virtualx-engine/drivers/d3d12/rendering_device_d3d12.cpp
2023-12-12 19:10:04 +01:00

9480 lines
388 KiB
C++

/**************************************************************************/
/* rendering_device_d3d12.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "rendering_device_d3d12.h"
#include "core/config/project_settings.h"
#include "core/io/compression.h"
#include "core/io/file_access.h"
#include "core/io/marshalls.h"
#include "core/object/worker_thread_pool.h"
#include "core/os/os.h"
#include "core/templates/hashfuncs.h"
#include "d3d12_godot_nir_bridge.h"
#include "modules/regex/regex.h"
#include "thirdparty/zlib/zlib.h"
#ifdef DEV_ENABLED
#include "core/crypto/hashing_context.h"
#endif
// No point in fighting warnings in Mesa.
#pragma warning(push)
#pragma warning(disable : 4200) // "nonstandard extension used: zero-sized array in struct/union".
#pragma warning(disable : 4806) // "'&': unsafe operation: no value of type 'bool' promoted to type 'uint32_t' can equal the given constant".
#include "dxil_validator.h"
#include "nir_spirv.h"
#include "nir_to_dxil.h"
#include "spirv_to_dxil.h"
extern "C" {
#include "dxil_spirv_nir.h"
}
#pragma warning(pop)
#define ALIGN(m_number, m_alignment) ((((m_number) + ((m_alignment)-1)) / (m_alignment)) * (m_alignment))
#ifdef USE_SMALL_ALLOCS_POOL
static const uint32_t SMALL_ALLOCATION_MAX_SIZE = 4096;
#endif
static const D3D12_RANGE VOID_RANGE = {};
static const uint32_t MAX_VULKAN_SETS = 16;
static const uint32_t ROOT_CONSTANT_SPACE = MAX_VULKAN_SETS + 1;
static const uint32_t ROOT_CONSTANT_REGISTER = 0;
static const uint32_t RUNTIME_DATA_SPACE = MAX_VULKAN_SETS + 2;
static const uint32_t RUNTIME_DATA_REGISTER = 0;
static const uint32_t MAX_IMAGE_FORMAT_PLANES = 2;
#ifdef DEV_ENABLED
//#define DEBUG_COUNT_BARRIERS
#endif
RenderingDeviceD3D12::Buffer *RenderingDeviceD3D12::_get_buffer_from_owner(RID p_buffer) {
Buffer *buffer = nullptr;
if (vertex_buffer_owner.owns(p_buffer)) {
buffer = vertex_buffer_owner.get_or_null(p_buffer);
} else if (index_buffer_owner.owns(p_buffer)) {
buffer = index_buffer_owner.get_or_null(p_buffer);
} else if (uniform_buffer_owner.owns(p_buffer)) {
buffer = uniform_buffer_owner.get_or_null(p_buffer);
} else if (texture_buffer_owner.owns(p_buffer)) {
buffer = &texture_buffer_owner.get_or_null(p_buffer)->buffer;
} else if (storage_buffer_owner.owns(p_buffer)) {
buffer = storage_buffer_owner.get_or_null(p_buffer);
}
return buffer;
}
void RenderingDeviceD3D12::_add_dependency(RID p_id, RID p_depends_on) {
if (!dependency_map.has(p_depends_on)) {
dependency_map[p_depends_on] = HashSet<RID>();
}
dependency_map[p_depends_on].insert(p_id);
if (!reverse_dependency_map.has(p_id)) {
reverse_dependency_map[p_id] = HashSet<RID>();
}
reverse_dependency_map[p_id].insert(p_depends_on);
}
void RenderingDeviceD3D12::_free_dependencies(RID p_id) {
// Direct dependencies must be freed.
HashMap<RID, HashSet<RID>>::Iterator E = dependency_map.find(p_id);
if (E) {
while (E->value.size()) {
free(*E->value.begin());
}
dependency_map.remove(E);
}
// Reverse dependencies must be unreferenced.
E = reverse_dependency_map.find(p_id);
if (E) {
for (const RID &F : E->value) {
HashMap<RID, HashSet<RID>>::Iterator G = dependency_map.find(F);
ERR_CONTINUE(!G);
ERR_CONTINUE(!G->value.has(p_id));
G->value.erase(p_id);
}
reverse_dependency_map.remove(E);
}
}
// NOTE: RD's packed format names are reversed in relation to DXGI's; e.g.:.
// - DATA_FORMAT_A8B8G8R8_UNORM_PACK32 -> DXGI_FORMAT_R8G8B8A8_UNORM (packed; note ABGR vs. RGBA).
// - DATA_FORMAT_B8G8R8A8_UNORM -> DXGI_FORMAT_B8G8R8A8_UNORM (not packed; note BGRA order matches).
// TODO: Add YUV formats properly, which would require better support for planes in the RD API.
const RenderingDeviceD3D12::D3D12Format RenderingDeviceD3D12::d3d12_formats[RenderingDevice::DATA_FORMAT_MAX] = {
/* DATA_FORMAT_R4G4_UNORM_PACK8 */ {},
/* DATA_FORMAT_R4G4B4A4_UNORM_PACK16 */ { DXGI_FORMAT_B4G4R4A4_UNORM, DXGI_FORMAT_B4G4R4A4_UNORM, D3D12_ENCODE_SHADER_4_COMPONENT_MAPPING(1, 2, 3, 0) },
/* DATA_FORMAT_B4G4R4A4_UNORM_PACK16 */ { DXGI_FORMAT_B4G4R4A4_UNORM, DXGI_FORMAT_B4G4R4A4_UNORM, D3D12_ENCODE_SHADER_4_COMPONENT_MAPPING(3, 2, 1, 0) },
/* DATA_FORMAT_R5G6B5_UNORM_PACK16 */ { DXGI_FORMAT_B5G6R5_UNORM, DXGI_FORMAT_B5G6R5_UNORM },
/* DATA_FORMAT_B5G6R5_UNORM_PACK16 */ { DXGI_FORMAT_B5G6R5_UNORM, DXGI_FORMAT_B5G6R5_UNORM, D3D12_ENCODE_SHADER_4_COMPONENT_MAPPING(2, 1, 0, 3) },
/* DATA_FORMAT_R5G5B5A1_UNORM_PACK16 */ { DXGI_FORMAT_B5G6R5_UNORM, DXGI_FORMAT_B5G5R5A1_UNORM, D3D12_ENCODE_SHADER_4_COMPONENT_MAPPING(1, 2, 3, 0) },
/* DATA_FORMAT_B5G5R5A1_UNORM_PACK16 */ { DXGI_FORMAT_B5G6R5_UNORM, DXGI_FORMAT_B5G5R5A1_UNORM, D3D12_ENCODE_SHADER_4_COMPONENT_MAPPING(3, 2, 1, 0) },
/* DATA_FORMAT_A1R5G5B5_UNORM_PACK16 */ { DXGI_FORMAT_B5G6R5_UNORM, DXGI_FORMAT_B5G5R5A1_UNORM },
/* DATA_FORMAT_R8_UNORM */ { DXGI_FORMAT_R8_TYPELESS, DXGI_FORMAT_R8_UNORM },
/* DATA_FORMAT_R8_SNORM */ { DXGI_FORMAT_R8_TYPELESS, DXGI_FORMAT_R8_SNORM },
/* DATA_FORMAT_R8_USCALED */ { DXGI_FORMAT_R8_TYPELESS, DXGI_FORMAT_R8_UINT },
/* DATA_FORMAT_R8_SSCALED */ { DXGI_FORMAT_R8_TYPELESS, DXGI_FORMAT_R8_SINT },
/* DATA_FORMAT_R8_UINT */ { DXGI_FORMAT_R8_TYPELESS, DXGI_FORMAT_R8_UINT },
/* DATA_FORMAT_R8_SINT */ { DXGI_FORMAT_R8_TYPELESS, DXGI_FORMAT_R8_SINT },
/* DATA_FORMAT_R8_SRGB */ {},
/* DATA_FORMAT_R8G8_UNORM */ { DXGI_FORMAT_R8G8_TYPELESS, DXGI_FORMAT_R8G8_UNORM },
/* DATA_FORMAT_R8G8_SNORM */ { DXGI_FORMAT_R8G8_TYPELESS, DXGI_FORMAT_R8G8_SNORM },
/* DATA_FORMAT_R8G8_USCALED */ { DXGI_FORMAT_R8G8_TYPELESS, DXGI_FORMAT_R8G8_UINT },
/* DATA_FORMAT_R8G8_SSCALED */ { DXGI_FORMAT_R8G8_TYPELESS, DXGI_FORMAT_R8G8_SINT },
/* DATA_FORMAT_R8G8_UINT */ { DXGI_FORMAT_R8G8_TYPELESS, DXGI_FORMAT_R8G8_UINT },
/* DATA_FORMAT_R8G8_SINT */ { DXGI_FORMAT_R8G8_TYPELESS, DXGI_FORMAT_R8G8_SINT },
/* DATA_FORMAT_R8G8_SRGB */ {},
/* DATA_FORMAT_R8G8B8_UNORM */ {},
/* DATA_FORMAT_R8G8B8_SNORM */ {},
/* DATA_FORMAT_R8G8B8_USCALED */ {},
/* DATA_FORMAT_R8G8B8_SSCALED */ {},
/* DATA_FORMAT_R8G8B8_UINT */ {},
/* DATA_FORMAT_R8G8B8_SINT */ {},
/* DATA_FORMAT_R8G8B8_SRGB */ {},
/* DATA_FORMAT_B8G8R8_UNORM */ {},
/* DATA_FORMAT_B8G8R8_SNORM */ {},
/* DATA_FORMAT_B8G8R8_USCALED */ {},
/* DATA_FORMAT_B8G8R8_SSCALED */ {},
/* DATA_FORMAT_B8G8R8_UINT */ {},
/* DATA_FORMAT_B8G8R8_SINT */ {},
/* DATA_FORMAT_B8G8R8_SRGB */ {},
/* DATA_FORMAT_R8G8B8A8_UNORM */ { DXGI_FORMAT_R8G8B8A8_TYPELESS, DXGI_FORMAT_R8G8B8A8_UNORM },
/* DATA_FORMAT_R8G8B8A8_SNORM */ { DXGI_FORMAT_R8G8B8A8_TYPELESS, DXGI_FORMAT_R8G8B8A8_SNORM },
/* DATA_FORMAT_R8G8B8A8_USCALED */ { DXGI_FORMAT_R8G8B8A8_TYPELESS, DXGI_FORMAT_R8G8B8A8_UINT },
/* DATA_FORMAT_R8G8B8A8_SSCALED */ { DXGI_FORMAT_R8G8B8A8_TYPELESS, DXGI_FORMAT_R8G8B8A8_SINT },
/* DATA_FORMAT_R8G8B8A8_UINT */ { DXGI_FORMAT_R8G8B8A8_TYPELESS, DXGI_FORMAT_R8G8B8A8_UINT },
/* DATA_FORMAT_R8G8B8A8_SINT */ { DXGI_FORMAT_R8G8B8A8_TYPELESS, DXGI_FORMAT_R8G8B8A8_SINT },
/* DATA_FORMAT_R8G8B8A8_SRGB */ { DXGI_FORMAT_R8G8B8A8_TYPELESS, DXGI_FORMAT_R8G8B8A8_UNORM_SRGB },
/* DATA_FORMAT_B8G8R8A8_UNORM */ { DXGI_FORMAT_B8G8R8A8_TYPELESS, DXGI_FORMAT_B8G8R8A8_UNORM },
/* DATA_FORMAT_B8G8R8A8_SNORM */ { DXGI_FORMAT_R8G8B8A8_TYPELESS, DXGI_FORMAT_R8G8B8A8_SNORM },
/* DATA_FORMAT_B8G8R8A8_USCALED */ { DXGI_FORMAT_R8G8B8A8_TYPELESS, DXGI_FORMAT_R8G8B8A8_UINT },
/* DATA_FORMAT_B8G8R8A8_SSCALED */ { DXGI_FORMAT_R8G8B8A8_TYPELESS, DXGI_FORMAT_R8G8B8A8_SINT },
/* DATA_FORMAT_B8G8R8A8_UINT */ { DXGI_FORMAT_R8G8B8A8_TYPELESS, DXGI_FORMAT_R8G8B8A8_UINT },
