virtualx-engine/drivers/metal/metal_objects.mm
2024-10-20 11:15:13 +11:00

1661 lines
58 KiB
Text

/**************************************************************************/
/* metal_objects.mm */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
/**************************************************************************/
/* */
/* Portions of this code were derived from MoltenVK. */
/* */
/* Copyright (c) 2015-2023 The Brenwill Workshop Ltd. */
/* (http://www.brenwill.com) */
/* */
/* Licensed under the Apache License, Version 2.0 (the "License"); */
/* you may not use this file except in compliance with the License. */
/* You may obtain a copy of the License at */
/* */
/* http://www.apache.org/licenses/LICENSE-2.0 */
/* */
/* Unless required by applicable law or agreed to in writing, software */
/* distributed under the License is distributed on an "AS IS" BASIS, */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or */
/* implied. See the License for the specific language governing */
/* permissions and limitations under the License. */
/**************************************************************************/
#import "metal_objects.h"
#import "metal_utils.h"
#import "pixel_formats.h"
#import "rendering_device_driver_metal.h"
#import <os/signpost.h>
void MDCommandBuffer::begin() {
DEV_ASSERT(commandBuffer == nil);
commandBuffer = queue.commandBufferWithUnretainedReferences;
}
void MDCommandBuffer::end() {
switch (type) {
case MDCommandBufferStateType::None:
return;
case MDCommandBufferStateType::Render:
return render_end_pass();
case MDCommandBufferStateType::Compute:
return _end_compute_dispatch();
case MDCommandBufferStateType::Blit:
return _end_blit();
}
}
void MDCommandBuffer::commit() {
end();
[commandBuffer commit];
commandBuffer = nil;
}
void MDCommandBuffer::bind_pipeline(RDD::PipelineID p_pipeline) {
MDPipeline *p = (MDPipeline *)(p_pipeline.id);
// End current encoder if it is a compute encoder or blit encoder,
// as they do not have a defined end boundary in the RDD like render.
if (type == MDCommandBufferStateType::Compute) {
_end_compute_dispatch();
} else if (type == MDCommandBufferStateType::Blit) {
_end_blit();
}
if (p->type == MDPipelineType::Render) {
DEV_ASSERT(type == MDCommandBufferStateType::Render);
MDRenderPipeline *rp = (MDRenderPipeline *)p;
if (render.encoder == nil) {
// This condition occurs when there are no attachments when calling render_next_subpass()
// and is due to the SUPPORTS_FRAGMENT_SHADER_WITH_ONLY_SIDE_EFFECTS flag.
render.desc.defaultRasterSampleCount = static_cast<NSUInteger>(rp->sample_count);
// NOTE(sgc): This is to test rdar://FB13605547 and will be deleted once fix is confirmed.
#if 0
if (render.pipeline->sample_count == 4) {
static id<MTLTexture> tex = nil;
static id<MTLTexture> res_tex = nil;
static dispatch_once_t onceToken;
dispatch_once(&onceToken, ^{
Size2i sz = render.frameBuffer->size;
MTLTextureDescriptor *td = [MTLTextureDescriptor texture2DDescriptorWithPixelFormat:MTLPixelFormatRGBA8Unorm width:sz.width height:sz.height mipmapped:NO];
td.textureType = MTLTextureType2DMultisample;
td.storageMode = MTLStorageModeMemoryless;
td.usage = MTLTextureUsageRenderTarget;
td.sampleCount = render.pipeline->sample_count;
tex = [device_driver->get_device() newTextureWithDescriptor:td];
td.textureType = MTLTextureType2D;
td.storageMode = MTLStorageModePrivate;
td.usage = MTLTextureUsageShaderWrite;
td.sampleCount = 1;
res_tex = [device_driver->get_device() newTextureWithDescriptor:td];
});
render.desc.colorAttachments[0].texture = tex;
render.desc.colorAttachments[0].loadAction = MTLLoadActionClear;
render.desc.colorAttachments[0].storeAction = MTLStoreActionMultisampleResolve;
render.desc.colorAttachments[0].resolveTexture = res_tex;
}
#endif
render.encoder = [commandBuffer renderCommandEncoderWithDescriptor:render.desc];
}
if (render.pipeline != rp) {
render.dirty.set_flag((RenderState::DirtyFlag)(RenderState::DIRTY_PIPELINE | RenderState::DIRTY_RASTER));
// Mark all uniforms as dirty, as variants of a shader pipeline may have a different entry point ABI,
// due to setting force_active_argument_buffer_resources = true for spirv_cross::CompilerMSL::Options.
// As a result, uniform sets with the same layout will generate redundant binding warnings when
// capturing a Metal frame in Xcode.
//
// If we don't mark as dirty, then some bindings will generate a validation error.
render.mark_uniforms_dirty();
if (render.pipeline != nullptr && render.pipeline->depth_stencil != rp->depth_stencil) {
render.dirty.set_flag(RenderState::DIRTY_DEPTH);
}
if (rp->raster_state.blend.enabled) {
render.dirty.set_flag(RenderState::DIRTY_BLEND);
}
render.pipeline = rp;
}
} else if (p->type == MDPipelineType::Compute) {
DEV_ASSERT(type == MDCommandBufferStateType::None);
type = MDCommandBufferStateType::Compute;
compute.pipeline = (MDComputePipeline *)p;
compute.encoder = commandBuffer.computeCommandEncoder;
[compute.encoder setComputePipelineState:compute.pipeline->state];
}
}
id<MTLBlitCommandEncoder> MDCommandBuffer::blit_command_encoder() {
switch (type) {
case MDCommandBufferStateType::None:
break;
case MDCommandBufferStateType::Render:
render_end_pass();
break;
case MDCommandBufferStateType::Compute:
_end_compute_dispatch();
break;
case MDCommandBufferStateType::Blit:
return blit.encoder;
}
type = MDCommandBufferStateType::Blit;
blit.encoder = commandBuffer.blitCommandEncoder;
return blit.encoder;
}
void MDCommandBuffer::encodeRenderCommandEncoderWithDescriptor(MTLRenderPassDescriptor *p_desc, NSString *p_label) {
switch (type) {
case MDCommandBufferStateType::None:
break;
case MDCommandBufferStateType::Render:
render_end_pass();
break;
case MDCommandBufferStateType::Compute:
_end_compute_dispatch();
break;
case MDCommandBufferStateType::Blit:
_end_blit();
break;
}
id<MTLRenderCommandEncoder> enc = [commandBuffer renderCommandEncoderWithDescriptor:p_desc];
if (p_label != nil) {
[enc pushDebugGroup:p_label];
[enc popDebugGroup];
}
[enc endEncoding];
}
#pragma mark - Render Commands
void MDCommandBuffer::render_bind_uniform_set(RDD::UniformSetID p_uniform_set, RDD::ShaderID p_shader, uint32_t p_set_index) {
DEV_ASSERT(type == MDCommandBufferStateType::Render);
MDUniformSet *set = (MDUniformSet *)(p_uniform_set.id);
if (render.uniform_sets.size() <= set->index) {
uint32_t s = render.uniform_sets.size();
render.uniform_sets.resize(set->index + 1);
// Set intermediate values to null.
