - 1U,
};
struct dxt1_block
{
enum { cTotalEndpointBytes = 2, cTotalSelectorBytes = 4 };
uint8_t m_low_color[cTotalEndpointBytes];
uint8_t m_high_color[cTotalEndpointBytes];
uint8_t m_selectors[cTotalSelectorBytes];
inline void clear() { basisu::clear_obj(*this); }
inline uint32_t get_high_color() const { return m_high_color[0] | (m_high_color[1] << 8U); }
inline uint32_t get_low_color() const { return m_low_color[0] | (m_low_color[1] << 8U); }
inline void set_low_color(uint16_t c) { m_low_color[0] = static_cast<uint8_t>(c & 0xFF); m_low_color[1] = static_cast<uint8_t>((c >> 8) & 0xFF); }
inline void set_high_color(uint16_t c) { m_high_color[0] = static_cast<uint8_t>(c & 0xFF); m_high_color[1] = static_cast<uint8_t>((c >> 8) & 0xFF); }
inline uint32_t get_selector(uint32_t x, uint32_t y) const { assert((x < 4U) && (y < 4U)); return (m_selectors[y] >> (x * cDXT1SelectorBits))& cDXT1SelectorMask; }
inline void set_selector(uint32_t x, uint32_t y, uint32_t val) { assert((x < 4U) && (y < 4U) && (val < 4U)); m_selectors[y] &= (~(cDXT1SelectorMask << (x * cDXT1SelectorBits))); m_selectors[y] |= (val << (x * cDXT1SelectorBits)); }
static uint16_t pack_color(const color_rgba& color, bool scaled, uint32_t bias = 127U)
{
uint32_t r = color.r, g = color.g, b = color.b;
if (scaled)
{
r = (r * 31U + bias) / 255U;
g = (g * 63U + bias) / 255U;
b = (b * 31U + bias) / 255U;
}
return static_cast<uint16_t>(basisu::minimum(b, 31U) | (basisu::minimum(g, 63U) << 5U) | (basisu::minimum(r, 31U) << 11U));
}
static uint16_t pack_unscaled_color(uint32_t r, uint32_t g, uint32_t b) { return static_cast<uint16_t>(b | (g << 5U) | (r << 11U)); }
};
#define UASTC_WRITE_MODE_DESCS 0
static inline void uastc_write_bits(uint8_t* pBuf, uint32_t& bit_offset, uint64_t code, uint32_t codesize, const char* pDesc)
{
(void)pDesc;
#if UASTC_WRITE_MODE_DESCS
if (pDesc)
printf("%s: %u %u\n", pDesc, bit_offset, codesize);
#endif
assert((codesize == 64) || (code < (1ULL << codesize)));
while (codesize)
{
uint32_t byte_bit_offset = bit_offset & 7;
uint32_t bits_to_write = basisu::minimum<int>(codesize, 8 - byte_bit_offset);
pBuf[bit_offset >> 3] |= (code << byte_bit_offset);
code >>= bits_to_write;
codesize -= bits_to_write;
bit_offset += bits_to_write;
}
}
void pack_uastc(basist::uastc_block& blk, const uastc_encode_results& result, const etc_block& etc1_blk, uint32_t etc1_bias, const eac_a8_block& etc_eac_a8_blk, bool bc1_hint0, bool bc1_hint1)
{
if ((g_uastc_mode_has_alpha[result.m_uastc_mode]) && (result.m_uastc_mode != UASTC_MODE_INDEX_SOLID_COLOR))
{
assert(etc_eac_a8_blk.m_multiplier >= 1);
}
uint8_t buf[32];
memset(buf, 0, sizeof(buf));
uint32_t block_bit_offset = 0;
#if UASTC_WRITE_MODE_DESCS
printf("**** Mode: %u\n", result.m_uastc_mode);
#endif
uastc_write_bits(buf, block_bit_offset, g_uastc_mode_huff_codes[result.m_uastc_mode][0], g_uastc_mode_huff_codes[result.m_uastc_mode][1], "mode");
if (result.m_uastc_mode == UASTC_MODE_INDEX_SOLID_COLOR)
{
uastc_write_bits(buf, block_bit_offset, result.m_solid_color.r, 8, "R");
uastc_write_bits(buf, block_bit_offset, result.m_solid_color.g, 8, "G");
uastc_write_bits(buf, block_bit_offset, result.m_solid_color.b, 8, "B");
uastc_write_bits(buf, block_bit_offset, result.m_solid_color.a, 8, "A");
uastc_write_bits(buf, block_bit_offset, etc1_blk.get_diff_bit(), 1, "ETC1D");
uastc_write_bits(buf, block_bit_offset, etc1_blk.get_inten_table(0), 3, "ETC1I");
uastc_write_bits(buf, block_bit_offset, etc1_blk.get_selector(0, 0), 2, "ETC1S");
uint32_t r, g, b;
if (etc1_blk.get_diff_bit())
etc_block::unpack_color5(r, g, b, etc1_blk.get_base5_color(), false);
else
etc_block::unpack_color4(r, g, b, etc1_blk.get_base4_color(0), false);
uastc_write_bits(buf, block_bit_offset, r, 5, "ETC1R");
uastc_write_bits(buf, block_bit_offset, g, 5, "ETC1G");
uastc_write_bits(buf, block_bit_offset, b, 5, "ETC1B");
memcpy(&blk, buf, sizeof(blk));
return;
}
if (g_uastc_mode_has_bc1_hint0[result.m_uastc_mode])
uastc_write_bits(buf, block_bit_offset, bc1_hint0, 1, "BC1H0");
else
{
assert(bc1_hint0 == false);
}
if (g_uastc_mode_has_bc1_hint1[result.m_uastc_mode])
uastc_write_bits(buf, block_bit_offset, bc1_hint1, 1, "BC1H1");
else
{
assert(bc1_hint1 == false);
}
uastc_write_bits(buf, block_bit_offset, etc1_blk.get_flip_bit(), 1, "ETC1F");
uastc_write_bits(buf, block_bit_offset, etc1_blk.get_diff_bit(), 1, "ETC1D");
uastc_write_bits(buf, block_bit_offset, etc1_blk.get_inten_table(0), 3, "ETC1I0");
uastc_write_bits(buf, block_bit_offset, etc1_blk.get_inten_table(1), 3, "ETC1I1");
if (g_uastc_mode_has_etc1_bias[result.m_uastc_mode])
uastc_write_bits(buf, block_bit_offset, etc1_bias, 5, "ETC1BIAS");
else
{
assert(etc1_bias == 0);
}
if (g_uastc_mode_has_alpha[result.m_uastc_mode])
{
const uint32_t etc2_hints = etc_eac_a8_blk.m_table | (etc_eac_a8_blk.m_multiplier << 4);
assert(etc2_hints > 0 && etc2_hints <= 0xFF);
uastc_write_bits(buf, block_bit_offset, etc2_hints, 8, "ETC2TM");
}
uint32_t subsets = 1;
switch (result.m_uastc_mode)
{
case 2:
case 4:
case 7:
case 9:
case 16:
uastc_write_bits(buf, block_bit_offset, result.m_common_pattern, 5, "PAT");
subsets = 2;
break;
case 3:
uastc_write_bits(buf, block_bit_offset, result.m_common_pattern, 4, "PAT");
subsets = 3;
break;
default:
break;
}
#ifdef _DEBUG
uint32_t part_seed = 0;
switch (result.m_uastc_mode)
{
case 2:
case 4:
case 9:
case 16:
part_seed = g_astc_bc7_common_partitions2[result.m_common_pattern].m_astc;
break;
case 3:
part_seed = g_astc_bc7_common_partitions3[result.m_common_pattern].m_astc;
break;
case 7:
part_seed = g_bc7_3_astc2_common_partitions[result.m_common_pattern].m_astc2;
break;
default:
break;
}
#endif
uint32_t total_planes = 1;
switch (result.m_uastc_mode)
{
case 6:
case 11:
case 13:
uastc_write_bits(buf, block_bit_offset, result.m_astc.m_ccs, 2, "COMPSEL");
total_planes = 2;
break;
case 17:
// CCS field is always 3 for dual plane LA.
assert(result.m_astc.m_ccs == 3);
total_planes = 2;
break;
default:
break;
}
uint8_t weights[32];
memcpy(weights, result.m_astc.m_weights, 16 * total_planes);
uint8_t endpoints[18];
memcpy(endpoints, result.m_astc.m_endpoints, sizeof(endpoints));
const uint32_t total_comps = g_uastc_mode_comps[result.m_uastc_mode];
// LLAA
// LLAA LLAA
// LLAA LLAA LLAA
// RRGGBB
// RRGGBB RRGGBB
// RRGGBB RRGGBB RRGGBB
// RRGGBBAA
// RRGGBBAA RRGGBBAA
const uint32_t weight_bits = g_uastc_mode_weight_bits[result.m_uastc_mode];
const uint8_t* pPartition_pattern;
const uint8_t* pSubset_anchor_indices = basist::get_anchor_indices(subsets, result.m_uastc_mode, result.m_common_pattern, pPartition_pattern);
for (uint32_t plane_index = 0; plane_index < total_planes; plane_index++)
{
for (uint32_t subset_index = 0; subset_index < subsets; subset_index++)
{
const uint32_t anchor_index = pSubset_anchor_indices[subset_index];
#ifdef _DEBUG
if (subsets >= 2)
{
for (uint32_t i = 0; i < 16; i++)
{
const uint32_t part_index = astc_compute_texel_partition(part_seed, i & 3, i >> 2, 0, subsets, true);
if (part_index == subset_index)
{
assert(anchor_index == i);
break;
}
}
}
else
{
assert(!anchor_index);
}
#endif
// Check anchor weight's MSB - if it's set then invert this subset's weights and swap the endpoints
if (weights[anchor_index * total_planes + plane_index] & (1 << (weight_bits - 1)))
{
for (uint32_t i = 0; i < 16; i++)
{
const uint32_t part_index = pPartition_pattern[i];
#ifdef _DEBUG
if (subsets >= 2)
{
assert(part_index == (uint32_t)astc_compute_texel_partition(part_seed, i & 3, i >> 2, 0, subsets, true));
}
else
{
assert(!part_index);
}
#endif
if (part_index == subset_index)
weights[i * total_planes + plane_index] = ((1 << weight_bits) - 1) - weights[i * total_planes + plane_index];
}
if (total_planes == 2)
{
for (int c = 0; c < (int)total_comps; c++)
{
const uint32_t comp_plane = (total_comps == 2) ? c : ((c == result.m_astc.m_ccs) ? 1 : 0);
if (comp_plane == plane_index)
std::swap(endpoints[c * 2 + 0], endpoints[c * 2 + 1]);
}
}
else
{
for (uint32_t c = 0; c < total_comps; c++)
std::swap(endpoints[subset_index * total_comps * 2 + c * 2 + 0], endpoints[subset_index * total_comps * 2 + c * 2 + 1]);
}
}
} // subset_index
} // plane_index
const uint32_t total_values = total_comps * 2 * subsets;
const uint32_t endpoint_range = g_uastc_mode_endpoint_ranges[result.m_uastc_mode];
uint32_t bit_values[18];
uint32_t tq_values[8];
uint32_t total_tq_values = 0;
uint32_t tq_accum = 0;
uint32_t tq_mul = 1;
const uint32_t ep_bits = g_astc_bise_range_table[endpoint_range][0];
const uint32_t ep_trits = g_astc_bise_range_table[endpoint_range][1];
const uint32_t ep_quints = g_astc_bise_range_table[endpoint_range][2];
for (uint32_t i = 0; i < total_values; i++)
{
uint32_t val = endpoints[i];
uint32_t bits = val & ((1 << ep_bits) - 1);
uint32_t tq = val >> ep_bits;
bit_values[i] = bits;
if (ep_trits)
{
assert(tq < 3);
tq_accum += tq * tq_mul;
tq_mul *= 3;
if (tq_mul == 243)
{
tq_values[total_tq_values++] = tq_accum;
tq_accum = 0;
tq_mul = 1;
}
}
else if (ep_quints)
{
assert(tq < 5);
tq_accum += tq * tq_mul;
tq_mul *= 5;
if (tq_mul == 125)
{
tq_values[total_tq_values++] = tq_accum;
tq_accum = 0;
tq_mul = 1;
}
}
}
uint32_t total_endpoint_bits = 0;
for (uint32_t i = 0; i < total_tq_values; i++)
{
const uint32_t num_bits = ep_trits ? 8 : 7;
uastc_write_bits(buf, block_bit_offset, tq_values[i], num_bits, "ETQ");
total_endpoint_bits += num_bits;
}
if (tq_mul > 1)
{
uint32_t num_bits;
if (ep_trits)
{
if (tq_mul == 3)
num_bits = 2;
else if (tq_mul == 9)
num_bits = 4;
else if (tq_mul == 27)
num_bits = 5;
else //if (tq_mul == 81)
num_bits = 7;
}
else
{
if (tq_mul == 5)
num_bits = 3;
else //if (tq_mul == 25)
num_bits = 5;
}
uastc_write_bits(buf, block_bit_offset, tq_accum, num_bits, "ETQ");
total_endpoint_bits += num_bits;
}
for (uint32_t i = 0; i < total_values; i++)
{
uastc_write_bits(buf, block_bit_offset, bit_values[i], ep_bits, "EBITS");
total_endpoint_bits += ep_bits;
}
#if UASTC_WRITE_MODE_DESCS
uint32_t weight_start = block_bit_offset;
#endif
uint32_t total_weight_bits = 0;
const uint32_t plane_shift = (total_planes == 2) ? 1 : 0;
for (uint32_t i = 0; i < 16 * total_planes; i++)
{
uint32_t numbits = weight_bits;
for (uint32_t s = 0; s < subsets; s++)
{
if (pSubset_anchor_indices[s] == (i >> plane_shift))
{
numbits--;
break;
}
}
uastc_write_bits(buf, block_bit_offset, weights[i], numbits, nullptr);
total_weight_bits += numbits;
}
#if UASTC_WRITE_MODE_DESCS
printf("WEIGHTS: %u %u\n", weight_start, total_weight_bits);
#endif
assert(block_bit_offset <= 128);
memcpy(&blk, buf, sizeof(blk));
#if UASTC_WRITE_MODE_DESCS
printf("Total bits: %u, endpoint bits: %u, weight bits: %u\n", block_bit_offset, total_endpoint_bits, total_weight_bits);
#endif
}
// MODE 0
// 0. DualPlane: 0, WeightRange: 8 (16), Subsets: 1, CEM: 8 (RGB Direct ), EndpointRange: 19 (192) MODE6 RGB
// 18. DualPlane: 0, WeightRange: 11 (32), Subsets: 1, CEM: 8 (RGB Direct ), EndpointRange: 11 (32) MODE6 RGB
static void astc_mode0_or_18(uint32_t mode, const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params, const uint8_t *pForce_selectors = nullptr)
{
const uint32_t endpoint_range = (mode == 18) ? 11 : 19;
const uint32_t weight_range = (mode == 18) ? 11 : 8;
color_cell_compressor_params ccell_params;
memset(&ccell_params, 0, sizeof(ccell_params));
ccell_params.m_num_pixels = 16;
ccell_params.m_pPixels = (color_quad_u8*)&block[0][0];
ccell_params.m_num_selector_weights = (mode == 18) ? 32 : 16;
ccell_params.m_pSelector_weights = (mode == 18) ? g_astc_weights5 : g_astc_weights4;
ccell_params.m_pSelector_weightsx = (mode == 18) ? (const bc7enc_vec4F*)g_astc_weights5x : (const bc7enc_vec4F*)g_astc_weights4x;
ccell_params.m_astc_endpoint_range = endpoint_range;
ccell_params.m_weights[0] = 1;
ccell_params.m_weights[1] = 1;
ccell_params.m_weights[2] = 1;
ccell_params.m_weights[3] = 1;
ccell_params.m_pForce_selectors = pForce_selectors;
color_cell_compressor_results ccell_results;
uint8_t ccell_result_selectors[16];
uint8_t ccell_result_selectors_temp[16];
memset(&ccell_results, 0, sizeof(ccell_results));
ccell_results.m_pSelectors = &ccell_result_selectors[0];
ccell_results.m_pSelectors_temp = &ccell_result_selectors_temp[0];
uint64_t part_err = color_cell_compression(255, &ccell_params, &ccell_results, &comp_params);
// ASTC
astc_block_desc astc_results;
memset(&astc_results, 0, sizeof(astc_results));
astc_results.m_dual_plane = false;
astc_results.m_weight_range = weight_range;// (mode == 18) ? 11 : 8;
astc_results.m_ccs = 0;
astc_results.m_subsets = 1;
astc_results.m_partition_seed = 0;
astc_results.m_cem = 8;
astc_results.m_endpoints[0] = ccell_results.m_astc_low_endpoint.m_c[0];
astc_results.m_endpoints[1] = ccell_results.m_astc_high_endpoint.m_c[0];
astc_results.m_endpoints[2] = ccell_results.m_astc_low_endpoint.m_c[1];
astc_results.m_endpoints[3] = ccell_results.m_astc_high_endpoint.m_c[1];
astc_results.m_endpoints[4] = ccell_results.m_astc_low_endpoint.m_c[2];
astc_results.m_endpoints[5] = ccell_results.m_astc_high_endpoint.m_c[2];
bool invert = false;
if (pForce_selectors == nullptr)
{
int s0 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[0]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[2]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[4]].m_unquant;
int s1 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[1]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[3]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[5]].m_unquant;
if (s1 < s0)
{
std::swap(astc_results.m_endpoints[0], astc_results.m_endpoints[1]);
std::swap(astc_results.m_endpoints[2], astc_results.m_endpoints[3]);
std::swap(astc_results.m_endpoints[4], astc_results.m_endpoints[5]);
invert = true;
}
}
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
astc_results.m_weights[x + y * 4] = ccell_result_selectors[x + y * 4];
if (invert)
astc_results.m_weights[x + y * 4] = ((mode == 18) ? 31 : 15) - astc_results.m_weights[x + y * 4];
}
}
assert(total_results < MAX_ENCODE_RESULTS);
if (total_results < MAX_ENCODE_RESULTS)
{
pResults[total_results].m_uastc_mode = mode;
pResults[total_results].m_common_pattern = 0;
pResults[total_results].m_astc = astc_results;
pResults[total_results].m_astc_err = part_err;
total_results++;
}
}
// MODE 1
// 1-subset, 2-bit indices, 8-bit endpoints, BC7 mode 3
// DualPlane: 0, WeightRange: 2 (4), Subsets: 1, CEM: 8 (RGB Direct ), EndpointRange: 20 (256) MODE3 or MODE5 RGB
static void astc_mode1(const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params)
{
color_cell_compressor_params ccell_params;
memset(&ccell_params, 0, sizeof(ccell_params));
ccell_params.m_num_pixels = 16;
ccell_params.m_pPixels = (color_quad_u8*)&block[0][0];
ccell_params.m_num_selector_weights = 4;
ccell_params.m_pSelector_weights = g_bc7_weights2;
ccell_params.m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights2x;
ccell_params.m_astc_endpoint_range = 20;
ccell_params.m_weights[0] = 1;
ccell_params.m_weights[1] = 1;
ccell_params.m_weights[2] = 1;
ccell_params.m_weights[3] = 1;
color_cell_compressor_results ccell_results;
uint8_t ccell_result_selectors[16];
uint8_t ccell_result_selectors_temp[16];
memset(&ccell_results, 0, sizeof(ccell_results));
ccell_results.m_pSelectors = &ccell_result_selectors[0];
ccell_results.m_pSelectors_temp = &ccell_result_selectors_temp[0];
uint64_t part_err = color_cell_compression(255, &ccell_params, &ccell_results, &comp_params);
// ASTC
astc_block_desc astc_results;
memset(&astc_results, 0, sizeof(astc_results));
astc_results.m_dual_plane = false;
astc_results.m_weight_range = 2;
astc_results.m_ccs = 0;
astc_results.m_subsets = 1;
astc_results.m_partition_seed = 0;
astc_results.m_cem = 8;
astc_results.m_endpoints[0] = ccell_results.m_astc_low_endpoint.m_c[0];
astc_results.m_endpoints[1] = ccell_results.m_astc_high_endpoint.m_c[0];
astc_results.m_endpoints[2] = ccell_results.m_astc_low_endpoint.m_c[1];
astc_results.m_endpoints[3] = ccell_results.m_astc_high_endpoint.m_c[1];
astc_results.m_endpoints[4] = ccell_results.m_astc_low_endpoint.m_c[2];
astc_results.m_endpoints[5] = ccell_results.m_astc_high_endpoint.m_c[2];
const uint32_t range = 20;
bool invert = false;
int s0 = g_astc_unquant[range][astc_results.m_endpoints[0]].m_unquant + g_astc_unquant[range][astc_results.m_endpoints[2]].m_unquant + g_astc_unquant[range][astc_results.m_endpoints[4]].m_unquant;
int s1 = g_astc_unquant[range][astc_results.m_endpoints[1]].m_unquant + g_astc_unquant[range][astc_results.m_endpoints[3]].m_unquant + g_astc_unquant[range][astc_results.m_endpoints[5]].m_unquant;
if (s1 < s0)
{
std::swap(astc_results.m_endpoints[0], astc_results.m_endpoints[1]);
std::swap(astc_results.m_endpoints[2], astc_results.m_endpoints[3]);
std::swap(astc_results.m_endpoints[4], astc_results.m_endpoints[5]);
invert = true;
}
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
astc_results.m_weights[x + y * 4] = ccell_result_selectors[x + y * 4];
if (invert)
astc_results.m_weights[x + y * 4] = 3 - astc_results.m_weights[x + y * 4];
}
}
assert(total_results < MAX_ENCODE_RESULTS);
if (total_results < MAX_ENCODE_RESULTS)
{
pResults[total_results].m_uastc_mode = 1;
pResults[total_results].m_common_pattern = 0;
pResults[total_results].m_astc = astc_results;
pResults[total_results].m_astc_err = part_err;
total_results++;
}
}
static uint32_t estimate_partition2(uint32_t num_weights, uint32_t num_comps, const uint32_t* pWeights, const color_rgba block[4][4], const uint32_t weights[4])
{
assert(pWeights[0] == 0 && pWeights[num_weights - 1] == 64);
uint64_t best_err = UINT64_MAX;
uint32_t best_common_pattern = 0;
for (uint32_t common_pattern = 0; common_pattern < TOTAL_ASTC_BC7_COMMON_PARTITIONS2; common_pattern++)
{