/* DATA_FORMAT_B8G8R8A8_SINT */ { DXGI_FORMAT_R8G8B8A8_TYPELESS, DXGI_FORMAT_R8G8B8A8_SINT },
/* DATA_FORMAT_B8G8R8A8_SRGB */ { DXGI_FORMAT_B8G8R8A8_TYPELESS, DXGI_FORMAT_R8G8B8A8_UNORM_SRGB },
/* DATA_FORMAT_A8B8G8R8_UNORM_PACK32 */ { DXGI_FORMAT_R8G8B8A8_TYPELESS, DXGI_FORMAT_R8G8B8A8_UNORM },
/* DATA_FORMAT_A8B8G8R8_SNORM_PACK32 */ { DXGI_FORMAT_R8G8B8A8_TYPELESS, DXGI_FORMAT_R8G8B8A8_SNORM },
/* DATA_FORMAT_A8B8G8R8_USCALED_PACK32 */ { DXGI_FORMAT_R8G8B8A8_TYPELESS, DXGI_FORMAT_R8G8B8A8_UINT },
/* DATA_FORMAT_A8B8G8R8_SSCALED_PACK32 */ { DXGI_FORMAT_R8G8B8A8_TYPELESS, DXGI_FORMAT_R8G8B8A8_SINT },
/* DATA_FORMAT_A8B8G8R8_UINT_PACK32 */ { DXGI_FORMAT_R8G8B8A8_TYPELESS, DXGI_FORMAT_R8G8B8A8_UINT },
/* DATA_FORMAT_A8B8G8R8_SINT_PACK32 */ { DXGI_FORMAT_R8G8B8A8_TYPELESS, DXGI_FORMAT_R8G8B8A8_SINT },
/* DATA_FORMAT_A8B8G8R8_SRGB_PACK32 */ { DXGI_FORMAT_B8G8R8A8_TYPELESS, DXGI_FORMAT_B8G8R8A8_UNORM_SRGB },
/* DATA_FORMAT_A2R10G10B10_UNORM_PACK32 */ { DXGI_FORMAT_R10G10B10A2_TYPELESS, DXGI_FORMAT_R10G10B10A2_UNORM, D3D12_ENCODE_SHADER_4_COMPONENT_MAPPING(2, 1, 0, 3) },
/* DATA_FORMAT_A2R10G10B10_SNORM_PACK32 */ {},
/* DATA_FORMAT_A2R10G10B10_USCALED_PACK32 */ { DXGI_FORMAT_R10G10B10A2_TYPELESS, DXGI_FORMAT_R10G10B10A2_UINT, D3D12_ENCODE_SHADER_4_COMPONENT_MAPPING(2, 1, 0, 3) },
/* DATA_FORMAT_A2R10G10B10_SSCALED_PACK32 */ {},
/* DATA_FORMAT_A2R10G10B10_UINT_PACK32 */ { DXGI_FORMAT_R10G10B10A2_TYPELESS, DXGI_FORMAT_R10G10B10A2_UINT, D3D12_ENCODE_SHADER_4_COMPONENT_MAPPING(2, 1, 0, 3) },
/* DATA_FORMAT_A2R10G10B10_SINT_PACK32 */ {},
/* DATA_FORMAT_A2B10G10R10_UNORM_PACK32 */ { DXGI_FORMAT_R10G10B10A2_TYPELESS, DXGI_FORMAT_R10G10B10A2_UNORM },
/* DATA_FORMAT_A2B10G10R10_SNORM_PACK32 */ {},
/* DATA_FORMAT_A2B10G10R10_USCALED_PACK32 */ { DXGI_FORMAT_R10G10B10A2_TYPELESS, DXGI_FORMAT_R10G10B10A2_UINT },
/* DATA_FORMAT_A2B10G10R10_SSCALED_PACK32 */ {},
/* DATA_FORMAT_A2B10G10R10_UINT_PACK32 */ { DXGI_FORMAT_R10G10B10A2_TYPELESS, DXGI_FORMAT_R10G10B10A2_UINT },
/* DATA_FORMAT_A2B10G10R10_SINT_PACK32 */ {},
/* DATA_FORMAT_R16_UNORM */ { DXGI_FORMAT_R16_TYPELESS, DXGI_FORMAT_R16_UNORM },
/* DATA_FORMAT_R16_SNORM */ { DXGI_FORMAT_R16_TYPELESS, DXGI_FORMAT_R16_SNORM },
/* DATA_FORMAT_R16_USCALED */ { DXGI_FORMAT_R16_TYPELESS, DXGI_FORMAT_R16_UINT },
/* DATA_FORMAT_R16_SSCALED */ { DXGI_FORMAT_R16_TYPELESS, DXGI_FORMAT_R16_SINT },
/* DATA_FORMAT_R16_UINT */ { DXGI_FORMAT_R16_TYPELESS, DXGI_FORMAT_R16_UINT },
/* DATA_FORMAT_R16_SINT */ { DXGI_FORMAT_R16_TYPELESS, DXGI_FORMAT_R16_SINT },
/* DATA_FORMAT_R16_SFLOAT */ { DXGI_FORMAT_R16_TYPELESS, DXGI_FORMAT_R16_FLOAT },
/* DATA_FORMAT_R16G16_UNORM */ { DXGI_FORMAT_R16G16_TYPELESS, DXGI_FORMAT_R16G16_UNORM },
/* DATA_FORMAT_R16G16_SNORM */ { DXGI_FORMAT_R16G16_TYPELESS, DXGI_FORMAT_R16G16_SNORM },
/* DATA_FORMAT_R16G16_USCALED */ { DXGI_FORMAT_R16G16_TYPELESS, DXGI_FORMAT_R16G16_UINT },
/* DATA_FORMAT_R16G16_SSCALED */ { DXGI_FORMAT_R16G16_TYPELESS, DXGI_FORMAT_R16G16_SINT },
/* DATA_FORMAT_R16G16_UINT */ { DXGI_FORMAT_R16G16_TYPELESS, DXGI_FORMAT_R16G16_UINT },
/* DATA_FORMAT_R16G16_SINT */ { DXGI_FORMAT_R16G16_TYPELESS, DXGI_FORMAT_R16G16_SINT },
/* DATA_FORMAT_R16G16_SFLOAT */ { DXGI_FORMAT_R16G16_TYPELESS, DXGI_FORMAT_R16G16_FLOAT },
/* DATA_FORMAT_R16G16B16_UNORM */ {},
/* DATA_FORMAT_R16G16B16_SNORM */ {},
/* DATA_FORMAT_R16G16B16_USCALED */ {},
/* DATA_FORMAT_R16G16B16_SSCALED */ {},
/* DATA_FORMAT_R16G16B16_UINT */ {},
/* DATA_FORMAT_R16G16B16_SINT */ {},
/* DATA_FORMAT_R16G16B16_SFLOAT */ {},
/* DATA_FORMAT_R16G16B16A16_UNORM */ { DXGI_FORMAT_R16G16B16A16_TYPELESS, DXGI_FORMAT_R16G16B16A16_UNORM },
/* DATA_FORMAT_R16G16B16A16_SNORM */ { DXGI_FORMAT_R16G16B16A16_TYPELESS, DXGI_FORMAT_R16G16B16A16_SNORM },
/* DATA_FORMAT_R16G16B16A16_USCALED */ { DXGI_FORMAT_R16G16B16A16_TYPELESS, DXGI_FORMAT_R16G16B16A16_UINT },
/* DATA_FORMAT_R16G16B16A16_SSCALED */ { DXGI_FORMAT_R16G16B16A16_TYPELESS, DXGI_FORMAT_R16G16B16A16_SINT },
/* DATA_FORMAT_R16G16B16A16_UINT */ { DXGI_FORMAT_R16G16B16A16_TYPELESS, DXGI_FORMAT_R16G16B16A16_UINT },
/* DATA_FORMAT_R16G16B16A16_SINT */ { DXGI_FORMAT_R16G16B16A16_TYPELESS, DXGI_FORMAT_R16G16B16A16_SINT },
/* DATA_FORMAT_R16G16B16A16_SFLOAT */ { DXGI_FORMAT_R16G16B16A16_TYPELESS, DXGI_FORMAT_R16G16B16A16_FLOAT },
/* DATA_FORMAT_R32_UINT */ { DXGI_FORMAT_R32_TYPELESS, DXGI_FORMAT_R32_UINT },
/* DATA_FORMAT_R32_SINT */ { DXGI_FORMAT_R32_TYPELESS, DXGI_FORMAT_R32_SINT },
/* DATA_FORMAT_R32_SFLOAT */ { DXGI_FORMAT_R32_TYPELESS, DXGI_FORMAT_R32_FLOAT },
/* DATA_FORMAT_R32G32_UINT */ { DXGI_FORMAT_R32G32_TYPELESS, DXGI_FORMAT_R32G32_UINT },
/* DATA_FORMAT_R32G32_SINT */ { DXGI_FORMAT_R32G32_TYPELESS, DXGI_FORMAT_R32G32_SINT },
/* DATA_FORMAT_R32G32_SFLOAT */ { DXGI_FORMAT_R32G32_TYPELESS, DXGI_FORMAT_R32G32_FLOAT },
/* DATA_FORMAT_R32G32B32_UINT */ { DXGI_FORMAT_R32G32B32_TYPELESS, DXGI_FORMAT_R32G32B32_UINT },
/* DATA_FORMAT_R32G32B32_SINT */ { DXGI_FORMAT_R32G32B32_TYPELESS, DXGI_FORMAT_R32G32B32_SINT },
/* DATA_FORMAT_R32G32B32_SFLOAT */ { DXGI_FORMAT_R32G32B32_TYPELESS, DXGI_FORMAT_R32G32B32_FLOAT },
/* DATA_FORMAT_R32G32B32A32_UINT */ { DXGI_FORMAT_R32G32B32A32_TYPELESS, DXGI_FORMAT_R32G32B32A32_UINT },
/* DATA_FORMAT_R32G32B32A32_SINT */ { DXGI_FORMAT_R32G32B32A32_TYPELESS, DXGI_FORMAT_R32G32B32A32_SINT },
/* DATA_FORMAT_R32G32B32A32_SFLOAT */ { DXGI_FORMAT_R32G32B32A32_TYPELESS, DXGI_FORMAT_R32G32B32A32_FLOAT },
/* DATA_FORMAT_R64_UINT */ {},
/* DATA_FORMAT_R64_SINT */ {},
/* DATA_FORMAT_R64_SFLOAT */ {},
/* DATA_FORMAT_R64G64_UINT */ {},
/* DATA_FORMAT_R64G64_SINT */ {},
/* DATA_FORMAT_R64G64_SFLOAT */ {},
/* DATA_FORMAT_R64G64B64_UINT */ {},
/* DATA_FORMAT_R64G64B64_SINT */ {},
/* DATA_FORMAT_R64G64B64_SFLOAT */ {},
/* DATA_FORMAT_R64G64B64A64_UINT */ {},
/* DATA_FORMAT_R64G64B64A64_SINT */ {},
/* DATA_FORMAT_R64G64B64A64_SFLOAT */ {},
/* DATA_FORMAT_B10G11R11_UFLOAT_PACK32 */ { DXGI_FORMAT_R11G11B10_FLOAT, DXGI_FORMAT_R11G11B10_FLOAT },
/* DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32 */ { DXGI_FORMAT_R9G9B9E5_SHAREDEXP, DXGI_FORMAT_R9G9B9E5_SHAREDEXP },
/* DATA_FORMAT_D16_UNORM */ { DXGI_FORMAT_R16_TYPELESS, DXGI_FORMAT_R16_UNORM, 0, DXGI_FORMAT_D16_UNORM },
/* DATA_FORMAT_X8_D24_UNORM_PACK32 */ { DXGI_FORMAT_R24G8_TYPELESS, DXGI_FORMAT_UNKNOWN, 0, DXGI_FORMAT_D24_UNORM_S8_UINT },
/* DATA_FORMAT_D32_SFLOAT */ { DXGI_FORMAT_R32_TYPELESS, DXGI_FORMAT_R32_FLOAT, D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING, DXGI_FORMAT_D32_FLOAT },
/* DATA_FORMAT_S8_UINT */ {},
/* DATA_FORMAT_D16_UNORM_S8_UINT */ {},
/* DATA_FORMAT_D24_UNORM_S8_UINT */ { DXGI_FORMAT_R24G8_TYPELESS, DXGI_FORMAT_UNKNOWN, 0, DXGI_FORMAT_D24_UNORM_S8_UINT },
/* DATA_FORMAT_D32_SFLOAT_S8_UINT */ { DXGI_FORMAT_R32G8X24_TYPELESS, DXGI_FORMAT_R32_FLOAT_X8X24_TYPELESS, D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING, DXGI_FORMAT_D32_FLOAT_S8X24_UINT },
/* DATA_FORMAT_BC1_RGB_UNORM_BLOCK */ { DXGI_FORMAT_BC1_TYPELESS, DXGI_FORMAT_BC1_UNORM, D3D12_ENCODE_SHADER_4_COMPONENT_MAPPING(0, 1, 2, D3D12_SHADER_COMPONENT_MAPPING_FORCE_VALUE_1) },
/* DATA_FORMAT_BC1_RGB_SRGB_BLOCK */ { DXGI_FORMAT_BC1_TYPELESS, DXGI_FORMAT_BC1_UNORM_SRGB, D3D12_ENCODE_SHADER_4_COMPONENT_MAPPING(0, 1, 2, D3D12_SHADER_COMPONENT_MAPPING_FORCE_VALUE_1) },
/* DATA_FORMAT_BC1_RGBA_UNORM_BLOCK */ { DXGI_FORMAT_BC1_TYPELESS, DXGI_FORMAT_BC1_UNORM },
/* DATA_FORMAT_BC1_RGBA_SRGB_BLOCK */ { DXGI_FORMAT_BC1_TYPELESS, DXGI_FORMAT_BC1_UNORM_SRGB },
/* DATA_FORMAT_BC2_UNORM_BLOCK */ { DXGI_FORMAT_BC2_TYPELESS, DXGI_FORMAT_BC2_UNORM },