std::fill(&render.uniform_sets[s], &render.uniform_sets[set->index] + 1, nullptr);
}
if (render.uniform_sets[set->index] != set) {
render.dirty.set_flag(RenderState::DIRTY_UNIFORMS);
render.uniform_set_mask |= 1ULL << set->index;
render.uniform_sets[set->index] = set;
}
}
void MDCommandBuffer::render_clear_attachments(VectorView<RDD::AttachmentClear> p_attachment_clears, VectorView<Rect2i> p_rects) {
DEV_ASSERT(type == MDCommandBufferStateType::Render);
uint32_t vertex_count = p_rects.size() * 6;
simd::float4 vertices[vertex_count];
simd::float4 clear_colors[ClearAttKey::ATTACHMENT_COUNT];
Size2i size = render.frameBuffer->size;
Rect2i render_area = render.clip_to_render_area({ { 0, 0 }, size });
size = Size2i(render_area.position.x + render_area.size.width, render_area.position.y + render_area.size.height);
_populate_vertices(vertices, size, p_rects);
ClearAttKey key;
key.sample_count = render.pass->get_sample_count();
float depth_value = 0;
uint32_t stencil_value = 0;
for (uint32_t i = 0; i < p_attachment_clears.size(); i++) {
RDD::AttachmentClear const &attClear = p_attachment_clears[i];
uint32_t attachment_index;
if (attClear.aspect.has_flag(RDD::TEXTURE_ASPECT_COLOR_BIT)) {
attachment_index = attClear.color_attachment;
} else {
attachment_index = render.pass->subpasses[render.current_subpass].depth_stencil_reference.attachment;
}
MDAttachment const &mda = render.pass->attachments[attachment_index];
if (attClear.aspect.has_flag(RDD::TEXTURE_ASPECT_COLOR_BIT)) {
key.set_color_format(attachment_index, mda.format);
clear_colors[attachment_index] = {
attClear.value.color.r,
attClear.value.color.g,
attClear.value.color.b,
attClear.value.color.a
};
}
if (attClear.aspect.has_flag(RDD::TEXTURE_ASPECT_DEPTH_BIT)) {
key.set_depth_format(mda.format);
depth_value = attClear.value.depth;
}
if (attClear.aspect.has_flag(RDD::TEXTURE_ASPECT_STENCIL_BIT)) {
key.set_stencil_format(mda.format);
stencil_value = attClear.value.stencil;
}
}
clear_colors[ClearAttKey::DEPTH_INDEX] = {
depth_value,
depth_value,
depth_value,
depth_value
};
id<MTLRenderCommandEncoder> enc = render.encoder;
MDResourceCache &cache = device_driver->get_resource_cache();
[enc pushDebugGroup:@"ClearAttachments"];
[enc setRenderPipelineState:cache.get_clear_render_pipeline_state(key, nil)];
[enc setDepthStencilState:cache.get_depth_stencil_state(
key.is_depth_enabled(),
key.is_stencil_enabled())];
[enc setStencilReferenceValue:stencil_value];
[enc setCullMode:MTLCullModeNone];
[enc setTriangleFillMode:MTLTriangleFillModeFill];
[enc setDepthBias:0 slopeScale:0 clamp:0];
[enc setViewport:{ 0, 0, (double)size.width, (double)size.height, 0.0, 1.0 }];
[enc setScissorRect:{ 0, 0, (NSUInteger)size.width, (NSUInteger)size.height }];
[enc setVertexBytes:clear_colors length:sizeof(clear_colors) atIndex:0];
[enc setFragmentBytes:clear_colors length:sizeof(clear_colors) atIndex:0];
[enc setVertexBytes:vertices length:vertex_count * sizeof(vertices[0]) atIndex:device_driver->get_metal_buffer_index_for_vertex_attribute_binding(VERT_CONTENT_BUFFER_INDEX)];
[enc drawPrimitives:MTLPrimitiveTypeTriangle vertexStart:0 vertexCount:vertex_count];
[enc popDebugGroup];
render.dirty.set_flag((RenderState::DirtyFlag)(RenderState::DIRTY_PIPELINE | RenderState::DIRTY_DEPTH | RenderState::DIRTY_RASTER));
render.mark_uniforms_dirty({ 0 }); // Mark index 0 dirty, if there is already a binding for index 0.
render.mark_viewport_dirty();
render.mark_scissors_dirty();
render.mark_vertex_dirty();
render.mark_blend_dirty();
}
void MDCommandBuffer::_render_set_dirty_state() {
_render_bind_uniform_sets();
if (render.dirty.has_flag(RenderState::DIRTY_PIPELINE)) {
[render.encoder setRenderPipelineState:render.pipeline->state];
}
if (render.dirty.has_flag(RenderState::DIRTY_VIEWPORT)) {
[render.encoder setViewports:render.viewports.ptr() count:render.viewports.size()];
}
if (render.dirty.has_flag(RenderState::DIRTY_DEPTH)) {
[render.encoder setDepthStencilState:render.pipeline->depth_stencil];
}
if (render.dirty.has_flag(RenderState::DIRTY_RASTER)) {
render.pipeline->raster_state.apply(render.encoder);
}
if (render.dirty.has_flag(RenderState::DIRTY_SCISSOR) && !render.scissors.is_empty()) {
size_t len = render.scissors.size();
MTLScissorRect rects[len];
for (size_t i = 0; i < len; i++) {
rects[i] = render.clip_to_render_area(render.scissors[i]);
}
[render.encoder setScissorRects:rects count:len];
}
if (render.dirty.has_flag(RenderState::DIRTY_BLEND) && render.blend_constants.has_value()) {
[render.encoder setBlendColorRed:render.blend_constants->r green:render.blend_constants->g blue:render.blend_constants->b alpha:render.blend_constants->a];
}
if (render.dirty.has_flag(RenderState::DIRTY_VERTEX)) {
uint32_t p_binding_count = render.vertex_buffers.size();
uint32_t first = device_driver->get_metal_buffer_index_for_vertex_attribute_binding(p_binding_count - 1);
[render.encoder setVertexBuffers:render.vertex_buffers.ptr()
offsets:render.vertex_offsets.ptr()
withRange:NSMakeRange(first, p_binding_count)];
}
render.dirty.clear();
}
void MDCommandBuffer::render_set_viewport(VectorView<Rect2i> p_viewports) {
render.viewports.resize(p_viewports.size());
for (uint32_t i = 0; i < p_viewports.size(); i += 1) {
Rect2i const &vp = p_viewports[i];
render.viewports[i] = {
.originX = static_cast<double>(vp.position.x),
.originY = static_cast<double>(vp.position.y),
.width = static_cast<double>(vp.size.width),
.height = static_cast<double>(vp.size.height),
.znear = 0.0,
.zfar = 1.0,
};
}
render.dirty.set_flag(RenderState::DIRTY_VIEWPORT);
}
void MDCommandBuffer::render_set_scissor(VectorView<Rect2i> p_scissors) {
render.scissors.resize(p_scissors.size());
for (uint32_t i = 0; i < p_scissors.size(); i += 1) {
Rect2i const &vp = p_scissors[i];
render.scissors[i] = {
.x = static_cast<NSUInteger>(vp.position.x),
.y = static_cast<NSUInteger>(vp.position.y),
.width = static_cast<NSUInteger>(vp.size.width),
.height = static_cast<NSUInteger>(vp.size.height),
};
}
render.dirty.set_flag(RenderState::DIRTY_SCISSOR);
}
void MDCommandBuffer::render_set_blend_constants(const Color &p_constants) {
DEV_ASSERT(type == MDCommandBufferStateType::Render);
if (render.blend_constants != p_constants) {
render.blend_constants = p_constants;
render.dirty.set_flag(RenderState::DIRTY_BLEND);
}
}
void BoundUniformSet::merge_into(ResourceUsageMap &p_dst) const {
for (KeyValue<StageResourceUsage, ResourceVector> const &keyval : usage_to_resources) {
ResourceVector *resources = p_dst.getptr(keyval.key);
if (resources == nullptr) {
resources = &p_dst.insert(keyval.key, ResourceVector())->value;
}
// Reserve space for the new resources, assuming they are all added.
resources->reserve(resources->size() + keyval.value.size());
uint32_t i = 0, j = 0;
__unsafe_unretained id<MTLResource> *resources_ptr = resources->ptr();
const __unsafe_unretained id<MTLResource> *keyval_ptr = keyval.value.ptr();
// 2-way merge.
while (i < resources->size() && j < keyval.value.size()) {
if (resources_ptr[i] < keyval_ptr[j]) {
i++;
} else if (resources_ptr[i] > keyval_ptr[j]) {
resources->insert(i, keyval_ptr[j]);
i++;
j++;
} else {
i++;
j++;
}
}
// Append the remaining resources.
for (; j < keyval.value.size(); j++) {
resources->push_back(keyval_ptr[j]);
}
}
}
void MDCommandBuffer::_render_bind_uniform_sets() {
DEV_ASSERT(type == MDCommandBufferStateType::Render);
if (!render.dirty.has_flag(RenderState::DIRTY_UNIFORMS)) {
return;
}
render.dirty.clear_flag(RenderState::DIRTY_UNIFORMS);
uint64_t set_uniforms = render.uniform_set_mask;
render.uniform_set_mask = 0;
id<MTLRenderCommandEncoder> enc = render.encoder;
MDRenderShader *shader = render.pipeline->shader;
id<MTLDevice> device = enc.device;
while (set_uniforms != 0) {
// Find the index of the next set bit.
int index = __builtin_ctzll(set_uniforms);
// Clear the set bit.
set_uniforms &= (set_uniforms - 1);
MDUniformSet *set = render.uniform_sets[index];
if (set == nullptr || set->index >= (uint32_t)shader->sets.size()) {
continue;
}
UniformSet const &set_info = shader->sets[set->index];
BoundUniformSet &bus = set->boundUniformSetForShader(shader, device);
bus.merge_into(render.resource_usage);
// Set the buffer for the vertex stage.