const uint32_t bc7_pattern = g_astc_bc7_common_partitions2[common_pattern].m_bc7;
const uint8_t* pPartition = &g_bc7_partition2[bc7_pattern * 16];
color_quad_u8 subset_colors[2][16];
uint32_t subset_total_colors[2] = { 0, 0 };
for (uint32_t index = 0; index < 16; index++)
subset_colors[pPartition[index]][subset_total_colors[pPartition[index]]++] = ((const color_quad_u8*)block)[index];
uint64_t total_subset_err = 0;
for (uint32_t subset = 0; (subset < 2) && (total_subset_err < best_err); subset++)
total_subset_err += color_cell_compression_est_astc(num_weights, num_comps, pWeights, subset_total_colors[subset], &subset_colors[subset][0], best_err, weights);
if (total_subset_err < best_err)
{
best_err = total_subset_err;
best_common_pattern = common_pattern;
}
}
return best_common_pattern;
}
// MODE 2
// 2-subset, 3-bit indices, 4-bit endpoints, BC7 mode 1
// DualPlane: 0, WeightRange: 5 (8), Subsets: 2, CEM: 8 (RGB Direct ), EndpointRange: 8 (16) MODE1
static void astc_mode2(const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params, bool estimate_partition)
{
uint32_t first_common_pattern = 0;
uint32_t last_common_pattern = TOTAL_ASTC_BC7_COMMON_PARTITIONS2;
if (estimate_partition)
{
const uint32_t weights[4] = { 1, 1, 1, 1 };
first_common_pattern = estimate_partition2(8, 3, g_bc7_weights3, block, weights);
last_common_pattern = first_common_pattern + 1;
}
for (uint32_t common_pattern = first_common_pattern; common_pattern < last_common_pattern; common_pattern++)
{
const uint32_t bc7_pattern = g_astc_bc7_common_partitions2[common_pattern].m_bc7;
color_rgba part_pixels[2][16];
uint32_t part_pixel_index[4][4];
uint32_t num_part_pixels[2] = { 0, 0 };
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
const uint32_t part = g_bc7_partition2[16 * bc7_pattern + x + y * 4];
part_pixel_index[y][x] = num_part_pixels[part];
part_pixels[part][num_part_pixels[part]++] = block[y][x];
}
}
color_cell_compressor_params ccell_params[2];
color_cell_compressor_results ccell_results[2];
uint8_t ccell_result_selectors[2][16];
uint8_t ccell_result_selectors_temp[2][16];
uint64_t total_part_err = 0;
for (uint32_t part = 0; part < 2; part++)
{
memset(&ccell_params[part], 0, sizeof(ccell_params[part]));
ccell_params[part].m_num_pixels = num_part_pixels[part];
ccell_params[part].m_pPixels = (color_quad_u8*)&part_pixels[part][0];
ccell_params[part].m_num_selector_weights = 8;
ccell_params[part].m_pSelector_weights = g_bc7_weights3;
ccell_params[part].m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights3x;
ccell_params[part].m_astc_endpoint_range = 8;
ccell_params[part].m_weights[0] = 1;
ccell_params[part].m_weights[1] = 1;
ccell_params[part].m_weights[2] = 1;
ccell_params[part].m_weights[3] = 1;
memset(&ccell_results[part], 0, sizeof(ccell_results[part]));
ccell_results[part].m_pSelectors = &ccell_result_selectors[part][0];
ccell_results[part].m_pSelectors_temp = &ccell_result_selectors_temp[part][0];
uint64_t part_err = color_cell_compression(255, &ccell_params[part], &ccell_results[part], &comp_params);
total_part_err += part_err;
} // part
{
// ASTC
astc_block_desc astc_results;
memset(&astc_results, 0, sizeof(astc_results));
astc_results.m_dual_plane = false;
astc_results.m_weight_range = 5;
astc_results.m_ccs = 0;
astc_results.m_subsets = 2;
astc_results.m_partition_seed = g_astc_bc7_common_partitions2[common_pattern].m_astc;
astc_results.m_cem = 8;
uint32_t p0 = 0;
uint32_t p1 = 1;
if (g_astc_bc7_common_partitions2[common_pattern].m_invert)
std::swap(p0, p1);
astc_results.m_endpoints[0] = ccell_results[p0].m_astc_low_endpoint.m_c[0];
astc_results.m_endpoints[1] = ccell_results[p0].m_astc_high_endpoint.m_c[0];
astc_results.m_endpoints[2] = ccell_results[p0].m_astc_low_endpoint.m_c[1];
astc_results.m_endpoints[3] = ccell_results[p0].m_astc_high_endpoint.m_c[1];
astc_results.m_endpoints[4] = ccell_results[p0].m_astc_low_endpoint.m_c[2];
astc_results.m_endpoints[5] = ccell_results[p0].m_astc_high_endpoint.m_c[2];
const uint32_t range = 8;
bool invert[2] = { false, false };
int s0 = g_astc_unquant[range][astc_results.m_endpoints[0]].m_unquant + g_astc_unquant[range][astc_results.m_endpoints[2]].m_unquant + g_astc_unquant[range][astc_results.m_endpoints[4]].m_unquant;
int s1 = g_astc_unquant[range][astc_results.m_endpoints[1]].m_unquant + g_astc_unquant[range][astc_results.m_endpoints[3]].m_unquant + g_astc_unquant[range][astc_results.m_endpoints[5]].m_unquant;
if (s1 < s0)
{
std::swap(astc_results.m_endpoints[0], astc_results.m_endpoints[1]);
std::swap(astc_results.m_endpoints[2], astc_results.m_endpoints[3]);
std::swap(astc_results.m_endpoints[4], astc_results.m_endpoints[5]);
invert[0] = true;
}
astc_results.m_endpoints[6] = ccell_results[p1].m_astc_low_endpoint.m_c[0];
astc_results.m_endpoints[7] = ccell_results[p1].m_astc_high_endpoint.m_c[0];
astc_results.m_endpoints[8] = ccell_results[p1].m_astc_low_endpoint.m_c[1];
astc_results.m_endpoints[9] = ccell_results[p1].m_astc_high_endpoint.m_c[1];
astc_results.m_endpoints[10] = ccell_results[p1].m_astc_low_endpoint.m_c[2];
astc_results.m_endpoints[11] = ccell_results[p1].m_astc_high_endpoint.m_c[2];
s0 = g_astc_unquant[range][astc_results.m_endpoints[0 + 6]].m_unquant + g_astc_unquant[range][astc_results.m_endpoints[2 + 6]].m_unquant + g_astc_unquant[range][astc_results.m_endpoints[4 + 6]].m_unquant;
s1 = g_astc_unquant[range][astc_results.m_endpoints[1 + 6]].m_unquant + g_astc_unquant[range][astc_results.m_endpoints[3 + 6]].m_unquant + g_astc_unquant[range][astc_results.m_endpoints[5 + 6]].m_unquant;
if (s1 < s0)
{
std::swap(astc_results.m_endpoints[0 + 6], astc_results.m_endpoints[1 + 6]);
std::swap(astc_results.m_endpoints[2 + 6], astc_results.m_endpoints[3 + 6]);
std::swap(astc_results.m_endpoints[4 + 6], astc_results.m_endpoints[5 + 6]);
invert[1] = true;
}
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
const uint32_t bc7_part = g_bc7_partition2[16 * bc7_pattern + x + y * 4];
astc_results.m_weights[x + y * 4] = ccell_result_selectors[bc7_part][part_pixel_index[y][x]];
uint32_t astc_part = bc7_part;
if (g_astc_bc7_common_partitions2[common_pattern].m_invert)
astc_part = 1 - astc_part;
if (invert[astc_part])
astc_results.m_weights[x + y * 4] = 7 - astc_results.m_weights[x + y * 4];
}
}
assert(total_results < MAX_ENCODE_RESULTS);
if (total_results < MAX_ENCODE_RESULTS)
{
pResults[total_results].m_uastc_mode = 2;
pResults[total_results].m_common_pattern = common_pattern;
pResults[total_results].m_astc = astc_results;
pResults[total_results].m_astc_err = total_part_err;
total_results++;
}
}
} // common_pattern
}
// MODE 3
// 3-subsets, 2-bit indices, [0,11] endpoints, BC7 mode 2
// DualPlane: 0, WeightRange: 2 (4), Subsets: 3, CEM: 8 (RGB Direct ), EndpointRange: 7 (12) MODE2
static void astc_mode3(const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params, bool estimate_partition)
{
uint32_t first_common_pattern = 0;
uint32_t last_common_pattern = TOTAL_ASTC_BC7_COMMON_PARTITIONS3;
if (estimate_partition)
{
uint64_t best_err = UINT64_MAX;
uint32_t best_common_pattern = 0;
const uint32_t weights[4] = { 1, 1, 1, 1 };
for (uint32_t common_pattern = 0; common_pattern < TOTAL_ASTC_BC7_COMMON_PARTITIONS3; common_pattern++)
{
const uint32_t bc7_pattern = g_astc_bc7_common_partitions3[common_pattern].m_bc7;
const uint8_t* pPartition = &g_bc7_partition3[bc7_pattern * 16];
color_quad_u8 subset_colors[3][16];
uint32_t subset_total_colors[3] = { 0, 0 };
for (uint32_t index = 0; index < 16; index++)
subset_colors[pPartition[index]][subset_total_colors[pPartition[index]]++] = ((const color_quad_u8*)block)[index];
uint64_t total_subset_err = 0;
for (uint32_t subset = 0; (subset < 3) && (total_subset_err < best_err); subset++)
total_subset_err += color_cell_compression_est_astc(4, 3, g_bc7_weights2, subset_total_colors[subset], &subset_colors[subset][0], best_err, weights);
if (total_subset_err < best_err)
{
best_err = total_subset_err;
best_common_pattern = common_pattern;
}
}
first_common_pattern = best_common_pattern;
last_common_pattern = best_common_pattern + 1;
}
for (uint32_t common_pattern = first_common_pattern; common_pattern < last_common_pattern; common_pattern++)
{
const uint32_t endpoint_range = 7;
const uint32_t bc7_pattern = g_astc_bc7_common_partitions3[common_pattern].m_bc7;
color_rgba part_pixels[3][16];
uint32_t part_pixel_index[4][4];
uint32_t num_part_pixels[3] = { 0, 0, 0 };
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
const uint32_t bc7_part = g_bc7_partition3[16 * bc7_pattern + x + y * 4];
part_pixel_index[y][x] = num_part_pixels[bc7_part];
part_pixels[bc7_part][num_part_pixels[bc7_part]++] = block[y][x];
}
}
color_cell_compressor_params ccell_params[3];
color_cell_compressor_results ccell_results[3];
uint8_t ccell_result_selectors[3][16];
uint8_t ccell_result_selectors_temp[3][16];
uint64_t total_part_err = 0;
for (uint32_t bc7_part = 0; bc7_part < 3; bc7_part++)
{
memset(&ccell_params[bc7_part], 0, sizeof(ccell_params[bc7_part]));
ccell_params[bc7_part].m_num_pixels = num_part_pixels[bc7_part];
ccell_params[bc7_part].m_pPixels = (color_quad_u8*)&part_pixels[bc7_part][0];
ccell_params[bc7_part].m_num_selector_weights = 4;
ccell_params[bc7_part].m_pSelector_weights = g_bc7_weights2;
ccell_params[bc7_part].m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights2x;
ccell_params[bc7_part].m_astc_endpoint_range = endpoint_range;
ccell_params[bc7_part].m_weights[0] = 1;
ccell_params[bc7_part].m_weights[1] = 1;
ccell_params[bc7_part].m_weights[2] = 1;
ccell_params[bc7_part].m_weights[3] = 1;
memset(&ccell_results[bc7_part], 0, sizeof(ccell_results[bc7_part]));
ccell_results[bc7_part].m_pSelectors = &ccell_result_selectors[bc7_part][0];
ccell_results[bc7_part].m_pSelectors_temp = &ccell_result_selectors_temp[bc7_part][0];
uint64_t part_err = color_cell_compression(255, &ccell_params[bc7_part], &ccell_results[bc7_part], &comp_params);
total_part_err += part_err;
} // part
{
// ASTC
astc_block_desc astc_results;
memset(&astc_results, 0, sizeof(astc_results));
astc_results.m_dual_plane = false;
astc_results.m_weight_range = 2;
astc_results.m_ccs = 0;
astc_results.m_subsets = 3;
astc_results.m_partition_seed = g_astc_bc7_common_partitions3[common_pattern].m_astc;
astc_results.m_cem = 8;
uint32_t astc_to_bc7_part[3]; // converts ASTC to BC7 partition index
const uint32_t perm = g_astc_bc7_common_partitions3[common_pattern].m_astc_to_bc7_perm;
astc_to_bc7_part[0] = g_astc_to_bc7_partition_index_perm_tables[perm][0];
astc_to_bc7_part[1] = g_astc_to_bc7_partition_index_perm_tables[perm][1];
astc_to_bc7_part[2] = g_astc_to_bc7_partition_index_perm_tables[perm][2];
bool invert_astc_part[3] = { false, false, false };
for (uint32_t astc_part = 0; astc_part < 3; astc_part++)
{
uint8_t* pEndpoints = &astc_results.m_endpoints[6 * astc_part];
pEndpoints[0] = ccell_results[astc_to_bc7_part[astc_part]].m_astc_low_endpoint.m_c[0];
pEndpoints[1] = ccell_results[astc_to_bc7_part[astc_part]].m_astc_high_endpoint.m_c[0];
pEndpoints[2] = ccell_results[astc_to_bc7_part[astc_part]].m_astc_low_endpoint.m_c[1];
pEndpoints[3] = ccell_results[astc_to_bc7_part[astc_part]].m_astc_high_endpoint.m_c[1];
pEndpoints[4] = ccell_results[astc_to_bc7_part[astc_part]].m_astc_low_endpoint.m_c[2];
pEndpoints[5] = ccell_results[astc_to_bc7_part[astc_part]].m_astc_high_endpoint.m_c[2];
int s0 = g_astc_unquant[endpoint_range][pEndpoints[0]].m_unquant + g_astc_unquant[endpoint_range][pEndpoints[2]].m_unquant + g_astc_unquant[endpoint_range][pEndpoints[4]].m_unquant;
int s1 = g_astc_unquant[endpoint_range][pEndpoints[1]].m_unquant + g_astc_unquant[endpoint_range][pEndpoints[3]].m_unquant + g_astc_unquant[endpoint_range][pEndpoints[5]].m_unquant;
if (s1 < s0)
{
std::swap(pEndpoints[0], pEndpoints[1]);
std::swap(pEndpoints[2], pEndpoints[3]);
std::swap(pEndpoints[4], pEndpoints[5]);
invert_astc_part[astc_part] = true;
}
}
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
const uint32_t bc7_part = g_bc7_partition3[16 * bc7_pattern + x + y * 4];
astc_results.m_weights[x + y * 4] = ccell_result_selectors[bc7_part][part_pixel_index[y][x]];
uint32_t astc_part = 0;
for (uint32_t i = 0; i < 3; i++)
{
if (astc_to_bc7_part[i] == bc7_part)
{
astc_part = i;
break;
}
}
if (invert_astc_part[astc_part])
astc_results.m_weights[x + y * 4] = 3 - astc_results.m_weights[x + y * 4];
}
}
assert(total_results < MAX_ENCODE_RESULTS);
if (total_results < MAX_ENCODE_RESULTS)
{
pResults[total_results].m_uastc_mode = 3;
pResults[total_results].m_common_pattern = common_pattern;
pResults[total_results].m_astc = astc_results;
pResults[total_results].m_astc_err = total_part_err;
total_results++;
}
}
} // common_pattern
}
// MODE 4
// DualPlane: 0, WeightRange: 2 (4), Subsets: 2, CEM: 8 (RGB Direct ), EndpointRange: 12 (40) MODE3
static void astc_mode4(const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params, bool estimate_partition)
{
//const uint32_t weight_range = 2;
const uint32_t endpoint_range = 12;
uint32_t first_common_pattern = 0;
uint32_t last_common_pattern = TOTAL_ASTC_BC7_COMMON_PARTITIONS2;
if (estimate_partition)
{
const uint32_t weights[4] = { 1, 1, 1, 1 };
first_common_pattern = estimate_partition2(4, 3, g_bc7_weights2, block, weights);
last_common_pattern = first_common_pattern + 1;
}
for (uint32_t common_pattern = first_common_pattern; common_pattern < last_common_pattern; common_pattern++)
{
const uint32_t bc7_pattern = g_astc_bc7_common_partitions2[common_pattern].m_bc7;
color_rgba part_pixels[2][16];
uint32_t part_pixel_index[4][4];
uint32_t num_part_pixels[2] = { 0, 0 };
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
const uint32_t part = g_bc7_partition2[16 * bc7_pattern + x + y * 4];
part_pixel_index[y][x] = num_part_pixels[part];
part_pixels[part][num_part_pixels[part]++] = block[y][x];
}
}
color_cell_compressor_params ccell_params[2];
color_cell_compressor_results ccell_results[2];
uint8_t ccell_result_selectors[2][16];
uint8_t ccell_result_selectors_temp[2][16];
uint64_t total_part_err = 0;
for (uint32_t part = 0; part < 2; part++)
{
memset(&ccell_params[part], 0, sizeof(ccell_params[part]));
ccell_params[part].m_num_pixels = num_part_pixels[part];
ccell_params[part].m_pPixels = (color_quad_u8*)&part_pixels[part][0];
ccell_params[part].m_num_selector_weights = 4;
ccell_params[part].m_pSelector_weights = g_bc7_weights2;
ccell_params[part].m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights2x;
ccell_params[part].m_astc_endpoint_range = endpoint_range;
ccell_params[part].m_weights[0] = 1;
ccell_params[part].m_weights[1] = 1;
ccell_params[part].m_weights[2] = 1;
ccell_params[part].m_weights[3] = 1;
memset(&ccell_results[part], 0, sizeof(ccell_results[part]));
ccell_results[part].m_pSelectors = &ccell_result_selectors[part][0];
ccell_results[part].m_pSelectors_temp = &ccell_result_selectors_temp[part][0];
uint64_t part_err = color_cell_compression(255, &ccell_params[part], &ccell_results[part], &comp_params);
total_part_err += part_err;
} // part
// ASTC
astc_block_desc astc_results;
memset(&astc_results, 0, sizeof(astc_results));
astc_results.m_dual_plane = false;
astc_results.m_weight_range = 2;
astc_results.m_ccs = 0;
astc_results.m_subsets = 2;
astc_results.m_partition_seed = g_astc_bc7_common_partitions2[common_pattern].m_astc;
astc_results.m_cem = 8;
uint32_t p0 = 0;
uint32_t p1 = 1;
if (g_astc_bc7_common_partitions2[common_pattern].m_invert)
std::swap(p0, p1);
astc_results.m_endpoints[0] = ccell_results[p0].m_astc_low_endpoint.m_c[0];
astc_results.m_endpoints[1] = ccell_results[p0].m_astc_high_endpoint.m_c[0];
astc_results.m_endpoints[2] = ccell_results[p0].m_astc_low_endpoint.m_c[1];
astc_results.m_endpoints[3] = ccell_results[p0].m_astc_high_endpoint.m_c[1];
astc_results.m_endpoints[4] = ccell_results[p0].m_astc_low_endpoint.m_c[2];
astc_results.m_endpoints[5] = ccell_results[p0].m_astc_high_endpoint.m_c[2];
bool invert[2] = { false, false };
int s0 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[0]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[2]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[4]].m_unquant;
int s1 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[1]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[3]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[5]].m_unquant;
if (s1 < s0)
{
std::swap(astc_results.m_endpoints[0], astc_results.m_endpoints[1]);
std::swap(astc_results.m_endpoints[2], astc_results.m_endpoints[3]);
std::swap(astc_results.m_endpoints[4], astc_results.m_endpoints[5]);
invert[0] = true;
}
astc_results.m_endpoints[6] = ccell_results[p1].m_astc_low_endpoint.m_c[0];
astc_results.m_endpoints[7] = ccell_results[p1].m_astc_high_endpoint.m_c[0];
astc_results.m_endpoints[8] = ccell_results[p1].m_astc_low_endpoint.m_c[1];
astc_results.m_endpoints[9] = ccell_results[p1].m_astc_high_endpoint.m_c[1];
astc_results.m_endpoints[10] = ccell_results[p1].m_astc_low_endpoint.m_c[2];
astc_results.m_endpoints[11] = ccell_results[p1].m_astc_high_endpoint.m_c[2];
s0 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[0 + 6]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[2 + 6]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[4 + 6]].m_unquant;
s1 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[1 + 6]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[3 + 6]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[5 + 6]].m_unquant;
if (s1 < s0)
{
std::swap(astc_results.m_endpoints[0 + 6], astc_results.m_endpoints[1 + 6]);
std::swap(astc_results.m_endpoints[2 + 6], astc_results.m_endpoints[3 + 6]);
std::swap(astc_results.m_endpoints[4 + 6], astc_results.m_endpoints[5 + 6]);
invert[1] = true;
}