/* DATA_FORMAT_BC2_SRGB_BLOCK */ { DXGI_FORMAT_BC2_TYPELESS, DXGI_FORMAT_BC2_UNORM_SRGB },
/* DATA_FORMAT_BC3_UNORM_BLOCK */ { DXGI_FORMAT_BC3_TYPELESS, DXGI_FORMAT_BC3_UNORM },
/* DATA_FORMAT_BC3_SRGB_BLOCK */ { DXGI_FORMAT_BC3_TYPELESS, DXGI_FORMAT_BC3_UNORM_SRGB },
/* DATA_FORMAT_BC4_UNORM_BLOCK */ { DXGI_FORMAT_BC4_TYPELESS, DXGI_FORMAT_BC4_UNORM },
/* DATA_FORMAT_BC4_SNORM_BLOCK */ { DXGI_FORMAT_BC4_TYPELESS, DXGI_FORMAT_BC4_SNORM },
/* DATA_FORMAT_BC5_UNORM_BLOCK */ { DXGI_FORMAT_BC5_TYPELESS, DXGI_FORMAT_BC5_UNORM },
/* DATA_FORMAT_BC5_SNORM_BLOCK */ { DXGI_FORMAT_BC5_TYPELESS, DXGI_FORMAT_BC5_SNORM },
/* DATA_FORMAT_BC6H_UFLOAT_BLOCK */ { DXGI_FORMAT_BC6H_TYPELESS, DXGI_FORMAT_BC6H_UF16 },
/* DATA_FORMAT_BC6H_SFLOAT_BLOCK */ { DXGI_FORMAT_BC6H_TYPELESS, DXGI_FORMAT_BC6H_SF16 },
/* DATA_FORMAT_BC7_UNORM_BLOCK */ { DXGI_FORMAT_BC7_TYPELESS, DXGI_FORMAT_BC7_UNORM },
/* DATA_FORMAT_BC7_SRGB_BLOCK */ { DXGI_FORMAT_BC7_TYPELESS, DXGI_FORMAT_BC7_UNORM_SRGB },
/* DATA_FORMAT_ETC2_R8G8B8_UNORM_BLOCK */ {},
/* DATA_FORMAT_ETC2_R8G8B8_SRGB_BLOCK */ {},
/* DATA_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK */ {},
/* DATA_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK */ {},
/* DATA_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK */ {},
/* DATA_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK */ {},
/* DATA_FORMAT_EAC_R11_UNORM_BLOCK */ {},
/* DATA_FORMAT_EAC_R11_SNORM_BLOCK */ {},
/* DATA_FORMAT_EAC_R11G11_UNORM_BLOCK */ {},
/* DATA_FORMAT_EAC_R11G11_SNORM_BLOCK */ {},
/* DATA_FORMAT_ASTC_4x4_UNORM_BLOCK */ {},
/* DATA_FORMAT_ASTC_4x4_SRGB_BLOCK */ {},
/* DATA_FORMAT_ASTC_5x4_UNORM_BLOCK */ {},
/* DATA_FORMAT_ASTC_5x4_SRGB_BLOCK */ {},
/* DATA_FORMAT_ASTC_5x5_UNORM_BLOCK */ {},
/* DATA_FORMAT_ASTC_5x5_SRGB_BLOCK */ {},
/* DATA_FORMAT_ASTC_6x5_UNORM_BLOCK */ {},
/* DATA_FORMAT_ASTC_6x5_SRGB_BLOCK */ {},
/* DATA_FORMAT_ASTC_6x6_UNORM_BLOCK */ {},
/* DATA_FORMAT_ASTC_6x6_SRGB_BLOCK */ {},
/* DATA_FORMAT_ASTC_8x5_UNORM_BLOCK */ {},
/* DATA_FORMAT_ASTC_8x5_SRGB_BLOCK */ {},
/* DATA_FORMAT_ASTC_8x6_UNORM_BLOCK */ {},
/* DATA_FORMAT_ASTC_8x6_SRGB_BLOCK */ {},
/* DATA_FORMAT_ASTC_8x8_UNORM_BLOCK */ {},
/* DATA_FORMAT_ASTC_8x8_SRGB_BLOCK */ {},
/* DATA_FORMAT_ASTC_10x5_UNORM_BLOCK */ {},
/* DATA_FORMAT_ASTC_10x5_SRGB_BLOCK */ {},
/* DATA_FORMAT_ASTC_10x6_UNORM_BLOCK */ {},
/* DATA_FORMAT_ASTC_10x6_SRGB_BLOCK */ {},
/* DATA_FORMAT_ASTC_10x8_UNORM_BLOCK */ {},
/* DATA_FORMAT_ASTC_10x8_SRGB_BLOCK */ {},
/* DATA_FORMAT_ASTC_10x10_UNORM_BLOCK */ {},
/* DATA_FORMAT_ASTC_10x10_SRGB_BLOCK */ {},
/* DATA_FORMAT_ASTC_12x10_UNORM_BLOCK */ {},
/* DATA_FORMAT_ASTC_12x10_SRGB_BLOCK */ {},
/* DATA_FORMAT_ASTC_12x12_UNORM_BLOCK */ {},
/* DATA_FORMAT_ASTC_12x12_SRGB_BLOCK */ {},
/* DATA_FORMAT_G8B8G8R8_422_UNORM */ {},
/* DATA_FORMAT_B8G8R8G8_422_UNORM */ {},
/* DATA_FORMAT_G8_B8_R8_3PLANE_420_UNORM */ {},
/* DATA_FORMAT_G8_B8R8_2PLANE_420_UNORM */ {},
/* DATA_FORMAT_G8_B8_R8_3PLANE_422_UNORM */ {},
/* DATA_FORMAT_G8_B8R8_2PLANE_422_UNORM */ {},
/* DATA_FORMAT_G8_B8_R8_3PLANE_444_UNORM */ {},
/* DATA_FORMAT_R10X6_UNORM_PACK16 */ {},
/* DATA_FORMAT_R10X6G10X6_UNORM_2PACK16 */ {},
/* DATA_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16 */ {},
/* DATA_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16 */ {},
/* DATA_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16 */ {},
/* DATA_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16 */ {},
/* DATA_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16 */ {},
/* DATA_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16 */ {},
/* DATA_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16 */ {},
/* DATA_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16 */ {},
/* DATA_FORMAT_R12X4_UNORM_PACK16 */ {},
/* DATA_FORMAT_R12X4G12X4_UNORM_2PACK16 */ {},
/* DATA_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16 */ {},
/* DATA_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16 */ {},
/* DATA_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16 */ {},
/* DATA_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16 */ {},
/* DATA_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16 */ {},
/* DATA_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16 */ {},
/* DATA_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16 */ {},
/* DATA_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16 */ {},
/* DATA_FORMAT_G16B16G16R16_422_UNORM */ {},
/* DATA_FORMAT_B16G16R16G16_422_UNORM */ {},
/* DATA_FORMAT_G16_B16_R16_3PLANE_420_UNORM */ {},
/* DATA_FORMAT_G16_B16R16_2PLANE_420_UNORM */ {},
/* DATA_FORMAT_G16_B16_R16_3PLANE_422_UNORM */ {},
/* DATA_FORMAT_G16_B16R16_2PLANE_422_UNORM */ {},
/* DATA_FORMAT_G16_B16_R16_3PLANE_444_UNORM */ {},
};
const char *RenderingDeviceD3D12::named_formats[RenderingDevice::DATA_FORMAT_MAX] = {
"R4G4_Unorm_Pack8",
"R4G4B4A4_Unorm_Pack16",
"B4G4R4A4_Unorm_Pack16",
"R5G6B5_Unorm_Pack16",
"B5G6R5_Unorm_Pack16",
"R5G5B5A1_Unorm_Pack16",
"B5G5R5A1_Unorm_Pack16",
"A1R5G5B5_Unorm_Pack16",
"R8_Unorm",
"R8_Snorm",
"R8_Uscaled",
"R8_Sscaled",
"R8_Uint",
"R8_Sint",
"R8_Srgb",
"R8G8_Unorm",
"R8G8_Snorm",
"R8G8_Uscaled",
"R8G8_Sscaled",
"R8G8_Uint",
"R8G8_Sint",
"R8G8_Srgb",
"R8G8B8_Unorm",
"R8G8B8_Snorm",
"R8G8B8_Uscaled",
"R8G8B8_Sscaled",
"R8G8B8_Uint",
"R8G8B8_Sint",
"R8G8B8_Srgb",
"B8G8R8_Unorm",
"B8G8R8_Snorm",
"B8G8R8_Uscaled",
"B8G8R8_Sscaled",
"B8G8R8_Uint",
"B8G8R8_Sint",
"B8G8R8_Srgb",
"R8G8B8A8_Unorm",
"R8G8B8A8_Snorm",
"R8G8B8A8_Uscaled",
"R8G8B8A8_Sscaled",
"R8G8B8A8_Uint",
"R8G8B8A8_Sint",
"R8G8B8A8_Srgb",
"B8G8R8A8_Unorm",
"B8G8R8A8_Snorm",
"B8G8R8A8_Uscaled",
"B8G8R8A8_Sscaled",
"B8G8R8A8_Uint",
"B8G8R8A8_Sint",
"B8G8R8A8_Srgb",
"A8B8G8R8_Unorm_Pack32",
"A8B8G8R8_Snorm_Pack32",
"A8B8G8R8_Uscaled_Pack32",
"A8B8G8R8_Sscaled_Pack32",
"A8B8G8R8_Uint_Pack32",
"A8B8G8R8_Sint_Pack32",
"A8B8G8R8_Srgb_Pack32",
"A2R10G10B10_Unorm_Pack32",
"A2R10G10B10_Snorm_Pack32",
"A2R10G10B10_Uscaled_Pack32",
"A2R10G10B10_Sscaled_Pack32",
"A2R10G10B10_Uint_Pack32",
"A2R10G10B10_Sint_Pack32",
"A2B10G10R10_Unorm_Pack32",
"A2B10G10R10_Snorm_Pack32",
"A2B10G10R10_Uscaled_Pack32",
"A2B10G10R10_Sscaled_Pack32",
"A2B10G10R10_Uint_Pack32",
"A2B10G10R10_Sint_Pack32",
"R16_Unorm",
"R16_Snorm",
"R16_Uscaled",
"R16_Sscaled",
"R16_Uint",
"R16_Sint",
"R16_Sfloat",
"R16G16_Unorm",
"R16G16_Snorm",
"R16G16_Uscaled",
"R16G16_Sscaled",
"R16G16_Uint",
"R16G16_Sint",
"R16G16_Sfloat",
"R16G16B16_Unorm",
"R16G16B16_Snorm",
"R16G16B16_Uscaled",
"R16G16B16_Sscaled",
"R16G16B16_Uint",
"R16G16B16_Sint",
"R16G16B16_Sfloat",
"R16G16B16A16_Unorm",
"R16G16B16A16_Snorm",
"R16G16B16A16_Uscaled",
"R16G16B16A16_Sscaled",
"R16G16B16A16_Uint",
"R16G16B16A16_Sint",
"R16G16B16A16_Sfloat",
"R32_Uint",
"R32_Sint",
"R32_Sfloat",
"R32G32_Uint",
"R32G32_Sint",
"R32G32_Sfloat",
"R32G32B32_Uint",
"R32G32B32_Sint",
"R32G32B32_Sfloat",
"R32G32B32A32_Uint",
"R32G32B32A32_Sint",
"R32G32B32A32_Sfloat",
"R64_Uint",
"R64_Sint",
"R64_Sfloat",
"R64G64_Uint",
"R64G64_Sint",
"R64G64_Sfloat",
"R64G64B64_Uint",
"R64G64B64_Sint",
"R64G64B64_Sfloat",
"R64G64B64A64_Uint",
"R64G64B64A64_Sint",
"R64G64B64A64_Sfloat",
"B10G11R11_Ufloat_Pack32",
"E5B9G9R9_Ufloat_Pack32",
"D16_Unorm",
"X8_D24_Unorm_Pack32",
"D32_Sfloat",
"S8_Uint",
"D16_Unorm_S8_Uint",
"D24_Unorm_S8_Uint",
"D32_Sfloat_S8_Uint",
"Bc1_Rgb_Unorm_Block",
"Bc1_Rgb_Srgb_Block",
"Bc1_Rgba_Unorm_Block",
"Bc1_Rgba_Srgb_Block",
"Bc2_Unorm_Block",
"Bc2_Srgb_Block",
"Bc3_Unorm_Block",
"Bc3_Srgb_Block",
"Bc4_Unorm_Block",
"Bc4_Snorm_Block",
"Bc5_Unorm_Block",
"Bc5_Snorm_Block",
"Bc6H_Ufloat_Block",