{
uint32_t const *offset = set_info.offsets.getptr(RDD::SHADER_STAGE_VERTEX);
if (offset) {
[enc setVertexBuffer:bus.buffer offset:*offset atIndex:set->index];
}
}
// Set the buffer for the fragment stage.
{
uint32_t const *offset = set_info.offsets.getptr(RDD::SHADER_STAGE_FRAGMENT);
if (offset) {
[enc setFragmentBuffer:bus.buffer offset:*offset atIndex:set->index];
}
}
}
}
void MDCommandBuffer::_populate_vertices(simd::float4 *p_vertices, Size2i p_fb_size, VectorView<Rect2i> p_rects) {
uint32_t idx = 0;
for (uint32_t i = 0; i < p_rects.size(); i++) {
Rect2i const &rect = p_rects[i];
idx = _populate_vertices(p_vertices, idx, rect, p_fb_size);
}
}
uint32_t MDCommandBuffer::_populate_vertices(simd::float4 *p_vertices, uint32_t p_index, Rect2i const &p_rect, Size2i p_fb_size) {
// Determine the positions of the four edges of the
// clear rectangle as a fraction of the attachment size.
float leftPos = (float)(p_rect.position.x) / (float)p_fb_size.width;
float rightPos = (float)(p_rect.size.width) / (float)p_fb_size.width + leftPos;
float bottomPos = (float)(p_rect.position.y) / (float)p_fb_size.height;
float topPos = (float)(p_rect.size.height) / (float)p_fb_size.height + bottomPos;
// Transform to clip-space coordinates, which are bounded by (-1.0 < p < 1.0) in clip-space.
leftPos = (leftPos * 2.0f) - 1.0f;
rightPos = (rightPos * 2.0f) - 1.0f;
bottomPos = (bottomPos * 2.0f) - 1.0f;
topPos = (topPos * 2.0f) - 1.0f;
simd::float4 vtx;
uint32_t idx = p_index;
vtx.z = 0.0;
vtx.w = (float)1;
// Top left vertex - First triangle.
vtx.y = topPos;
vtx.x = leftPos;
p_vertices[idx++] = vtx;
// Bottom left vertex.
vtx.y = bottomPos;
vtx.x = leftPos;
p_vertices[idx++] = vtx;
// Bottom right vertex.
vtx.y = bottomPos;
vtx.x = rightPos;
p_vertices[idx++] = vtx;
// Bottom right vertex - Second triangle.
p_vertices[idx++] = vtx;
// Top right vertex.
vtx.y = topPos;
vtx.x = rightPos;
p_vertices[idx++] = vtx;
// Top left vertex.
vtx.y = topPos;
vtx.x = leftPos;
p_vertices[idx++] = vtx;
return idx;
}
void MDCommandBuffer::render_begin_pass(RDD::RenderPassID p_render_pass, RDD::FramebufferID p_frameBuffer, RDD::CommandBufferType p_cmd_buffer_type, const Rect2i &p_rect, VectorView<RDD::RenderPassClearValue> p_clear_values) {
DEV_ASSERT(commandBuffer != nil);
end();
MDRenderPass *pass = (MDRenderPass *)(p_render_pass.id);
MDFrameBuffer *fb = (MDFrameBuffer *)(p_frameBuffer.id);
type = MDCommandBufferStateType::Render;
render.pass = pass;
render.current_subpass = UINT32_MAX;
render.render_area = p_rect;
render.clear_values.resize(p_clear_values.size());
for (uint32_t i = 0; i < p_clear_values.size(); i++) {
render.clear_values[i] = p_clear_values[i];
}
render.is_rendering_entire_area = (p_rect.position == Point2i(0, 0)) && p_rect.size == fb->size;
render.frameBuffer = fb;
render_next_subpass();
}
void MDCommandBuffer::_end_render_pass() {
MDFrameBuffer const &fb_info = *render.frameBuffer;
MDRenderPass const &pass_info = *render.pass;
MDSubpass const &subpass = pass_info.subpasses[render.current_subpass];
PixelFormats &pf = device_driver->get_pixel_formats();
for (uint32_t i = 0; i < subpass.resolve_references.size(); i++) {
uint32_t color_index = subpass.color_references[i].attachment;
uint32_t resolve_index = subpass.resolve_references[i].attachment;
DEV_ASSERT((color_index == RDD::AttachmentReference::UNUSED) == (resolve_index == RDD::AttachmentReference::UNUSED));
if (color_index == RDD::AttachmentReference::UNUSED || !fb_info.textures[color_index]) {
continue;
}
id<MTLTexture> resolve_tex = fb_info.textures[resolve_index];
CRASH_COND_MSG(!flags::all(pf.getCapabilities(resolve_tex.pixelFormat), kMTLFmtCapsResolve), "not implemented: unresolvable texture types");
// see: https://github.com/KhronosGroup/MoltenVK/blob/d20d13fe2735adb845636a81522df1b9d89c0fba/MoltenVK/MoltenVK/GPUObjects/MVKRenderPass.mm#L407
}
render.end_encoding();
}
void MDCommandBuffer::_render_clear_render_area() {
MDRenderPass const &pass = *render.pass;
MDSubpass const &subpass = pass.subpasses[render.current_subpass];
// First determine attachments that should be cleared.