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
const uint32_t bc7_part = g_bc7_partition2[16 * bc7_pattern + x + y * 4];
astc_results.m_weights[x + y * 4] = ccell_result_selectors[bc7_part][part_pixel_index[y][x]];
uint32_t astc_part = bc7_part;
if (g_astc_bc7_common_partitions2[common_pattern].m_invert)
astc_part = 1 - astc_part;
if (invert[astc_part])
astc_results.m_weights[x + y * 4] = 3 - astc_results.m_weights[x + y * 4];
}
}
assert(total_results < MAX_ENCODE_RESULTS);
if (total_results < MAX_ENCODE_RESULTS)
{
pResults[total_results].m_uastc_mode = 4;
pResults[total_results].m_common_pattern = common_pattern;
pResults[total_results].m_astc = astc_results;
pResults[total_results].m_astc_err = total_part_err;
total_results++;
}
} // common_pattern
}
// MODE 5
// DualPlane: 0, WeightRange: 5 (8), Subsets: 1, CEM: 8 (RGB Direct ), EndpointRange: 20 (256) BC7 MODE 6 (or MODE 1 1-subset)
static void astc_mode5(const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params)
{
const uint32_t weight_range = 5;
const uint32_t endpoint_range = 20;
color_cell_compressor_params ccell_params;
memset(&ccell_params, 0, sizeof(ccell_params));
ccell_params.m_num_pixels = 16;
ccell_params.m_pPixels = (color_quad_u8*)&block[0][0];
ccell_params.m_num_selector_weights = 8;
ccell_params.m_pSelector_weights = g_bc7_weights3;
ccell_params.m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights3x;
ccell_params.m_astc_endpoint_range = endpoint_range;
ccell_params.m_weights[0] = 1;
ccell_params.m_weights[1] = 1;
ccell_params.m_weights[2] = 1;
ccell_params.m_weights[3] = 1;
color_cell_compressor_results ccell_results;
uint8_t ccell_result_selectors[16];
uint8_t ccell_result_selectors_temp[16];
memset(&ccell_results, 0, sizeof(ccell_results));
ccell_results.m_pSelectors = &ccell_result_selectors[0];
ccell_results.m_pSelectors_temp = &ccell_result_selectors_temp[0];
uint64_t part_err = color_cell_compression(255, &ccell_params, &ccell_results, &comp_params);
// ASTC
astc_block_desc blk;
memset(&blk, 0, sizeof(blk));
blk.m_dual_plane = false;
blk.m_weight_range = weight_range;
blk.m_ccs = 0;
blk.m_subsets = 1;
blk.m_partition_seed = 0;
blk.m_cem = 8;
blk.m_endpoints[0] = ccell_results.m_astc_low_endpoint.m_c[0];
blk.m_endpoints[1] = ccell_results.m_astc_high_endpoint.m_c[0];
blk.m_endpoints[2] = ccell_results.m_astc_low_endpoint.m_c[1];
blk.m_endpoints[3] = ccell_results.m_astc_high_endpoint.m_c[1];
blk.m_endpoints[4] = ccell_results.m_astc_low_endpoint.m_c[2];
blk.m_endpoints[5] = ccell_results.m_astc_high_endpoint.m_c[2];
bool invert = false;
int s0 = g_astc_unquant[endpoint_range][blk.m_endpoints[0]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[2]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[4]].m_unquant;
int s1 = g_astc_unquant[endpoint_range][blk.m_endpoints[1]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[3]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[5]].m_unquant;
if (s1 < s0)
{
std::swap(blk.m_endpoints[0], blk.m_endpoints[1]);
std::swap(blk.m_endpoints[2], blk.m_endpoints[3]);
std::swap(blk.m_endpoints[4], blk.m_endpoints[5]);
invert = true;
}
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
blk.m_weights[x + y * 4] = ccell_result_selectors[x + y * 4];
if (invert)
blk.m_weights[x + y * 4] = 7 - blk.m_weights[x + y * 4];
}
}
assert(total_results < MAX_ENCODE_RESULTS);
if (total_results < MAX_ENCODE_RESULTS)
{
pResults[total_results].m_uastc_mode = 5;
pResults[total_results].m_common_pattern = 0;
pResults[total_results].m_astc = blk;
pResults[total_results].m_astc_err = part_err;
total_results++;
}
}
// MODE 6
// DualPlane: 1, WeightRange: 2 (4), Subsets: 1, CEM: 8 (RGB Direct ), EndpointRange: 18 (160) BC7 MODE5
static void astc_mode6(const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params)
{
for (uint32_t rot_comp = 0; rot_comp < 3; rot_comp++)
{
const uint32_t weight_range = 2;
const uint32_t endpoint_range = 18;
color_quad_u8 block_rgb[16];
color_quad_u8 block_a[16];
for (uint32_t i = 0; i < 16; i++)
{
block_rgb[i] = ((color_quad_u8*)&block[0][0])[i];
block_a[i] = block_rgb[i];
uint8_t c = block_a[i].m_c[rot_comp];
block_a[i].m_c[0] = c;
block_a[i].m_c[1] = c;
block_a[i].m_c[2] = c;
block_a[i].m_c[3] = 255;
block_rgb[i].m_c[rot_comp] = 255;
}
uint8_t ccell_result_selectors_temp[16];
color_cell_compressor_params ccell_params_rgb;
memset(&ccell_params_rgb, 0, sizeof(ccell_params_rgb));
ccell_params_rgb.m_num_pixels = 16;
ccell_params_rgb.m_pPixels = block_rgb;
ccell_params_rgb.m_num_selector_weights = 4;
ccell_params_rgb.m_pSelector_weights = g_bc7_weights2;
ccell_params_rgb.m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights2x;
ccell_params_rgb.m_astc_endpoint_range = endpoint_range;
ccell_params_rgb.m_weights[0] = 1;
ccell_params_rgb.m_weights[1] = 1;
ccell_params_rgb.m_weights[2] = 1;
ccell_params_rgb.m_weights[3] = 1;
color_cell_compressor_results ccell_results_rgb;
uint8_t ccell_result_selectors_rgb[16];
memset(&ccell_results_rgb, 0, sizeof(ccell_results_rgb));
ccell_results_rgb.m_pSelectors = &ccell_result_selectors_rgb[0];
ccell_results_rgb.m_pSelectors_temp = &ccell_result_selectors_temp[0];
uint64_t part_err_rgb = color_cell_compression(255, &ccell_params_rgb, &ccell_results_rgb, &comp_params);
color_cell_compressor_params ccell_params_a;
memset(&ccell_params_a, 0, sizeof(ccell_params_a));
ccell_params_a.m_num_pixels = 16;
ccell_params_a.m_pPixels = block_a;
ccell_params_a.m_num_selector_weights = 4;
ccell_params_a.m_pSelector_weights = g_bc7_weights2;
ccell_params_a.m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights2x;
ccell_params_a.m_astc_endpoint_range = endpoint_range;
ccell_params_a.m_weights[0] = 1;
ccell_params_a.m_weights[1] = 1;
ccell_params_a.m_weights[2] = 1;
ccell_params_a.m_weights[3] = 1;
color_cell_compressor_results ccell_results_a;
uint8_t ccell_result_selectors_a[16];
memset(&ccell_results_a, 0, sizeof(ccell_results_a));
ccell_results_a.m_pSelectors = &ccell_result_selectors_a[0];
ccell_results_a.m_pSelectors_temp = &ccell_result_selectors_temp[0];
uint64_t part_err_a = color_cell_compression(255, &ccell_params_a, &ccell_results_a, &comp_params) / 3;
uint64_t total_err = part_err_rgb + part_err_a;
// ASTC
astc_block_desc blk;
memset(&blk, 0, sizeof(blk));
blk.m_dual_plane = true;
blk.m_weight_range = weight_range;
blk.m_ccs = rot_comp;
blk.m_subsets = 1;
blk.m_partition_seed = 0;
blk.m_cem = 8;
blk.m_endpoints[0] = (rot_comp == 0 ? ccell_results_a : ccell_results_rgb).m_astc_low_endpoint.m_c[0];
blk.m_endpoints[1] = (rot_comp == 0 ? ccell_results_a : ccell_results_rgb).m_astc_high_endpoint.m_c[0];
blk.m_endpoints[2] = (rot_comp == 1 ? ccell_results_a : ccell_results_rgb).m_astc_low_endpoint.m_c[1];
blk.m_endpoints[3] = (rot_comp == 1 ? ccell_results_a : ccell_results_rgb).m_astc_high_endpoint.m_c[1];
blk.m_endpoints[4] = (rot_comp == 2 ? ccell_results_a : ccell_results_rgb).m_astc_low_endpoint.m_c[2];
blk.m_endpoints[5] = (rot_comp == 2 ? ccell_results_a : ccell_results_rgb).m_astc_high_endpoint.m_c[2];
bool invert = false;
int s0 = g_astc_unquant[endpoint_range][blk.m_endpoints[0]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[2]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[4]].m_unquant;
int s1 = g_astc_unquant[endpoint_range][blk.m_endpoints[1]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[3]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[5]].m_unquant;
if (s1 < s0)
{
std::swap(blk.m_endpoints[0], blk.m_endpoints[1]);
std::swap(blk.m_endpoints[2], blk.m_endpoints[3]);
std::swap(blk.m_endpoints[4], blk.m_endpoints[5]);
invert = true;
}
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
uint32_t rgb_index = ccell_result_selectors_rgb[x + y * 4];
uint32_t a_index = ccell_result_selectors_a[x + y * 4];
if (invert)
{
rgb_index = 3 - rgb_index;
a_index = 3 - a_index;
}
blk.m_weights[(x + y * 4) * 2 + 0] = (uint8_t)rgb_index;
blk.m_weights[(x + y * 4) * 2 + 1] = (uint8_t)a_index;
}
}
assert(total_results < MAX_ENCODE_RESULTS);
if (total_results < MAX_ENCODE_RESULTS)
{
pResults[total_results].m_uastc_mode = 6;
pResults[total_results].m_common_pattern = 0;
pResults[total_results].m_astc = blk;
pResults[total_results].m_astc_err = total_err;
total_results++;
}
} // rot_comp
}
// MODE 7 - 2 subset ASTC, 3 subset BC7
// DualPlane: 0, WeightRange: 2 (4), Subsets: 2, CEM: 8 (RGB Direct ), EndpointRange: 12 (40) MODE2
static void astc_mode7(const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params, bool estimate_partition)
{
uint32_t first_common_pattern = 0;
uint32_t last_common_pattern = TOTAL_BC7_3_ASTC2_COMMON_PARTITIONS;
if (estimate_partition)
{
uint64_t best_err = UINT64_MAX;
uint32_t best_common_pattern = 0;
const uint32_t weights[4] = { 1, 1, 1, 1 };
for (uint32_t common_pattern = 0; common_pattern < TOTAL_BC7_3_ASTC2_COMMON_PARTITIONS; common_pattern++)
{
const uint8_t* pPartition = &g_bc7_3_astc2_patterns2[common_pattern][0];
#ifdef _DEBUG
const uint32_t astc_pattern = g_bc7_3_astc2_common_partitions[common_pattern].m_astc2;
const uint32_t bc7_pattern = g_bc7_3_astc2_common_partitions[common_pattern].m_bc73;
const uint32_t common_pattern_k = g_bc7_3_astc2_common_partitions[common_pattern].k;
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
const uint32_t astc_part = bc7_convert_partition_index_3_to_2(g_bc7_partition3[16 * bc7_pattern + x + y * 4], common_pattern_k);
assert((int)astc_part == astc_compute_texel_partition(astc_pattern, x, y, 0, 2, true));
assert(astc_part == pPartition[x + y * 4]);
}
}
#endif
color_quad_u8 subset_colors[2][16];
uint32_t subset_total_colors[2] = { 0, 0 };
for (uint32_t index = 0; index < 16; index++)
subset_colors[pPartition[index]][subset_total_colors[pPartition[index]]++] = ((const color_quad_u8*)block)[index];
uint64_t total_subset_err = 0;
for (uint32_t subset = 0; (subset < 2) && (total_subset_err < best_err); subset++)
total_subset_err += color_cell_compression_est_astc(4, 3, g_bc7_weights2, subset_total_colors[subset], &subset_colors[subset][0], best_err, weights);
if (total_subset_err < best_err)
{
best_err = total_subset_err;
best_common_pattern = common_pattern;
}
}
first_common_pattern = best_common_pattern;
last_common_pattern = best_common_pattern + 1;
}
//const uint32_t weight_range = 2;
const uint32_t endpoint_range = 12;
for (uint32_t common_pattern = first_common_pattern; common_pattern < last_common_pattern; common_pattern++)
{
const uint32_t astc_pattern = g_bc7_3_astc2_common_partitions[common_pattern].m_astc2;
const uint32_t bc7_pattern = g_bc7_3_astc2_common_partitions[common_pattern].m_bc73;
const uint32_t common_pattern_k = g_bc7_3_astc2_common_partitions[common_pattern].k;
color_rgba part_pixels[2][16];
uint32_t part_pixel_index[4][4];
uint32_t num_part_pixels[2] = { 0, 0 };
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
const uint32_t astc_part = bc7_convert_partition_index_3_to_2(g_bc7_partition3[16 * bc7_pattern + x + y * 4], common_pattern_k);
#ifdef _DEBUG
assert((int)astc_part == astc_compute_texel_partition(astc_pattern, x, y, 0, 2, true));
#endif
part_pixel_index[y][x] = num_part_pixels[astc_part];
part_pixels[astc_part][num_part_pixels[astc_part]++] = block[y][x];
}
}
color_cell_compressor_params ccell_params[2];
color_cell_compressor_results ccell_results[2];
uint8_t ccell_result_selectors[2][16];
uint8_t ccell_result_selectors_temp[2][16];
uint64_t total_part_err = 0;
for (uint32_t part = 0; part < 2; part++)
{
memset(&ccell_params[part], 0, sizeof(ccell_params[part]));
ccell_params[part].m_num_pixels = num_part_pixels[part];
ccell_params[part].m_pPixels = (color_quad_u8*)&part_pixels[part][0];
ccell_params[part].m_num_selector_weights = 4;
ccell_params[part].m_pSelector_weights = g_bc7_weights2;
ccell_params[part].m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights2x;
ccell_params[part].m_astc_endpoint_range = endpoint_range;
ccell_params[part].m_weights[0] = 1;
ccell_params[part].m_weights[1] = 1;
ccell_params[part].m_weights[2] = 1;
ccell_params[part].m_weights[3] = 1;
memset(&ccell_results[part], 0, sizeof(ccell_results[part]));
ccell_results[part].m_pSelectors = &ccell_result_selectors[part][0];
ccell_results[part].m_pSelectors_temp = &ccell_result_selectors_temp[part][0];
uint64_t part_err = color_cell_compression(255, &ccell_params[part], &ccell_results[part], &comp_params);
total_part_err += part_err;
} // part
// ASTC
astc_block_desc blk;
memset(&blk, 0, sizeof(blk));
blk.m_dual_plane = false;
blk.m_weight_range = 2;
blk.m_ccs = 0;
blk.m_subsets = 2;
blk.m_partition_seed = astc_pattern;
blk.m_cem = 8;
const uint32_t p0 = 0;
const uint32_t p1 = 1;
blk.m_endpoints[0] = ccell_results[p0].m_astc_low_endpoint.m_c[0];
blk.m_endpoints[1] = ccell_results[p0].m_astc_high_endpoint.m_c[0];
blk.m_endpoints[2] = ccell_results[p0].m_astc_low_endpoint.m_c[1];
blk.m_endpoints[3] = ccell_results[p0].m_astc_high_endpoint.m_c[1];
blk.m_endpoints[4] = ccell_results[p0].m_astc_low_endpoint.m_c[2];
blk.m_endpoints[5] = ccell_results[p0].m_astc_high_endpoint.m_c[2];
bool invert[2] = { false, false };
int s0 = g_astc_unquant[endpoint_range][blk.m_endpoints[0]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[2]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[4]].m_unquant;
int s1 = g_astc_unquant[endpoint_range][blk.m_endpoints[1]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[3]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[5]].m_unquant;
if (s1 < s0)
{
std::swap(blk.m_endpoints[0], blk.m_endpoints[1]);
std::swap(blk.m_endpoints[2], blk.m_endpoints[3]);
std::swap(blk.m_endpoints[4], blk.m_endpoints[5]);
invert[0] = true;
}
blk.m_endpoints[6] = ccell_results[p1].m_astc_low_endpoint.m_c[0];
blk.m_endpoints[7] = ccell_results[p1].m_astc_high_endpoint.m_c[0];
blk.m_endpoints[8] = ccell_results[p1].m_astc_low_endpoint.m_c[1];
blk.m_endpoints[9] = ccell_results[p1].m_astc_high_endpoint.m_c[1];
blk.m_endpoints[10] = ccell_results[p1].m_astc_low_endpoint.m_c[2];
blk.m_endpoints[11] = ccell_results[p1].m_astc_high_endpoint.m_c[2];
s0 = g_astc_unquant[endpoint_range][blk.m_endpoints[0 + 6]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[2 + 6]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[4 + 6]].m_unquant;
s1 = g_astc_unquant[endpoint_range][blk.m_endpoints[1 + 6]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[3 + 6]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[5 + 6]].m_unquant;
if (s1 < s0)
{
std::swap(blk.m_endpoints[0 + 6], blk.m_endpoints[1 + 6]);
std::swap(blk.m_endpoints[2 + 6], blk.m_endpoints[3 + 6]);
std::swap(blk.m_endpoints[4 + 6], blk.m_endpoints[5 + 6]);
invert[1] = true;
}
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
const uint32_t astc_part = bc7_convert_partition_index_3_to_2(g_bc7_partition3[16 * bc7_pattern + x + y * 4], common_pattern_k);
blk.m_weights[x + y * 4] = ccell_result_selectors[astc_part][part_pixel_index[y][x]];
if (invert[astc_part])
blk.m_weights[x + y * 4] = 3 - blk.m_weights[x + y * 4];
}
}
assert(total_results < MAX_ENCODE_RESULTS);
if (total_results < MAX_ENCODE_RESULTS)
{
pResults[total_results].m_uastc_mode = 7;
pResults[total_results].m_common_pattern = common_pattern;
pResults[total_results].m_astc = blk;
pResults[total_results].m_astc_err = total_part_err;
total_results++;
}
} // common_pattern
}
static void estimate_partition2_list(uint32_t num_weights, uint32_t num_comps, const uint32_t* pWeights, const color_rgba block[4][4], uint32_t* pParts, uint32_t max_parts, const uint32_t weights[4])
{
assert(pWeights[0] == 0 && pWeights[num_weights - 1] == 64);
const uint32_t MAX_PARTS = 8;
assert(max_parts <= MAX_PARTS);
uint64_t part_error[MAX_PARTS];
memset(part_error, 0xFF, sizeof(part_error));
memset(pParts, 0, sizeof(pParts[0]) * max_parts);
for (uint32_t common_pattern = 0; common_pattern < TOTAL_ASTC_BC7_COMMON_PARTITIONS2; common_pattern++)
{
const uint32_t bc7_pattern = g_astc_bc7_common_partitions2[common_pattern].m_bc7;
const uint8_t* pPartition = &g_bc7_partition2[bc7_pattern * 16];
color_quad_u8 subset_colors[2][16];
uint32_t subset_total_colors[2] = { 0, 0 };
for (uint32_t index = 0; index < 16; index++)
subset_colors[pPartition[index]][subset_total_colors[pPartition[index]]++] = ((const color_quad_u8*)block)[index];
uint64_t total_subset_err = 0;
for (uint32_t subset = 0; subset < 2; subset++)
total_subset_err += color_cell_compression_est_astc(num_weights, num_comps, pWeights, subset_total_colors[subset], &subset_colors[subset][0], UINT64_MAX, weights);
for (int i = 0; i < (int)max_parts; i++)
{
if (total_subset_err < part_error[i])
{
for (int j = max_parts - 1; j > i; --j)
{
pParts[j] = pParts[j - 1];
part_error[j] = part_error[j - 1];
}
pParts[i] = common_pattern;
part_error[i] = total_subset_err;
break;
}
}
}
#ifdef _DEBUG
for (uint32_t i = 0; i < max_parts - 1; i++)
{
assert(part_error[i] <= part_error[i + 1]);
}
#endif
}
// 9. DualPlane: 0, WeightRange: 2 (4), Subsets: 2, CEM: 12 (RGBA Direct), EndpointRange: 8 (16) - BC7 MODE 7
// 16. DualPlane: 0, WeightRange : 2 (4), Subsets : 2, CEM: 4 (LA Direct), EndpointRange : 20 (256) - BC7 MODE 7
static void astc_mode9_or_16(uint32_t mode, const color_rgba source_block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params, uint32_t estimate_partition_list_size)
{
assert(mode == 9 || mode == 16);
const color_rgba* pBlock = &source_block[0][0];
color_rgba temp_block[16];
if (mode == 16)
{
for (uint32_t i = 0; i < 16; i++)
{
if (mode == 16)
{
assert(pBlock[i].r == pBlock[i].g);
assert(pBlock[i].r == pBlock[i].b);
}
const uint32_t l = pBlock[i].r;
const uint32_t a = pBlock[i].a;
// Use (l,0,0,a) not (l,l,l,a) so both components are treated equally.