"Bc6H_Sfloat_Block",
"Bc7_Unorm_Block",
"Bc7_Srgb_Block",
"Etc2_R8G8B8_Unorm_Block",
"Etc2_R8G8B8_Srgb_Block",
"Etc2_R8G8B8A1_Unorm_Block",
"Etc2_R8G8B8A1_Srgb_Block",
"Etc2_R8G8B8A8_Unorm_Block",
"Etc2_R8G8B8A8_Srgb_Block",
"Eac_R11_Unorm_Block",
"Eac_R11_Snorm_Block",
"Eac_R11G11_Unorm_Block",
"Eac_R11G11_Snorm_Block",
"Astc_4X4_Unorm_Block",
"Astc_4X4_Srgb_Block",
"Astc_5X4_Unorm_Block",
"Astc_5X4_Srgb_Block",
"Astc_5X5_Unorm_Block",
"Astc_5X5_Srgb_Block",
"Astc_6X5_Unorm_Block",
"Astc_6X5_Srgb_Block",
"Astc_6X6_Unorm_Block",
"Astc_6X6_Srgb_Block",
"Astc_8X5_Unorm_Block",
"Astc_8X5_Srgb_Block",
"Astc_8X6_Unorm_Block",
"Astc_8X6_Srgb_Block",
"Astc_8X8_Unorm_Block",
"Astc_8X8_Srgb_Block",
"Astc_10X5_Unorm_Block",
"Astc_10X5_Srgb_Block",
"Astc_10X6_Unorm_Block",
"Astc_10X6_Srgb_Block",
"Astc_10X8_Unorm_Block",
"Astc_10X8_Srgb_Block",
"Astc_10X10_Unorm_Block",
"Astc_10X10_Srgb_Block",
"Astc_12X10_Unorm_Block",
"Astc_12X10_Srgb_Block",
"Astc_12X12_Unorm_Block",
"Astc_12X12_Srgb_Block",
"G8B8G8R8_422_Unorm",
"B8G8R8G8_422_Unorm",
"G8_B8_R8_3Plane_420_Unorm",
"G8_B8R8_2Plane_420_Unorm",
"G8_B8_R8_3Plane_422_Unorm",
"G8_B8R8_2Plane_422_Unorm",
"G8_B8_R8_3Plane_444_Unorm",
"R10X6_Unorm_Pack16",
"R10X6G10X6_Unorm_2Pack16",
"R10X6G10X6B10X6A10X6_Unorm_4Pack16",
"G10X6B10X6G10X6R10X6_422_Unorm_4Pack16",
"B10X6G10X6R10X6G10X6_422_Unorm_4Pack16",
"G10X6_B10X6_R10X6_3Plane_420_Unorm_3Pack16",
"G10X6_B10X6R10X6_2Plane_420_Unorm_3Pack16",
"G10X6_B10X6_R10X6_3Plane_422_Unorm_3Pack16",
"G10X6_B10X6R10X6_2Plane_422_Unorm_3Pack16",
"G10X6_B10X6_R10X6_3Plane_444_Unorm_3Pack16",
"R12X4_Unorm_Pack16",
"R12X4G12X4_Unorm_2Pack16",
"R12X4G12X4B12X4A12X4_Unorm_4Pack16",
"G12X4B12X4G12X4R12X4_422_Unorm_4Pack16",
"B12X4G12X4R12X4G12X4_422_Unorm_4Pack16",
"G12X4_B12X4_R12X4_3Plane_420_Unorm_3Pack16",
"G12X4_B12X4R12X4_2Plane_420_Unorm_3Pack16",
"G12X4_B12X4_R12X4_3Plane_422_Unorm_3Pack16",
"G12X4_B12X4R12X4_2Plane_422_Unorm_3Pack16",
"G12X4_B12X4_R12X4_3Plane_444_Unorm_3Pack16",
"G16B16G16R16_422_Unorm",
"B16G16R16G16_422_Unorm",
"G16_B16_R16_3Plane_420_Unorm",
"G16_B16R16_2Plane_420_Unorm",
"G16_B16_R16_3Plane_422_Unorm",
"G16_B16R16_2Plane_422_Unorm",
"G16_B16_R16_3Plane_444_Unorm",
};
int RenderingDeviceD3D12::get_format_vertex_size(DataFormat p_format) {
switch (p_format) {
case DATA_FORMAT_R8_UNORM:
case DATA_FORMAT_R8_SNORM:
case DATA_FORMAT_R8_UINT:
case DATA_FORMAT_R8_SINT:
case DATA_FORMAT_R8G8_UNORM:
case DATA_FORMAT_R8G8_SNORM:
case DATA_FORMAT_R8G8_UINT:
case DATA_FORMAT_R8G8_SINT:
case DATA_FORMAT_R8G8B8_UNORM:
case DATA_FORMAT_R8G8B8_SNORM:
case DATA_FORMAT_R8G8B8_UINT:
case DATA_FORMAT_R8G8B8_SINT:
case DATA_FORMAT_B8G8R8_UNORM:
case DATA_FORMAT_B8G8R8_SNORM:
case DATA_FORMAT_B8G8R8_UINT:
case DATA_FORMAT_B8G8R8_SINT:
case DATA_FORMAT_R8G8B8A8_UNORM:
case DATA_FORMAT_R8G8B8A8_SNORM:
case DATA_FORMAT_R8G8B8A8_UINT:
case DATA_FORMAT_R8G8B8A8_SINT:
case DATA_FORMAT_B8G8R8A8_UNORM:
case DATA_FORMAT_B8G8R8A8_SNORM:
case DATA_FORMAT_B8G8R8A8_UINT:
case DATA_FORMAT_B8G8R8A8_SINT:
case DATA_FORMAT_A2B10G10R10_UNORM_PACK32:
return 4;
case DATA_FORMAT_R16_UNORM:
case DATA_FORMAT_R16_SNORM:
case DATA_FORMAT_R16_UINT:
case DATA_FORMAT_R16_SINT:
case DATA_FORMAT_R16_SFLOAT:
return 4;
case DATA_FORMAT_R16G16_UNORM:
case DATA_FORMAT_R16G16_SNORM:
case DATA_FORMAT_R16G16_UINT:
case DATA_FORMAT_R16G16_SINT:
case DATA_FORMAT_R16G16_SFLOAT:
return 4;
case DATA_FORMAT_R16G16B16_UNORM:
case DATA_FORMAT_R16G16B16_SNORM:
case DATA_FORMAT_R16G16B16_UINT:
case DATA_FORMAT_R16G16B16_SINT:
case DATA_FORMAT_R16G16B16_SFLOAT:
return 8;
case DATA_FORMAT_R16G16B16A16_UNORM:
case DATA_FORMAT_R16G16B16A16_SNORM:
case DATA_FORMAT_R16G16B16A16_UINT:
case DATA_FORMAT_R16G16B16A16_SINT:
case DATA_FORMAT_R16G16B16A16_SFLOAT:
return 8;
case DATA_FORMAT_R32_UINT:
case DATA_FORMAT_R32_SINT:
case DATA_FORMAT_R32_SFLOAT:
return 4;
case DATA_FORMAT_R32G32_UINT:
case DATA_FORMAT_R32G32_SINT:
case DATA_FORMAT_R32G32_SFLOAT:
return 8;
case DATA_FORMAT_R32G32B32_UINT:
case DATA_FORMAT_R32G32B32_SINT:
case DATA_FORMAT_R32G32B32_SFLOAT:
return 12;
case DATA_FORMAT_R32G32B32A32_UINT:
case DATA_FORMAT_R32G32B32A32_SINT:
case DATA_FORMAT_R32G32B32A32_SFLOAT:
return 16;
case DATA_FORMAT_R64_UINT:
case DATA_FORMAT_R64_SINT:
case DATA_FORMAT_R64_SFLOAT:
return 8;
case DATA_FORMAT_R64G64_UINT:
case DATA_FORMAT_R64G64_SINT:
case DATA_FORMAT_R64G64_SFLOAT:
return 16;
case DATA_FORMAT_R64G64B64_UINT:
case DATA_FORMAT_R64G64B64_SINT:
case DATA_FORMAT_R64G64B64_SFLOAT:
return 24;
case DATA_FORMAT_R64G64B64A64_UINT:
case DATA_FORMAT_R64G64B64A64_SINT:
case DATA_FORMAT_R64G64B64A64_SFLOAT:
return 32;
default:
return 0;
}
}
uint32_t RenderingDeviceD3D12::get_image_format_pixel_size(DataFormat p_format) {
switch (p_format) {
case DATA_FORMAT_R4G4_UNORM_PACK8:
return 1;
case DATA_FORMAT_R4G4B4A4_UNORM_PACK16:
case DATA_FORMAT_B4G4R4A4_UNORM_PACK16:
case DATA_FORMAT_R5G6B5_UNORM_PACK16:
case DATA_FORMAT_B5G6R5_UNORM_PACK16:
case DATA_FORMAT_R5G5B5A1_UNORM_PACK16:
case DATA_FORMAT_B5G5R5A1_UNORM_PACK16:
case DATA_FORMAT_A1R5G5B5_UNORM_PACK16:
return 2;
case DATA_FORMAT_R8_UNORM:
case DATA_FORMAT_R8_SNORM:
case DATA_FORMAT_R8_USCALED:
case DATA_FORMAT_R8_SSCALED:
case DATA_FORMAT_R8_UINT:
case DATA_FORMAT_R8_SINT:
case DATA_FORMAT_R8_SRGB:
return 1;
case DATA_FORMAT_R8G8_UNORM:
case DATA_FORMAT_R8G8_SNORM:
case DATA_FORMAT_R8G8_USCALED:
case DATA_FORMAT_R8G8_SSCALED:
case DATA_FORMAT_R8G8_UINT:
case DATA_FORMAT_R8G8_SINT:
case DATA_FORMAT_R8G8_SRGB:
return 2;
case DATA_FORMAT_R8G8B8_UNORM:
case DATA_FORMAT_R8G8B8_SNORM:
case DATA_FORMAT_R8G8B8_USCALED:
case DATA_FORMAT_R8G8B8_SSCALED:
case DATA_FORMAT_R8G8B8_UINT:
case DATA_FORMAT_R8G8B8_SINT:
case DATA_FORMAT_R8G8B8_SRGB:
case DATA_FORMAT_B8G8R8_UNORM:
case DATA_FORMAT_B8G8R8_SNORM:
case DATA_FORMAT_B8G8R8_USCALED:
case DATA_FORMAT_B8G8R8_SSCALED:
case DATA_FORMAT_B8G8R8_UINT:
case DATA_FORMAT_B8G8R8_SINT:
case DATA_FORMAT_B8G8R8_SRGB:
return 3;
case DATA_FORMAT_R8G8B8A8_UNORM:
case DATA_FORMAT_R8G8B8A8_SNORM:
case DATA_FORMAT_R8G8B8A8_USCALED:
case DATA_FORMAT_R8G8B8A8_SSCALED:
case DATA_FORMAT_R8G8B8A8_UINT:
case DATA_FORMAT_R8G8B8A8_SINT:
case DATA_FORMAT_R8G8B8A8_SRGB:
case DATA_FORMAT_B8G8R8A8_UNORM:
case DATA_FORMAT_B8G8R8A8_SNORM:
case DATA_FORMAT_B8G8R8A8_USCALED:
case DATA_FORMAT_B8G8R8A8_SSCALED:
case DATA_FORMAT_B8G8R8A8_UINT:
case DATA_FORMAT_B8G8R8A8_SINT:
case DATA_FORMAT_B8G8R8A8_SRGB:
return 4;
case DATA_FORMAT_A8B8G8R8_UNORM_PACK32:
case DATA_FORMAT_A8B8G8R8_SNORM_PACK32:
case DATA_FORMAT_A8B8G8R8_USCALED_PACK32:
case DATA_FORMAT_A8B8G8R8_SSCALED_PACK32:
case DATA_FORMAT_A8B8G8R8_UINT_PACK32:
case DATA_FORMAT_A8B8G8R8_SINT_PACK32:
case DATA_FORMAT_A8B8G8R8_SRGB_PACK32:
case DATA_FORMAT_A2R10G10B10_UNORM_PACK32:
case DATA_FORMAT_A2R10G10B10_SNORM_PACK32:
case DATA_FORMAT_A2R10G10B10_USCALED_PACK32:
case DATA_FORMAT_A2R10G10B10_SSCALED_PACK32:
case DATA_FORMAT_A2R10G10B10_UINT_PACK32:
case DATA_FORMAT_A2R10G10B10_SINT_PACK32:
case DATA_FORMAT_A2B10G10R10_UNORM_PACK32:
case DATA_FORMAT_A2B10G10R10_SNORM_PACK32:
case DATA_FORMAT_A2B10G10R10_USCALED_PACK32:
case DATA_FORMAT_A2B10G10R10_SSCALED_PACK32:
case DATA_FORMAT_A2B10G10R10_UINT_PACK32:
case DATA_FORMAT_A2B10G10R10_SINT_PACK32:
return 4;
case DATA_FORMAT_R16_UNORM:
case DATA_FORMAT_R16_SNORM:
case DATA_FORMAT_R16_USCALED:
case DATA_FORMAT_R16_SSCALED:
case DATA_FORMAT_R16_UINT:
case DATA_FORMAT_R16_SINT:
case DATA_FORMAT_R16_SFLOAT:
return 2;
case DATA_FORMAT_R16G16_UNORM:
case DATA_FORMAT_R16G16_SNORM:
case DATA_FORMAT_R16G16_USCALED:
case DATA_FORMAT_R16G16_SSCALED:
case DATA_FORMAT_R16G16_UINT:
case DATA_FORMAT_R16G16_SINT:
case DATA_FORMAT_R16G16_SFLOAT:
return 4;
case DATA_FORMAT_R16G16B16_UNORM:
case DATA_FORMAT_R16G16B16_SNORM:
case DATA_FORMAT_R16G16B16_USCALED:
case DATA_FORMAT_R16G16B16_SSCALED:
case DATA_FORMAT_R16G16B16_UINT:
case DATA_FORMAT_R16G16B16_SINT:
case DATA_FORMAT_R16G16B16_SFLOAT:
return 6;
case DATA_FORMAT_R16G16B16A16_UNORM:
case DATA_FORMAT_R16G16B16A16_SNORM:
case DATA_FORMAT_R16G16B16A16_USCALED:
case DATA_FORMAT_R16G16B16A16_SSCALED:
case DATA_FORMAT_R16G16B16A16_UINT:
case DATA_FORMAT_R16G16B16A16_SINT:
case DATA_FORMAT_R16G16B16A16_SFLOAT:
return 8;
case DATA_FORMAT_R32_UINT:
case DATA_FORMAT_R32_SINT:
case DATA_FORMAT_R32_SFLOAT:
return 4;
case DATA_FORMAT_R32G32_UINT:
case DATA_FORMAT_R32G32_SINT:
case DATA_FORMAT_R32G32_SFLOAT:
return 8;
case DATA_FORMAT_R32G32B32_UINT:
case DATA_FORMAT_R32G32B32_SINT:
case DATA_FORMAT_R32G32B32_SFLOAT:
return 12;
case DATA_FORMAT_R32G32B32A32_UINT:
case DATA_FORMAT_R32G32B32A32_SINT:
case DATA_FORMAT_R32G32B32A32_SFLOAT:
return 16;
case DATA_FORMAT_R64_UINT:
case DATA_FORMAT_R64_SINT:
case DATA_FORMAT_R64_SFLOAT:
return 8;
case DATA_FORMAT_R64G64_UINT:
case DATA_FORMAT_R64G64_SINT:
case DATA_FORMAT_R64G64_SFLOAT:
return 16;
case DATA_FORMAT_R64G64B64_UINT:
case DATA_FORMAT_R64G64B64_SINT:
case DATA_FORMAT_R64G64B64_SFLOAT:
return 24;
case DATA_FORMAT_R64G64B64A64_UINT:
case DATA_FORMAT_R64G64B64A64_SINT:
case DATA_FORMAT_R64G64B64A64_SFLOAT:
return 32;
case DATA_FORMAT_B10G11R11_UFLOAT_PACK32:
case DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32:
return 4;
case DATA_FORMAT_D16_UNORM:
return 2;
case DATA_FORMAT_X8_D24_UNORM_PACK32:
return 4;
case DATA_FORMAT_D32_SFLOAT:
return 4;
case DATA_FORMAT_S8_UINT:
return 1;
case DATA_FORMAT_D16_UNORM_S8_UINT:
return 4;
case DATA_FORMAT_D24_UNORM_S8_UINT:
return 4;
case DATA_FORMAT_D32_SFLOAT_S8_UINT:
return 5; // ?
case DATA_FORMAT_BC1_RGB_UNORM_BLOCK:
case DATA_FORMAT_BC1_RGB_SRGB_BLOCK:
case DATA_FORMAT_BC1_RGBA_UNORM_BLOCK:
case DATA_FORMAT_BC1_RGBA_SRGB_BLOCK:
case DATA_FORMAT_BC2_UNORM_BLOCK:
case DATA_FORMAT_BC2_SRGB_BLOCK:
case DATA_FORMAT_BC3_UNORM_BLOCK:
case DATA_FORMAT_BC3_SRGB_BLOCK:
case DATA_FORMAT_BC4_UNORM_BLOCK:
case DATA_FORMAT_BC4_SNORM_BLOCK:
case DATA_FORMAT_BC5_UNORM_BLOCK:
case DATA_FORMAT_BC5_SNORM_BLOCK:
case DATA_FORMAT_BC6H_UFLOAT_BLOCK:
case DATA_FORMAT_BC6H_SFLOAT_BLOCK:
case DATA_FORMAT_BC7_UNORM_BLOCK:
case DATA_FORMAT_BC7_SRGB_BLOCK:
return 1;
case DATA_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
case DATA_FORMAT_ETC2_R8G8B8_SRGB_BLOCK:
case DATA_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK:
case DATA_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK:
case DATA_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK:
case DATA_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK:
return 1;
case DATA_FORMAT_EAC_R11_UNORM_BLOCK:
case DATA_FORMAT_EAC_R11_SNORM_BLOCK:
case DATA_FORMAT_EAC_R11G11_UNORM_BLOCK:
case DATA_FORMAT_EAC_R11G11_SNORM_BLOCK:
return 1;
case DATA_FORMAT_ASTC_4x4_UNORM_BLOCK:
case DATA_FORMAT_ASTC_4x4_SRGB_BLOCK:
case DATA_FORMAT_ASTC_5x4_UNORM_BLOCK:
case DATA_FORMAT_ASTC_5x4_SRGB_BLOCK:
case DATA_FORMAT_ASTC_5x5_UNORM_BLOCK:
case DATA_FORMAT_ASTC_5x5_SRGB_BLOCK:
case DATA_FORMAT_ASTC_6x5_UNORM_BLOCK:
case DATA_FORMAT_ASTC_6x5_SRGB_BLOCK:
case DATA_FORMAT_ASTC_6x6_UNORM_BLOCK:
case DATA_FORMAT_ASTC_6x6_SRGB_BLOCK:
case DATA_FORMAT_ASTC_8x5_UNORM_BLOCK:
case DATA_FORMAT_ASTC_8x5_SRGB_BLOCK:
case DATA_FORMAT_ASTC_8x6_UNORM_BLOCK:
case DATA_FORMAT_ASTC_8x6_SRGB_BLOCK:
case DATA_FORMAT_ASTC_8x8_UNORM_BLOCK:
case DATA_FORMAT_ASTC_8x8_SRGB_BLOCK:
case DATA_FORMAT_ASTC_10x5_UNORM_BLOCK:
case DATA_FORMAT_ASTC_10x5_SRGB_BLOCK:
case DATA_FORMAT_ASTC_10x6_UNORM_BLOCK:
case DATA_FORMAT_ASTC_10x6_SRGB_BLOCK:
case DATA_FORMAT_ASTC_10x8_UNORM_BLOCK:
case DATA_FORMAT_ASTC_10x8_SRGB_BLOCK:
case DATA_FORMAT_ASTC_10x10_UNORM_BLOCK:
case DATA_FORMAT_ASTC_10x10_SRGB_BLOCK:
case DATA_FORMAT_ASTC_12x10_UNORM_BLOCK:
case DATA_FORMAT_ASTC_12x10_SRGB_BLOCK:
case DATA_FORMAT_ASTC_12x12_UNORM_BLOCK:
case DATA_FORMAT_ASTC_12x12_SRGB_BLOCK:
return 1;
case DATA_FORMAT_G8B8G8R8_422_UNORM:
case DATA_FORMAT_B8G8R8G8_422_UNORM:
return 4;
case DATA_FORMAT_G8_B8_R8_3PLANE_420_UNORM:
case DATA_FORMAT_G8_B8R8_2PLANE_420_UNORM:
case DATA_FORMAT_G8_B8_R8_3PLANE_422_UNORM:
case DATA_FORMAT_G8_B8R8_2PLANE_422_UNORM:
case DATA_FORMAT_G8_B8_R8_3PLANE_444_UNORM:
return 4;
case DATA_FORMAT_R10X6_UNORM_PACK16:
case DATA_FORMAT_R10X6G10X6_UNORM_2PACK16:
case DATA_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16:
case DATA_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16:
case DATA_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16:
case DATA_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16:
case DATA_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16:
case DATA_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16:
case DATA_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16:
case DATA_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16:
case DATA_FORMAT_R12X4_UNORM_PACK16:
case DATA_FORMAT_R12X4G12X4_UNORM_2PACK16:
case DATA_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16:
case DATA_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16:
case DATA_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16:
case DATA_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16:
case DATA_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16:
case DATA_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16:
case DATA_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16:
case DATA_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16:
return 2;
case DATA_FORMAT_G16B16G16R16_422_UNORM:
case DATA_FORMAT_B16G16R16G16_422_UNORM:
case DATA_FORMAT_G16_B16_R16_3PLANE_420_UNORM:
case DATA_FORMAT_G16_B16R16_2PLANE_420_UNORM:
case DATA_FORMAT_G16_B16_R16_3PLANE_422_UNORM:
case DATA_FORMAT_G16_B16R16_2PLANE_422_UNORM:
case DATA_FORMAT_G16_B16_R16_3PLANE_444_UNORM:
return 8;
default: {
ERR_PRINT("Format not handled, bug");
}
}
return 1;
}
// https://www.khronos.org/registry/DataFormat/specs/1.1/dataformat.1.1.pdf
void RenderingDeviceD3D12::get_compressed_image_format_block_dimensions(DataFormat p_format, uint32_t &r_w, uint32_t &r_h) {
switch (p_format) {
case DATA_FORMAT_BC1_RGB_UNORM_BLOCK:
case DATA_FORMAT_BC1_RGB_SRGB_BLOCK:
case DATA_FORMAT_BC1_RGBA_UNORM_BLOCK:
case DATA_FORMAT_BC1_RGBA_SRGB_BLOCK:
case DATA_FORMAT_BC2_UNORM_BLOCK:
case DATA_FORMAT_BC2_SRGB_BLOCK:
case DATA_FORMAT_BC3_UNORM_BLOCK:
case DATA_FORMAT_BC3_SRGB_BLOCK:
case DATA_FORMAT_BC4_UNORM_BLOCK:
case DATA_FORMAT_BC4_SNORM_BLOCK:
case DATA_FORMAT_BC5_UNORM_BLOCK:
case DATA_FORMAT_BC5_SNORM_BLOCK:
case DATA_FORMAT_BC6H_UFLOAT_BLOCK:
case DATA_FORMAT_BC6H_SFLOAT_BLOCK:
case DATA_FORMAT_BC7_UNORM_BLOCK:
case DATA_FORMAT_BC7_SRGB_BLOCK:
case DATA_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
case DATA_FORMAT_ETC2_R8G8B8_SRGB_BLOCK:
case DATA_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK:
case DATA_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK:
case DATA_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK:
case DATA_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK:
case DATA_FORMAT_EAC_R11_UNORM_BLOCK:
case DATA_FORMAT_EAC_R11_SNORM_BLOCK:
case DATA_FORMAT_EAC_R11G11_UNORM_BLOCK:
case DATA_FORMAT_EAC_R11G11_SNORM_BLOCK:
case DATA_FORMAT_ASTC_4x4_UNORM_BLOCK: // Again, not sure about astc.
