d8223ffa75
That year should bring the long-awaited OpenGL ES 3.0 compatible renderer
with state-of-the-art rendering techniques tuned to work as low as middle
end handheld devices - without compromising with the possibilities given
for higher end desktop games of course. Great times ahead for the Godot
community and the gamers that will play our games!
(cherry picked from commit c7bc44d5ad
)
349 lines
6.6 KiB
C++
349 lines
6.6 KiB
C++
/*************************************************************************/
|
|
/* math_funcs.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* http://www.godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
#include "math_funcs.h"
|
|
|
|
#include "core/os/os.h"
|
|
#include <math.h>
|
|
#include "float.h"
|
|
uint32_t Math::default_seed=1;
|
|
|
|
|
|
#define PHI 0x9e3779b9
|
|
|
|
#if 0
|
|
static uint32_t Q[4096];
|
|
#endif
|
|
|
|
uint32_t Math::rand_from_seed(uint32_t *seed) {
|
|
|
|
#if 1
|
|
uint32_t k;
|
|
uint32_t s = (*seed);
|
|
if (s == 0)
|
|
s = 0x12345987;
|
|
k = s / 127773;
|
|
s = 16807 * (s - k * 127773) - 2836 * k;
|
|
// if (s < 0)
|
|
// s += 2147483647;
|
|
(*seed) = s;
|
|
return (s & Math::RANDOM_MAX);
|
|
#else
|
|
*seed = *seed * 1103515245 + 12345;
|
|
return (*seed % ((unsigned int)RANDOM_MAX + 1));
|
|
#endif
|
|
}
|
|
|
|
void Math::seed(uint32_t x) {
|
|
#if 0
|
|
int i;
|
|
|
|
Q[0] = x;
|
|
Q[1] = x + PHI;
|
|
Q[2] = x + PHI + PHI;
|
|
|
|
for (i = 3; i < 4096; i++)
|
|
Q[i] = Q[i - 3] ^ Q[i - 2] ^ PHI ^ i;
|
|
#else
|
|
default_seed=x;
|
|
#endif
|
|
}
|
|
|
|
void Math::randomize() {
|
|
|
|
OS::Time time = OS::get_singleton()->get_time();
|
|
seed(OS::get_singleton()->get_ticks_usec()*(time.hour+1)*(time.min+1)*(time.sec+1)*rand()); /* *OS::get_singleton()->get_time().sec); // windows doesn't have get_time(), returns always 0 */
|
|
}
|
|
|
|
uint32_t Math::rand() {
|
|
|
|
return rand_from_seed(&default_seed)&0x7FFFFFFF;
|
|
}
|
|
|
|
double Math::randf() {
|
|
|
|
return (double)rand() / (double)RANDOM_MAX;
|
|
}
|
|
|
|
double Math::sin(double p_x) {
|
|
|
|
return ::sin(p_x);
|
|
|
|
}
|
|
|
|
double Math::cos(double p_x) {
|
|
|
|
return ::cos(p_x);
|
|
|
|
}
|
|
|
|
double Math::tan(double p_x) {
|
|
|
|
return ::tan(p_x);
|
|
|
|
}
|
|
double Math::sinh(double p_x) {
|
|
|
|
return ::sinh(p_x);
|
|
}
|
|
|
|
double Math::cosh(double p_x) {
|
|
|
|
return ::cosh(p_x);
|
|
}
|
|
|
|
double Math::tanh(double p_x) {
|
|
|
|
return ::tanh(p_x);
|
|
}
|
|
|
|
|
|
double Math::deg2rad(double p_y) {
|
|
|
|
return p_y*Math_PI/180.0;
|
|
}
|
|
|
|
double Math::rad2deg(double p_y) {
|
|
|
|
return p_y*180.0/Math_PI;
|
|
}
|
|
|
|
double Math::round(double p_val) {
|
|
|
|
if (p_val>=0) {
|
|
return ::floor(p_val+0.5);
|
|
} else {
|
|
p_val=-p_val;
|
|
return -::floor(p_val+0.5);
|
|
}
|
|
}
|
|
|
|
double Math::asin(double p_x) {
|
|
|
|
return ::asin(p_x);
|
|
|
|
}
|
|
|
|
double Math::acos(double p_x) {
|
|
|
|
return ::acos(p_x);
|
|
}
|
|
|
|
double Math::atan(double p_x) {
|
|
|
|
return ::atan(p_x);
|
|
}
|
|
|
|
double Math::dectime(double p_value,double p_amount, double p_step) {