temp_block[i].set_noclamp_rgba(l, 0, 0, a);
}
pBlock = temp_block;
}
const uint32_t weights[4] = { 1, 1, 1, 1 };
//const uint32_t weight_range = 2;
const uint32_t endpoint_range = (mode == 16) ? 20 : 8;
uint32_t first_common_pattern = 0;
uint32_t last_common_pattern = TOTAL_ASTC_BC7_COMMON_PARTITIONS2;
bool use_part_list = false;
const uint32_t MAX_PARTS = 8;
uint32_t parts[MAX_PARTS];
if (estimate_partition_list_size == 1)
{
first_common_pattern = estimate_partition2(4, 4, g_bc7_weights2, (const color_rgba(*)[4])pBlock, weights);
last_common_pattern = first_common_pattern + 1;
}
else if (estimate_partition_list_size > 0)
{
assert(estimate_partition_list_size <= MAX_PARTS);
estimate_partition_list_size = basisu::minimum(estimate_partition_list_size, MAX_PARTS);
estimate_partition2_list(4, 4, g_bc7_weights2, (const color_rgba(*)[4])pBlock, parts, estimate_partition_list_size, weights);
first_common_pattern = 0;
last_common_pattern = estimate_partition_list_size;
use_part_list = true;
#ifdef _DEBUG
assert(parts[0] == estimate_partition2(4, 4, g_bc7_weights2, (const color_rgba(*)[4])pBlock, weights));
#endif
}
for (uint32_t common_pattern_iter = first_common_pattern; common_pattern_iter < last_common_pattern; common_pattern_iter++)
{
const uint32_t common_pattern = use_part_list ? parts[common_pattern_iter] : common_pattern_iter;
const uint32_t bc7_pattern = g_astc_bc7_common_partitions2[common_pattern].m_bc7;
color_rgba part_pixels[2][16];
uint32_t part_pixel_index[4][4];
uint32_t num_part_pixels[2] = { 0, 0 };
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
const uint32_t part = g_bc7_partition2[16 * bc7_pattern + x + y * 4];
part_pixel_index[y][x] = num_part_pixels[part];
part_pixels[part][num_part_pixels[part]++] = pBlock[y * 4 + x];
}
}
color_cell_compressor_params ccell_params[2];
color_cell_compressor_results ccell_results[2];
uint8_t ccell_result_selectors[2][16];
uint8_t ccell_result_selectors_temp[2][16];
uint64_t total_err = 0;
for (uint32_t subset = 0; subset < 2; subset++)
{
memset(&ccell_params[subset], 0, sizeof(ccell_params[subset]));
ccell_params[subset].m_num_pixels = num_part_pixels[subset];
ccell_params[subset].m_pPixels = (color_quad_u8*)&part_pixels[subset][0];
ccell_params[subset].m_num_selector_weights = 4;
ccell_params[subset].m_pSelector_weights = g_bc7_weights2;
ccell_params[subset].m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights2x;
ccell_params[subset].m_astc_endpoint_range = endpoint_range;
ccell_params[subset].m_weights[0] = weights[0];
ccell_params[subset].m_weights[1] = weights[1];
ccell_params[subset].m_weights[2] = weights[2];
ccell_params[subset].m_weights[3] = weights[3];
ccell_params[subset].m_has_alpha = true;
memset(&ccell_results[subset], 0, sizeof(ccell_results[subset]));
ccell_results[subset].m_pSelectors = &ccell_result_selectors[subset][0];
ccell_results[subset].m_pSelectors_temp = &ccell_result_selectors_temp[subset][0];
uint64_t subset_err = color_cell_compression(255, &ccell_params[subset], &ccell_results[subset], &comp_params);
if (mode == 16)
{
color_rgba colors[4];
for (uint32_t c = 0; c < 4; c++)
{
colors[0].m_comps[c] = g_astc_unquant[endpoint_range][ccell_results[subset].m_astc_low_endpoint.m_c[(c < 3) ? 0 : 3]].m_unquant;
colors[3].m_comps[c] = g_astc_unquant[endpoint_range][ccell_results[subset].m_astc_high_endpoint.m_c[(c < 3) ? 0 : 3]].m_unquant;
}
for (uint32_t i = 1; i < 4 - 1; i++)
for (uint32_t c = 0; c < 4; c++)
colors[i].m_comps[c] = (uint8_t)astc_interpolate(colors[0].m_comps[c], colors[3].m_comps[c], g_bc7_weights2[i], false);
for (uint32_t p = 0; p < ccell_params[subset].m_num_pixels; p++)
{
color_rgba orig_pix(part_pixels[subset][p]);
orig_pix.g = orig_pix.r;
orig_pix.b = orig_pix.r;
total_err += color_distance_la(orig_pix, colors[ccell_result_selectors[subset][p]]);
}
}
else
{
total_err += subset_err;
}
} // subset
// ASTC
astc_block_desc astc_results;
memset(&astc_results, 0, sizeof(astc_results));
astc_results.m_dual_plane = false;
astc_results.m_weight_range = 2;
astc_results.m_ccs = 0;
astc_results.m_subsets = 2;
astc_results.m_partition_seed = g_astc_bc7_common_partitions2[common_pattern].m_astc;
astc_results.m_cem = (mode == 16) ? 4 : 12;
uint32_t part[2] = { 0, 1 };
if (g_astc_bc7_common_partitions2[common_pattern].m_invert)
std::swap(part[0], part[1]);
bool invert[2] = { false, false };
for (uint32_t p = 0; p < 2; p++)
{
if (mode == 16)
{
astc_results.m_endpoints[p * 4 + 0] = ccell_results[part[p]].m_astc_low_endpoint.m_c[0];
astc_results.m_endpoints[p * 4 + 1] = ccell_results[part[p]].m_astc_high_endpoint.m_c[0];
astc_results.m_endpoints[p * 4 + 2] = ccell_results[part[p]].m_astc_low_endpoint.m_c[3];
astc_results.m_endpoints[p * 4 + 3] = ccell_results[part[p]].m_astc_high_endpoint.m_c[3];
}
else
{
for (uint32_t c = 0; c < 4; c++)
{
astc_results.m_endpoints[p * 8 + c * 2] = ccell_results[part[p]].m_astc_low_endpoint.m_c[c];
astc_results.m_endpoints[p * 8 + c * 2 + 1] = ccell_results[part[p]].m_astc_high_endpoint.m_c[c];
}
int s0 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[p * 8 + 0]].m_unquant +
g_astc_unquant[endpoint_range][astc_results.m_endpoints[p * 8 + 2]].m_unquant +
g_astc_unquant[endpoint_range][astc_results.m_endpoints[p * 8 + 4]].m_unquant;
int s1 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[p * 8 + 1]].m_unquant +
g_astc_unquant[endpoint_range][astc_results.m_endpoints[p * 8 + 3]].m_unquant +
g_astc_unquant[endpoint_range][astc_results.m_endpoints[p * 8 + 5]].m_unquant;
if (s1 < s0)
{
std::swap(astc_results.m_endpoints[p * 8 + 0], astc_results.m_endpoints[p * 8 + 1]);
std::swap(astc_results.m_endpoints[p * 8 + 2], astc_results.m_endpoints[p * 8 + 3]);
std::swap(astc_results.m_endpoints[p * 8 + 4], astc_results.m_endpoints[p * 8 + 5]);
std::swap(astc_results.m_endpoints[p * 8 + 6], astc_results.m_endpoints[p * 8 + 7]);
invert[p] = true;
}
}
}
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
const uint32_t bc7_part = g_bc7_partition2[16 * bc7_pattern + x + y * 4];
astc_results.m_weights[x + y * 4] = ccell_result_selectors[bc7_part][part_pixel_index[y][x]];
uint32_t astc_part = bc7_part;
if (g_astc_bc7_common_partitions2[common_pattern].m_invert)
astc_part = 1 - astc_part;
if (invert[astc_part])
astc_results.m_weights[x + y * 4] = 3 - astc_results.m_weights[x + y * 4];
}
}
assert(total_results < MAX_ENCODE_RESULTS);
if (total_results < MAX_ENCODE_RESULTS)
{
pResults[total_results].m_uastc_mode = mode;
pResults[total_results].m_common_pattern = common_pattern;
pResults[total_results].m_astc = astc_results;
pResults[total_results].m_astc_err = total_err;
total_results++;
}
} // common_pattern
}
// MODE 10
// DualPlane: 0, WeightRange: 8 (16), Subsets: 1, CEM: 12 (RGBA Direct ), EndpointRange: 13 (48) MODE6
static void astc_mode10(const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params)
{
const uint32_t weight_range = 8;
const uint32_t endpoint_range = 13;
color_cell_compressor_params ccell_params;
memset(&ccell_params, 0, sizeof(ccell_params));
ccell_params.m_num_pixels = 16;
ccell_params.m_pPixels = (color_quad_u8*)&block[0][0];
ccell_params.m_num_selector_weights = 16;
ccell_params.m_pSelector_weights = g_astc_weights4;
ccell_params.m_pSelector_weightsx = (const bc7enc_vec4F*)g_astc_weights4x;
ccell_params.m_astc_endpoint_range = endpoint_range;
ccell_params.m_weights[0] = 1;
ccell_params.m_weights[1] = 1;
ccell_params.m_weights[2] = 1;
ccell_params.m_weights[3] = 1;
ccell_params.m_has_alpha = true;
color_cell_compressor_results ccell_results;
uint8_t ccell_result_selectors[16];
uint8_t ccell_result_selectors_temp[16];
memset(&ccell_results, 0, sizeof(ccell_results));
ccell_results.m_pSelectors = &ccell_result_selectors[0];
ccell_results.m_pSelectors_temp = &ccell_result_selectors_temp[0];
uint64_t part_err = color_cell_compression(255, &ccell_params, &ccell_results, &comp_params);
// ASTC
astc_block_desc astc_results;
memset(&astc_results, 0, sizeof(astc_results));
astc_results.m_dual_plane = false;
astc_results.m_weight_range = weight_range;
astc_results.m_ccs = 0;
astc_results.m_subsets = 1;
astc_results.m_partition_seed = 0;
astc_results.m_cem = 12;
astc_results.m_endpoints[0] = ccell_results.m_astc_low_endpoint.m_c[0];
astc_results.m_endpoints[1] = ccell_results.m_astc_high_endpoint.m_c[0];
astc_results.m_endpoints[2] = ccell_results.m_astc_low_endpoint.m_c[1];
astc_results.m_endpoints[3] = ccell_results.m_astc_high_endpoint.m_c[1];
astc_results.m_endpoints[4] = ccell_results.m_astc_low_endpoint.m_c[2];
astc_results.m_endpoints[5] = ccell_results.m_astc_high_endpoint.m_c[2];
astc_results.m_endpoints[6] = ccell_results.m_astc_low_endpoint.m_c[3];
astc_results.m_endpoints[7] = ccell_results.m_astc_high_endpoint.m_c[3];
bool invert = false;
int s0 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[0]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[2]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[4]].m_unquant;
int s1 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[1]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[3]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[5]].m_unquant;
if (s1 < s0)
{
std::swap(astc_results.m_endpoints[0], astc_results.m_endpoints[1]);
std::swap(astc_results.m_endpoints[2], astc_results.m_endpoints[3]);
std::swap(astc_results.m_endpoints[4], astc_results.m_endpoints[5]);
std::swap(astc_results.m_endpoints[6], astc_results.m_endpoints[7]);
invert = true;
}
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
astc_results.m_weights[x + y * 4] = ccell_result_selectors[x + y * 4];
if (invert)
astc_results.m_weights[x + y * 4] = 15 - astc_results.m_weights[x + y * 4];
}
}
assert(total_results < MAX_ENCODE_RESULTS);
if (total_results < MAX_ENCODE_RESULTS)
{
pResults[total_results].m_uastc_mode = 10;
pResults[total_results].m_common_pattern = 0;
pResults[total_results].m_astc = astc_results;
pResults[total_results].m_astc_err = part_err;
total_results++;
}
}
// 11. DualPlane: 1, WeightRange: 2 (4), Subsets: 1, CEM: 12 (RGBA Direct), EndpointRange: 13 (48) MODE5
// 17. DualPlane: 1, WeightRange : 2 (4), Subsets : 1, CEM : 4 (LA Direct), EndpointRange : 20 (256) BC7 MODE5
static void astc_mode11_or_17(uint32_t mode, const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params)
{
assert((mode == 11) || (mode == 17));
const uint32_t weight_range = 2;
const uint32_t endpoint_range = (mode == 17) ? 20 : 13;
bc7enc_compress_block_params local_comp_params(comp_params);
local_comp_params.m_perceptual = false;
local_comp_params.m_weights[0] = 1;
local_comp_params.m_weights[1] = 1;
local_comp_params.m_weights[2] = 1;
local_comp_params.m_weights[3] = 1;
const uint32_t last_rot_comp = (mode == 17) ? 1 : 4;
for (uint32_t rot_comp = 0; rot_comp < last_rot_comp; rot_comp++)
{
color_quad_u8 block_rgb[16];
color_quad_u8 block_a[16];
for (uint32_t i = 0; i < 16; i++)
{
block_rgb[i] = ((color_quad_u8*)&block[0][0])[i];
block_a[i] = block_rgb[i];
if (mode == 17)
{
assert(block_rgb[i].m_c[0] == block_rgb[i].m_c[1]);
assert(block_rgb[i].m_c[0] == block_rgb[i].m_c[2]);
block_a[i].m_c[0] = block_rgb[i].m_c[3];
block_a[i].m_c[1] = block_rgb[i].m_c[3];
block_a[i].m_c[2] = block_rgb[i].m_c[3];
block_a[i].m_c[3] = 255;
block_rgb[i].m_c[1] = block_rgb[i].m_c[0];
block_rgb[i].m_c[2] = block_rgb[i].m_c[0];
block_rgb[i].m_c[3] = 255;
}
else
{
uint8_t c = block_a[i].m_c[rot_comp];
block_a[i].m_c[0] = c;
block_a[i].m_c[1] = c;
block_a[i].m_c[2] = c;
block_a[i].m_c[3] = 255;
block_rgb[i].m_c[rot_comp] = block_rgb[i].m_c[3];
block_rgb[i].m_c[3] = 255;
}
}
uint8_t ccell_result_selectors_temp[16];
color_cell_compressor_params ccell_params_rgb;
memset(&ccell_params_rgb, 0, sizeof(ccell_params_rgb));
ccell_params_rgb.m_num_pixels = 16;
ccell_params_rgb.m_pPixels = block_rgb;
ccell_params_rgb.m_num_selector_weights = 4;
ccell_params_rgb.m_pSelector_weights = g_bc7_weights2;
ccell_params_rgb.m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights2x;
ccell_params_rgb.m_astc_endpoint_range = endpoint_range;
ccell_params_rgb.m_weights[0] = 1;
ccell_params_rgb.m_weights[1] = 1;
ccell_params_rgb.m_weights[2] = 1;
ccell_params_rgb.m_weights[3] = 1;
color_cell_compressor_results ccell_results_rgb;
uint8_t ccell_result_selectors_rgb[16];
memset(&ccell_results_rgb, 0, sizeof(ccell_results_rgb));
ccell_results_rgb.m_pSelectors = &ccell_result_selectors_rgb[0];
ccell_results_rgb.m_pSelectors_temp = &ccell_result_selectors_temp[0];
uint64_t part_err_rgb = color_cell_compression(255, &ccell_params_rgb, &ccell_results_rgb, &local_comp_params);
color_cell_compressor_params ccell_params_a;
memset(&ccell_params_a, 0, sizeof(ccell_params_a));
ccell_params_a.m_num_pixels = 16;
ccell_params_a.m_pPixels = block_a;
ccell_params_a.m_num_selector_weights = 4;
ccell_params_a.m_pSelector_weights = g_bc7_weights2;
ccell_params_a.m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights2x;
ccell_params_a.m_astc_endpoint_range = endpoint_range;
ccell_params_a.m_weights[0] = 1;
ccell_params_a.m_weights[1] = 1;
ccell_params_a.m_weights[2] = 1;
ccell_params_a.m_weights[3] = 1;
color_cell_compressor_results ccell_results_a;
uint8_t ccell_result_selectors_a[16];
memset(&ccell_results_a, 0, sizeof(ccell_results_a));
ccell_results_a.m_pSelectors = &ccell_result_selectors_a[0];
ccell_results_a.m_pSelectors_temp = &ccell_result_selectors_temp[0];
uint64_t part_err_a = color_cell_compression(255, &ccell_params_a, &ccell_results_a, &local_comp_params) / 3;
uint64_t total_err = (mode == 17) ? ((part_err_rgb / 3) + part_err_a) : (part_err_rgb + part_err_a);
// ASTC
astc_block_desc blk;
memset(&blk, 0, sizeof(blk));
blk.m_dual_plane = true;
blk.m_weight_range = weight_range;
blk.m_ccs = (mode == 17) ? 3 : rot_comp;
blk.m_subsets = 1;
blk.m_partition_seed = 0;
blk.m_cem = (mode == 17) ? 4 : 12;
bool invert = false;
if (mode == 17)
{
assert(ccell_results_rgb.m_astc_low_endpoint.m_c[0] == ccell_results_rgb.m_astc_low_endpoint.m_c[1]);
assert(ccell_results_rgb.m_astc_low_endpoint.m_c[0] == ccell_results_rgb.m_astc_low_endpoint.m_c[2]);
assert(ccell_results_rgb.m_astc_high_endpoint.m_c[0] == ccell_results_rgb.m_astc_high_endpoint.m_c[1]);
assert(ccell_results_rgb.m_astc_high_endpoint.m_c[0] == ccell_results_rgb.m_astc_high_endpoint.m_c[2]);
blk.m_endpoints[0] = ccell_results_rgb.m_astc_low_endpoint.m_c[0];
blk.m_endpoints[1] = ccell_results_rgb.m_astc_high_endpoint.m_c[0];
blk.m_endpoints[2] = ccell_results_a.m_astc_low_endpoint.m_c[0];
blk.m_endpoints[3] = ccell_results_a.m_astc_high_endpoint.m_c[0];
}
else
{
blk.m_endpoints[0] = (rot_comp == 0 ? ccell_results_a : ccell_results_rgb).m_astc_low_endpoint.m_c[0];
blk.m_endpoints[1] = (rot_comp == 0 ? ccell_results_a : ccell_results_rgb).m_astc_high_endpoint.m_c[0];
blk.m_endpoints[2] = (rot_comp == 1 ? ccell_results_a : ccell_results_rgb).m_astc_low_endpoint.m_c[1];
blk.m_endpoints[3] = (rot_comp == 1 ? ccell_results_a : ccell_results_rgb).m_astc_high_endpoint.m_c[1];
blk.m_endpoints[4] = (rot_comp == 2 ? ccell_results_a : ccell_results_rgb).m_astc_low_endpoint.m_c[2];
blk.m_endpoints[5] = (rot_comp == 2 ? ccell_results_a : ccell_results_rgb).m_astc_high_endpoint.m_c[2];
if (rot_comp == 3)
{
blk.m_endpoints[6] = ccell_results_a.m_astc_low_endpoint.m_c[0];
blk.m_endpoints[7] = ccell_results_a.m_astc_high_endpoint.m_c[0];
}
else
{
blk.m_endpoints[6] = ccell_results_rgb.m_astc_low_endpoint.m_c[rot_comp];
blk.m_endpoints[7] = ccell_results_rgb.m_astc_high_endpoint.m_c[rot_comp];
}
int s0 = g_astc_unquant[endpoint_range][blk.m_endpoints[0]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[2]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[4]].m_unquant;
int s1 = g_astc_unquant[endpoint_range][blk.m_endpoints[1]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[3]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[5]].m_unquant;
if (s1 < s0)
{
std::swap(blk.m_endpoints[0], blk.m_endpoints[1]);
std::swap(blk.m_endpoints[2], blk.m_endpoints[3]);
std::swap(blk.m_endpoints[4], blk.m_endpoints[5]);
std::swap(blk.m_endpoints[6], blk.m_endpoints[7]);
invert = true;
}
}
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
uint32_t rgb_index = ccell_result_selectors_rgb[x + y * 4];
uint32_t a_index = ccell_result_selectors_a[x + y * 4];
if (invert)
{
rgb_index = 3 - rgb_index;
a_index = 3 - a_index;
}
blk.m_weights[(x + y * 4) * 2 + 0] = (uint8_t)rgb_index;
blk.m_weights[(x + y * 4) * 2 + 1] = (uint8_t)a_index;
}
}
assert(total_results < MAX_ENCODE_RESULTS);
if (total_results < MAX_ENCODE_RESULTS)
{
pResults[total_results].m_uastc_mode = mode;
pResults[total_results].m_common_pattern = 0;
pResults[total_results].m_astc = blk;
pResults[total_results].m_astc_err = total_err;
total_results++;
}
} // rot_comp
}
// MODE 12
// DualPlane: 0, WeightRange: 5 (8), Subsets: 1, CEM: 12 (RGBA Direct ), EndpointRange: 19 (192) MODE6
