virtualx-engine/thirdparty/oidn/mkl-dnn/src/common/lrn.cpp
2021-01-14 18:02:07 +01:00

91 lines
3.2 KiB
C++

/*******************************************************************************
* Copyright 2016-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <assert.h>
#include "mkldnn.h"
#include "c_types_map.hpp"
#include "type_helpers.hpp"
#include "utils.hpp"
using namespace mkldnn::impl;
using namespace mkldnn::impl::utils;
using namespace mkldnn::impl::status;
using namespace mkldnn::impl::prop_kind;
using namespace mkldnn::impl::alg_kind;
using namespace mkldnn::impl::types;
namespace {
status_t lrn_desc_init(lrn_desc_t *lrn_desc,
prop_kind_t prop_kind, alg_kind_t alg_kind,
const memory_desc_t *data_desc, const memory_desc_t *diff_data_desc,
dim_t local_size, float alpha, float beta, float k) {
bool args_ok = true
&& !any_null(lrn_desc, data_desc)
&& one_of(alg_kind, lrn_within_channel, lrn_across_channels)
&& one_of(prop_kind, forward_training, forward_inference, backward_data)
&& IMPLICATION(prop_kind == backward_data, diff_data_desc != nullptr);
if (!args_ok) return invalid_arguments;
auto ld = lrn_desc_t();
ld.primitive_kind = primitive_kind::lrn;
ld.prop_kind = prop_kind;
ld.alg_kind = alg_kind;
const bool is_fwd = one_of(prop_kind, forward_training, forward_inference);
ld.data_desc = *data_desc;
if (!is_fwd)
ld.diff_data_desc = *diff_data_desc;
else
ld.diff_data_desc = zero_md();
ld.local_size = local_size;
ld.lrn_alpha = alpha;
ld.lrn_beta = beta;
ld.lrn_k = k;
bool consistency = true
&& ld.data_desc.ndims == 4;
if (ld.prop_kind == backward_data)
consistency = consistency
&& ld.diff_data_desc.ndims == 4
&& array_cmp(ld.diff_data_desc.dims, ld.data_desc.dims, 4);
if (!consistency) return invalid_arguments;
*lrn_desc = ld;
return success;
}
}
status_t mkldnn_lrn_forward_desc_init(lrn_desc_t *lrn_desc,
prop_kind_t prop_kind, alg_kind_t alg_kind,
const memory_desc_t *data_desc, dim_t local_size, float alpha,
float beta, float k) {
if (!one_of(prop_kind, forward_training, forward_inference))
return invalid_arguments;
return lrn_desc_init(lrn_desc, prop_kind, alg_kind, data_desc, nullptr,
local_size, alpha, beta, k);
}
status_t mkldnn_lrn_backward_desc_init(lrn_desc_t *lrn_desc,
alg_kind_t alg_kind, const memory_desc_t *data_desc,
const memory_desc_t *diff_data_desc, dim_t local_size, float alpha,
float beta, float k) {
return lrn_desc_init(lrn_desc, backward_data, alg_kind, data_desc,
diff_data_desc, local_size, alpha, beta, k);
}
// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s