|
|
|
|
float sgn = p_value < 0 ? -1.0 : 1.0;
|
|
float val = absf(p_value);
|
|
val-=p_amount*p_step;
|
|
if (val<0.0)
|
|
val=0.0;
|
|
return val*sgn;
|
|
}
|
|
|
|
double Math::atan2(double p_y, double p_x) {
|
|
|
|
return ::atan2(p_y,p_x);
|
|
|
|
}
|
|
double Math::sqrt(double p_x) {
|
|
|
|
return ::sqrt(p_x);
|
|
}
|
|
|
|
double Math::fmod(double p_x,double p_y) {
|
|
|
|
return ::fmod(p_x,p_y);
|
|
}
|
|
|
|
double Math::fposmod(double p_x,double p_y) {
|
|
|
|
if (p_x>=0) {
|
|
|
|
return Math::fmod(p_x,p_y);
|
|
|
|
} else {
|
|
|
|
return p_y-Math::fmod(-p_x,p_y);
|
|
}
|
|
|
|
}
|
|
double Math::floor(double p_x) {
|
|
|
|
return ::floor(p_x);
|
|
}
|
|
|
|
double Math::ceil(double p_x) {
|
|
|
|
return ::ceil(p_x);
|
|
}
|
|
|
|
int Math::step_decimals(double p_step) {
|
|
|
|
static const int maxn=9;
|
|
static const double sd[maxn]={
|
|
0.9999, // somehow compensate for floating point error
|
|
0.09999,
|
|
0.009999,
|
|
0.0009999,
|
|
0.00009999,
|
|
0.000009999,
|
|
0.0000009999,
|
|
0.00000009999,
|
|
0.000000009999
|
|
};
|
|
|
|
double as=absf(p_step);
|
|
for(int i=0;i<maxn;i++) {
|
|
if (as>=sd[i]) {
|
|
return i;
|
|
}
|
|
}
|
|
|
|
return maxn;
|
|
}
|
|
|
|
double Math::ease(double p_x, double p_c) {
|
|
|
|
if (p_x<0)
|
|
p_x=0;
|
|
else if (p_x>1.0)
|
|
p_x=1.0;
|
|
if (p_c>0) {
|
|
if (p_c<1.0) {
|
|
return 1.0-Math::pow(1.0-p_x,1.0/p_c);
|
|
} else {
|
|
return Math::pow(p_x,p_c);
|
|
}
|
|
} else if (p_c<0) {
|
|
//inout ease
|
|
|
|
if (p_x<0.5) {
|
|
return Math::pow(p_x*2.0,-p_c)*0.5;
|
|
} else {
|
|
return (1.0-Math::pow(1.0-(p_x-0.5)*2.0,-p_c))*0.5+0.5;
|
|
}
|
|
} else
|
|
return 0; // no ease (raw)
|
|
|
|
}
|
|
|
|
double Math::stepify(double p_value,double p_step) {
|
|
|
|
if (p_step!=0) {
|
|
|
|
p_value=floor( p_value / p_step + 0.5 ) * p_step;
|
|
}
|
|
return p_value;
|
|
}
|
|
|
|
bool Math::is_nan(double p_val) {
|
|
|
|
return (p_val!=p_val);
|
|
}
|
|
|
|
bool Math::is_inf(double p_val) {
|
|
|
|
#ifdef _MSC_VER
|
|
return !_finite(p_val);
|
|
#else
|
|
return isinf(p_val);
|
|
#endif
|
|
|
|
}
|
|
|
|
uint32_t Math::larger_prime(uint32_t p_val) {
|
|
|
|
static const uint32_t primes[] = {
|
|
5,
|
|
13,
|
|
23,
|
|
47,
|
|
97,
|
|
193,
|
|
389,
|
|
769,
|
|
1543,
|
|
3079,
|
|
6151,
|
|
12289,
|
|
24593,
|
|
49157,
|
|
98317,
|
|
196613,
|
|
393241,
|
|
786433,
|
|
1572869,
|
|
3145739,
|
|
6291469,
|
|
12582917,
|
|
25165843,
|
|
50331653,
|
|
100663319,
|
|
201326611,
|
|
402653189,
|
|
805306457,
|
|
1610612741,
|
|
0,
|
|
};
|
|
|
|
int idx=0;
|
|
while (true) {
|
|
|
|
ERR_FAIL_COND_V(primes[idx]==0,0);
|
|
if (primes[idx]>p_val)
|
|
return primes[idx];
|
|
idx++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
double Math::random(double from, double to) {
|
|
|
|
unsigned int r = Math::rand();
|
|
double ret = (double)r/(double)RANDOM_MAX;
|
|
return (ret)*(to-from) + from;
|
|
}
|
|
|
|
double Math::pow(double x, double y) {
|
|
|
|
return ::pow(x,y);
|
|
}
|
|
|
|
double Math::log(double x) {
|
|
|
|
return ::log(x);
|
|
}
|
|
double Math::exp(double x) {
|
|
|
|
return ::exp(x);
|
|
}
|