static void astc_mode12(const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params)
{
const uint32_t weight_range = 5;
const uint32_t endpoint_range = 19;
color_cell_compressor_params ccell_params;
memset(&ccell_params, 0, sizeof(ccell_params));
ccell_params.m_num_pixels = 16;
ccell_params.m_pPixels = (color_quad_u8*)&block[0][0];
ccell_params.m_num_selector_weights = 8;
ccell_params.m_pSelector_weights = g_bc7_weights3;
ccell_params.m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights3x;
ccell_params.m_astc_endpoint_range = endpoint_range;
ccell_params.m_weights[0] = 1;
ccell_params.m_weights[1] = 1;
ccell_params.m_weights[2] = 1;
ccell_params.m_weights[3] = 1;
ccell_params.m_has_alpha = true;
color_cell_compressor_results ccell_results;
uint8_t ccell_result_selectors[16];
uint8_t ccell_result_selectors_temp[16];
memset(&ccell_results, 0, sizeof(ccell_results));
ccell_results.m_pSelectors = &ccell_result_selectors[0];
ccell_results.m_pSelectors_temp = &ccell_result_selectors_temp[0];
uint64_t part_err = color_cell_compression(255, &ccell_params, &ccell_results, &comp_params);
// ASTC
astc_block_desc astc_results;
memset(&astc_results, 0, sizeof(astc_results));
astc_results.m_dual_plane = false;
astc_results.m_weight_range = weight_range;
astc_results.m_ccs = 0;
astc_results.m_subsets = 1;
astc_results.m_partition_seed = 0;
astc_results.m_cem = 12;
astc_results.m_endpoints[0] = ccell_results.m_astc_low_endpoint.m_c[0];
astc_results.m_endpoints[1] = ccell_results.m_astc_high_endpoint.m_c[0];
astc_results.m_endpoints[2] = ccell_results.m_astc_low_endpoint.m_c[1];
astc_results.m_endpoints[3] = ccell_results.m_astc_high_endpoint.m_c[1];
astc_results.m_endpoints[4] = ccell_results.m_astc_low_endpoint.m_c[2];
astc_results.m_endpoints[5] = ccell_results.m_astc_high_endpoint.m_c[2];
astc_results.m_endpoints[6] = ccell_results.m_astc_low_endpoint.m_c[3];
astc_results.m_endpoints[7] = ccell_results.m_astc_high_endpoint.m_c[3];
bool invert = false;
int s0 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[0]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[2]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[4]].m_unquant;
int s1 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[1]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[3]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[5]].m_unquant;
if (s1 < s0)
{
std::swap(astc_results.m_endpoints[0], astc_results.m_endpoints[1]);
std::swap(astc_results.m_endpoints[2], astc_results.m_endpoints[3]);
std::swap(astc_results.m_endpoints[4], astc_results.m_endpoints[5]);
std::swap(astc_results.m_endpoints[6], astc_results.m_endpoints[7]);
invert = true;
}
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
astc_results.m_weights[x + y * 4] = ccell_result_selectors[x + y * 4];
if (invert)
astc_results.m_weights[x + y * 4] = 7 - astc_results.m_weights[x + y * 4];
}
}
assert(total_results < MAX_ENCODE_RESULTS);
if (total_results < MAX_ENCODE_RESULTS)
{
pResults[total_results].m_uastc_mode = 12;
pResults[total_results].m_common_pattern = 0;
pResults[total_results].m_astc = astc_results;
pResults[total_results].m_astc_err = part_err;
total_results++;
}
}
// 13. DualPlane: 1, WeightRange: 0 (2), Subsets: 1, CEM: 12 (RGBA Direct ), EndpointRange: 20 (256) MODE5
static void astc_mode13(const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params)
{
bc7enc_compress_block_params local_comp_params(comp_params);
local_comp_params.m_perceptual = false;
local_comp_params.m_weights[0] = 1;
local_comp_params.m_weights[1] = 1;
local_comp_params.m_weights[2] = 1;
local_comp_params.m_weights[3] = 1;
for (uint32_t rot_comp = 0; rot_comp < 4; rot_comp++)
{
const uint32_t weight_range = 0;
const uint32_t endpoint_range = 20;
color_quad_u8 block_rgb[16];
color_quad_u8 block_a[16];
for (uint32_t i = 0; i < 16; i++)
{
block_rgb[i] = ((color_quad_u8*)&block[0][0])[i];
block_a[i] = block_rgb[i];
uint8_t c = block_a[i].m_c[rot_comp];
block_a[i].m_c[0] = c;
block_a[i].m_c[1] = c;
block_a[i].m_c[2] = c;
block_a[i].m_c[3] = 255;
block_rgb[i].m_c[rot_comp] = block_rgb[i].m_c[3];
block_rgb[i].m_c[3] = 255;
}
uint8_t ccell_result_selectors_temp[16];
color_cell_compressor_params ccell_params_rgb;
memset(&ccell_params_rgb, 0, sizeof(ccell_params_rgb));
ccell_params_rgb.m_num_pixels = 16;
ccell_params_rgb.m_pPixels = block_rgb;
ccell_params_rgb.m_num_selector_weights = 2;
ccell_params_rgb.m_pSelector_weights = g_bc7_weights1;
ccell_params_rgb.m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights1x;
ccell_params_rgb.m_astc_endpoint_range = endpoint_range;
ccell_params_rgb.m_weights[0] = 1;
ccell_params_rgb.m_weights[1] = 1;
ccell_params_rgb.m_weights[2] = 1;
ccell_params_rgb.m_weights[3] = 1;
color_cell_compressor_results ccell_results_rgb;
uint8_t ccell_result_selectors_rgb[16];
memset(&ccell_results_rgb, 0, sizeof(ccell_results_rgb));
ccell_results_rgb.m_pSelectors = &ccell_result_selectors_rgb[0];
ccell_results_rgb.m_pSelectors_temp = &ccell_result_selectors_temp[0];
uint64_t part_err_rgb = color_cell_compression(255, &ccell_params_rgb, &ccell_results_rgb, &local_comp_params);
color_cell_compressor_params ccell_params_a;
memset(&ccell_params_a, 0, sizeof(ccell_params_a));
ccell_params_a.m_num_pixels = 16;
ccell_params_a.m_pPixels = block_a;
ccell_params_a.m_num_selector_weights = 2;
ccell_params_a.m_pSelector_weights = g_bc7_weights1;
ccell_params_a.m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights1x;
ccell_params_a.m_astc_endpoint_range = endpoint_range;
ccell_params_a.m_weights[0] = 1;
ccell_params_a.m_weights[1] = 1;
ccell_params_a.m_weights[2] = 1;
ccell_params_a.m_weights[3] = 1;
color_cell_compressor_results ccell_results_a;
uint8_t ccell_result_selectors_a[16];
memset(&ccell_results_a, 0, sizeof(ccell_results_a));
ccell_results_a.m_pSelectors = &ccell_result_selectors_a[0];
ccell_results_a.m_pSelectors_temp = &ccell_result_selectors_temp[0];
uint64_t part_err_a = color_cell_compression(255, &ccell_params_a, &ccell_results_a, &local_comp_params) / 3;
uint64_t total_err = part_err_rgb + part_err_a;
// ASTC
astc_block_desc blk;
memset(&blk, 0, sizeof(blk));
blk.m_dual_plane = true;
blk.m_weight_range = weight_range;
blk.m_ccs = rot_comp;
blk.m_subsets = 1;
blk.m_partition_seed = 0;
blk.m_cem = 12;
blk.m_endpoints[0] = (rot_comp == 0 ? ccell_results_a : ccell_results_rgb).m_astc_low_endpoint.m_c[0];
blk.m_endpoints[1] = (rot_comp == 0 ? ccell_results_a : ccell_results_rgb).m_astc_high_endpoint.m_c[0];
blk.m_endpoints[2] = (rot_comp == 1 ? ccell_results_a : ccell_results_rgb).m_astc_low_endpoint.m_c[1];
blk.m_endpoints[3] = (rot_comp == 1 ? ccell_results_a : ccell_results_rgb).m_astc_high_endpoint.m_c[1];
blk.m_endpoints[4] = (rot_comp == 2 ? ccell_results_a : ccell_results_rgb).m_astc_low_endpoint.m_c[2];
blk.m_endpoints[5] = (rot_comp == 2 ? ccell_results_a : ccell_results_rgb).m_astc_high_endpoint.m_c[2];
if (rot_comp == 3)
{
blk.m_endpoints[6] = ccell_results_a.m_astc_low_endpoint.m_c[0];
blk.m_endpoints[7] = ccell_results_a.m_astc_high_endpoint.m_c[0];
}
else
{
blk.m_endpoints[6] = ccell_results_rgb.m_astc_low_endpoint.m_c[rot_comp];
blk.m_endpoints[7] = ccell_results_rgb.m_astc_high_endpoint.m_c[rot_comp];
}
bool invert = false;
int s0 = g_astc_unquant[endpoint_range][blk.m_endpoints[0]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[2]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[4]].m_unquant;
int s1 = g_astc_unquant[endpoint_range][blk.m_endpoints[1]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[3]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[5]].m_unquant;
if (s1 < s0)
{
std::swap(blk.m_endpoints[0], blk.m_endpoints[1]);
std::swap(blk.m_endpoints[2], blk.m_endpoints[3]);
std::swap(blk.m_endpoints[4], blk.m_endpoints[5]);
std::swap(blk.m_endpoints[6], blk.m_endpoints[7]);
invert = true;
}
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
uint32_t rgb_index = ccell_result_selectors_rgb[x + y * 4];
uint32_t a_index = ccell_result_selectors_a[x + y * 4];
if (invert)
{
rgb_index = 1 - rgb_index;
a_index = 1 - a_index;
}
blk.m_weights[(x + y * 4) * 2 + 0] = (uint8_t)rgb_index;
blk.m_weights[(x + y * 4) * 2 + 1] = (uint8_t)a_index;
}
}
assert(total_results < MAX_ENCODE_RESULTS);
if (total_results < MAX_ENCODE_RESULTS)
{
pResults[total_results].m_uastc_mode = 13;
pResults[total_results].m_common_pattern = 0;
pResults[total_results].m_astc = blk;
pResults[total_results].m_astc_err = total_err;
total_results++;
}
} // rot_comp
}
// MODE14
// DualPlane: 0, WeightRange: 2 (4), Subsets: 1, CEM: 12 (RGBA Direct ), EndpointRange: 20 (256) MODE6
static void astc_mode14(const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params)
{
const uint32_t weight_range = 2;
const uint32_t endpoint_range = 20;
color_cell_compressor_params ccell_params;
memset(&ccell_params, 0, sizeof(ccell_params));
ccell_params.m_num_pixels = 16;
ccell_params.m_pPixels = (color_quad_u8*)&block[0][0];
ccell_params.m_num_selector_weights = 4;
ccell_params.m_pSelector_weights = g_bc7_weights2;
ccell_params.m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights2x;
ccell_params.m_astc_endpoint_range = endpoint_range;
ccell_params.m_weights[0] = 1;
ccell_params.m_weights[1] = 1;
ccell_params.m_weights[2] = 1;
ccell_params.m_weights[3] = 1;
ccell_params.m_has_alpha = true;
color_cell_compressor_results ccell_results;
uint8_t ccell_result_selectors[16];
uint8_t ccell_result_selectors_temp[16];
memset(&ccell_results, 0, sizeof(ccell_results));
ccell_results.m_pSelectors = &ccell_result_selectors[0];
ccell_results.m_pSelectors_temp = &ccell_result_selectors_temp[0];
uint64_t part_err = color_cell_compression(255, &ccell_params, &ccell_results, &comp_params);
// ASTC
astc_block_desc astc_results;
memset(&astc_results, 0, sizeof(astc_results));
astc_results.m_dual_plane = false;
astc_results.m_weight_range = weight_range;
astc_results.m_ccs = 0;
astc_results.m_subsets = 1;
astc_results.m_partition_seed = 0;
astc_results.m_cem = 12;
astc_results.m_endpoints[0] = ccell_results.m_astc_low_endpoint.m_c[0];
astc_results.m_endpoints[1] = ccell_results.m_astc_high_endpoint.m_c[0];
astc_results.m_endpoints[2] = ccell_results.m_astc_low_endpoint.m_c[1];
astc_results.m_endpoints[3] = ccell_results.m_astc_high_endpoint.m_c[1];
astc_results.m_endpoints[4] = ccell_results.m_astc_low_endpoint.m_c[2];
astc_results.m_endpoints[5] = ccell_results.m_astc_high_endpoint.m_c[2];
astc_results.m_endpoints[6] = ccell_results.m_astc_low_endpoint.m_c[3];
astc_results.m_endpoints[7] = ccell_results.m_astc_high_endpoint.m_c[3];
bool invert = false;
int s0 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[0]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[2]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[4]].m_unquant;
int s1 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[1]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[3]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[5]].m_unquant;
if (s1 < s0)
{
std::swap(astc_results.m_endpoints[0], astc_results.m_endpoints[1]);
std::swap(astc_results.m_endpoints[2], astc_results.m_endpoints[3]);
std::swap(astc_results.m_endpoints[4], astc_results.m_endpoints[5]);
std::swap(astc_results.m_endpoints[6], astc_results.m_endpoints[7]);
invert = true;
}
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
astc_results.m_weights[x + y * 4] = ccell_result_selectors[x + y * 4];
if (invert)
astc_results.m_weights[x + y * 4] = 3 - astc_results.m_weights[x + y * 4];
}
}
assert(total_results < MAX_ENCODE_RESULTS);
if (total_results < MAX_ENCODE_RESULTS)
{
pResults[total_results].m_uastc_mode = 14;
pResults[total_results].m_common_pattern = 0;
pResults[total_results].m_astc = astc_results;
pResults[total_results].m_astc_err = part_err;
total_results++;
}
}
// MODE 15
// DualPlane: 0, WeightRange : 8 (16), Subsets : 1, CEM : 4 (LA Direct), EndpointRange : 20 (256) BC7 MODE6
static void astc_mode15(const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params)
{
const uint32_t weight_range = 8;
const uint32_t endpoint_range = 20;
color_cell_compressor_params ccell_params;
memset(&ccell_params, 0, sizeof(ccell_params));
color_rgba temp_block[16];
for (uint32_t i = 0; i < 16; i++)
{
const uint32_t l = ((const color_rgba*)block)[i].r;
const uint32_t a = ((const color_rgba*)block)[i].a;
// Use (l,0,0,a) not (l,l,l,a) so both components are treated equally.
temp_block[i].set_noclamp_rgba(l, 0, 0, a);
}
ccell_params.m_num_pixels = 16;
//ccell_params.m_pPixels = (color_quad_u8*)&block[0][0];
ccell_params.m_pPixels = (color_quad_u8*)temp_block;
ccell_params.m_num_selector_weights = 16;
ccell_params.m_pSelector_weights = g_astc_weights4;
ccell_params.m_pSelector_weightsx = (const bc7enc_vec4F*)g_astc_weights4x;
ccell_params.m_astc_endpoint_range = endpoint_range;
ccell_params.m_weights[0] = 1;
ccell_params.m_weights[1] = 1;
ccell_params.m_weights[2] = 1;
ccell_params.m_weights[3] = 1;
ccell_params.m_has_alpha = true;
color_cell_compressor_results ccell_results;
uint8_t ccell_result_selectors[16];
uint8_t ccell_result_selectors_temp[16];
memset(&ccell_results, 0, sizeof(ccell_results));
ccell_results.m_pSelectors = &ccell_result_selectors[0];
ccell_results.m_pSelectors_temp = &ccell_result_selectors_temp[0];
color_cell_compression(255, &ccell_params, &ccell_results, &comp_params);
// ASTC
astc_block_desc astc_results;
memset(&astc_results, 0, sizeof(astc_results));
astc_results.m_dual_plane = false;
astc_results.m_weight_range = weight_range;
astc_results.m_ccs = 0;
astc_results.m_subsets = 1;
astc_results.m_partition_seed = 0;
astc_results.m_cem = 4;
astc_results.m_endpoints[0] = ccell_results.m_astc_low_endpoint.m_c[0];
astc_results.m_endpoints[1] = ccell_results.m_astc_high_endpoint.m_c[0];
astc_results.m_endpoints[2] = ccell_results.m_astc_low_endpoint.m_c[3];
astc_results.m_endpoints[3] = ccell_results.m_astc_high_endpoint.m_c[3];
for (uint32_t y = 0; y < 4; y++)
for (uint32_t x = 0; x < 4; x++)
astc_results.m_weights[x + y * 4] = ccell_result_selectors[x + y * 4];
color_rgba colors[16];
for (uint32_t c = 0; c < 4; c++)
{
colors[0].m_comps[c] = g_astc_unquant[endpoint_range][ccell_results.m_astc_low_endpoint.m_c[(c < 3) ? 0 : 3]].m_unquant;
colors[15].m_comps[c] = g_astc_unquant[endpoint_range][ccell_results.m_astc_high_endpoint.m_c[(c < 3) ? 0 : 3]].m_unquant;
}
for (uint32_t i = 1; i < 16 - 1; i++)
for (uint32_t c = 0; c < 4; c++)
colors[i].m_comps[c] = (uint8_t)astc_interpolate(colors[0].m_comps[c], colors[15].m_comps[c], g_astc_weights4[i], false);
uint64_t total_err = 0;
for (uint32_t p = 0; p < 16; p++)
total_err += color_distance_la(((const color_rgba*)block)[p], colors[ccell_result_selectors[p]]);
assert(total_results < MAX_ENCODE_RESULTS);
if (total_results < MAX_ENCODE_RESULTS)
{
pResults[total_results].m_uastc_mode = 15;
pResults[total_results].m_common_pattern = 0;
pResults[total_results].m_astc = astc_results;
pResults[total_results].m_astc_err = total_err;
total_results++;
}
}
static void compute_block_error(const color_rgba block[4][4], const color_rgba decoded_block[4][4], uint64_t &total_rgb_err, uint64_t &total_rgba_err, uint64_t &total_la_err)
{
uint64_t total_err_r = 0, total_err_g = 0, total_err_b = 0, total_err_a = 0;
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
const int dr = (int)block[y][x].m_comps[0] - (int)decoded_block[y][x].m_comps[0];
const int dg = (int)block[y][x].m_comps[1] - (int)decoded_block[y][x].m_comps[1];
const int db = (int)block[y][x].m_comps[2] - (int)decoded_block[y][x].m_comps[2];
const int da = (int)block[y][x].m_comps[3] - (int)decoded_block[y][x].m_comps[3];
total_err_r += dr * dr;
total_err_g += dg * dg;
total_err_b += db * db;
total_err_a += da * da;
}
}
total_la_err = total_err_r + total_err_a;
total_rgb_err = total_err_r + total_err_g + total_err_b;
total_rgba_err = total_rgb_err + total_err_a;
}
static void compute_bc1_hints(bool &bc1_hint0, bool &bc1_hint1, const uastc_encode_results &best_results, const color_rgba block[4][4], const color_rgba decoded_uastc_block[4][4])
{
const uint32_t best_mode = best_results.m_uastc_mode;
const bool perceptual = false;
bc1_hint0 = false;
bc1_hint1 = false;
if (best_mode == UASTC_MODE_INDEX_SOLID_COLOR)
return;
if (!g_uastc_mode_has_bc1_hint0[best_mode] && !g_uastc_mode_has_bc1_hint1[best_mode])
return;
color_rgba tblock_bc1[4][4];
dxt1_block tbc1_block[8];
basist::encode_bc1(tbc1_block, (const uint8_t*)&decoded_uastc_block[0][0], 0);
unpack_block(texture_format::cBC1, tbc1_block, &tblock_bc1[0][0]);
color_rgba tblock_hint0_bc1[4][4];
color_rgba tblock_hint1_bc1[4][4];
etc_block etc1_blk;
memset(&etc1_blk, 0, sizeof(etc1_blk));
eac_a8_block etc2_blk;
memset(&etc2_blk, 0, sizeof(etc2_blk));
etc2_blk.m_multiplier = 1;
// Pack to UASTC, then unpack, because the endpoints may be swapped.