case DATA_FORMAT_ASTC_4x4_SRGB_BLOCK:
case DATA_FORMAT_ASTC_5x4_UNORM_BLOCK:
case DATA_FORMAT_ASTC_5x4_SRGB_BLOCK:
case DATA_FORMAT_ASTC_5x5_UNORM_BLOCK:
case DATA_FORMAT_ASTC_5x5_SRGB_BLOCK:
case DATA_FORMAT_ASTC_6x5_UNORM_BLOCK:
case DATA_FORMAT_ASTC_6x5_SRGB_BLOCK:
case DATA_FORMAT_ASTC_6x6_UNORM_BLOCK:
case DATA_FORMAT_ASTC_6x6_SRGB_BLOCK:
case DATA_FORMAT_ASTC_8x5_UNORM_BLOCK:
case DATA_FORMAT_ASTC_8x5_SRGB_BLOCK:
case DATA_FORMAT_ASTC_8x6_UNORM_BLOCK:
case DATA_FORMAT_ASTC_8x6_SRGB_BLOCK:
case DATA_FORMAT_ASTC_8x8_UNORM_BLOCK:
case DATA_FORMAT_ASTC_8x8_SRGB_BLOCK:
case DATA_FORMAT_ASTC_10x5_UNORM_BLOCK:
case DATA_FORMAT_ASTC_10x5_SRGB_BLOCK:
case DATA_FORMAT_ASTC_10x6_UNORM_BLOCK:
case DATA_FORMAT_ASTC_10x6_SRGB_BLOCK:
case DATA_FORMAT_ASTC_10x8_UNORM_BLOCK:
case DATA_FORMAT_ASTC_10x8_SRGB_BLOCK:
case DATA_FORMAT_ASTC_10x10_UNORM_BLOCK:
case DATA_FORMAT_ASTC_10x10_SRGB_BLOCK:
case DATA_FORMAT_ASTC_12x10_UNORM_BLOCK:
case DATA_FORMAT_ASTC_12x10_SRGB_BLOCK:
case DATA_FORMAT_ASTC_12x12_UNORM_BLOCK:
case DATA_FORMAT_ASTC_12x12_SRGB_BLOCK:
r_w = 4;
r_h = 4;
return;
default: {
r_w = 1;
r_h = 1;
}
}
}
uint32_t RenderingDeviceD3D12::get_compressed_image_format_block_byte_size(DataFormat p_format) {
switch (p_format) {
case DATA_FORMAT_BC1_RGB_UNORM_BLOCK:
case DATA_FORMAT_BC1_RGB_SRGB_BLOCK:
case DATA_FORMAT_BC1_RGBA_UNORM_BLOCK:
case DATA_FORMAT_BC1_RGBA_SRGB_BLOCK:
return 8;
case DATA_FORMAT_BC2_UNORM_BLOCK:
case DATA_FORMAT_BC2_SRGB_BLOCK:
return 16;
case DATA_FORMAT_BC3_UNORM_BLOCK:
case DATA_FORMAT_BC3_SRGB_BLOCK:
return 16;
case DATA_FORMAT_BC4_UNORM_BLOCK:
case DATA_FORMAT_BC4_SNORM_BLOCK:
return 8;
case DATA_FORMAT_BC5_UNORM_BLOCK:
case DATA_FORMAT_BC5_SNORM_BLOCK:
return 16;
case DATA_FORMAT_BC6H_UFLOAT_BLOCK:
case DATA_FORMAT_BC6H_SFLOAT_BLOCK:
return 16;
case DATA_FORMAT_BC7_UNORM_BLOCK:
case DATA_FORMAT_BC7_SRGB_BLOCK:
return 16;
case DATA_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
case DATA_FORMAT_ETC2_R8G8B8_SRGB_BLOCK:
return 8;
case DATA_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK:
case DATA_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK:
return 8;
case DATA_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK:
case DATA_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK:
return 16;
case DATA_FORMAT_EAC_R11_UNORM_BLOCK:
case DATA_FORMAT_EAC_R11_SNORM_BLOCK:
return 8;
case DATA_FORMAT_EAC_R11G11_UNORM_BLOCK:
case DATA_FORMAT_EAC_R11G11_SNORM_BLOCK:
return 16;
case DATA_FORMAT_ASTC_4x4_UNORM_BLOCK: // Again, not sure about astc.
case DATA_FORMAT_ASTC_4x4_SRGB_BLOCK:
case DATA_FORMAT_ASTC_5x4_UNORM_BLOCK:
case DATA_FORMAT_ASTC_5x4_SRGB_BLOCK:
case DATA_FORMAT_ASTC_5x5_UNORM_BLOCK:
case DATA_FORMAT_ASTC_5x5_SRGB_BLOCK:
case DATA_FORMAT_ASTC_6x5_UNORM_BLOCK:
case DATA_FORMAT_ASTC_6x5_SRGB_BLOCK:
case DATA_FORMAT_ASTC_6x6_UNORM_BLOCK:
case DATA_FORMAT_ASTC_6x6_SRGB_BLOCK:
case DATA_FORMAT_ASTC_8x5_UNORM_BLOCK:
case DATA_FORMAT_ASTC_8x5_SRGB_BLOCK:
case DATA_FORMAT_ASTC_8x6_UNORM_BLOCK:
case DATA_FORMAT_ASTC_8x6_SRGB_BLOCK:
case DATA_FORMAT_ASTC_8x8_UNORM_BLOCK:
case DATA_FORMAT_ASTC_8x8_SRGB_BLOCK:
case DATA_FORMAT_ASTC_10x5_UNORM_BLOCK:
case DATA_FORMAT_ASTC_10x5_SRGB_BLOCK:
case DATA_FORMAT_ASTC_10x6_UNORM_BLOCK:
case DATA_FORMAT_ASTC_10x6_SRGB_BLOCK:
case DATA_FORMAT_ASTC_10x8_UNORM_BLOCK:
case DATA_FORMAT_ASTC_10x8_SRGB_BLOCK:
case DATA_FORMAT_ASTC_10x10_UNORM_BLOCK:
case DATA_FORMAT_ASTC_10x10_SRGB_BLOCK:
case DATA_FORMAT_ASTC_12x10_UNORM_BLOCK:
case DATA_FORMAT_ASTC_12x10_SRGB_BLOCK:
case DATA_FORMAT_ASTC_12x12_UNORM_BLOCK:
case DATA_FORMAT_ASTC_12x12_SRGB_BLOCK:
return 8; // Wrong.
default: {
}
}
return 1;
}
uint32_t RenderingDeviceD3D12::get_compressed_image_format_pixel_rshift(DataFormat p_format) {
switch (p_format) {
case DATA_FORMAT_BC1_RGB_UNORM_BLOCK: // These formats are half byte size, so rshift is 1.
case DATA_FORMAT_BC1_RGB_SRGB_BLOCK:
case DATA_FORMAT_BC1_RGBA_UNORM_BLOCK:
case DATA_FORMAT_BC1_RGBA_SRGB_BLOCK:
case DATA_FORMAT_BC4_UNORM_BLOCK:
case DATA_FORMAT_BC4_SNORM_BLOCK:
case DATA_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
case DATA_FORMAT_ETC2_R8G8B8_SRGB_BLOCK:
case DATA_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK:
case DATA_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK:
case DATA_FORMAT_EAC_R11_UNORM_BLOCK:
case DATA_FORMAT_EAC_R11_SNORM_BLOCK:
return 1;
default: {
}
}
return 0;
}
uint32_t RenderingDeviceD3D12::get_image_format_plane_count(DataFormat p_format) {
uint32_t planes = 1;
switch (p_format) {
case DATA_FORMAT_D16_UNORM_S8_UINT:
case DATA_FORMAT_D24_UNORM_S8_UINT:
case DATA_FORMAT_D32_SFLOAT_S8_UINT: {
planes = 2;
}
default: {
}
}
DEV_ASSERT(planes <= MAX_IMAGE_FORMAT_PLANES);
return planes;
}
uint32_t RenderingDeviceD3D12::get_image_format_required_size(DataFormat p_format, uint32_t p_width, uint32_t p_height, uint32_t p_depth, uint32_t p_mipmaps, uint32_t *r_blockw, uint32_t *r_blockh, uint32_t *r_depth) {
ERR_FAIL_COND_V(p_mipmaps == 0, 0);
uint32_t w = p_width;
uint32_t h = p_height;
uint32_t d = p_depth;
uint32_t size = 0;
uint32_t pixel_size = get_image_format_pixel_size(p_format);
uint32_t pixel_rshift = get_compressed_image_format_pixel_rshift(p_format);
uint32_t blockw, blockh;
get_compressed_image_format_block_dimensions(p_format, blockw, blockh);
for (uint32_t i = 0; i < p_mipmaps; i++) {
uint32_t bw = w % blockw != 0 ? w + (blockw - w % blockw) : w;
uint32_t bh = h % blockh != 0 ? h + (blockh - h % blockh) : h;
uint32_t s = bw * bh;
s *= pixel_size;
s >>= pixel_rshift;
size += s * d;
if (r_blockw) {
*r_blockw = bw;
}
if (r_blockh) {
*r_blockh = bh;
}
if (r_depth) {
*r_depth = d;
}
w = MAX(blockw, w >> 1);
h = MAX(blockh, h >> 1);
d = MAX(1u, d >> 1);
}
return size;
}
uint32_t RenderingDeviceD3D12::get_image_required_mipmaps(uint32_t p_width, uint32_t p_height, uint32_t p_depth) {
// Formats and block size don't really matter here since they can all go down to 1px (even if block is larger).
