746dddc067
* Map is unnecessary and inefficient in almost every case. * Replaced by the new HashMap. * Renamed Map to RBMap and Set to RBSet for cases that still make sense (order matters) but use is discouraged. There were very few cases where replacing by HashMap was undesired because keeping the key order was intended. I tried to keep those (as RBMap) as much as possible, but might have missed some. Review appreciated!
588 lines
16 KiB
C++
588 lines
16 KiB
C++
/*************************************************************************/
|
|
/* hash_map.h */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#ifndef HASH_MAP_H
|
|
#define HASH_MAP_H
|
|
|
|
#include "core/math/math_funcs.h"
|
|
#include "core/os/memory.h"
|
|
#include "core/templates/hashfuncs.h"
|
|
#include "core/templates/paged_allocator.h"
|
|
#include "core/templates/pair.h"
|
|
|
|
/**
|
|
* A HashMap implementation that uses open addressing with Robin Hood hashing.
|
|
* Robin Hood hashing swaps out entries that have a smaller probing distance
|
|
* than the to-be-inserted entry, that evens out the average probing distance
|
|
* and enables faster lookups. Backward shift deletion is employed to further
|
|
* improve the performance and to avoid infinite loops in rare cases.
|
|
*
|
|
* Keys and values are stored in a double linked list by insertion order. This
|
|
* has a slight performance overhead on lookup, which can be mostly compensated
|
|
* using a paged allocator if required.
|
|
*
|
|
* The assignment operator copy the pairs from one map to the other.
|
|
*/
|
|
|
|
template <class TKey, class TValue>
|
|
struct HashMapElement {
|
|
HashMapElement *next = nullptr;
|
|
HashMapElement *prev = nullptr;
|
|
KeyValue<TKey, TValue> data;
|
|
HashMapElement() {}
|
|
HashMapElement(const TKey &p_key, const TValue &p_value) :
|
|
data(p_key, p_value) {}
|
|
};
|
|
|
|
template <class TKey, class TValue,
|
|
class Hasher = HashMapHasherDefault,
|
|
class Comparator = HashMapComparatorDefault<TKey>,
|
|
class Allocator = DefaultTypedAllocator<HashMapElement<TKey, TValue>>>
|
|
class HashMap {
|
|
public:
|
|
const uint32_t MIN_CAPACITY_INDEX = 2; // Use a prime.
|
|
const float MAX_OCCUPANCY = 0.75;
|
|
const uint32_t EMPTY_HASH = 0;
|
|
|
|
private:
|
|
Allocator element_alloc;
|
|
HashMapElement<TKey, TValue> **elements = nullptr;
|
|
uint32_t *hashes = nullptr;
|
|
HashMapElement<TKey, TValue> *head_element = nullptr;
|
|
HashMapElement<TKey, TValue> *tail_element = nullptr;
|
|
|
|
uint32_t capacity_index = 0;
|
|
uint32_t num_elements = 0;
|
|
|
|
_FORCE_INLINE_ uint32_t _hash(const TKey &p_key) const {
|
|
uint32_t hash = Hasher::hash(p_key);
|
|
|
|
if (unlikely(hash == EMPTY_HASH)) {
|
|
hash = EMPTY_HASH + 1;
|
|
}
|
|
|
|
return hash;
|
|
}
|
|
|
|
_FORCE_INLINE_ uint32_t _get_probe_length(uint32_t p_pos, uint32_t p_hash, uint32_t p_capacity) const {
|
|
uint32_t original_pos = p_hash % p_capacity;
|
|
return (p_pos - original_pos + p_capacity) % p_capacity;
|
|
}
|
|
|
|
bool _lookup_pos(const TKey &p_key, uint32_t &r_pos) const {
|
|
if (elements == nullptr) {
|
|
return false; // Failed lookups, no elements
|
|
}
|
|
|
|
uint32_t capacity = hash_table_size_primes[capacity_index];
|
|
uint32_t hash = _hash(p_key);
|
|
uint32_t pos = hash % capacity;
|
|
uint32_t distance = 0;
|
|
|
|
while (true) {
|
|
if (hashes[pos] == EMPTY_HASH) {
|
|
return false;
|
|
}
|
|
|
|
if (distance > _get_probe_length(pos, hashes[pos], capacity)) {
|
|
return false;
|
|
}
|
|
|
|
if (hashes[pos] == hash && Comparator::compare(elements[pos]->data.key, p_key)) {
|
|
r_pos = pos;
|
|
return true;
|
|
}
|
|
|
|
pos = (pos + 1) % capacity;
|
|
distance++;
|
|
}
|
|
}
|
|
|
|
void _insert_with_hash(uint32_t p_hash, HashMapElement<TKey, TValue> *p_value) {
|
|
uint32_t capacity = hash_table_size_primes[capacity_index];
|
|
uint32_t hash = p_hash;
|
|
HashMapElement<TKey, TValue> *value = p_value;
|
|
uint32_t distance = 0;
|
|
uint32_t pos = hash % capacity;
|
|
|
|
while (true) {
|
|
if (hashes[pos] == EMPTY_HASH) {
|
|
elements[pos] = value;
|
|
hashes[pos] = hash;
|
|
|
|
num_elements++;
|
|
|
|
return;
|
|
}
|
|
|
|
// Not an empty slot, let's check the probing length of the existing one.