uastc_block temp_ublock;
pack_uastc(temp_ublock, best_results, etc1_blk, 0, etc2_blk, false, false);
unpacked_uastc_block temp_ublock_unpacked;
unpack_uastc(temp_ublock, temp_ublock_unpacked, false);
unpacked_uastc_block ublock;
memset(&ublock, 0, sizeof(ublock));
ublock.m_mode = best_results.m_uastc_mode;
ublock.m_common_pattern = best_results.m_common_pattern;
ublock.m_astc = temp_ublock_unpacked.m_astc;
dxt1_block b;
// HINT1
if (!g_uastc_mode_has_bc1_hint1[best_mode])
{
memset(tblock_hint1_bc1, 0, sizeof(tblock_hint1_bc1));
}
else
{
transcode_uastc_to_bc1_hint1(ublock, (color32 (*)[4]) decoded_uastc_block, &b, false);
unpack_block(texture_format::cBC1, &b, &tblock_hint1_bc1[0][0]);
}
// HINT0
if (!g_uastc_mode_has_bc1_hint0[best_mode])
{
memset(tblock_hint0_bc1, 0, sizeof(tblock_hint0_bc1));
}
else
{
transcode_uastc_to_bc1_hint0(ublock, &b);
unpack_block(texture_format::cBC1, &b, &tblock_hint0_bc1[0][0]);
}
// Compute block errors
uint64_t total_t_err = 0, total_hint0_err = 0, total_hint1_err = 0;
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
total_t_err += color_distance(perceptual, block[y][x], tblock_bc1[y][x], false);
total_hint0_err += color_distance(perceptual, block[y][x], tblock_hint0_bc1[y][x], false);
total_hint1_err += color_distance(perceptual, block[y][x], tblock_hint1_bc1[y][x], false);
}
}
const float t_err = sqrtf((float)total_t_err);
const float t_err_hint0 = sqrtf((float)total_hint0_err);
const float t_err_hint1 = sqrtf((float)total_hint1_err);
const float err_thresh0 = 1.075f;
const float err_thresh1 = 1.075f;
if ((g_uastc_mode_has_bc1_hint0[best_mode]) && (t_err_hint0 <= t_err * err_thresh0))
bc1_hint0 = true;
if ((g_uastc_mode_has_bc1_hint1[best_mode]) && (t_err_hint1 <= t_err * err_thresh1))
bc1_hint1 = true;
}
struct ycbcr
{
int32_t m_y;
int32_t m_cb;
int32_t m_cr;
};
static inline void rgb_to_y_cb_cr(const color_rgba& c, ycbcr& dst)
{
const int y = c.r * 54 + c.g * 183 + c.b * 19;
dst.m_y = y;
dst.m_cb = (c.b << 8) - y;
dst.m_cr = (c.r << 8) - y;
}
static inline uint64_t color_diff(const ycbcr& a, const ycbcr& b)
{
const int y_delta = a.m_y - b.m_y;
const int cb_delta = a.m_cb - b.m_cb;
const int cr_delta = a.m_cr - b.m_cr;
return ((int64_t)y_delta * y_delta * 4) + ((int64_t)cr_delta * cr_delta) + ((int64_t)cb_delta * cb_delta);
}
static inline int gray_distance2(const color_rgba& c, int r, int g, int b)
{
int gray_dist = (((int)c[0] - r) + ((int)c[1] - g) + ((int)c[2] - b) + 1) / 3;
int gray_point_r = clamp255(r + gray_dist);
int gray_point_g = clamp255(g + gray_dist);
int gray_point_b = clamp255(b + gray_dist);
int dist_to_gray_point_r = c[0] - gray_point_r;
int dist_to_gray_point_g = c[1] - gray_point_g;
int dist_to_gray_point_b = c[2] - gray_point_b;
return (dist_to_gray_point_r * dist_to_gray_point_r) + (dist_to_gray_point_g * dist_to_gray_point_g) + (dist_to_gray_point_b * dist_to_gray_point_b);
}
static bool pack_etc1_estimate_flipped(const color_rgba* pSrc_pixels)
{
int sums[3][2][2];
#define GET_XY(x, y, c) pSrc_pixels[(x) + ((y) * 4)][c]
for (uint32_t c = 0; c < 3; c++)
{
sums[c][0][0] = GET_XY(0, 0, c) + GET_XY(0, 1, c) + GET_XY(1, 0, c) + GET_XY(1, 1, c);
sums[c][1][0] = GET_XY(2, 0, c) + GET_XY(2, 1, c) + GET_XY(3, 0, c) + GET_XY(3, 1, c);
sums[c][0][1] = GET_XY(0, 2, c) + GET_XY(0, 3, c) + GET_XY(1, 2, c) + GET_XY(1, 3, c);
sums[c][1][1] = GET_XY(2, 2, c) + GET_XY(2, 3, c) + GET_XY(3, 2, c) + GET_XY(3, 3, c);
}
int upper_avg[3], lower_avg[3], left_avg[3], right_avg[3];
for (uint32_t c = 0; c < 3; c++)
{
upper_avg[c] = (sums[c][0][0] + sums[c][1][0] + 4) / 8;
lower_avg[c] = (sums[c][0][1] + sums[c][1][1] + 4) / 8;
left_avg[c] = (sums[c][0][0] + sums[c][0][1] + 4) / 8;
right_avg[c] = (sums[c][1][0] + sums[c][1][1] + 4) / 8;
}
#undef GET_XY
#define GET_XY(x, y, a) gray_distance2(pSrc_pixels[(x) + ((y) * 4)], a[0], a[1], a[2])
int upper_gray_dist = 0, lower_gray_dist = 0, left_gray_dist = 0, right_gray_dist = 0;
for (uint32_t i = 0; i < 4; i++)
{
for (uint32_t j = 0; j < 2; j++)
{
upper_gray_dist += GET_XY(i, j, upper_avg);
lower_gray_dist += GET_XY(i, 2 + j, lower_avg);
left_gray_dist += GET_XY(j, i, left_avg);
right_gray_dist += GET_XY(2 + j, i, right_avg);
}
}
#undef GET_XY
int upper_lower_sum = upper_gray_dist + lower_gray_dist;
int left_right_sum = left_gray_dist + right_gray_dist;
return upper_lower_sum < left_right_sum;
}
static void compute_etc1_hints(etc_block& best_etc1_blk, uint32_t& best_etc1_bias, const uastc_encode_results& best_results, const color_rgba block[4][4], const color_rgba decoded_uastc_block[4][4], int level, uint32_t flags)
{
best_etc1_bias = 0;
if (best_results.m_uastc_mode == UASTC_MODE_INDEX_SOLID_COLOR)
{
pack_etc1_block_solid_color(best_etc1_blk, &best_results.m_solid_color.m_comps[0]);
return;
}
const bool faster_etc1 = (flags & cPackUASTCETC1FasterHints) != 0;
const bool fastest_etc1 = (flags & cPackUASTCETC1FastestHints) != 0;
const bool has_bias = g_uastc_mode_has_etc1_bias[best_results.m_uastc_mode];
// 0 should be at the top, but we need 13 first because it represents bias (0,0,0).
const uint8_t s_sorted_bias_modes[32] = { 13, 0, 22, 29, 27, 12, 26, 9, 30, 31, 8, 10, 25, 2, 23, 5, 15, 7, 3, 11, 6, 17, 28, 18, 1, 19, 20, 21, 24, 4, 14, 16 };
uint32_t last_bias = 1;
bool use_faster_bias_mode_table = false;
const bool flip_estimate = (level <= cPackUASTCLevelFaster) || (faster_etc1) || (fastest_etc1);
if (has_bias)
{
switch (level)
{
case cPackUASTCLevelFastest:
{
last_bias = fastest_etc1 ? 1 : (faster_etc1 ? 1 : 2);
use_faster_bias_mode_table = true;
break;
}
case cPackUASTCLevelFaster:
{
last_bias = fastest_etc1 ? 1 : (faster_etc1 ? 3 : 5);
use_faster_bias_mode_table = true;
break;
}
case cPackUASTCLevelDefault:
{
last_bias = fastest_etc1 ? 1 : (faster_etc1 ? 10 : 20);
use_faster_bias_mode_table = true;
break;
}
case cPackUASTCLevelSlower:
{
last_bias = fastest_etc1 ? 1 : (faster_etc1 ? 16 : 32);
use_faster_bias_mode_table = true;
break;
}
default:
{
last_bias = 32;
break;
}
}
}
memset(&best_etc1_blk, 0, sizeof(best_etc1_blk));
uint64_t best_err = UINT64_MAX;
etc_block trial_block;
memset(&trial_block, 0, sizeof(trial_block));
ycbcr block_ycbcr[4][4], decoded_uastc_block_ycbcr[4][4];
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
rgb_to_y_cb_cr(block[y][x], block_ycbcr[y][x]);
rgb_to_y_cb_cr(decoded_uastc_block[y][x], decoded_uastc_block_ycbcr[y][x]);
}
}
uint32_t first_flip = 0, last_flip = 2;
uint32_t first_individ = 0, last_individ = 2;
if (flags & cPackUASTCETC1DisableFlipAndIndividual)
{
last_flip = 1;
last_individ = 1;
}
else if (flip_estimate)
{
if (pack_etc1_estimate_flipped(&decoded_uastc_block[0][0]))
first_flip = 1;
last_flip = first_flip + 1;
}
for (uint32_t flip = first_flip; flip < last_flip; flip++)
{
trial_block.set_flip_bit(flip != 0);
for (uint32_t individ = first_individ; individ < last_individ; individ++)
{
const uint32_t mul = individ ? 15 : 31;
trial_block.set_diff_bit(individ == 0);
color_rgba unbiased_block_colors[2];
int min_r[2] = { 255, 255 }, min_g[2] = { 255, 255 }, min_b[2] = { 255, 255 }, max_r[2] = { 0, 0 }, max_g[2] = { 0, 0 }, max_b[2] = { 0, 0 };
for (uint32_t subset = 0; subset < 2; subset++)
{
uint32_t avg_color[3];
memset(avg_color, 0, sizeof(avg_color));
for (uint32_t j = 0; j < 8; j++)
{
const etc_coord2 &c = g_etc1_pixel_coords[flip][subset][j];
const color_rgba& p = decoded_uastc_block[c.m_y][c.m_x];
avg_color[0] += p.r;
avg_color[1] += p.g;
avg_color[2] += p.b;
min_r[subset] = basisu::minimum<uint32_t>(min_r[subset], p.r);
min_g[subset] = basisu::minimum<uint32_t>(min_g[subset], p.g);
min_b[subset] = basisu::minimum<uint32_t>(min_b[subset], p.b);
max_r[subset] = basisu::maximum<uint32_t>(max_r[subset], p.r);
max_g[subset] = basisu::maximum<uint32_t>(max_g[subset], p.g);
max_b[subset] = basisu::maximum<uint32_t>(max_b[subset], p.b);
} // j
unbiased_block_colors[subset][0] = (uint8_t)((avg_color[0] * mul + 1020) / (8 * 255));
unbiased_block_colors[subset][1] = (uint8_t)((avg_color[1] * mul + 1020) / (8 * 255));
unbiased_block_colors[subset][2] = (uint8_t)((avg_color[2] * mul + 1020) / (8 * 255));
unbiased_block_colors[subset][3] = 0;
} // subset
for (uint32_t bias_iter = 0; bias_iter < last_bias; bias_iter++)
{
const uint32_t bias = use_faster_bias_mode_table ? s_sorted_bias_modes[bias_iter] : bias_iter;
color_rgba block_colors[2];
for (uint32_t subset = 0; subset < 2; subset++)
block_colors[subset] = has_bias ? apply_etc1_bias((color32&)unbiased_block_colors[subset], bias, mul, subset) : unbiased_block_colors[subset];
if (individ)
trial_block.set_block_color4(block_colors[0], block_colors[1]);
else
trial_block.set_block_color5_clamp(block_colors[0], block_colors[1]);
uint32_t range[2];
for (uint32_t subset = 0; subset < 2; subset++)
{
const color_rgba base_c(trial_block.get_block_color(subset, true));
const int pos_r = iabs(max_r[subset] - base_c.r);
const int neg_r = iabs(base_c.r - min_r[subset]);
const int pos_g = iabs(max_g[subset] - base_c.g);
const int neg_g = iabs(base_c.g - min_g[subset]);
const int pos_b = iabs(max_b[subset] - base_c.b);
const int neg_b = iabs(base_c.b - min_b[subset]);
range[subset] = maximum(maximum(pos_r, neg_r, pos_g, neg_g), pos_b, neg_b);
}
uint32_t best_inten_table[2] = { 0, 0 };
for (uint32_t subset = 0; subset < 2; subset++)
{
uint64_t best_subset_err = UINT64_MAX;
const uint32_t inten_table_limit = (level == cPackUASTCLevelVerySlow) ? 8 : ((range[subset] > 51) ? 8 : (range[subset] >= 7 ? 4 : 2));
for (uint32_t inten_table = 0; inten_table < inten_table_limit; inten_table++)
{
trial_block.set_inten_table(subset, inten_table);
color_rgba color_table[4];
trial_block.get_block_colors(color_table, subset);
ycbcr color_table_ycbcr[4];
for (uint32_t i = 0; i < 4; i++)
rgb_to_y_cb_cr(color_table[i], color_table_ycbcr[i]);
uint64_t total_error = 0;
if (flip)
{
for (uint32_t y = 0; y < 2; y++)
{
{
const ycbcr& c = decoded_uastc_block_ycbcr[subset * 2 + y][0];
total_error += minimum(color_diff(color_table_ycbcr[0], c), color_diff(color_table_ycbcr[1], c), color_diff(color_table_ycbcr[2], c), color_diff(color_table_ycbcr[3], c));
}
{
const ycbcr& c = decoded_uastc_block_ycbcr[subset * 2 + y][1];
total_error += minimum(color_diff(color_table_ycbcr[0], c), color_diff(color_table_ycbcr[1], c), color_diff(color_table_ycbcr[2], c), color_diff(color_table_ycbcr[3], c));
}
{
const ycbcr& c = decoded_uastc_block_ycbcr[subset * 2 + y][2];
total_error += minimum(color_diff(color_table_ycbcr[0], c), color_diff(color_table_ycbcr[1], c), color_diff(color_table_ycbcr[2], c), color_diff(color_table_ycbcr[3], c));
}
{
const ycbcr& c = decoded_uastc_block_ycbcr[subset * 2 + y][3];
total_error += minimum(color_diff(color_table_ycbcr[0], c), color_diff(color_table_ycbcr[1], c), color_diff(color_table_ycbcr[2], c), color_diff(color_table_ycbcr[3], c));
}
if (total_error >= best_subset_err)
break;
}
}
else
{
for (uint32_t y = 0; y < 4; y++)
{
{
const ycbcr& c = decoded_uastc_block_ycbcr[y][subset * 2 + 0];
total_error += minimum(color_diff(color_table_ycbcr[0], c), color_diff(color_table_ycbcr[1], c), color_diff(color_table_ycbcr[2], c), color_diff(color_table_ycbcr[3], c));
}
{
const ycbcr& c = decoded_uastc_block_ycbcr[y][subset * 2 + 1];
total_error += minimum(color_diff(color_table_ycbcr[0], c), color_diff(color_table_ycbcr[1], c), color_diff(color_table_ycbcr[2], c), color_diff(color_table_ycbcr[3], c));
}
}
if (total_error >= best_subset_err)
break;
}
if (total_error < best_subset_err)
{
best_subset_err = total_error;
best_inten_table[subset] = inten_table;
}
} // inten_table
} // subset
trial_block.set_inten_table(0, best_inten_table[0]);
trial_block.set_inten_table(1, best_inten_table[1]);
// Compute error against the ORIGINAL block.
uint64_t err = 0;
for (uint32_t subset = 0; subset < 2; subset++)
{
color_rgba color_table[4];
trial_block.get_block_colors(color_table, subset);
ycbcr color_table_ycbcr[4];
for (uint32_t i = 0; i < 4; i++)
rgb_to_y_cb_cr(color_table[i], color_table_ycbcr[i]);
if (flip)
{
for (uint32_t y = 0; y < 2; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
const ycbcr& c = decoded_uastc_block_ycbcr[subset * 2 + y][x];
const uint64_t best_index_err = minimum(color_diff(color_table_ycbcr[0], c) << 2, (color_diff(color_table_ycbcr[1], c) << 2) + 1, (color_diff(color_table_ycbcr[2], c) << 2) + 2, (color_diff(color_table_ycbcr[3], c) << 2) + 3);
const uint32_t best_index = (uint32_t)best_index_err & 3;
err += color_diff(block_ycbcr[subset * 2 + y][x], color_table_ycbcr[best_index]);
}
if (err >= best_err)
break;
}
}
else
{
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 2; x++)
{
const ycbcr& c = decoded_uastc_block_ycbcr[y][subset * 2 + x];
const uint64_t best_index_err = minimum(color_diff(color_table_ycbcr[0], c) << 2, (color_diff(color_table_ycbcr[1], c) << 2) + 1, (color_diff(color_table_ycbcr[2], c) << 2) + 2, (color_diff(color_table_ycbcr[3], c) << 2) + 3);
const uint32_t best_index = (uint32_t)best_index_err & 3;
err += color_diff(block_ycbcr[y][subset * 2 + x], color_table_ycbcr[best_index]);
}
if (err >= best_err)
break;
}
}
} // subset
if (err < best_err)
{
best_err = err;
best_etc1_blk = trial_block;
best_etc1_bias = bias;
}
} // bias_iter
} // individ
} // flip
}
struct uastc_pack_eac_a8_results
{
uint32_t m_base;
uint32_t m_table;
uint32_t m_multiplier;
};
static uint64_t uastc_pack_eac_a8(uastc_pack_eac_a8_results& results, const uint8_t* pPixels, uint32_t num_pixels, uint32_t base_search_rad, uint32_t mul_search_rad, uint32_t table_mask)
{
assert(num_pixels <= 16);
uint32_t min_alpha = 255, max_alpha = 0;
for (uint32_t i = 0; i < num_pixels; i++)
{
const uint32_t a = pPixels[i];
if (a < min_alpha) min_alpha = a;
if (a > max_alpha) max_alpha = a;
}
if (min_alpha == max_alpha)
{
results.m_base = min_alpha;
results.m_table = 13;
results.m_multiplier = 1;
return 0;
}
const uint32_t alpha_range = max_alpha - min_alpha;
uint64_t best_err = UINT64_MAX;
for (uint32_t table = 0; table < 16; table++)
{
if ((table_mask & (1U << table)) == 0)
continue;
const float range = (float)(g_etc2_eac_tables[table][ETC2_EAC_MAX_VALUE_SELECTOR] - g_etc2_eac_tables[table][ETC2_EAC_MIN_VALUE_SELECTOR]);
const int center = (int)roundf(lerp((float)min_alpha, (float)max_alpha, (float)(0 - g_etc2_eac_tables[table][ETC2_EAC_MIN_VALUE_SELECTOR]) / range));
const int base_min = clamp255(center - base_search_rad);
const int base_max = clamp255(center + base_search_rad);
const int mul = (int)roundf(alpha_range / range);
const int mul_low = clamp<int>(mul - mul_search_rad, 1, 15);
const int mul_high = clamp<int>(mul + mul_search_rad, 1, 15);
for (int base = base_min; base <= base_max; base++)
{
for (int multiplier = mul_low; multiplier <= mul_high; multiplier++)
{
uint64_t total_err = 0;
for (uint32_t i = 0; i < num_pixels; i++)
{
const int a = pPixels[i];
uint32_t best_s_err = UINT32_MAX;
//uint32_t best_s = 0;
for (uint32_t s = 0; s < 8; s++)
{
const int v = clamp255((int)multiplier * g_etc2_eac_tables[table][s] + (int)base);
uint32_t err = iabs(a - v);
if (err < best_s_err)
{
best_s_err = err;
//best_s = s;
}
}
total_err += best_s_err * best_s_err;
if (total_err >= best_err)
break;
}
if (total_err < best_err)
{
best_err = total_err;
results.m_base = base;
results.m_multiplier = multiplier;
results.m_table = table;
if (!best_err)
return best_err;
}
} // table
} // multiplier
} // base
return best_err;
}
const int32_t DEFAULT_BC7_ERROR_WEIGHT = 50;
const float UASTC_ERROR_THRESH = 1.3f;
// TODO: This is a quick hack to favor certain modes when we know we'll be followed up with an RDO postprocess.