LocalVector<RDD::AttachmentClear> clears;
clears.reserve(subpass.color_references.size() + /* possible depth stencil clear */ 1);
for (uint32_t i = 0; i < subpass.color_references.size(); i++) {
uint32_t idx = subpass.color_references[i].attachment;
if (idx != RDD::AttachmentReference::UNUSED && pass.attachments[idx].shouldClear(subpass, false)) {
clears.push_back({ .aspect = RDD::TEXTURE_ASPECT_COLOR_BIT, .color_attachment = idx, .value = render.clear_values[idx] });
}
}
uint32_t ds_index = subpass.depth_stencil_reference.attachment;
bool shouldClearDepth = (ds_index != RDD::AttachmentReference::UNUSED && pass.attachments[ds_index].shouldClear(subpass, false));
bool shouldClearStencil = (ds_index != RDD::AttachmentReference::UNUSED && pass.attachments[ds_index].shouldClear(subpass, true));
if (shouldClearDepth || shouldClearStencil) {
MDAttachment const &attachment = pass.attachments[ds_index];
BitField<RDD::TextureAspectBits> bits;
if (shouldClearDepth && attachment.type & MDAttachmentType::Depth) {
bits.set_flag(RDD::TEXTURE_ASPECT_DEPTH_BIT);
}
if (shouldClearStencil && attachment.type & MDAttachmentType::Stencil) {
bits.set_flag(RDD::TEXTURE_ASPECT_STENCIL_BIT);
}
clears.push_back({ .aspect = bits, .color_attachment = ds_index, .value = render.clear_values[ds_index] });
}
if (clears.is_empty()) {
return;
}
render_clear_attachments(clears, { render.render_area });
}
void MDCommandBuffer::render_next_subpass() {
DEV_ASSERT(commandBuffer != nil);
if (render.current_subpass == UINT32_MAX) {
render.current_subpass = 0;
} else {
_end_render_pass();
render.current_subpass++;
}
MDFrameBuffer const &fb = *render.frameBuffer;
MDRenderPass const &pass = *render.pass;
MDSubpass const &subpass = pass.subpasses[render.current_subpass];
MTLRenderPassDescriptor *desc = MTLRenderPassDescriptor.renderPassDescriptor;
PixelFormats &pf = device_driver->get_pixel_formats();
uint32_t attachmentCount = 0;
for (uint32_t i = 0; i < subpass.color_references.size(); i++) {
uint32_t idx = subpass.color_references[i].attachment;
if (idx == RDD::AttachmentReference::UNUSED) {
continue;
}
attachmentCount += 1;
MTLRenderPassColorAttachmentDescriptor *ca = desc.colorAttachments[i];
uint32_t resolveIdx = subpass.resolve_references.is_empty() ? RDD::AttachmentReference::UNUSED : subpass.resolve_references[i].attachment;
bool has_resolve = resolveIdx != RDD::AttachmentReference::UNUSED;
bool can_resolve = true;
if (resolveIdx != RDD::AttachmentReference::UNUSED) {
id<MTLTexture> resolve_tex = fb.textures[resolveIdx];
can_resolve = flags::all(pf.getCapabilities(resolve_tex.pixelFormat), kMTLFmtCapsResolve);
if (can_resolve) {
ca.resolveTexture = resolve_tex;
} else {
CRASH_NOW_MSG("unimplemented: using a texture format that is not supported for resolve");
}
}
MDAttachment const &attachment = pass.attachments[idx];
id<MTLTexture> tex = fb.textures[idx];
if ((attachment.type & MDAttachmentType::Color)) {
if (attachment.configureDescriptor(ca, pf, subpass, tex, render.is_rendering_entire_area, has_resolve, can_resolve, false)) {
Color clearColor = render.clear_values[idx].color;
ca.clearColor = MTLClearColorMake(clearColor.r, clearColor.g, clearColor.b, clearColor.a);
}
}
}
if (subpass.depth_stencil_reference.attachment != RDD::AttachmentReference::UNUSED) {
attachmentCount += 1;
uint32_t idx = subpass.depth_stencil_reference.attachment;
MDAttachment const &attachment = pass.attachments[idx];
id<MTLTexture> tex = fb.textures[idx];
if (attachment.type & MDAttachmentType::Depth) {
MTLRenderPassDepthAttachmentDescriptor *da = desc.depthAttachment;
if (attachment.configureDescriptor(da, pf, subpass, tex, render.is_rendering_entire_area, false, false, false)) {
da.clearDepth = render.clear_values[idx].depth;
}
}
if (attachment.type & MDAttachmentType::Stencil) {
MTLRenderPassStencilAttachmentDescriptor *sa = desc.stencilAttachment;
if (attachment.configureDescriptor(sa, pf, subpass, tex, render.is_rendering_entire_area, false, false, true)) {
sa.clearStencil = render.clear_values[idx].stencil;
}
}
}
desc.renderTargetWidth = MAX((NSUInteger)MIN(render.render_area.position.x + render.render_area.size.width, fb.size.width), 1u);
desc.renderTargetHeight = MAX((NSUInteger)MIN(render.render_area.position.y + render.render_area.size.height, fb.size.height), 1u);
if (attachmentCount == 0) {
// If there are no attachments, delay the creation of the encoder,
// so we can use a matching sample count for the pipeline, by setting
// the defaultRasterSampleCount from the pipeline's sample count.
render.desc = desc;
} else {
render.encoder = [commandBuffer renderCommandEncoderWithDescriptor:desc];
if (!render.is_rendering_entire_area) {
_render_clear_render_area();
}
// With a new encoder, all state is dirty.
render.dirty.set_flag(RenderState::DIRTY_ALL);
}
}
void MDCommandBuffer::render_draw(uint32_t p_vertex_count,
uint32_t p_instance_count,
uint32_t p_base_vertex,
uint32_t p_first_instance) {
DEV_ASSERT(type == MDCommandBufferStateType::Render);
_render_set_dirty_state();
DEV_ASSERT(render.dirty == 0);
id<MTLRenderCommandEncoder> enc = render.encoder;
[enc drawPrimitives:render.pipeline->raster_state.render_primitive
vertexStart:p_base_vertex
vertexCount:p_vertex_count
instanceCount:p_instance_count
baseInstance:p_first_instance];
}
void MDCommandBuffer::render_bind_vertex_buffers(uint32_t p_binding_count, const RDD::BufferID *p_buffers, const uint64_t *p_offsets) {
DEV_ASSERT(type == MDCommandBufferStateType::Render);
render.vertex_buffers.resize(p_binding_count);
render.vertex_offsets.resize(p_binding_count);
// Reverse the buffers, as their bindings are assigned in descending order.
for (uint32_t i = 0; i < p_binding_count; i += 1) {
render.vertex_buffers[i] = rid::get(p_buffers[p_binding_count - i - 1]);
render.vertex_offsets[i] = p_offsets[p_binding_count - i - 1];
}
if (render.encoder) {
uint32_t first = device_driver->get_metal_buffer_index_for_vertex_attribute_binding(p_binding_count - 1);
[render.encoder setVertexBuffers:render.vertex_buffers.ptr()
offsets:render.vertex_offsets.ptr()
withRange:NSMakeRange(first, p_binding_count)];
} else {
render.dirty.set_flag(RenderState::DIRTY_VERTEX);
}
}
void MDCommandBuffer::render_bind_index_buffer(RDD::BufferID p_buffer, RDD::IndexBufferFormat p_format, uint64_t p_offset) {
DEV_ASSERT(type == MDCommandBufferStateType::Render);
render.index_buffer = rid::get(p_buffer);
render.index_type = p_format == RDD::IndexBufferFormat::INDEX_BUFFER_FORMAT_UINT16 ? MTLIndexTypeUInt16 : MTLIndexTypeUInt32;
render.index_offset = p_offset;
}
void MDCommandBuffer::render_draw_indexed(uint32_t p_index_count,
uint32_t p_instance_count,
uint32_t p_first_index,
int32_t p_vertex_offset,
uint32_t p_first_instance) {
DEV_ASSERT(type == MDCommandBufferStateType::Render);
_render_set_dirty_state();
id<MTLRenderCommandEncoder> enc = render.encoder;
uint32_t index_offset = render.index_offset;
index_offset += p_first_index * (render.index_type == MTLIndexTypeUInt16 ? sizeof(uint16_t) : sizeof(uint32_t));
[enc drawIndexedPrimitives:render.pipeline->raster_state.render_primitive
indexCount:p_index_count
indexType:render.index_type
indexBuffer:render.index_buffer
indexBufferOffset:index_offset
instanceCount:p_instance_count
baseVertex:p_vertex_offset
baseInstance:p_first_instance];
}
void MDCommandBuffer::render_draw_indexed_indirect(RDD::BufferID p_indirect_buffer, uint64_t p_offset, uint32_t p_draw_count, uint32_t p_stride) {
DEV_ASSERT(type == MDCommandBufferStateType::Render);
_render_set_dirty_state();
id<MTLRenderCommandEncoder> enc = render.encoder;
id<MTLBuffer> indirect_buffer = rid::get(p_indirect_buffer);
NSUInteger indirect_offset = p_offset;
for (uint32_t i = 0; i < p_draw_count; i++) {
[enc drawIndexedPrimitives:render.pipeline->raster_state.render_primitive
indexType:render.index_type
indexBuffer:render.index_buffer
indexBufferOffset:0
indirectBuffer:indirect_buffer
indirectBufferOffset:indirect_offset];
indirect_offset += p_stride;
}
}
void MDCommandBuffer::render_draw_indexed_indirect_count(RDD::BufferID p_indirect_buffer, uint64_t p_offset, RDD::BufferID p_count_buffer, uint64_t p_count_buffer_offset, uint32_t p_max_draw_count, uint32_t p_stride) {
ERR_FAIL_MSG("not implemented");
}
void MDCommandBuffer::render_draw_indirect(RDD::BufferID p_indirect_buffer, uint64_t p_offset, uint32_t p_draw_count, uint32_t p_stride) {
DEV_ASSERT(type == MDCommandBufferStateType::Render);
_render_set_dirty_state();
id<MTLRenderCommandEncoder> enc = render.encoder;
id<MTLBuffer> indirect_buffer = rid::get(p_indirect_buffer);
NSUInteger indirect_offset = p_offset;
for (uint32_t i = 0; i < p_draw_count; i++) {
[enc drawPrimitives:render.pipeline->raster_state.render_primitive
indirectBuffer:indirect_buffer
indirectBufferOffset:indirect_offset];
indirect_offset += p_stride;
}
}
void MDCommandBuffer::render_draw_indirect_count(RDD::BufferID p_indirect_buffer, uint64_t p_offset, RDD::BufferID p_count_buffer, uint64_t p_count_buffer_offset, uint32_t p_max_draw_count, uint32_t p_stride) {
ERR_FAIL_MSG("not implemented");
}
void MDCommandBuffer::RenderState::end_encoding() {
if (encoder == nil) {
return;
}
// Bind all resources.