|
|
uint32_t existing_probe_len = _get_probe_length(pos, hashes[pos], capacity);
|
|
if (existing_probe_len < distance) {
|
|
SWAP(hash, hashes[pos]);
|
|
SWAP(value, elements[pos]);
|
|
distance = existing_probe_len;
|
|
}
|
|
|
|
pos = (pos + 1) % capacity;
|
|
distance++;
|
|
}
|
|
}
|
|
|
|
void _resize_and_rehash(uint32_t p_new_capacity_index) {
|
|
uint32_t old_capacity = hash_table_size_primes[capacity_index];
|
|
|
|
// Capacity can't be 0.
|
|
capacity_index = MAX((uint32_t)MIN_CAPACITY_INDEX, p_new_capacity_index);
|
|
|
|
uint32_t capacity = hash_table_size_primes[capacity_index];
|
|
|
|
HashMapElement<TKey, TValue> **old_elements = elements;
|
|
uint32_t *old_hashes = hashes;
|
|
|
|
num_elements = 0;
|
|
hashes = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity));
|
|
elements = reinterpret_cast<HashMapElement<TKey, TValue> **>(Memory::alloc_static(sizeof(HashMapElement<TKey, TValue> *) * capacity));
|
|
|
|
for (uint32_t i = 0; i < capacity; i++) {
|
|
hashes[i] = 0;
|
|
elements[i] = nullptr;
|
|
}
|
|
|
|
if (old_capacity == 0) {
|
|
// Nothing to do.
|
|
return;
|
|
}
|
|
|
|
for (uint32_t i = 0; i < old_capacity; i++) {
|
|
if (old_hashes[i] == EMPTY_HASH) {
|
|
continue;
|
|
}
|
|
|
|
_insert_with_hash(old_hashes[i], old_elements[i]);
|
|
}
|
|
|
|
Memory::free_static(old_elements);
|
|
Memory::free_static(old_hashes);
|
|
}
|
|
|
|
_FORCE_INLINE_ HashMapElement<TKey, TValue> *_insert(const TKey &p_key, const TValue &p_value, bool p_front_insert = false) {
|
|
uint32_t capacity = hash_table_size_primes[capacity_index];
|
|
if (unlikely(elements == nullptr)) {
|
|
// Allocate on demand to save memory.