static inline float get_uastc_mode_weight(uint32_t mode)
{
const float FAVORED_MODE_WEIGHT = .8f;
switch (mode)
{
case 0:
case 10:
return FAVORED_MODE_WEIGHT;
default:
break;
}
return 1.0f;
}
void encode_uastc(const uint8_t* pRGBAPixels, uastc_block& output_block, uint32_t flags)
{
// printf("encode_uastc: \n");
// for (int i = 0; i < 16; i++)
// printf("[%u %u %u %u] ", pRGBAPixels[i * 4 + 0], pRGBAPixels[i * 4 + 1], pRGBAPixels[i * 4 + 2], pRGBAPixels[i * 4 + 3]);
// printf("\n");
const color_rgba(*block)[4] = reinterpret_cast<const color_rgba(*)[4]>(pRGBAPixels);
bool solid_color = true, has_alpha = false, is_la = true;
const color_rgba first_color(block[0][0]);
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
if (block[y][x].a < 255)
has_alpha = true;
if (block[y][x] != first_color)
solid_color = false;
if ((block[y][x].r != block[y][x].g) || (block[y][x].r != block[y][x].b))
is_la = false;
}
}
if (solid_color)
{
// Solid color blocks are so common that we handle them specially and as quickly as we can.
uastc_encode_results solid_results;
solid_results.m_uastc_mode = UASTC_MODE_INDEX_SOLID_COLOR;
solid_results.m_astc_err = 0;
solid_results.m_common_pattern = 0;
solid_results.m_solid_color = first_color;
memset(&solid_results.m_astc, 0, sizeof(solid_results.m_astc));
etc_block etc1_blk;
uint32_t etc1_bias = 0;
pack_etc1_block_solid_color(etc1_blk, &first_color.m_comps[0]);
eac_a8_block eac_a8_blk;
eac_a8_blk.m_table = 0;
eac_a8_blk.m_multiplier = 1;
pack_uastc(output_block, solid_results, etc1_blk, etc1_bias, eac_a8_blk, false, false);
// printf(" Solid\n");
return;
}
int level = flags & 7;
const bool favor_uastc_error = (flags & cPackUASTCFavorUASTCError) != 0;
const bool favor_bc7_error = !favor_uastc_error && ((flags & cPackUASTCFavorBC7Error) != 0);
//const bool etc1_perceptual = true;
uastc_encode_results results[MAX_ENCODE_RESULTS];
level = clampi(level, cPackUASTCLevelFastest, cPackUASTCLevelVerySlow);
// Set all options to slowest, then configure from there depending on the selected level.
uint32_t mode_mask = UINT32_MAX;
uint32_t uber_level = 6;
bool estimate_partition = false;
bool always_try_alpha_modes = true;
uint32_t eac_a8_mul_search_rad = 3;
uint32_t eac_a8_table_mask = UINT32_MAX;
uint32_t least_squares_passes = 2;
bool bc1_hints = true;
bool only_use_la_on_transparent_blocks = false;
switch (level)
{
case cPackUASTCLevelFastest:
{
mode_mask = (1 << 0) | (1 << 8) |
(1 << 11) | (1 << 12) |
(1 << 15);
always_try_alpha_modes = false;
eac_a8_mul_search_rad = 0;
eac_a8_table_mask = (1 << 2) | (1 << 8) | (1 << 11) | (1 << 13);
uber_level = 0;
least_squares_passes = 1;
bc1_hints = false;
estimate_partition = true;
only_use_la_on_transparent_blocks = true;
break;
}
case cPackUASTCLevelFaster:
{
mode_mask = (1 << 0) | (1 << 4) | (1 << 6) | (1 << 8) |
(1 << 9) | (1 << 11) | (1 << 12) |
(1 << 15) | (1 << 17);
always_try_alpha_modes = false;
eac_a8_mul_search_rad = 0;
eac_a8_table_mask = (1 << 2) | (1 << 8) | (1 << 11) | (1 << 13);
uber_level = 0;
least_squares_passes = 1;
estimate_partition = true;
break;
}
case cPackUASTCLevelDefault:
{
mode_mask = (1 << 0) | (1 << 1) | (1 << 4) | (1 << 5) | (1 << 6) | (1 << 8) |
(1 << 9) | (1 << 10) | (1 << 11) | (1 << 12) | (1 << 13) |
(1 << 15) | (1 << 16) | (1 << 17);
always_try_alpha_modes = false;
eac_a8_mul_search_rad = 1;
eac_a8_table_mask = (1 << 0) | (1 << 2) | (1 << 6) | (1 << 7) | (1 << 8) | (1 << 10) | (1 << 11) | (1 << 13);
uber_level = 1;
least_squares_passes = 1;
estimate_partition = true;
break;
}
case cPackUASTCLevelSlower:
{
always_try_alpha_modes = false;
eac_a8_mul_search_rad = 2;
uber_level = 3;
estimate_partition = true;
break;
}
case cPackUASTCLevelVerySlow:
{
break;
}
}
#if BASISU_SUPPORT_FORCE_MODE
static int force_mode = -1;
force_mode = (force_mode + 1) % TOTAL_UASTC_MODES;
mode_mask = UINT32_MAX;
always_try_alpha_modes = true;
only_use_la_on_transparent_blocks = false;
#endif
// HACK HACK
//mode_mask &= ~(1 << 18);
//mode_mask = (1 << 18)| (1 << 10);
uint32_t total_results = 0;
if (only_use_la_on_transparent_blocks)
{
if ((is_la) && (!has_alpha))
is_la = false;
}
const bool try_alpha_modes = has_alpha || always_try_alpha_modes;
bc7enc_compress_block_params comp_params;
memset(&comp_params, 0, sizeof(comp_params));
comp_params.m_max_partitions_mode1 = 64;
comp_params.m_least_squares_passes = least_squares_passes;
comp_params.m_weights[0] = 1;
comp_params.m_weights[1] = 1;
comp_params.m_weights[2] = 1;
comp_params.m_weights[3] = 1;
comp_params.m_uber_level = uber_level;
if (is_la)
{
if (mode_mask & (1U << 15))
astc_mode15(block, results, total_results, comp_params);
if (mode_mask & (1U << 16))
astc_mode9_or_16(16, block, results, total_results, comp_params, estimate_partition ? 4 : 0);
if (mode_mask & (1U << 17))
astc_mode11_or_17(17, block, results, total_results, comp_params);
}
if (!has_alpha)
{
if (mode_mask & (1U << 0))
astc_mode0_or_18(0, block, results, total_results, comp_params);
if (mode_mask & (1U << 1))
astc_mode1(block, results, total_results, comp_params);
if (mode_mask & (1U << 2))
astc_mode2(block, results, total_results, comp_params, estimate_partition);
if (mode_mask & (1U << 3))
astc_mode3(block, results, total_results, comp_params, estimate_partition);
if (mode_mask & (1U << 4))
astc_mode4(block, results, total_results, comp_params, estimate_partition);
if (mode_mask & (1U << 5))
astc_mode5(block, results, total_results, comp_params);
if (mode_mask & (1U << 6))
astc_mode6(block, results, total_results, comp_params);
if (mode_mask & (1U << 7))
astc_mode7(block, results, total_results, comp_params, estimate_partition);
if (mode_mask & (1U << 18))
astc_mode0_or_18(18, block, results, total_results, comp_params);
}
if (try_alpha_modes)
{
if (mode_mask & (1U << 9))
astc_mode9_or_16(9, block, results, total_results, comp_params, estimate_partition ? 4 : 0);
if (mode_mask & (1U << 10))
astc_mode10(block, results, total_results, comp_params);
if (mode_mask & (1U << 11))
astc_mode11_or_17(11, block, results, total_results, comp_params);
if (mode_mask & (1U << 12))
astc_mode12(block, results, total_results, comp_params);
if (mode_mask & (1U << 13))
astc_mode13(block, results, total_results, comp_params);
if (mode_mask & (1U << 14))
astc_mode14(block, results, total_results, comp_params);
}
assert(total_results);
// Fix up the errors so we consistently have LA, RGB, or RGBA error.
for (uint32_t i = 0; i < total_results; i++)
{
uastc_encode_results& r = results[i];
if (!is_la)
{
if (g_uastc_mode_is_la[r.m_uastc_mode])
{
color_rgba unpacked_block[16];
unpack_uastc(r.m_uastc_mode, r.m_common_pattern, r.m_solid_color.get_color32(), r.m_astc, (basist::color32 *)unpacked_block, false);
uint64_t total_err = 0;
for (uint32_t j = 0; j < 16; j++)
total_err += color_distance(unpacked_block[j], ((const color_rgba*)block)[j], true);
r.m_astc_err = total_err;
}
}
else
{
if (!g_uastc_mode_is_la[r.m_uastc_mode])
{
color_rgba unpacked_block[16];
unpack_uastc(r.m_uastc_mode, r.m_common_pattern, r.m_solid_color.get_color32(), r.m_astc, (basist::color32 *)unpacked_block, false);
uint64_t total_err = 0;
for (uint32_t j = 0; j < 16; j++)
total_err += color_distance_la(unpacked_block[j], ((const color_rgba*)block)[j]);
r.m_astc_err = total_err;
}
}
}
unpacked_uastc_block unpacked_ublock;
memset(&unpacked_ublock, 0, sizeof(unpacked_ublock));
uint64_t total_overall_err[MAX_ENCODE_RESULTS];
float uastc_err_f[MAX_ENCODE_RESULTS];
double best_uastc_err_f = 1e+20f;
int best_index = -1;
if (total_results == 1)
{
best_index = 0;
}
else
{
const uint32_t bc7_err_weight = favor_bc7_error ? 100 : ((favor_uastc_error ? 0 : DEFAULT_BC7_ERROR_WEIGHT));
const uint32_t uastc_err_weight = favor_bc7_error ? 0 : 100;
// Find best overall results, balancing UASTC and UASTC->BC7 error.
// We purposely allow UASTC error to increase a little, if doing so lowers the BC7 error.
for (uint32_t i = 0; i < total_results; i++)
{
#if BASISU_SUPPORT_FORCE_MODE
if (results[i].m_uastc_mode == force_mode)
{
best_index = i;
break;
}
#endif
unpacked_ublock.m_mode = results[i].m_uastc_mode;
unpacked_ublock.m_astc = results[i].m_astc;
unpacked_ublock.m_common_pattern = results[i].m_common_pattern;
unpacked_ublock.m_solid_color = results[i].m_solid_color.get_color32();
color_rgba decoded_uastc_block[4][4];
bool success = unpack_uastc(results[i].m_uastc_mode, results[i].m_common_pattern, results[i].m_solid_color.get_color32(), results[i].m_astc, (basist::color32 *)&decoded_uastc_block[0][0], false);
(void)success;
VALIDATE(success);
uint64_t total_uastc_rgb_err, total_uastc_rgba_err, total_uastc_la_err;
compute_block_error(block, decoded_uastc_block, total_uastc_rgb_err, total_uastc_rgba_err, total_uastc_la_err);
// Validate the computed error, or we're go mad if it's inaccurate.
if (results[i].m_uastc_mode == UASTC_MODE_INDEX_SOLID_COLOR)
{
VALIDATE(total_uastc_rgba_err == 0);
}
else if (is_la)
{
VALIDATE(total_uastc_la_err == results[i].m_astc_err);
}
else if (g_uastc_mode_has_alpha[results[i].m_uastc_mode])
{
VALIDATE(total_uastc_rgba_err == results[i].m_astc_err);
}
else
{
VALIDATE(total_uastc_rgb_err == results[i].m_astc_err);
}
// Transcode to BC7
bc7_optimization_results bc7_results;
transcode_uastc_to_bc7(unpacked_ublock, bc7_results);
bc7_block bc7_data;
encode_bc7_block(&bc7_data, &bc7_results);
color_rgba decoded_bc7_block[4][4];
unpack_block(texture_format::cBC7, &bc7_data, &decoded_bc7_block[0][0]);
// Compute BC7 error
uint64_t total_bc7_la_err, total_bc7_rgb_err, total_bc7_rgba_err;
compute_block_error(block, decoded_bc7_block, total_bc7_rgb_err, total_bc7_rgba_err, total_bc7_la_err);
if (results[i].m_uastc_mode == UASTC_MODE_INDEX_SOLID_COLOR)
{
VALIDATE(total_bc7_rgba_err == 0);
best_index = i;
break;
}
uint64_t total_uastc_err = 0, total_bc7_err = 0;
if (is_la)
{
total_bc7_err = total_bc7_la_err;
total_uastc_err = total_uastc_la_err;
}
else if (has_alpha)
{
total_bc7_err = total_bc7_rgba_err;
total_uastc_err = total_uastc_rgba_err;
}
else
{
total_bc7_err = total_bc7_rgb_err;
total_uastc_err = total_uastc_rgb_err;
}
total_overall_err[i] = ((total_bc7_err * bc7_err_weight) / 100) + ((total_uastc_err * uastc_err_weight) / 100);
if (!total_overall_err[i])
{
best_index = i;
break;
}
uastc_err_f[i] = sqrtf((float)total_uastc_err);
if (uastc_err_f[i] < best_uastc_err_f)
{
best_uastc_err_f = uastc_err_f[i];
}
} // total_results
if (best_index < 0)
{
uint64_t best_err = UINT64_MAX;
if ((best_uastc_err_f == 0.0f) || (favor_bc7_error))
{
for (uint32_t i = 0; i < total_results; i++)
{
// TODO: This is a quick hack to favor modes 0 or 10 for better RDO compression.
const float err_weight = (flags & cPackUASTCFavorSimplerModes) ? get_uastc_mode_weight(results[i].m_uastc_mode) : 1.0f;
const uint64_t w = (uint64_t)(total_overall_err[i] * err_weight);
if (w < best_err)
{
best_err = w;
best_index = i;
if (!best_err)
break;
}
} // i
}
else
{
// Scan the UASTC results, and consider all results within a window that has the best UASTC+BC7 error.
for (uint32_t i = 0; i < total_results; i++)
{
double err_delta = uastc_err_f[i] / best_uastc_err_f;
if (err_delta <= UASTC_ERROR_THRESH)
{
// TODO: This is a quick hack to favor modes 0 or 10 for better RDO compression.
const float err_weight = (flags & cPackUASTCFavorSimplerModes) ? get_uastc_mode_weight(results[i].m_uastc_mode) : 1.0f;
const uint64_t w = (uint64_t)(total_overall_err[i] * err_weight);
if (w < best_err)
{
best_err = w;
best_index = i;
if (!best_err)
break;
}
}
} // i
}
}
}
const uastc_encode_results& best_results = results[best_index];
const uint32_t best_mode = best_results.m_uastc_mode;
const astc_block_desc& best_astc_results = best_results.m_astc;
color_rgba decoded_uastc_block[4][4];
bool success = unpack_uastc(best_mode, best_results.m_common_pattern, best_results.m_solid_color.get_color32(), best_astc_results, (basist::color32 *)&decoded_uastc_block[0][0], false);
(void)success;
VALIDATE(success);
#if BASISU_VALIDATE_UASTC_ENC
// Make sure that the UASTC block unpacks to the same exact pixels as the ASTC block does, using two different decoders.
{
// Round trip to packed UASTC and back, then decode to pixels.
etc_block etc1_blk;
memset(&etc1_blk, 0, sizeof(etc1_blk));
eac_a8_block etc_eac_a8_blk;
memset(&etc_eac_a8_blk, 0, sizeof(etc_eac_a8_blk));
etc_eac_a8_blk.m_multiplier = 1;
basist::uastc_block temp_block;
pack_uastc(temp_block, best_results, etc1_blk, 0, etc_eac_a8_blk, false, false);
basist::color32 temp_block_unpacked[4][4];
success = basist::unpack_uastc(temp_block, (basist::color32 *)temp_block_unpacked, false);
VALIDATE(success);
#if BASISU_USE_ASTC_DECOMPRESS
// Now round trip to packed ASTC and back, then decode to pixels.
uint32_t astc_data[4];
if (best_results.m_uastc_mode == UASTC_MODE_INDEX_SOLID_COLOR)
pack_astc_solid_block(astc_data, (color32 &)best_results.m_solid_color);
else
{
success = pack_astc_block(astc_data, &best_astc_results, best_results.m_uastc_mode);
VALIDATE(success);
}
color_rgba decoded_astc_block[4][4];
success = basisu_astc::astc::decompress((uint8_t*)decoded_astc_block, (uint8_t*)&astc_data, false, 4, 4);
VALIDATE(success);
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
VALIDATE(decoded_astc_block[y][x] == decoded_uastc_block[y][x]);
VALIDATE(temp_block_unpacked[y][x].c[0] == decoded_uastc_block[y][x].r);
VALIDATE(temp_block_unpacked[y][x].c[1] == decoded_uastc_block[y][x].g);
VALIDATE(temp_block_unpacked[y][x].c[2] == decoded_uastc_block[y][x].b);
VALIDATE(temp_block_unpacked[y][x].c[3] == decoded_uastc_block[y][x].a);
}
}
#endif
}
#endif
// Compute BC1 hints
bool bc1_hint0 = false, bc1_hint1 = false;
if (bc1_hints)
compute_bc1_hints(bc1_hint0, bc1_hint1, best_results, block, decoded_uastc_block);
eac_a8_block eac_a8_blk;
if ((g_uastc_mode_has_alpha[best_mode]) && (best_mode != UASTC_MODE_INDEX_SOLID_COLOR))
{
// Compute ETC2 hints
uint8_t decoded_uastc_block_alpha[16];
for (uint32_t i = 0; i < 16; i++)
decoded_uastc_block_alpha[i] = decoded_uastc_block[i >> 2][i & 3].a;
uastc_pack_eac_a8_results eac8_a8_results;
memset(&eac8_a8_results, 0, sizeof(eac8_a8_results));
uastc_pack_eac_a8(eac8_a8_results, decoded_uastc_block_alpha, 16, 0, eac_a8_mul_search_rad, eac_a8_table_mask);
// All we care about for hinting is the table and multiplier.
eac_a8_blk.m_table = eac8_a8_results.m_table;
eac_a8_blk.m_multiplier = eac8_a8_results.m_multiplier;
}
else
{
memset(&eac_a8_blk, 0, sizeof(eac_a8_blk));
}
// Compute ETC1 hints
etc_block etc1_blk;
uint32_t etc1_bias = 0;
compute_etc1_hints(etc1_blk, etc1_bias, best_results, block, decoded_uastc_block, level, flags);
// Finally, pack the UASTC block with its hints and we're done.