for (KeyValue<StageResourceUsage, ResourceVector> const &keyval : resource_usage) {
if (keyval.value.is_empty()) {
continue;
}
MTLResourceUsage vert_usage = resource_usage_for_stage(keyval.key, RDD::ShaderStage::SHADER_STAGE_VERTEX);
MTLResourceUsage frag_usage = resource_usage_for_stage(keyval.key, RDD::ShaderStage::SHADER_STAGE_FRAGMENT);
if (vert_usage == frag_usage) {
[encoder useResources:keyval.value.ptr() count:keyval.value.size() usage:vert_usage stages:MTLRenderStageVertex | MTLRenderStageFragment];
} else {
if (vert_usage != 0) {
[encoder useResources:keyval.value.ptr() count:keyval.value.size() usage:vert_usage stages:MTLRenderStageVertex];
}
if (frag_usage != 0) {
[encoder useResources:keyval.value.ptr() count:keyval.value.size() usage:frag_usage stages:MTLRenderStageFragment];
}
}
}
[encoder endEncoding];
encoder = nil;
}
void MDCommandBuffer::ComputeState::end_encoding() {
if (encoder == nil) {
return;
}
// Bind all resources.
for (KeyValue<StageResourceUsage, ResourceVector> const &keyval : resource_usage) {
if (keyval.value.is_empty()) {
continue;
}
MTLResourceUsage usage = resource_usage_for_stage(keyval.key, RDD::ShaderStage::SHADER_STAGE_COMPUTE);
if (usage != 0) {
[encoder useResources:keyval.value.ptr() count:keyval.value.size() usage:usage];
}
}
[encoder endEncoding];
encoder = nil;
}
void MDCommandBuffer::render_end_pass() {
DEV_ASSERT(type == MDCommandBufferStateType::Render);
render.end_encoding();
render.reset();
type = MDCommandBufferStateType::None;
}
#pragma mark - Compute
void MDCommandBuffer::compute_bind_uniform_set(RDD::UniformSetID p_uniform_set, RDD::ShaderID p_shader, uint32_t p_set_index) {
DEV_ASSERT(type == MDCommandBufferStateType::Compute);
id<MTLComputeCommandEncoder> enc = compute.encoder;
id<MTLDevice> device = enc.device;
MDShader *shader = (MDShader *)(p_shader.id);
UniformSet const &set_info = shader->sets[p_set_index];
MDUniformSet *set = (MDUniformSet *)(p_uniform_set.id);
BoundUniformSet &bus = set->boundUniformSetForShader(shader, device);
bus.merge_into(compute.resource_usage);
uint32_t const *offset = set_info.offsets.getptr(RDD::SHADER_STAGE_COMPUTE);
if (offset) {
[enc setBuffer:bus.buffer offset:*offset atIndex:p_set_index];
}
}
void MDCommandBuffer::compute_dispatch(uint32_t p_x_groups, uint32_t p_y_groups, uint32_t p_z_groups) {
DEV_ASSERT(type == MDCommandBufferStateType::Compute);
MTLRegion region = MTLRegionMake3D(0, 0, 0, p_x_groups, p_y_groups, p_z_groups);
id<MTLComputeCommandEncoder> enc = compute.encoder;
[enc dispatchThreadgroups:region.size threadsPerThreadgroup:compute.pipeline->compute_state.local];
}
void MDCommandBuffer::compute_dispatch_indirect(RDD::BufferID p_indirect_buffer, uint64_t p_offset) {
DEV_ASSERT(type == MDCommandBufferStateType::Compute);
id<MTLBuffer> indirectBuffer = rid::get(p_indirect_buffer);
id<MTLComputeCommandEncoder> enc = compute.encoder;
[enc dispatchThreadgroupsWithIndirectBuffer:indirectBuffer indirectBufferOffset:p_offset threadsPerThreadgroup:compute.pipeline->compute_state.local];
}
void MDCommandBuffer::_end_compute_dispatch() {
DEV_ASSERT(type == MDCommandBufferStateType::Compute);
compute.end_encoding();
compute.reset();
type = MDCommandBufferStateType::None;
}
void MDCommandBuffer::_end_blit() {
DEV_ASSERT(type == MDCommandBufferStateType::Blit);
[blit.encoder endEncoding];
blit.reset();
type = MDCommandBufferStateType::None;
}
MDComputeShader::MDComputeShader(CharString p_name, Vector<UniformSet> p_sets, MDLibrary *p_kernel) :
MDShader(p_name, p_sets), kernel(p_kernel) {
}
void MDComputeShader::encode_push_constant_data(VectorView<uint32_t> p_data, MDCommandBuffer *p_cb) {
DEV_ASSERT(p_cb->type == MDCommandBufferStateType::Compute);
if (push_constants.binding == (uint32_t)-1) {
return;
}
id<MTLComputeCommandEncoder> enc = p_cb->compute.encoder;
void const *ptr = p_data.ptr();
size_t length = p_data.size() * sizeof(uint32_t);
[enc setBytes:ptr length:length atIndex:push_constants.binding];
}
MDRenderShader::MDRenderShader(CharString p_name, Vector<UniformSet> p_sets, MDLibrary *_Nonnull p_vert, MDLibrary *_Nonnull p_frag) :
MDShader(p_name, p_sets), vert(p_vert), frag(p_frag) {
}
void MDRenderShader::encode_push_constant_data(VectorView<uint32_t> p_data, MDCommandBuffer *p_cb) {
DEV_ASSERT(p_cb->type == MDCommandBufferStateType::Render);
id<MTLRenderCommandEncoder> enc = p_cb->render.encoder;
void const *ptr = p_data.ptr();
size_t length = p_data.size() * sizeof(uint32_t);
if (push_constants.vert.binding > -1) {
[enc setVertexBytes:ptr length:length atIndex:push_constants.vert.binding];
}
if (push_constants.frag.binding > -1) {
[enc setFragmentBytes:ptr length:length atIndex:push_constants.frag.binding];
}
}
BoundUniformSet &MDUniformSet::boundUniformSetForShader(MDShader *p_shader, id<MTLDevice> p_device) {
BoundUniformSet *sus = bound_uniforms.getptr(p_shader);
if (sus != nullptr) {
return *sus;
}
UniformSet const &set = p_shader->sets[index];
HashMap<id<MTLResource>, StageResourceUsage> bound_resources;
auto add_usage = [&bound_resources](id<MTLResource> __unsafe_unretained res, RDD::ShaderStage stage, MTLResourceUsage usage) {
StageResourceUsage *sru = bound_resources.getptr(res);
if (sru == nullptr) {
bound_resources.insert(res, stage_resource_usage(stage, usage));
} else {
*sru |= stage_resource_usage(stage, usage);
}
};
id<MTLBuffer> enc_buffer = nil;
if (set.buffer_size > 0) {
MTLResourceOptions options = MTLResourceStorageModeShared | MTLResourceHazardTrackingModeTracked;
enc_buffer = [p_device newBufferWithLength:set.buffer_size options:options];
for (KeyValue<RDC::ShaderStage, id<MTLArgumentEncoder>> const &kv : set.encoders) {
RDD::ShaderStage const stage = kv.key;
ShaderStageUsage const stage_usage = ShaderStageUsage(1 << stage);
id<MTLArgumentEncoder> const enc = kv.value;
[enc setArgumentBuffer:enc_buffer offset:set.offsets[stage]];
for (uint32_t i = 0; i < uniforms.size(); i++) {
RDD::BoundUniform const &uniform = uniforms[i];
UniformInfo ui = set.uniforms[i];
BindingInfo *bi = ui.bindings.getptr(stage);
if (bi == nullptr) {
// No binding for this stage.
continue;
}
if ((ui.active_stages & stage_usage) == 0) {
// Not active for this state, so don't bind anything.