|
|
|
|
hashes = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity));
|
|
elements = reinterpret_cast<HashMapElement<TKey, TValue> **>(Memory::alloc_static(sizeof(HashMapElement<TKey, TValue> *) * capacity));
|
|
|
|
for (uint32_t i = 0; i < capacity; i++) {
|
|
hashes[i] = EMPTY_HASH;
|
|
elements[i] = nullptr;
|
|
}
|
|
}
|
|
|
|
uint32_t pos = 0;
|
|
bool exists = _lookup_pos(p_key, pos);
|
|
|
|
if (exists) {
|
|
elements[pos]->data.value = p_value;
|
|
return elements[pos];
|
|
} else {
|
|
if (num_elements + 1 > MAX_OCCUPANCY * capacity) {
|
|
ERR_FAIL_COND_V_MSG(capacity_index + 1 == HASH_TABLE_SIZE_MAX, nullptr, "Hash table maximum capacity reached, aborting insertion.");
|
|
_resize_and_rehash(capacity_index + 1);
|
|
}
|
|
|
|
HashMapElement<TKey, TValue> *elem = element_alloc.new_allocation(HashMapElement<TKey, TValue>(p_key, p_value));
|
|
|
|
if (tail_element == nullptr) {
|
|
head_element = elem;
|
|
tail_element = elem;
|
|
} else if (p_front_insert) {
|
|
head_element->prev = elem;
|
|
elem->next = head_element;
|
|
head_element = elem;
|
|
} else {
|
|
tail_element->next = elem;
|
|
elem->prev = tail_element;
|
|
tail_element = elem;
|
|
}
|
|
|
|
uint32_t hash = _hash(p_key);
|
|
_insert_with_hash(hash, elem);
|
|
return elem;
|
|
}
|
|
}
|
|
|
|
public:
|
|
_FORCE_INLINE_ uint32_t get_capacity() const { return hash_table_size_primes[capacity_index]; }
|
|
_FORCE_INLINE_ uint32_t size() const { return num_elements; }
|
|
|
|
/* Standard Godot Container API */
|
|
|
|
bool is_empty() const {
|
|
return num_elements == 0;
|
|
}
|
|
|
|
void clear() {
|
|
if (elements == nullptr) {
|
|
return;
|
|
}
|
|
uint32_t capacity = hash_table_size_primes[capacity_index];
|
|
for (uint32_t i = 0; i < capacity; i++) {
|
|
if (hashes[i] == EMPTY_HASH) {
|
|
continue;
|
|
}
|
|
|
|
hashes[i] = EMPTY_HASH;
|
|
element_alloc.delete_allocation(elements[i]);
|
|
elements[i] = nullptr;
|
|
}
|
|
|
|
tail_element = nullptr;
|
|
head_element = nullptr;
|
|
num_elements = 0;
|
|
}
|
|
|
|
TValue &get(const TKey &p_key) {
|
|
uint32_t pos = 0;
|
|
bool exists = _lookup_pos(p_key, pos);
|
|
CRASH_COND_MSG(!exists, "HashMap key not found.");
|
|
return elements[pos]->data.value;
|
|
}
|
|
|
|
const TValue &get(const TKey &p_key) const {
|
|
uint32_t pos = 0;
|
|
bool exists = _lookup_pos(p_key, pos);
|
|
CRASH_COND_MSG(!exists, "HashMap key not found.");
|
|
return elements[pos]->data.value;
|
|
}
|
|
|
|
const TValue *getptr(const TKey &p_key) const {
|
|
uint32_t pos = 0;
|
|
bool exists = _lookup_pos(p_key, pos);
|
|
|
|
if (exists) {
|
|
return &elements[pos]->data.value;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
TValue *getptr(const TKey &p_key) {
|
|
uint32_t pos = 0;
|
|
bool exists = _lookup_pos(p_key, pos);
|
|
|
|
if (exists) {
|
|
return &elements[pos]->data.value;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
_FORCE_INLINE_ bool has(const TKey &p_key) const {
|
|
uint32_t _pos = 0;
|
|
return _lookup_pos(p_key, _pos);
|
|
}
|
|
|
|
bool erase(const TKey &p_key) {
|
|
uint32_t pos = 0;
|
|
bool exists = _lookup_pos(p_key, pos);
|
|
|
|
if (!exists) {
|
|
return false;
|
|
}
|
|
|
|
uint32_t capacity = hash_table_size_primes[capacity_index];
|
|
uint32_t next_pos = (pos + 1) % capacity;
|
|
while (hashes[next_pos] != EMPTY_HASH && _get_probe_length(next_pos, hashes[next_pos], capacity) != 0) {
|
|
SWAP(hashes[next_pos], hashes[pos]);
|
|
SWAP(elements[next_pos], elements[pos]);
|
|
pos = next_pos;
|
|
next_pos = (pos + 1) % capacity;
|
|
}
|
|
|
|
hashes[pos] = EMPTY_HASH;
|
|
|
|
if (head_element == elements[pos]) {
|
|
head_element = elements[pos]->next;
|
|
}
|
|
|
|
if (tail_element == elements[pos]) {
|
|
tail_element = elements[pos]->prev;
|
|
}
|
|
|
|
if (elements[pos]->prev) {
|
|
elements[pos]->prev->next = elements[pos]->next;
|
|
}
|
|
|
|
if (elements[pos]->next) {
|
|
elements[pos]->next->prev = elements[pos]->prev;
|
|
}
|
|
|
|
element_alloc.delete_allocation(elements[pos]);
|
|
elements[pos] = nullptr;
|
|
|
|
num_elements--;
|
|
return true;
|
|
}
|
|
|
|
// Reserves space for a number of elements, useful to avoid many resizes and rehashes.
