91 lines
3.2 KiB
C++
91 lines
3.2 KiB
C++
/*******************************************************************************
|
|
* Copyright 2016-2018 Intel Corporation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*******************************************************************************/
|
|
|
|
#include <assert.h>
|
|
#include "mkldnn.h"
|
|
|
|
#include "c_types_map.hpp"
|
|
#include "type_helpers.hpp"
|
|
#include "utils.hpp"
|
|
|
|
using namespace mkldnn::impl;
|
|
using namespace mkldnn::impl::utils;
|
|
using namespace mkldnn::impl::status;
|
|
using namespace mkldnn::impl::prop_kind;
|
|
using namespace mkldnn::impl::alg_kind;
|
|
using namespace mkldnn::impl::types;
|
|
|
|
namespace {
|
|
status_t lrn_desc_init(lrn_desc_t *lrn_desc,
|
|
prop_kind_t prop_kind, alg_kind_t alg_kind,
|
|
const memory_desc_t *data_desc, const memory_desc_t *diff_data_desc,
|
|
dim_t local_size, float alpha, float beta, float k) {
|
|
bool args_ok = true
|
|
&& !any_null(lrn_desc, data_desc)
|
|
&& one_of(alg_kind, lrn_within_channel, lrn_across_channels)
|
|
&& one_of(prop_kind, forward_training, forward_inference, backward_data)
|
|
&& IMPLICATION(prop_kind == backward_data, diff_data_desc != nullptr);
|
|
if (!args_ok) return invalid_arguments;
|
|
|
|
auto ld = lrn_desc_t();
|
|
ld.primitive_kind = primitive_kind::lrn;
|
|
ld.prop_kind = prop_kind;
|
|
ld.alg_kind = alg_kind;
|
|
|
|
const bool is_fwd = one_of(prop_kind, forward_training, forward_inference);
|
|
|
|
ld.data_desc = *data_desc;
|
|
if (!is_fwd)
|
|
ld.diff_data_desc = *diff_data_desc;
|
|
else
|
|
ld.diff_data_desc = zero_md();
|
|
ld.local_size = local_size;
|
|
ld.lrn_alpha = alpha;
|
|
ld.lrn_beta = beta;
|
|
ld.lrn_k = k;
|
|
|
|
bool consistency = true
|
|
&& ld.data_desc.ndims == 4;
|
|
if (ld.prop_kind == backward_data)
|
|
consistency = consistency
|
|
&& ld.diff_data_desc.ndims == 4
|
|
&& array_cmp(ld.diff_data_desc.dims, ld.data_desc.dims, 4);
|
|
if (!consistency) return invalid_arguments;
|
|
|
|
*lrn_desc = ld;
|
|
return success;
|
|
}
|
|
}
|
|
|
|
status_t mkldnn_lrn_forward_desc_init(lrn_desc_t *lrn_desc,
|
|
prop_kind_t prop_kind, alg_kind_t alg_kind,
|
|
const memory_desc_t *data_desc, dim_t local_size, float alpha,
|
|
float beta, float k) {
|
|
if (!one_of(prop_kind, forward_training, forward_inference))
|
|
return invalid_arguments;
|
|
return lrn_desc_init(lrn_desc, prop_kind, alg_kind, data_desc, nullptr,
|
|
local_size, alpha, beta, k);
|
|
}
|
|
|
|
status_t mkldnn_lrn_backward_desc_init(lrn_desc_t *lrn_desc,
|
|
alg_kind_t alg_kind, const memory_desc_t *data_desc,
|
|
const memory_desc_t *diff_data_desc, dim_t local_size, float alpha,
|
|
float beta, float k) {
|
|
return lrn_desc_init(lrn_desc, backward_data, alg_kind, data_desc,
|
|
diff_data_desc, local_size, alpha, beta, k);
|
|
}
|
|
|
|
// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s
|