continue;
}
switch (uniform.type) {
case RDD::UNIFORM_TYPE_SAMPLER: {
size_t count = uniform.ids.size();
id<MTLSamplerState> __unsafe_unretained *objects = ALLOCA_ARRAY(id<MTLSamplerState> __unsafe_unretained, count);
for (size_t j = 0; j < count; j += 1) {
objects[j] = rid::get(uniform.ids[j].id);
}
[enc setSamplerStates:objects withRange:NSMakeRange(bi->index, count)];
} break;
case RDD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE: {
size_t count = uniform.ids.size() / 2;
id<MTLTexture> __unsafe_unretained *textures = ALLOCA_ARRAY(id<MTLTexture> __unsafe_unretained, count);
id<MTLSamplerState> __unsafe_unretained *samplers = ALLOCA_ARRAY(id<MTLSamplerState> __unsafe_unretained, count);
for (uint32_t j = 0; j < count; j += 1) {
id<MTLSamplerState> sampler = rid::get(uniform.ids[j * 2 + 0]);
id<MTLTexture> texture = rid::get(uniform.ids[j * 2 + 1]);
samplers[j] = sampler;
textures[j] = texture;
add_usage(texture, stage, bi->usage);
}
BindingInfo *sbi = ui.bindings_secondary.getptr(stage);
if (sbi) {
[enc setSamplerStates:samplers withRange:NSMakeRange(sbi->index, count)];
}
[enc setTextures:textures
withRange:NSMakeRange(bi->index, count)];
} break;
case RDD::UNIFORM_TYPE_TEXTURE: {
size_t count = uniform.ids.size();
if (count == 1) {
id<MTLTexture> obj = rid::get(uniform.ids[0]);
[enc setTexture:obj atIndex:bi->index];
add_usage(obj, stage, bi->usage);
} else {
id<MTLTexture> __unsafe_unretained *objects = ALLOCA_ARRAY(id<MTLTexture> __unsafe_unretained, count);
for (size_t j = 0; j < count; j += 1) {
id<MTLTexture> obj = rid::get(uniform.ids[j]);
objects[j] = obj;
add_usage(obj, stage, bi->usage);
}
[enc setTextures:objects withRange:NSMakeRange(bi->index, count)];
}
} break;
case RDD::UNIFORM_TYPE_IMAGE: {
size_t count = uniform.ids.size();
if (count == 1) {
id<MTLTexture> obj = rid::get(uniform.ids[0]);
[enc setTexture:obj atIndex:bi->index];
add_usage(obj, stage, bi->usage);
BindingInfo *sbi = ui.bindings_secondary.getptr(stage);
if (sbi) {
id<MTLTexture> tex = obj.parentTexture ? obj.parentTexture : obj;
id<MTLBuffer> buf = tex.buffer;
if (buf) {
[enc setBuffer:buf offset:tex.bufferOffset atIndex:sbi->index];
}
}
} else {
id<MTLTexture> __unsafe_unretained *objects = ALLOCA_ARRAY(id<MTLTexture> __unsafe_unretained, count);
for (size_t j = 0; j < count; j += 1) {
id<MTLTexture> obj = rid::get(uniform.ids[j]);
objects[j] = obj;
add_usage(obj, stage, bi->usage);
}
[enc setTextures:objects withRange:NSMakeRange(bi->index, count)];
}
} break;
case RDD::UNIFORM_TYPE_TEXTURE_BUFFER: {
ERR_PRINT("not implemented: UNIFORM_TYPE_TEXTURE_BUFFER");
} break;
case RDD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE_BUFFER: {
ERR_PRINT("not implemented: UNIFORM_TYPE_SAMPLER_WITH_TEXTURE_BUFFER");
} break;
case RDD::UNIFORM_TYPE_IMAGE_BUFFER: {
CRASH_NOW_MSG("not implemented: UNIFORM_TYPE_IMAGE_BUFFER");
} break;
case RDD::UNIFORM_TYPE_UNIFORM_BUFFER: {
id<MTLBuffer> buffer = rid::get(uniform.ids[0]);
[enc setBuffer:buffer offset:0 atIndex:bi->index];
add_usage(buffer, stage, bi->usage);
} break;
case RDD::UNIFORM_TYPE_STORAGE_BUFFER: {
id<MTLBuffer> buffer = rid::get(uniform.ids[0]);
[enc setBuffer:buffer offset:0 atIndex:bi->index];
add_usage(buffer, stage, bi->usage);
} break;
case RDD::UNIFORM_TYPE_INPUT_ATTACHMENT: {
size_t count = uniform.ids.size();
if (count == 1) {
id<MTLTexture> obj = rid::get(uniform.ids[0]);
[enc setTexture:obj atIndex:bi->index];
add_usage(obj, stage, bi->usage);
} else {
id<MTLTexture> __unsafe_unretained *objects = ALLOCA_ARRAY(id<MTLTexture> __unsafe_unretained, count);
for (size_t j = 0; j < count; j += 1) {
id<MTLTexture> obj = rid::get(uniform.ids[j]);
objects[j] = obj;
add_usage(obj, stage, bi->usage);
}
[enc setTextures:objects withRange:NSMakeRange(bi->index, count)];
}
} break;
default: {
DEV_ASSERT(false);
}
}
}
}
}
SearchArray<__unsafe_unretained id<MTLResource>> search;
ResourceUsageMap usage_to_resources;
for (KeyValue<id<MTLResource>, StageResourceUsage> const &keyval : bound_resources) {
ResourceVector *resources = usage_to_resources.getptr(keyval.value);
if (resources == nullptr) {
resources = &usage_to_resources.insert(keyval.value, ResourceVector())->value;
}
int64_t pos = search.bisect(resources->ptr(), resources->size(), keyval.key, true);
if (pos == resources->size() || (*resources)[pos] != keyval.key) {
resources->insert(pos, keyval.key);
}
}
BoundUniformSet bs = { .buffer = enc_buffer, .usage_to_resources = usage_to_resources };
bound_uniforms.insert(p_shader, bs);
return bound_uniforms.get(p_shader);
}
MTLFmtCaps MDSubpass::getRequiredFmtCapsForAttachmentAt(uint32_t p_index) const {
MTLFmtCaps caps = kMTLFmtCapsNone;
for (RDD::AttachmentReference const &ar : input_references) {
if (ar.attachment == p_index) {
flags::set(caps, kMTLFmtCapsRead);
break;
}
}
for (RDD::AttachmentReference const &ar : color_references) {
if (ar.attachment == p_index) {
flags::set(caps, kMTLFmtCapsColorAtt);
break;
}
}
for (RDD::AttachmentReference const &ar : resolve_references) {
if (ar.attachment == p_index) {
flags::set(caps, kMTLFmtCapsResolve);
break;
}
}
if (depth_stencil_reference.attachment == p_index) {
flags::set(caps, kMTLFmtCapsDSAtt);
}
return caps;
}
void MDAttachment::linkToSubpass(const MDRenderPass &p_pass) {
firstUseSubpassIndex = UINT32_MAX;
lastUseSubpassIndex = 0;
for (MDSubpass const &subpass : p_pass.subpasses) {
MTLFmtCaps reqCaps = subpass.getRequiredFmtCapsForAttachmentAt(index);
if (reqCaps) {
firstUseSubpassIndex = MIN(subpass.subpass_index, firstUseSubpassIndex);
lastUseSubpassIndex = MAX(subpass.subpass_index, lastUseSubpassIndex);
}
}
}
MTLStoreAction MDAttachment::getMTLStoreAction(MDSubpass const &p_subpass,
bool p_is_rendering_entire_area,
bool p_has_resolve,
bool p_can_resolve,
bool p_is_stencil) const {
if (!p_is_rendering_entire_area || !isLastUseOf(p_subpass)) {
return p_has_resolve && p_can_resolve ? MTLStoreActionStoreAndMultisampleResolve : MTLStoreActionStore;
}
switch (p_is_stencil ? stencilStoreAction : storeAction) {
case MTLStoreActionStore:
return p_has_resolve && p_can_resolve ? MTLStoreActionStoreAndMultisampleResolve : MTLStoreActionStore;
case MTLStoreActionDontCare:
return p_has_resolve ? (p_can_resolve ? MTLStoreActionMultisampleResolve : MTLStoreActionStore) : MTLStoreActionDontCare;
default:
return MTLStoreActionStore;
}
}
bool MDAttachment::configureDescriptor(MTLRenderPassAttachmentDescriptor *p_desc,
PixelFormats &p_pf,
MDSubpass const &p_subpass,
id<MTLTexture> p_attachment,
bool p_is_rendering_entire_area,
bool p_has_resolve,
bool p_can_resolve,
bool p_is_stencil) const {
p_desc.texture = p_attachment;
MTLLoadAction load;
if (!p_is_rendering_entire_area || !isFirstUseOf(p_subpass)) {
load = MTLLoadActionLoad;
} else {
load = p_is_stencil ? stencilLoadAction : loadAction;
}
p_desc.loadAction = load;
MTLPixelFormat mtlFmt = p_attachment.pixelFormat;
bool isDepthFormat = p_pf.isDepthFormat(mtlFmt);
bool isStencilFormat = p_pf.isStencilFormat(mtlFmt);
if (isStencilFormat && !p_is_stencil && !isDepthFormat) {
p_desc.storeAction = MTLStoreActionDontCare;
} else {
p_desc.storeAction = getMTLStoreAction(p_subpass, p_is_rendering_entire_area, p_has_resolve, p_can_resolve, p_is_stencil);
}
return load == MTLLoadActionClear;
}
bool MDAttachment::shouldClear(const MDSubpass &p_subpass, bool p_is_stencil) const {
// If the subpass is not the first subpass to use this attachment, don't clear this attachment.