pack_uastc(output_block, best_results, etc1_blk, etc1_bias, eac_a8_blk, bc1_hint0, bc1_hint1);
// printf(" Packed: ");
// for (int i = 0; i < 16; i++)
// printf("%X ", output_block.m_bytes[i]);
// printf("\n");
}
static bool uastc_recompute_hints(basist::uastc_block* pBlock, const color_rgba* pBlock_pixels, uint32_t flags, const unpacked_uastc_block *pUnpacked_blk)
{
unpacked_uastc_block unpacked_blk;
if (pUnpacked_blk)
unpacked_blk = *pUnpacked_blk;
else
{
if (!unpack_uastc(*pBlock, unpacked_blk, false, true))
return false;
}
color_rgba decoded_uastc_block[4][4];
if (!unpack_uastc(unpacked_blk, (basist::color32 *)decoded_uastc_block, false))
return false;
uastc_encode_results results;
results.m_uastc_mode = unpacked_blk.m_mode;
results.m_common_pattern = unpacked_blk.m_common_pattern;
results.m_astc = unpacked_blk.m_astc;
results.m_solid_color = unpacked_blk.m_solid_color;
results.m_astc_err = 0;
bool bc1_hints = true;
uint32_t eac_a8_mul_search_rad = 3;
uint32_t eac_a8_table_mask = UINT32_MAX;
const uint32_t level = flags & cPackUASTCLevelMask;
switch (level)
{
case cPackUASTCLevelFastest:
{
eac_a8_mul_search_rad = 0;
eac_a8_table_mask = (1 << 2) | (1 << 8) | (1 << 11) | (1 << 13);
bc1_hints = false;
break;
}
case cPackUASTCLevelFaster:
{
eac_a8_mul_search_rad = 0;
eac_a8_table_mask = (1 << 2) | (1 << 8) | (1 << 11) | (1 << 13);
break;
}
case cPackUASTCLevelDefault:
{
eac_a8_mul_search_rad = 1;
eac_a8_table_mask = (1 << 0) | (1 << 2) | (1 << 6) | (1 << 7) | (1 << 8) | (1 << 10) | (1 << 11) | (1 << 13);
break;
}
case cPackUASTCLevelSlower:
{
eac_a8_mul_search_rad = 2;
break;
}
case cPackUASTCLevelVerySlow:
{
break;
}
}
bool bc1_hint0 = false, bc1_hint1 = false;
if (bc1_hints)
compute_bc1_hints(bc1_hint0, bc1_hint1, results, (color_rgba (*)[4])pBlock_pixels, decoded_uastc_block);
const uint32_t best_mode = unpacked_blk.m_mode;
eac_a8_block eac_a8_blk;
if ((g_uastc_mode_has_alpha[best_mode]) && (best_mode != UASTC_MODE_INDEX_SOLID_COLOR))
{
uint8_t decoded_uastc_block_alpha[16];
for (uint32_t i = 0; i < 16; i++)
decoded_uastc_block_alpha[i] = decoded_uastc_block[i >> 2][i & 3].a;
uastc_pack_eac_a8_results eac8_a8_results;
memset(&eac8_a8_results, 0, sizeof(eac8_a8_results));
uastc_pack_eac_a8(eac8_a8_results, decoded_uastc_block_alpha, 16, 0, eac_a8_mul_search_rad, eac_a8_table_mask);
eac_a8_blk.m_table = eac8_a8_results.m_table;
eac_a8_blk.m_multiplier = eac8_a8_results.m_multiplier;
}
else
{
memset(&eac_a8_blk, 0, sizeof(eac_a8_blk));
}
etc_block etc1_blk;
uint32_t etc1_bias = 0;
compute_etc1_hints(etc1_blk, etc1_bias, results, (color_rgba (*)[4])pBlock_pixels, decoded_uastc_block, level, flags);
pack_uastc(*pBlock, results, etc1_blk, etc1_bias, eac_a8_blk, bc1_hint0, bc1_hint1);
return true;
}
static const uint8_t g_uastc_mode_selector_bits[TOTAL_UASTC_MODES][2] =
{
{ 65, 63 }, { 69, 31 }, { 73, 46 }, { 89, 29 },
{ 89, 30 }, { 68, 47 }, { 66, 62 }, { 89, 30 },
{ 0, 0 }, { 97, 30 }, { 65, 63 }, { 66, 62 },
{ 81, 47 }, { 94, 30 }, { 92, 31 }, { 62, 63 },
{ 98, 30 }, { 61, 62 }, { 49, 79 }
};
static inline uint32_t set_block_bits(uint8_t* pBytes, uint64_t val, uint32_t num_bits, uint32_t cur_ofs)
{
assert(num_bits <= 64);
assert((num_bits == 64) || (val < (1ULL << num_bits)));
uint64_t mask = (num_bits == 64) ? UINT64_MAX : ((1ULL << num_bits) - 1);
while (num_bits)
{
const uint32_t n = basisu::minimum<uint32_t>(8U - (cur_ofs & 7U), num_bits);
pBytes[cur_ofs >> 3] &= ~static_cast<uint8_t>(mask << (cur_ofs & 7U));
pBytes[cur_ofs >> 3] |= static_cast<uint8_t>(val << (cur_ofs & 7U));
val >>= n;
mask >>= n;
num_bits -= n;
cur_ofs += n;
}
return cur_ofs;
}
static const uint8_t g_tdefl_small_dist_extra[512] =
{
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7
};
static const uint8_t g_tdefl_large_dist_extra[128] =
{
0, 0, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13
};
static inline uint32_t compute_match_cost_estimate(uint32_t dist)
{
uint32_t len_cost = 7;
uint32_t dist_cost = 5;
if (dist < 512)
dist_cost += g_tdefl_small_dist_extra[dist & 511];
else
{
dist_cost += g_tdefl_large_dist_extra[basisu::minimum<uint32_t>(dist, 32767) >> 8];
while (dist >= 32768)
{
dist_cost++;
dist >>= 1;
}
}
return len_cost + dist_cost;
}
struct selector_bitsequence
{
uint64_t m_sel;
uint32_t m_ofs;
selector_bitsequence() { }
selector_bitsequence(uint32_t bit_ofs, uint64_t sel) : m_sel(sel), m_ofs(bit_ofs) { }
bool operator== (const selector_bitsequence& other) const
{
return (m_ofs == other.m_ofs) && (m_sel == other.m_sel);
}
bool operator< (const selector_bitsequence& other) const
{
if (m_ofs < other.m_ofs)
return true;
else if (m_ofs == other.m_ofs)
return m_sel < other.m_sel;
return false;
}
};
struct selector_bitsequence_hash
{
std::size_t operator()(selector_bitsequence const& s) const noexcept
{
return static_cast<std::size_t>(hash_hsieh((uint8_t *)&s, sizeof(s)) ^ s.m_sel);
}
};
class tracked_stat
{
public:
tracked_stat() { clear(); }
void clear() { m_num = 0; m_total = 0; m_total2 = 0; }
void update(uint32_t val) { m_num++; m_total += val; m_total2 += val * val; }
tracked_stat& operator += (uint32_t val) { update(val); return *this; }
uint32_t get_number_of_values() { return m_num; }
uint64_t get_total() const { return m_total; }
uint64_t get_total2() const { return m_total2; }
float get_average() const { return m_num ? (float)m_total / m_num : 0.0f; };
float get_std_dev() const { return m_num ? sqrtf((float)(m_num * m_total2 - m_total * m_total)) / m_num : 0.0f; }
float get_variance() const { float s = get_std_dev(); return s * s; }
private:
uint32_t m_num;
uint64_t m_total;
uint64_t m_total2;
};
static bool uastc_rdo_blocks(uint32_t first_index, uint32_t last_index, basist::uastc_block* pBlocks, const color_rgba* pBlock_pixels, const uastc_rdo_params& params, uint32_t flags,
uint32_t &total_skipped, uint32_t &total_refined, uint32_t &total_modified, uint32_t &total_smooth)
{
debug_printf("uastc_rdo_blocks: Processing blocks %u to %u\n", first_index, last_index);
const int total_blocks_to_check = basisu::maximum<uint32_t>(1U, params.m_lz_dict_size / sizeof(basist::uastc_block));
const bool perceptual = false;
std::unordered_map<selector_bitsequence, uint32_t, selector_bitsequence_hash> selector_history;
for (uint32_t block_index = first_index; block_index < last_index; block_index++)
{
const basist::uastc_block& blk = pBlocks[block_index];
const color_rgba* pPixels = &pBlock_pixels[16 * block_index];
unpacked_uastc_block unpacked_blk;
if (!unpack_uastc(blk, unpacked_blk, false, true))
return false;
const uint32_t block_mode = unpacked_blk.m_mode;
if (block_mode == UASTC_MODE_INDEX_SOLID_COLOR)
continue;
tracked_stat r_stats, g_stats, b_stats, a_stats;
for (uint32_t i = 0; i < 16; i++)
{
r_stats.update(pPixels[i].r);
g_stats.update(pPixels[i].g);
b_stats.update(pPixels[i].b);
a_stats.update(pPixels[i].a);
}
const float max_std_dev = basisu::maximum<float>(basisu::maximum<float>(basisu::maximum(r_stats.get_std_dev(), g_stats.get_std_dev()), b_stats.get_std_dev()), a_stats.get_std_dev());
float yl = clamp<float>(max_std_dev / params.m_max_smooth_block_std_dev, 0.0f, 1.0f);
yl = yl * yl;
const float smooth_block_error_scale = lerp<float>(params.m_smooth_block_max_error_scale, 1.0f, yl);
if (smooth_block_error_scale > 1.0f)
total_smooth++;
color_rgba decoded_uastc_block[4][4];
if (!unpack_uastc(unpacked_blk, (basist::color32*)decoded_uastc_block, false))
return false;
uint64_t uastc_err = 0;
for (uint32_t i = 0; i < 16; i++)
uastc_err += color_distance(perceptual, pPixels[i], ((color_rgba*)decoded_uastc_block)[i], true);
// Transcode to BC7
bc7_optimization_results b7_results;
if (!transcode_uastc_to_bc7(unpacked_blk, b7_results))
return false;
basist::bc7_block b7_block;
basist::encode_bc7_block(&b7_block, &b7_results);
color_rgba decoded_b7_blk[4][4];
unpack_block(texture_format::cBC7, &b7_block, &decoded_b7_blk[0][0]);
uint64_t bc7_err = 0;
for (uint32_t i = 0; i < 16; i++)
bc7_err += color_distance(perceptual, pPixels[i], ((color_rgba*)decoded_b7_blk)[i], true);
uint64_t cur_err = (uastc_err + bc7_err) / 2;
// Divide by 16*4 to compute RMS error
const float cur_ms_err = (float)cur_err * (1.0f / 64.0f);
const float cur_rms_err = sqrt(cur_ms_err);
const uint32_t first_sel_bit = g_uastc_mode_selector_bits[block_mode][0];
const uint32_t total_sel_bits = g_uastc_mode_selector_bits[block_mode][1];
assert(first_sel_bit + total_sel_bits <= 128);
assert(total_sel_bits > 0);
uint32_t cur_bit_offset = first_sel_bit;
uint64_t cur_sel_bits = read_bits((const uint8_t*)&blk, cur_bit_offset, basisu::minimum(64U, total_sel_bits));
if (cur_rms_err >= params.m_skip_block_rms_thresh)
{
auto cur_search_res = selector_history.insert(std::make_pair(selector_bitsequence(first_sel_bit, cur_sel_bits), block_index));
// Block already has too much error, so don't mess with it.
if (!cur_search_res.second)
(*cur_search_res.first).second = block_index;
total_skipped++;
continue;
}
int cur_bits;
auto cur_find_res = selector_history.find(selector_bitsequence(first_sel_bit, cur_sel_bits));
if (cur_find_res == selector_history.end())
{
// Wasn't found - wildly estimate literal cost
//cur_bits = (total_sel_bits * 5) / 4;
cur_bits = (total_sel_bits * params.m_lz_literal_cost) / 100;
}
else
{
// Was found - wildly estimate match cost
uint32_t match_block_index = cur_find_res->second;
const int block_dist_in_bytes = (block_index - match_block_index) * 16;
cur_bits = compute_match_cost_estimate(block_dist_in_bytes);
}
int first_block_to_check = basisu::maximum<int>(first_index, block_index - total_blocks_to_check);
int last_block_to_check = block_index - 1;
basist::uastc_block best_block(blk);
uint32_t best_block_index = block_index;
float best_t = cur_ms_err * smooth_block_error_scale + cur_bits * params.m_lambda;
// Now scan through previous blocks, insert their selector bit patterns into the current block, and find
// selector bit patterns which don't increase the overall block error too much.
for (int prev_block_index = last_block_to_check; prev_block_index >= first_block_to_check; --prev_block_index)
{
const basist::uastc_block& prev_blk = pBlocks[prev_block_index];
uint32_t bit_offset = first_sel_bit;
uint64_t sel_bits = read_bits((const uint8_t*)&prev_blk, bit_offset, basisu::minimum(64U, total_sel_bits));
int match_block_index = prev_block_index;
auto res = selector_history.find(selector_bitsequence(first_sel_bit, sel_bits));
if (res != selector_history.end())
match_block_index = res->second;
// Have we already checked this bit pattern? If so then skip this block.
if (match_block_index > prev_block_index)
continue;
unpacked_uastc_block unpacked_prev_blk;
if (!unpack_uastc(prev_blk, unpacked_prev_blk, false, true))
return false;
basist::uastc_block trial_blk(blk);
set_block_bits((uint8_t*)&trial_blk, sel_bits, basisu::minimum(64U, total_sel_bits), first_sel_bit);
if (total_sel_bits > 64)
{
sel_bits = read_bits((const uint8_t*)&prev_blk, bit_offset, total_sel_bits - 64U);
set_block_bits((uint8_t*)&trial_blk, sel_bits, total_sel_bits - 64U, first_sel_bit + basisu::minimum(64U, total_sel_bits));
}
unpacked_uastc_block unpacked_trial_blk;
if (!unpack_uastc(trial_blk, unpacked_trial_blk, false, true))
continue;
color_rgba decoded_trial_uastc_block[4][4];
if (!unpack_uastc(unpacked_trial_blk, (basist::color32*)decoded_trial_uastc_block, false))
continue;
uint64_t trial_uastc_err = 0;
for (uint32_t i = 0; i < 16; i++)
trial_uastc_err += color_distance(perceptual, pPixels[i], ((color_rgba*)decoded_trial_uastc_block)[i], true);
// Transcode trial to BC7, compute error
bc7_optimization_results trial_b7_results;
if (!transcode_uastc_to_bc7(unpacked_trial_blk, trial_b7_results))
return false;
basist::bc7_block trial_b7_block;
basist::encode_bc7_block(&trial_b7_block, &trial_b7_results);
color_rgba decoded_trial_b7_blk[4][4];
unpack_block(texture_format::cBC7, &trial_b7_block, &decoded_trial_b7_blk[0][0]);
uint64_t trial_bc7_err = 0;
for (uint32_t i = 0; i < 16; i++)
trial_bc7_err += color_distance(perceptual, pPixels[i], ((color_rgba*)decoded_trial_b7_blk)[i], true);
uint64_t trial_err = (trial_uastc_err + trial_bc7_err) / 2;
const float trial_ms_err = (float)trial_err * (1.0f / 64.0f);
const float trial_rms_err = sqrtf(trial_ms_err);
if (trial_rms_err > cur_rms_err * params.m_max_allowed_rms_increase_ratio)
continue;
const int block_dist_in_bytes = (block_index - match_block_index) * 16;
const int match_bits = compute_match_cost_estimate(block_dist_in_bytes);
float t = trial_ms_err * smooth_block_error_scale + match_bits * params.m_lambda;
if (t < best_t)
{
best_t = t;
best_block_index = prev_block_index;
best_block = trial_blk;
}
} // prev_block_index
if (best_block_index != block_index)
{
total_modified++;
unpacked_uastc_block unpacked_best_blk;
if (!unpack_uastc(best_block, unpacked_best_blk, false, false))
return false;
if ((params.m_endpoint_refinement) && (block_mode == 0))
{
// Attempt to refine mode 0 block's endpoints, using the new selectors. This doesn't help much, but it does help.
// TODO: We could do this with the other modes too.
color_rgba decoded_best_uastc_block[4][4];
if (!unpack_uastc(unpacked_best_blk, (basist::color32*)decoded_best_uastc_block, false))
return false;
// Compute the block's current error (with the modified selectors).
uint64_t best_uastc_err = 0;
for (uint32_t i = 0; i < 16; i++)
best_uastc_err += color_distance(perceptual, pPixels[i], ((color_rgba*)decoded_best_uastc_block)[i], true);
bc7enc_compress_block_params comp_params;
memset(&comp_params, 0, sizeof(comp_params));
comp_params.m_max_partitions_mode1 = 64;
comp_params.m_least_squares_passes = 1;
comp_params.m_weights[0] = 1;
comp_params.m_weights[1] = 1;
comp_params.m_weights[2] = 1;
comp_params.m_weights[3] = 1;
comp_params.m_uber_level = 0;
uastc_encode_results results;
uint32_t total_results = 0;
astc_mode0_or_18(0, (color_rgba(*)[4])pPixels, &results, total_results, comp_params, unpacked_best_blk.m_astc.m_weights);
assert(total_results == 1);
// See if the overall error has actually gone done.
color_rgba decoded_trial_uastc_block[4][4];
bool success = unpack_uastc(results.m_uastc_mode, results.m_common_pattern, results.m_solid_color.get_color32(), results.m_astc, (basist::color32*) & decoded_trial_uastc_block[0][0], false);
assert(success);
BASISU_NOTE_UNUSED(success);
uint64_t trial_uastc_err = 0;
for (uint32_t i = 0; i < 16; i++)
trial_uastc_err += color_distance(perceptual, pPixels[i], ((color_rgba*)decoded_trial_uastc_block)[i], true);
if (trial_uastc_err < best_uastc_err)
{
// The error went down, so accept the new endpoints.
// Ensure the selectors haven't changed, otherwise we'll invalidate the LZ matches.
for (uint32_t i = 0; i < 16; i++)
assert(unpacked_best_blk.m_astc.m_weights[i] == results.m_astc.m_weights[i]);
unpacked_best_blk.m_astc = results.m_astc;
total_refined++;
}
} // if ((params.m_endpoint_refinement) && (block_mode == 0))
// The selectors have changed, so go recompute the block hints.
if (!uastc_recompute_hints(&best_block, pPixels, flags, &unpacked_best_blk))
return false;
// Write the modified block
pBlocks[block_index] = best_block;
} // if (best_block_index != block_index)
{
uint32_t bit_offset = first_sel_bit;
uint64_t sel_bits = read_bits((const uint8_t*)&best_block, bit_offset, basisu::minimum(64U, total_sel_bits));
auto res = selector_history.insert(std::make_pair(selector_bitsequence(first_sel_bit, sel_bits), block_index));
if (!res.second)
(*res.first).second = block_index;
}
} // block_index
return true;
}
// This function implements a basic form of rate distortion optimization (RDO) for UASTC.
// It only changes selectors and then updates the hints. It uses very approximate LZ bitprice estimation.
// There's A LOT that can be done better in here, but it's a start.
// One nice advantage of the method used here is that it works for any input, no matter which or how many modes it uses.
bool uastc_rdo(uint32_t num_blocks, basist::uastc_block* pBlocks, const color_rgba* pBlock_pixels, const uastc_rdo_params& params, uint32_t flags, job_pool* pJob_pool, uint32_t total_jobs)
{
assert(params.m_max_allowed_rms_increase_ratio > 1.0f);
assert(params.m_lz_dict_size > 0);
assert(params.m_lambda > 0.0f);
uint32_t total_skipped = 0, total_modified = 0, total_refined = 0, total_smooth = 0;
uint32_t blocks_per_job = total_jobs ? (num_blocks / total_jobs) : 0;
std::mutex stat_mutex;
bool status = false;
if ((!pJob_pool) || (total_jobs <= 1) || (blocks_per_job <= 8))
{
status = uastc_rdo_blocks(0, num_blocks, pBlocks, pBlock_pixels, params, flags, total_skipped, total_refined, total_modified, total_smooth);
}
else
{
bool all_succeeded = true;
for (uint32_t block_index_iter = 0; block_index_iter < num_blocks; block_index_iter += blocks_per_job)
{
const uint32_t first_index = block_index_iter;
const uint32_t last_index = minimum<uint32_t>(num_blocks, block_index_iter + blocks_per_job);
#ifndef __EMSCRIPTEN__
pJob_pool->add_job([first_index, last_index, pBlocks, pBlock_pixels, &params, flags, &total_skipped, &total_modified, &total_refined, &total_smooth, &all_succeeded, &stat_mutex] {
#endif
uint32_t job_skipped = 0, job_modified = 0, job_refined = 0, job_smooth = 0;
bool status = uastc_rdo_blocks(first_index, last_index, pBlocks, pBlock_pixels, params, flags, job_skipped, job_refined, job_modified, job_smooth);
{
std::lock_guard<std::mutex> lck(stat_mutex);
all_succeeded = all_succeeded && status;
total_skipped += job_skipped;
total_modified += job_modified;
total_refined += job_refined;
total_smooth += job_smooth;
}
#ifndef __EMSCRIPTEN__
}
);
#endif
} // block_index_iter
#ifndef __EMSCRIPTEN__
pJob_pool->wait_for_all();
#endif
status = all_succeeded;
}
debug_printf("uastc_rdo: Total modified: %3.2f%%, total skipped: %3.2f%%, total refined: %3.2f%%, total smooth: %3.2f%%\n", total_modified * 100.0f / num_blocks, total_skipped * 100.0f / num_blocks, total_refined * 100.0f / num_blocks, total_smooth * 100.0f / num_blocks);
return status;
}
} // namespace basisu