|
|
// If adding a known (possibly large) number of elements at once, must be larger than old capacity.
|
|
void reserve(uint32_t p_new_capacity) {
|
|
uint32_t new_index = capacity_index;
|
|
|
|
while (hash_table_size_primes[new_index] < p_new_capacity) {
|
|
ERR_FAIL_COND_MSG(new_index + 1 == (uint32_t)HASH_TABLE_SIZE_MAX, nullptr);
|
|
new_index++;
|
|
}
|
|
|
|
if (new_index == capacity_index) {
|
|
return;
|
|
}
|
|
|
|
if (elements == nullptr) {
|
|
capacity_index = new_index;
|
|
return; // Unallocated yet.
|
|
}
|
|
_resize_and_rehash(new_index);
|
|
}
|
|
|
|
/** Iterator API **/
|
|
|
|
struct ConstIterator {
|
|
_FORCE_INLINE_ const KeyValue<TKey, TValue> &operator*() const {
|
|
return E->data;
|
|
}
|
|
_FORCE_INLINE_ const KeyValue<TKey, TValue> *operator->() const { return &E->data; }
|
|
_FORCE_INLINE_ ConstIterator &operator++() {
|
|
if (E) {
|
|
E = E->next;
|
|
}
|
|
return *this;
|
|
}
|
|
_FORCE_INLINE_ ConstIterator &operator--() {
|
|
if (E) {
|
|
E = E->prev;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
_FORCE_INLINE_ bool operator==(const ConstIterator &b) const { return E == b.E; }
|
|
_FORCE_INLINE_ bool operator!=(const ConstIterator &b) const { return E != b.E; }
|
|
|
|
_FORCE_INLINE_ explicit operator bool() const {
|
|
return E != nullptr;
|
|
}
|
|
|
|
_FORCE_INLINE_ ConstIterator(const HashMapElement<TKey, TValue> *p_E) { E = p_E; }
|
|
_FORCE_INLINE_ ConstIterator() {}
|
|
_FORCE_INLINE_ ConstIterator(const ConstIterator &p_it) { E = p_it.E; }
|
|
_FORCE_INLINE_ void operator=(const ConstIterator &p_it) {
|
|
E = p_it.E;
|
|
}
|
|
|
|
private:
|
|
const HashMapElement<TKey, TValue> *E = nullptr;
|
|
};
|
|
|
|
struct Iterator {
|
|
_FORCE_INLINE_ KeyValue<TKey, TValue> &operator*() const {
|
|
return E->data;
|
|
}
|
|
_FORCE_INLINE_ KeyValue<TKey, TValue> *operator->() const { return &E->data; }
|
|
_FORCE_INLINE_ Iterator &operator++() {
|
|
if (E) {
|
|
E = E->next;
|
|
}
|
|
return *this;
|
|
}
|
|
_FORCE_INLINE_ Iterator &operator--() {
|
|
if (E) {
|
|
E = E->prev;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
_FORCE_INLINE_ bool operator==(const Iterator &b) const { return E == b.E; }
|
|
_FORCE_INLINE_ bool operator!=(const Iterator &b) const { return E != b.E; }
|
|
|
|
_FORCE_INLINE_ explicit operator bool() const {
|
|
return E != nullptr;
|
|
}
|
|
|
|
_FORCE_INLINE_ Iterator(HashMapElement<TKey, TValue> *p_E) { E = p_E; }
|
|
_FORCE_INLINE_ Iterator() {}
|
|
_FORCE_INLINE_ Iterator(const Iterator &p_it) { E = p_it.E; }
|
|
_FORCE_INLINE_ void operator=(const Iterator &p_it) {
|
|
E = p_it.E;
|
|
}
|
|
|
|
operator ConstIterator() const {
|
|
return ConstIterator(E);
|
|
}
|
|
|
|
private:
|
|
HashMapElement<TKey, TValue> *E = nullptr;
|
|
};
|
|
|
|
_FORCE_INLINE_ Iterator begin() {
|
|
return Iterator(head_element);
|
|
}
|
|
_FORCE_INLINE_ Iterator end() {
|
|
return Iterator(nullptr);
|
|
}
|
|
_FORCE_INLINE_ Iterator last() {
|
|
return Iterator(tail_element);