if (p_subpass.subpass_index != firstUseSubpassIndex) {
return false;
}
return (p_is_stencil ? stencilLoadAction : loadAction) == MTLLoadActionClear;
}
MDRenderPass::MDRenderPass(Vector<MDAttachment> &p_attachments, Vector<MDSubpass> &p_subpasses) :
attachments(p_attachments), subpasses(p_subpasses) {
for (MDAttachment &att : attachments) {
att.linkToSubpass(*this);
}
}
#pragma mark - Resource Factory
id<MTLFunction> MDResourceFactory::new_func(NSString *p_source, NSString *p_name, NSError **p_error) {
@autoreleasepool {
NSError *err = nil;
MTLCompileOptions *options = [MTLCompileOptions new];
id<MTLDevice> device = device_driver->get_device();
id<MTLLibrary> mtlLib = [device newLibraryWithSource:p_source
options:options
error:&err];
if (err) {
if (p_error != nil) {
*p_error = err;
}
}
return [mtlLib newFunctionWithName:p_name];
}
}
id<MTLFunction> MDResourceFactory::new_clear_vert_func(ClearAttKey &p_key) {
@autoreleasepool {
NSString *msl = [NSString stringWithFormat:@R"(
#include <metal_stdlib>
using namespace metal;
typedef struct {
float4 a_position [[attribute(0)]];
} AttributesPos;
typedef struct {
float4 colors[9];
} ClearColorsIn;
typedef struct {
float4 v_position [[position]];
uint layer;
} VaryingsPos;
vertex VaryingsPos vertClear(AttributesPos attributes [[stage_in]], constant ClearColorsIn& ccIn [[buffer(0)]]) {
VaryingsPos varyings;
varyings.v_position = float4(attributes.a_position.x, -attributes.a_position.y, ccIn.colors[%d].r, 1.0);
varyings.layer = uint(attributes.a_position.w);
return varyings;
}
)", ClearAttKey::DEPTH_INDEX];
return new_func(msl, @"vertClear", nil);
}
}
id<MTLFunction> MDResourceFactory::new_clear_frag_func(ClearAttKey &p_key) {
@autoreleasepool {
NSMutableString *msl = [NSMutableString stringWithCapacity:2048];
[msl appendFormat:@R"(
#include <metal_stdlib>
using namespace metal;
typedef struct {
float4 v_position [[position]];
} VaryingsPos;
typedef struct {
float4 colors[9];
} ClearColorsIn;
typedef struct {
)"];
for (uint32_t caIdx = 0; caIdx < ClearAttKey::COLOR_COUNT; caIdx++) {
if (p_key.is_enabled(caIdx)) {
NSString *typeStr = get_format_type_string((MTLPixelFormat)p_key.pixel_formats[caIdx]);
[msl appendFormat:@" %@4 color%u [[color(%u)]];\n", typeStr, caIdx, caIdx];
}
}
[msl appendFormat:@R"(} ClearColorsOut;
fragment ClearColorsOut fragClear(VaryingsPos varyings [[stage_in]], constant ClearColorsIn& ccIn [[buffer(0)]]) {
ClearColorsOut ccOut;
)"];
for (uint32_t caIdx = 0; caIdx < ClearAttKey::COLOR_COUNT; caIdx++) {
if (p_key.is_enabled(caIdx)) {
NSString *typeStr = get_format_type_string((MTLPixelFormat)p_key.pixel_formats[caIdx]);
[msl appendFormat:@" ccOut.color%u = %@4(ccIn.colors[%u]);\n", caIdx, typeStr, caIdx];
}
}
[msl appendString:@R"( return ccOut;
})"];
return new_func(msl, @"fragClear", nil);
}
}
NSString *MDResourceFactory::get_format_type_string(MTLPixelFormat p_fmt) {
switch (device_driver->get_pixel_formats().getFormatType(p_fmt)) {
case MTLFormatType::ColorInt8:
case MTLFormatType::ColorInt16:
return @"short";
case MTLFormatType::ColorUInt8:
case MTLFormatType::ColorUInt16:
return @"ushort";
case MTLFormatType::ColorInt32:
return @"int";
case MTLFormatType::ColorUInt32:
return @"uint";
case MTLFormatType::ColorHalf:
return @"half";
case MTLFormatType::ColorFloat:
case MTLFormatType::DepthStencil:
case MTLFormatType::Compressed:
return @"float";
case MTLFormatType::None:
return @"unexpected_MTLPixelFormatInvalid";
}
}
id<MTLDepthStencilState> MDResourceFactory::new_depth_stencil_state(bool p_use_depth, bool p_use_stencil) {
MTLDepthStencilDescriptor *dsDesc = [MTLDepthStencilDescriptor new];
dsDesc.depthCompareFunction = MTLCompareFunctionAlways;
dsDesc.depthWriteEnabled = p_use_depth;
if (p_use_stencil) {
MTLStencilDescriptor *sDesc = [MTLStencilDescriptor new];
sDesc.stencilCompareFunction = MTLCompareFunctionAlways;
sDesc.stencilFailureOperation = MTLStencilOperationReplace;
sDesc.depthFailureOperation = MTLStencilOperationReplace;
sDesc.depthStencilPassOperation = MTLStencilOperationReplace;
dsDesc.frontFaceStencil = sDesc;
dsDesc.backFaceStencil = sDesc;
} else {
dsDesc.frontFaceStencil = nil;
dsDesc.backFaceStencil = nil;
}
return [device_driver->get_device() newDepthStencilStateWithDescriptor:dsDesc];
}
id<MTLRenderPipelineState> MDResourceFactory::new_clear_pipeline_state(ClearAttKey &p_key, NSError **p_error) {
PixelFormats &pixFmts = device_driver->get_pixel_formats();
id<MTLFunction> vtxFunc = new_clear_vert_func(p_key);
id<MTLFunction> fragFunc = new_clear_frag_func(p_key);
MTLRenderPipelineDescriptor *plDesc = [MTLRenderPipelineDescriptor new];
plDesc.label = @"ClearRenderAttachments";
plDesc.vertexFunction = vtxFunc;
plDesc.fragmentFunction = fragFunc;
plDesc.rasterSampleCount = p_key.sample_count;
plDesc.inputPrimitiveTopology = MTLPrimitiveTopologyClassTriangle;
for (uint32_t caIdx = 0; caIdx < ClearAttKey::COLOR_COUNT; caIdx++) {
MTLRenderPipelineColorAttachmentDescriptor *colorDesc = plDesc.colorAttachments[caIdx];
colorDesc.pixelFormat = (MTLPixelFormat)p_key.pixel_formats[caIdx];
colorDesc.writeMask = p_key.is_enabled(caIdx) ? MTLColorWriteMaskAll : MTLColorWriteMaskNone;
}
MTLPixelFormat mtlDepthFormat = p_key.depth_format();
if (pixFmts.isDepthFormat(mtlDepthFormat)) {
plDesc.depthAttachmentPixelFormat = mtlDepthFormat;
}
MTLPixelFormat mtlStencilFormat = p_key.stencil_format();
if (pixFmts.isStencilFormat(mtlStencilFormat)) {
plDesc.stencilAttachmentPixelFormat = mtlStencilFormat;
}
MTLVertexDescriptor *vtxDesc = plDesc.vertexDescriptor;
// Vertex attribute descriptors.