uint32_t w = p_width;
uint32_t h = p_height;
uint32_t d = p_depth;
uint32_t mipmaps = 1;
while (true) {
if (w == 1 && h == 1 && d == 1) {
break;
}
w = MAX(1u, w >> 1);
h = MAX(1u, h >> 1);
d = MAX(1u, d >> 1);
mipmaps++;
}
return mipmaps;
}
///////////////////////
const D3D12_COMPARISON_FUNC RenderingDeviceD3D12::compare_operators[RenderingDevice::COMPARE_OP_MAX] = {
D3D12_COMPARISON_FUNC_NEVER,
D3D12_COMPARISON_FUNC_LESS,
D3D12_COMPARISON_FUNC_EQUAL,
D3D12_COMPARISON_FUNC_LESS_EQUAL,
D3D12_COMPARISON_FUNC_GREATER,
D3D12_COMPARISON_FUNC_NOT_EQUAL,
D3D12_COMPARISON_FUNC_GREATER_EQUAL,
D3D12_COMPARISON_FUNC_ALWAYS,
};
const D3D12_STENCIL_OP RenderingDeviceD3D12::stencil_operations[RenderingDevice::STENCIL_OP_MAX] = {
D3D12_STENCIL_OP_KEEP,
D3D12_STENCIL_OP_ZERO,
D3D12_STENCIL_OP_REPLACE,
D3D12_STENCIL_OP_INCR_SAT,
D3D12_STENCIL_OP_DECR_SAT,
D3D12_STENCIL_OP_INVERT,
D3D12_STENCIL_OP_INCR,
D3D12_STENCIL_OP_DECR,
};
const UINT RenderingDeviceD3D12::rasterization_sample_count[RenderingDevice::TEXTURE_SAMPLES_MAX] = {
1,
2,
4,
8,
16,
32,
64,
};
const D3D12_LOGIC_OP RenderingDeviceD3D12::logic_operations[RenderingDevice::LOGIC_OP_MAX] = {
D3D12_LOGIC_OP_CLEAR,
D3D12_LOGIC_OP_AND,
D3D12_LOGIC_OP_AND_REVERSE,
D3D12_LOGIC_OP_COPY,
D3D12_LOGIC_OP_AND_INVERTED,
D3D12_LOGIC_OP_NOOP,
D3D12_LOGIC_OP_XOR,
D3D12_LOGIC_OP_OR,
D3D12_LOGIC_OP_NOR,
D3D12_LOGIC_OP_EQUIV,
D3D12_LOGIC_OP_INVERT,
D3D12_LOGIC_OP_OR_REVERSE,
D3D12_LOGIC_OP_COPY_INVERTED,
D3D12_LOGIC_OP_OR_INVERTED,
D3D12_LOGIC_OP_NAND,
D3D12_LOGIC_OP_SET,
};
const D3D12_BLEND RenderingDeviceD3D12::blend_factors[RenderingDevice::BLEND_FACTOR_MAX] = {
D3D12_BLEND_ZERO,
D3D12_BLEND_ONE,
D3D12_BLEND_SRC_COLOR,
D3D12_BLEND_INV_SRC_COLOR,
D3D12_BLEND_DEST_COLOR,
D3D12_BLEND_INV_DEST_COLOR,
D3D12_BLEND_SRC_ALPHA,
D3D12_BLEND_INV_SRC_ALPHA,
D3D12_BLEND_DEST_ALPHA,
D3D12_BLEND_INV_DEST_ALPHA,
D3D12_BLEND_BLEND_FACTOR,
D3D12_BLEND_INV_BLEND_FACTOR,
D3D12_BLEND_BLEND_FACTOR,
D3D12_BLEND_INV_BLEND_FACTOR,
D3D12_BLEND_SRC_ALPHA_SAT,
D3D12_BLEND_SRC1_COLOR,
D3D12_BLEND_INV_SRC1_COLOR,
D3D12_BLEND_SRC1_ALPHA,
D3D12_BLEND_INV_SRC1_ALPHA,
};
const D3D12_BLEND_OP RenderingDeviceD3D12::blend_operations[RenderingDevice::BLEND_OP_MAX] = {
D3D12_BLEND_OP_ADD,
D3D12_BLEND_OP_SUBTRACT,
D3D12_BLEND_OP_REV_SUBTRACT,
D3D12_BLEND_OP_MIN,
D3D12_BLEND_OP_MAX,
};
const D3D12_TEXTURE_ADDRESS_MODE RenderingDeviceD3D12::address_modes[RenderingDevice::SAMPLER_REPEAT_MODE_MAX] = {
D3D12_TEXTURE_ADDRESS_MODE_WRAP,
D3D12_TEXTURE_ADDRESS_MODE_MIRROR,
D3D12_TEXTURE_ADDRESS_MODE_CLAMP,
D3D12_TEXTURE_ADDRESS_MODE_BORDER,
D3D12_TEXTURE_ADDRESS_MODE_MIRROR_ONCE,
};
const FLOAT RenderingDeviceD3D12::sampler_border_colors[RenderingDevice::SAMPLER_BORDER_COLOR_MAX][4] = {
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 1 },
{ 0, 0, 0, 1 },
{ 1, 1, 1, 1 },
{ 1, 1, 1, 1 },
};
const D3D12_RESOURCE_DIMENSION RenderingDeviceD3D12::d3d12_texture_dimension[RenderingDevice::TEXTURE_TYPE_MAX] = {
D3D12_RESOURCE_DIMENSION_TEXTURE1D,
D3D12_RESOURCE_DIMENSION_TEXTURE2D,
D3D12_RESOURCE_DIMENSION_TEXTURE3D,
D3D12_RESOURCE_DIMENSION_TEXTURE2D,
D3D12_RESOURCE_DIMENSION_TEXTURE1D,
D3D12_RESOURCE_DIMENSION_TEXTURE2D,
D3D12_RESOURCE_DIMENSION_TEXTURE2D,
};
/******************/
/**** RESOURCE ****/
/******************/
static const D3D12_RESOURCE_STATES RESOURCE_READ_STATES =
D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER |
D3D12_RESOURCE_STATE_INDEX_BUFFER |
D3D12_RESOURCE_STATE_DEPTH_READ |
D3D12_RESOURCE_STATE_NON_PIXEL_SHADER_RESOURCE |
D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE |
D3D12_RESOURCE_STATE_INDIRECT_ARGUMENT |
D3D12_RESOURCE_STATE_COPY_SOURCE |
D3D12_RESOURCE_STATE_RESOLVE_SOURCE |
D3D12_RESOURCE_STATE_SHADING_RATE_SOURCE;
static const D3D12_RESOURCE_STATES RESOURCE_WRITE_STATES =
D3D12_RESOURCE_STATE_RENDER_TARGET |
D3D12_RESOURCE_STATE_DEPTH_WRITE |
D3D12_RESOURCE_STATE_COPY_DEST |
D3D12_RESOURCE_STATE_RESOLVE_DEST;
static const D3D12_RESOURCE_STATES RESOURCE_RW_STATES =
D3D12_RESOURCE_STATE_UNORDERED_ACCESS;
void RenderingDeviceD3D12::ResourceState::extend(D3D12_RESOURCE_STATES p_states_to_add) {
states |= p_states_to_add;
#ifdef DEV_ENABLED
if ((states & RESOURCE_RW_STATES)) {
if ((states & RESOURCE_READ_STATES)) {
// Thanks to [[SRV_UAV_AMBIGUITY]], this is not necessarily an error.
}
if ((states & RESOURCE_WRITE_STATES)) {
ERR_PRINT("Error in new state mask: has R/W state plus some W/O state(s).");
}
} else {
if ((states & RESOURCE_WRITE_STATES)) {
if ((states & RESOURCE_READ_STATES)) {
ERR_PRINT("Error in new state mask: mixes R/O and W/O states.");
} else {
uint32_t num_w_states = 0;
for (uint32_t i = 0; i < sizeof(D3D12_RESOURCE_STATES) * 8; i++) {
num_w_states += ((states & RESOURCE_WRITE_STATES) & (1 << i)) ? 1 : 0;
}
ERR_PRINT("Error in new state mask: has multiple W/O states.");
}
}
}
#endif
}
void RenderingDeviceD3D12::_resource_transition_batch(Resource *p_resource, uint32_t p_subresource, uint32_t p_num_planes, D3D12_RESOURCE_STATES p_new_state, ID3D12Resource *p_resource_override) {
DEV_ASSERT(p_subresource != UINT32_MAX); // We don't support an "all-resources" command here.
DEV_ASSERT(p_new_state != D3D12_RESOURCE_STATE_COMMON); // No need to support this for now.
#ifdef DEBUG_COUNT_BARRIERS
uint64_t start = OS::get_singleton()->get_ticks_usec();
#endif
Resource::States *res_states = p_resource->get_states_ptr();
D3D12_RESOURCE_STATES *curr_state = &res_states->subresource_states[p_subresource];
ID3D12Resource *res_to_transition = p_resource_override ? p_resource_override : p_resource->resource;
bool redundant_transition = ((*curr_state) & p_new_state) == p_new_state;
if (redundant_transition) {
bool just_written = *curr_state == D3D12_RESOURCE_STATE_UNORDERED_ACCESS;
bool needs_uav_barrier = just_written && res_states->last_batch_with_uav_barrier != res_barriers_batch;
if (needs_uav_barrier) {
if (res_barriers.size() < res_barriers_count + 1) {
res_barriers.resize(res_barriers_count + 1);
}
res_barriers[res_barriers_count] = CD3DX12_RESOURCE_BARRIER::UAV(res_to_transition);
res_barriers_count++;
res_states->last_batch_with_uav_barrier = res_barriers_batch;
}
} else {
uint64_t subres_mask_piece = ((uint64_t)1 << (p_subresource & 0b111111));
uint8_t subres_qword = p_subresource >> 6;
if (res_barriers_requests.has(res_states)) {
BarrierRequest &br = res_barriers_requests.get(res_states);
DEV_ASSERT(br.dx_resource == res_to_transition);
DEV_ASSERT(br.subres_mask_qwords == ALIGN(res_states->subresource_states.size(), 64) / 64);
DEV_ASSERT(br.planes == p_num_planes);
// First, find if the subresource already has a barrier scheduled.
uint8_t curr_group_idx = 0;
bool same_transition_scheduled = false;
for (curr_group_idx = 0; curr_group_idx < br.groups_count; curr_group_idx++) {
if (unlikely(br.groups[curr_group_idx].state.get_state_mask() == BarrierRequest::DELETED_GROUP)) {
continue;
}
if ((br.groups[curr_group_idx].subres_mask[subres_qword] & subres_mask_piece)) {
uint32_t state_mask = br.groups[curr_group_idx].state.get_state_mask();
same_transition_scheduled = (state_mask & (uint32_t)p_new_state) == (uint32_t)p_new_state;
break;
}
}
if (!same_transition_scheduled) {
bool subres_already_there = curr_group_idx != br.groups_count;
ResourceState final_state;
if (subres_already_there) {
final_state = br.groups[curr_group_idx].state;
final_state.extend(p_new_state);
bool subres_alone = true;
for (uint8_t i = 0; i < br.subres_mask_qwords; i++) {
if (i == subres_qword) {
if (br.groups[curr_group_idx].subres_mask[i] != subres_mask_piece) {
subres_alone = false;
break;
}
} else {
if (br.groups[curr_group_idx].subres_mask[i] != 0) {
subres_alone = false;
break;
}
}
}
bool relocated = false;
if (subres_alone) {
// Subresource is there by itself.
for (uint8_t i = 0; i < br.groups_count; i++) {
if (unlikely(i == curr_group_idx)) {
continue;
}
if (unlikely(br.groups[i].state.get_state_mask() == BarrierRequest::DELETED_GROUP)) {
continue;
}
// There's another group with the final state; relocate to it.
if (br.groups[i].state.get_state_mask() == final_state.get_state_mask()) {
br.groups[curr_group_idx].subres_mask[subres_qword] &= ~subres_mask_piece;
relocated = true;
break;
}
}
if (relocated) {
// Let's delete the group where it used to be by itself.
if (curr_group_idx == br.groups_count - 1) {
br.groups_count--;
} else {
br.groups[curr_group_idx].state = ResourceState(BarrierRequest::DELETED_GROUP);
}
} else {
// Its current group, where it's alone, can extend its state.
br.groups[curr_group_idx].state = final_state;
}
} else {
// Already there, but not by itself and the state mask is different, so it now belongs to a different group.
br.groups[curr_group_idx].subres_mask[subres_qword] &= ~subres_mask_piece;
subres_already_there = false;
}
} else {
final_state = p_new_state;
}
if (!subres_already_there) {
// See if it fits exactly the state of some of the groups to fit it there.
for (uint8_t i = 0; i < br.groups_count; i++) {
if (unlikely(i == curr_group_idx)) {
continue;
}
if (unlikely(br.groups[i].state.get_state_mask() == BarrierRequest::DELETED_GROUP)) {
continue;
}
if (br.groups[i].state.get_state_mask() == final_state.get_state_mask()) {
br.groups[i].subres_mask[subres_qword] |= subres_mask_piece;
subres_already_there = true;
break;
}
}
if (!subres_already_there) {
// Add a new group to accommodate this subresource.
uint8_t group_to_fill = 0;
if (br.groups_count < BarrierRequest::MAX_GROUPS) {
// There are still free groups.
group_to_fill = br.groups_count;
br.groups_count++;
} else {
// Let's try to take over a deleted one.
for (; group_to_fill < br.groups_count; group_to_fill++) {
if (unlikely(br.groups[group_to_fill].state.get_state_mask() == BarrierRequest::DELETED_GROUP)) {
break;
}
}
CRASH_COND(group_to_fill == br.groups_count);
}
br.groups[group_to_fill].state = final_state;
for (uint8_t i = 0; i < br.subres_mask_qwords; i++) {
if (unlikely(i == subres_qword)) {
br.groups[group_to_fill].subres_mask[i] = subres_mask_piece;
} else {
br.groups[group_to_fill].subres_mask[i] = 0;
}
}
}
}
}
} else {
BarrierRequest &br = res_barriers_requests[res_states];
br.dx_resource = res_to_transition;
br.subres_mask_qwords = ALIGN(p_resource->get_states_ptr()->subresource_states.size(), 64) / 64;
CRASH_COND(p_resource->get_states_ptr()->subresource_states.size() > BarrierRequest::MAX_SUBRESOURCES);
br.planes = p_num_planes;
br.groups[0].state = p_new_state;
for (uint8_t i = 0; i < br.subres_mask_qwords; i++) {
if (unlikely(i == subres_qword)) {
br.groups[0].subres_mask[i] = subres_mask_piece;
} else {
br.groups[0].subres_mask[i] = 0;
}
}
br.groups_count = 1;
}
}
if (p_new_state == D3D12_RESOURCE_STATE_UNORDERED_ACCESS) {
res_states->last_batch_transitioned_to_uav = res_barriers_batch;
}
#ifdef DEBUG_COUNT_BARRIERS
frame_barriers_cpu_time += OS::get_singleton()->get_ticks_usec() - start;
#endif
}
void RenderingDeviceD3D12::_resource_transitions_flush(ID3D12GraphicsCommandList *p_command_list) {
#ifdef DEBUG_COUNT_BARRIERS
uint64_t start = OS::get_singleton()->get_ticks_usec();
#endif
for (const KeyValue<Resource::States *, BarrierRequest> &E : res_barriers_requests) {
Resource::States *res_states = E.key;
const BarrierRequest &br = E.value;
uint32_t num_subresources = res_states->subresource_states.size();
// When there's not a lot of subresources, the empirical finding is that it's better
// to avoid attempting the single-barrier optimization.
static const uint32_t SINGLE_BARRIER_ATTEMPT_MAX_NUM_SUBRESOURCES = 48;
bool may_do_single_barrier = br.groups_count == 1 && num_subresources * br.planes >= SINGLE_BARRIER_ATTEMPT_MAX_NUM_SUBRESOURCES;
if (may_do_single_barrier) {
// A single group means we may be able to do a single all-subresources barrier.