|
|
}
|
|
|
|
_FORCE_INLINE_ Iterator find(const TKey &p_key) {
|
|
uint32_t pos = 0;
|
|
bool exists = _lookup_pos(p_key, pos);
|
|
if (!exists) {
|
|
return end();
|
|
}
|
|
return Iterator(elements[pos]);
|
|
}
|
|
|
|
_FORCE_INLINE_ void remove(const Iterator &p_iter) {
|
|
if (p_iter) {
|
|
erase(p_iter->key);
|
|
}
|
|
}
|
|
|
|
_FORCE_INLINE_ ConstIterator begin() const {
|
|
return ConstIterator(head_element);
|
|
}
|
|
_FORCE_INLINE_ ConstIterator end() const {
|
|
return ConstIterator(nullptr);
|
|
}
|
|
_FORCE_INLINE_ ConstIterator last() const {
|
|
return ConstIterator(tail_element);
|
|
}
|
|
|
|
_FORCE_INLINE_ ConstIterator find(const TKey &p_key) const {
|
|
uint32_t pos = 0;
|
|
bool exists = _lookup_pos(p_key, pos);
|
|
if (!exists) {
|
|
return end();
|
|
}
|
|
return ConstIterator(elements[pos]);
|
|
}
|
|
|
|
/* Indexing */
|
|
|
|
const TValue &operator[](const TKey &p_key) const {
|
|
uint32_t pos = 0;
|
|
bool exists = _lookup_pos(p_key, pos);
|
|
CRASH_COND(!exists);
|
|
return elements[pos]->data.value;
|
|
}
|
|
|
|
TValue &operator[](const TKey &p_key) {
|
|
uint32_t pos = 0;
|
|
bool exists = _lookup_pos(p_key, pos);
|
|
if (!exists) {
|
|
return _insert(p_key, TValue())->data.value;
|
|
} else {
|
|
return elements[pos]->data.value;
|
|
}
|
|
}
|
|
|
|
/* Insert */
|
|
|
|
Iterator insert(const TKey &p_key, const TValue &p_value, bool p_front_insert = false) {
|
|
return Iterator(_insert(p_key, p_value, p_front_insert));
|
|
}
|
|
|
|
/* Constructors */
|
|
|
|
HashMap(const HashMap &p_other) {
|
|
reserve(hash_table_size_primes[p_other.capacity_index]);
|
|
|
|
if (p_other.num_elements == 0) {
|
|
return;
|
|
}
|
|
|
|
for (const KeyValue<TKey, TValue> &E : p_other) {
|
|
insert(E.key, E.value);
|
|
}
|
|
}
|
|
|
|
void operator=(const HashMap &p_other) {
|
|
if (this == &p_other) {
|
|
return; // Ignore self assignment.
|
|
}
|
|
if (num_elements != 0) {
|
|
clear();
|
|
}
|
|
|
|
reserve(hash_table_size_primes[p_other.capacity_index]);
|
|
|
|
if (p_other.elements == nullptr) {
|
|
return; // Nothing to copy.
|
|
}
|
|
|
|
for (const KeyValue<TKey, TValue> &E : p_other) {
|
|
insert(E.key, E.value);
|
|
}
|
|
}
|
|
|
|
HashMap(uint32_t p_initial_capacity) {
|
|
// Capacity can't be 0.
|
|
capacity_index = 0;
|
|
reserve(p_initial_capacity);
|
|
}
|
|
HashMap() {
|
|
capacity_index = MIN_CAPACITY_INDEX;
|
|
}
|
|
|
|
uint32_t debug_get_hash(uint32_t p_index) {
|
|
if (num_elements == 0) {
|
|
return 0;
|
|
}
|
|
ERR_FAIL_INDEX_V(p_index, get_capacity(), 0);
|
|
return hashes[p_index];
|
|
}
|
|
Iterator debug_get_element(uint32_t p_index) {
|
|
if (num_elements == 0) {
|
|
return Iterator();
|
|
}
|
|
ERR_FAIL_INDEX_V(p_index, get_capacity(), Iterator());
|
|
return Iterator(elements[p_index]);
|
|
}
|
|
|
|
~HashMap() {
|
|
clear();
|
|
|
|
if (elements != nullptr) {
|
|
Memory::free_static(elements);
|
|
Memory::free_static(hashes);
|
|
}
|
|
}
|
|
};
|
|
|
|
#endif // HASH_MAP_H
|