MTLVertexAttributeDescriptorArray *vaDescArray = vtxDesc.attributes;
MTLVertexAttributeDescriptor *vaDesc;
NSUInteger vtxBuffIdx = device_driver->get_metal_buffer_index_for_vertex_attribute_binding(VERT_CONTENT_BUFFER_INDEX);
NSUInteger vtxStride = 0;
// Vertex location.
vaDesc = vaDescArray[0];
vaDesc.format = MTLVertexFormatFloat4;
vaDesc.bufferIndex = vtxBuffIdx;
vaDesc.offset = vtxStride;
vtxStride += sizeof(simd::float4);
// Vertex attribute buffer.
MTLVertexBufferLayoutDescriptorArray *vbDescArray = vtxDesc.layouts;
MTLVertexBufferLayoutDescriptor *vbDesc = vbDescArray[vtxBuffIdx];
vbDesc.stepFunction = MTLVertexStepFunctionPerVertex;
vbDesc.stepRate = 1;
vbDesc.stride = vtxStride;
return [device_driver->get_device() newRenderPipelineStateWithDescriptor:plDesc error:p_error];
}
id<MTLRenderPipelineState> MDResourceCache::get_clear_render_pipeline_state(ClearAttKey &p_key, NSError **p_error) {
HashMap::ConstIterator it = clear_states.find(p_key);
if (it != clear_states.end()) {
return it->value;
}
id<MTLRenderPipelineState> state = resource_factory->new_clear_pipeline_state(p_key, p_error);
clear_states[p_key] = state;
return state;
}
id<MTLDepthStencilState> MDResourceCache::get_depth_stencil_state(bool p_use_depth, bool p_use_stencil) {
id<MTLDepthStencilState> __strong *val;
if (p_use_depth && p_use_stencil) {
val = &clear_depth_stencil_state.all;
} else if (p_use_depth) {
val = &clear_depth_stencil_state.depth_only;
} else if (p_use_stencil) {
val = &clear_depth_stencil_state.stencil_only;
} else {
val = &clear_depth_stencil_state.none;
}
DEV_ASSERT(val != nullptr);
if (*val == nil) {
*val = resource_factory->new_depth_stencil_state(p_use_depth, p_use_stencil);
}
return *val;
}
static const char *SHADER_STAGE_NAMES[] = {
[RD::SHADER_STAGE_VERTEX] = "vert",
[RD::SHADER_STAGE_FRAGMENT] = "frag",
[RD::SHADER_STAGE_TESSELATION_CONTROL] = "tess_ctrl",
[RD::SHADER_STAGE_TESSELATION_EVALUATION] = "tess_eval",
[RD::SHADER_STAGE_COMPUTE] = "comp",
};
void ShaderCacheEntry::notify_free() const {
owner.shader_cache_free_entry(key);
}
@interface MDLibrary ()
- (instancetype)initWithCacheEntry:(ShaderCacheEntry *)entry;
@end
/// Loads the MTLLibrary when the library is first accessed.
@interface MDLazyLibrary : MDLibrary {
id<MTLLibrary> _library;
NSError *_error;
std::shared_mutex _mu;
bool _loaded;
id<MTLDevice> _device;
NSString *_source;
MTLCompileOptions *_options;
}
- (instancetype)initWithCacheEntry:(ShaderCacheEntry *)entry
device:(id<MTLDevice>)device
source:(NSString *)source
options:(MTLCompileOptions *)options;
@end
/// Loads the MTLLibrary immediately on initialization, using an asynchronous API.
@interface MDImmediateLibrary : MDLibrary {
id<MTLLibrary> _library;
NSError *_error;
std::mutex _cv_mutex;
std::condition_variable _cv;
std::atomic<bool> _complete;
bool _ready;
}
- (instancetype)initWithCacheEntry:(ShaderCacheEntry *)entry
device:(id<MTLDevice>)device
source:(NSString *)source
options:(MTLCompileOptions *)options;
@end
@implementation MDLibrary
+ (instancetype)newLibraryWithCacheEntry:(ShaderCacheEntry *)entry
device:(id<MTLDevice>)device
source:(NSString *)source
options:(MTLCompileOptions *)options
strategy:(ShaderLoadStrategy)strategy {
switch (strategy) {
case ShaderLoadStrategy::DEFAULT:
[[fallthrough]];
default:
return [[MDImmediateLibrary alloc] initWithCacheEntry:entry device:device source:source options:options];
case ShaderLoadStrategy::LAZY:
return [[MDLazyLibrary alloc] initWithCacheEntry:entry device:device source:source options:options];
}
}
- (id<MTLLibrary>)library {
CRASH_NOW_MSG("Not implemented");
return nil;
}
- (NSError *)error {
CRASH_NOW_MSG("Not implemented");
return nil;
}
- (void)setLabel:(NSString *)label {
}
- (instancetype)initWithCacheEntry:(ShaderCacheEntry *)entry {
self = [super init];
_entry = entry;
_entry->library = self;
return self;
}
- (void)dealloc {
_entry->notify_free();
}
@end
@implementation MDImmediateLibrary
- (instancetype)initWithCacheEntry:(ShaderCacheEntry *)entry
device:(id<MTLDevice>)device
source:(NSString *)source
options:(MTLCompileOptions *)options {
self = [super initWithCacheEntry:entry];
_complete = false;
_ready = false;
__block os_signpost_id_t compile_id = (os_signpost_id_t)(uintptr_t)self;
os_signpost_interval_begin(LOG_INTERVALS, compile_id, "shader_compile",
"shader_name=%{public}s stage=%{public}s hash=%X",
entry->name.get_data(), SHADER_STAGE_NAMES[entry->stage], entry->key.short_sha());
[device newLibraryWithSource:source
options:options
completionHandler:^(id<MTLLibrary> library, NSError *error) {
os_signpost_interval_end(LOG_INTERVALS, compile_id, "shader_compile");
self->_library = library;
self->_error = error;
if (error) {
ERR_PRINT(String(U"Error compiling shader %s: %s").format(entry->name.get_data(), error.localizedDescription.UTF8String));
}
{
std::lock_guard<std::mutex> lock(self->_cv_mutex);
_ready = true;
}
_cv.notify_all();
_complete = true;
}];
return self;
}
- (id<MTLLibrary>)library {
if (!_complete) {
std::unique_lock<std::mutex> lock(_cv_mutex);
_cv.wait(lock, [&] { return _ready; });
}
return _library;
}
- (NSError *)error {
if (!_complete) {
std::unique_lock<std::mutex> lock(_cv_mutex);
_cv.wait(lock, [&] { return _ready; });
}
return _error;
}
@end
@implementation MDLazyLibrary
- (instancetype)initWithCacheEntry:(ShaderCacheEntry *)entry
device:(id<MTLDevice>)device
source:(NSString *)source
options:(MTLCompileOptions *)options {
self = [super initWithCacheEntry:entry];
_device = device;
_source = source;
_options = options;
return self;
}
- (void)load {
{
std::shared_lock<std::shared_mutex> lock(_mu);
if (_loaded) {
return;
}
}
std::unique_lock<std::shared_mutex> lock(_mu);
if (_loaded) {
return;
}
__block os_signpost_id_t compile_id = (os_signpost_id_t)(uintptr_t)self;
os_signpost_interval_begin(LOG_INTERVALS, compile_id, "shader_compile",
"shader_name=%{public}s stage=%{public}s hash=%X",
_entry->name.get_data(), SHADER_STAGE_NAMES[_entry->stage], _entry->key.short_sha());
NSError *error;
_library = [_device newLibraryWithSource:_source options:_options error:&error];
os_signpost_interval_end(LOG_INTERVALS, compile_id, "shader_compile");
_device = nil;
_source = nil;
_options = nil;
_loaded = true;
}
- (id<MTLLibrary>)library {
[self load];
return _library;
}
- (NSError *)error {
[self load];
return _error;
}
@end