{
// First requisite is that all subresources are involved.
uint8_t subres_mask_full_qwords = num_subresources / 64;
for (uint32_t i = 0; i < subres_mask_full_qwords; i++) {
if (br.groups[0].subres_mask[i] != UINT64_MAX) {
may_do_single_barrier = false;
break;
}
}
if (may_do_single_barrier) {
if (num_subresources % 64) {
DEV_ASSERT(br.subres_mask_qwords == subres_mask_full_qwords + 1);
uint64_t mask_tail_qword = 0;
for (uint8_t i = 0; i < num_subresources % 64; i++) {
mask_tail_qword |= ((uint64_t)1 << i);
}
if ((br.groups[0].subres_mask[subres_mask_full_qwords] & mask_tail_qword) != mask_tail_qword) {
may_do_single_barrier = false;
}
}
}
}
if (may_do_single_barrier) {
// Second requisite is that the source state is the same for all.
for (uint32_t i = 1; i < num_subresources; i++) {
if (res_states->subresource_states[i] != res_states->subresource_states[0]) {
may_do_single_barrier = false;
break;
}
}
if (may_do_single_barrier) {
// Hurray!, we can do a single barrier (plus maybe a UAV one, too).
bool just_written = res_states->subresource_states[0] == D3D12_RESOURCE_STATE_UNORDERED_ACCESS;
bool needs_uav_barrier = just_written && res_states->last_batch_with_uav_barrier != res_barriers_batch;
uint32_t needed_barriers = (needs_uav_barrier ? 1 : 0) + 1;
if (res_barriers.size() < res_barriers_count + needed_barriers) {
res_barriers.resize(res_barriers_count + needed_barriers);
}
if (needs_uav_barrier) {
res_barriers[res_barriers_count] = CD3DX12_RESOURCE_BARRIER::UAV(br.dx_resource);
res_barriers_count++;
res_states->last_batch_with_uav_barrier = res_barriers_batch;
}
if (res_states->subresource_states[0] != br.groups[0].state.get_state_mask()) {
res_barriers[res_barriers_count] = CD3DX12_RESOURCE_BARRIER::Transition(br.dx_resource, res_states->subresource_states[0], br.groups[0].state.get_state_mask(), D3D12_RESOURCE_BARRIER_ALL_SUBRESOURCES);
res_barriers_count++;
}
for (uint32_t i = 0; i < num_subresources; i++) {
res_states->subresource_states[i] = br.groups[0].state.get_state_mask();
}
}
}
}
if (!may_do_single_barrier) {
for (uint8_t i = 0; i < br.groups_count; i++) {
const BarrierRequest::Group &g = E.value.groups[i];
if (unlikely(g.state.get_state_mask() == BarrierRequest::DELETED_GROUP)) {
continue;
}
uint32_t subresource = 0;
do {
uint64_t subres_mask_piece = ((uint64_t)1 << (subresource % 64));
uint8_t subres_qword = subresource / 64;
if (likely(g.subres_mask[subres_qword] == 0)) {
subresource += 64;
continue;
}
if (likely(!(g.subres_mask[subres_qword] & subres_mask_piece))) {
subresource++;
continue;
}
D3D12_RESOURCE_STATES *curr_state = &res_states->subresource_states[subresource];
bool just_written = *curr_state == D3D12_RESOURCE_STATE_UNORDERED_ACCESS;
bool needs_uav_barrier = just_written && res_states->last_batch_with_uav_barrier != res_barriers_batch;
uint32_t needed_barriers = (needs_uav_barrier ? 1 : 0) + br.planes;
if (res_barriers.size() < res_barriers_count + needed_barriers) {
res_barriers.resize(res_barriers_count + needed_barriers);
}
if (needs_uav_barrier) {
res_barriers[res_barriers_count] = CD3DX12_RESOURCE_BARRIER::UAV(br.dx_resource);
res_barriers_count++;
res_states->last_batch_with_uav_barrier = res_barriers_batch;
}
if (*curr_state != g.state.get_state_mask()) {
for (uint8_t k = 0; k < br.planes; k++) {
res_barriers[res_barriers_count] = CD3DX12_RESOURCE_BARRIER::Transition(br.dx_resource, *curr_state, g.state.get_state_mask(), subresource + k * num_subresources);
res_barriers_count++;
}
}
*curr_state = g.state.get_state_mask();
subresource++;
} while (subresource < num_subresources);
}
}
}
if (res_barriers_count) {
p_command_list->ResourceBarrier(res_barriers_count, res_barriers.ptr());
res_barriers_requests.clear();
}
#ifdef DEBUG_COUNT_BARRIERS
frame_barriers_count += res_barriers_count;
frame_barriers_batches_count++;
frame_barriers_cpu_time += OS::get_singleton()->get_ticks_usec() - start;
#endif
res_barriers_count = 0;
res_barriers_batch++;
}
/***************************/
/**** BUFFER MANAGEMENT ****/
/***************************/
Error RenderingDeviceD3D12::_buffer_allocate(Buffer *p_buffer, uint32_t p_size, D3D12_RESOURCE_STATES p_usage, D3D12_HEAP_TYPE p_heap_type) {
ERR_FAIL_COND_V(p_heap_type != D3D12_HEAP_TYPE_DEFAULT && p_heap_type != D3D12_HEAP_TYPE_READBACK, ERR_INVALID_PARAMETER);
// D3D12 debug layers complain at CBV creation time if the size is not multiple of the value per the spec
// but also if you give a rounded size at that point because it will extend beyond the
// memory of the resource. Therefore, it seems the only way is to create it with a
// rounded size.
CD3DX12_RESOURCE_DESC resource_desc = CD3DX12_RESOURCE_DESC::Buffer(ALIGN(p_size, D3D12_CONSTANT_BUFFER_DATA_PLACEMENT_ALIGNMENT));
if ((p_usage & D3D12_RESOURCE_STATE_UNORDERED_ACCESS)) {
resource_desc.Flags |= D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS;
}
D3D12MA::ALLOCATION_DESC allocation_desc = {};
allocation_desc.HeapType = p_heap_type;
#ifdef USE_SMALL_ALLOCS_POOL
if (p_size <= SMALL_ALLOCATION_MAX_SIZE) {
allocation_desc.CustomPool = _find_or_create_small_allocs_pool(p_heap_type, D3D12_HEAP_FLAG_ALLOW_ONLY_BUFFERS);
}
#endif
HRESULT res = context->get_allocator()->CreateResource(
&allocation_desc,
&resource_desc,
D3D12_RESOURCE_STATE_COPY_DEST,
nullptr,
&p_buffer->allocation,
IID_PPV_ARGS(&p_buffer->resource));
ERR_FAIL_COND_V_MSG(res, ERR_CANT_CREATE, "Can't create buffer of size: " + itos(p_size) + ", error " + vformat("0x%08ux", res) + ".");
p_buffer->size = p_size;
p_buffer->usage = p_usage;
p_buffer->own_states.subresource_states.push_back(D3D12_RESOURCE_STATE_COPY_DEST);
buffer_memory += p_size;
return OK;
}
Error RenderingDeviceD3D12::_buffer_free(Buffer *p_buffer) {
ERR_FAIL_COND_V(p_buffer->size == 0, ERR_INVALID_PARAMETER);
buffer_memory -= p_buffer->size;
p_buffer->resource->Release();
p_buffer->resource = nullptr;
p_buffer->allocation->Release();
p_buffer->allocation = nullptr;
p_buffer->size = 0;
return OK;
}
Error RenderingDeviceD3D12::_insert_staging_block() {
StagingBufferBlock block;
D3D12_RESOURCE_DESC resource_desc = {};
resource_desc.Dimension = D3D12_RESOURCE_DIMENSION_BUFFER;
resource_desc.Alignment = 0;
resource_desc.Width = staging_buffer_block_size;
resource_desc.Height = 1;
resource_desc.DepthOrArraySize = 1;
resource_desc.MipLevels = 1;
resource_desc.Format = DXGI_FORMAT_UNKNOWN;
resource_desc.SampleDesc.Count = 1;
resource_desc.SampleDesc.Quality = 0;
resource_desc.Layout = D3D12_TEXTURE_LAYOUT_ROW_MAJOR;
resource_desc.Flags = D3D12_RESOURCE_FLAG_NONE;
D3D12MA::ALLOCATION_DESC allocation_desc = {};
allocation_desc.HeapType = D3D12_HEAP_TYPE_UPLOAD;
HRESULT res = context->get_allocator()->CreateResource(
&allocation_desc,
&resource_desc,
D3D12_RESOURCE_STATE_GENERIC_READ,
NULL,
&block.allocation,
IID_PPV_ARGS(&block.resource));
ERR_FAIL_COND_V_MSG(res, ERR_CANT_CREATE, "CreateResource failed with error " + vformat("0x%08ux", res) + ".");
staging_buffer_blocks.insert(staging_buffer_current, block);
return OK;
}
Error RenderingDeviceD3D12::_staging_buffer_allocate(uint32_t p_amount, uint32_t p_required_align, uint32_t &r_alloc_offset, uint32_t &r_alloc_size, bool p_can_segment) {
// Determine a block to use.
r_alloc_size = p_amount;
while (true) {
r_alloc_offset = 0;
// See if we can use current block.
if (staging_buffer_blocks[staging_buffer_current].frame_used == frames_drawn) {
// We used this block this frame, let's see if there is still room.
uint32_t write_from = staging_buffer_blocks[staging_buffer_current].fill_amount;
{
uint32_t align_remainder = write_from % p_required_align;
if (align_remainder != 0) {
write_from += p_required_align - align_remainder;
}
}
int32_t available_bytes = int32_t(staging_buffer_block_size) - int32_t(write_from);
if ((int32_t)p_amount < available_bytes) {
// All is good, we should be ok, all will fit.
r_alloc_offset = write_from;
} else if (p_can_segment && available_bytes >= (int32_t)p_required_align) {
// Ok all won't fit but at least we can fit a chunkie.
// All is good, update what needs to be written to.
r_alloc_offset = write_from;
r_alloc_size = available_bytes - (available_bytes % p_required_align);
} else {
// Can't fit it into this buffer.
// Will need to try next buffer.
staging_buffer_current = (staging_buffer_current + 1) % staging_buffer_blocks.size();
// Before doing anything, though, let's check that we didn't manage to fill all functions.
// Possible in a single frame.
if (staging_buffer_blocks[staging_buffer_current].frame_used == frames_drawn) {
// Guess we did.. ok, let's see if we can insert a new block.
if ((uint64_t)staging_buffer_blocks.size() * staging_buffer_block_size < staging_buffer_max_size) {
// We can, so we are safe.
Error err = _insert_staging_block();
if (err) {
return err;
}
// Claim for this frame.
staging_buffer_blocks.write[staging_buffer_current].frame_used = frames_drawn;
} else {
// Ok, worst case scenario, all the staging buffers belong to this frame
// and this frame is not even done
// If this is the main thread, it means the user is likely loading a lot of resources at once,.
// Otherwise, the thread should just be blocked until the next frame (currently unimplemented).
if (false) { // Separate thread from render.
//block_until_next_frame()
continue;
} else {
// Flush EVERYTHING including setup commands. IF not immediate, also need to flush the draw commands.
_flush(true);
// Clear the whole staging buffer.
for (int i = 0; i < staging_buffer_blocks.size(); i++) {
staging_buffer_blocks.write[i].frame_used = 0;
staging_buffer_blocks.write[i].fill_amount = 0;
}
// Claim current.
staging_buffer_blocks.write[staging_buffer_current].frame_used = frames_drawn;
}
}
} else {
// Not from current frame, so continue and try again.
continue;
}
}
} else if (staging_buffer_blocks[staging_buffer_current].frame_used <= frames_drawn - frame_count) {
// This is an old block, which was already processed, let's reuse.
staging_buffer_blocks.write[staging_buffer_current].frame_used = frames_drawn;
staging_buffer_blocks.write[staging_buffer_current].fill_amount = 0;
} else {
// This block may still be in use, let's not touch it unless we have to, so.. can we create a new one?
if ((uint64_t)staging_buffer_blocks.size() * staging_buffer_block_size < staging_buffer_max_size) {
// We are still allowed to create a new block, so let's do that and insert it for current pos.
Error err = _insert_staging_block();
if (err) {
return err;
}
// Claim for this frame.
staging_buffer_blocks.write[staging_buffer_current].frame_used = frames_drawn;
} else {
// Oops, we are out of room and we can't create more.
// Let's flush older frames.
// The logic here is that if a game is loading a lot of data from the main thread, it will need to be stalled anyway.
// If loading from a separate thread, we can block that thread until next frame when more room is made (not currently implemented, though).
if (false) {
// Separate thread from render.
//block_until_next_frame()
continue; // And try again.
} else {
_flush(false);
for (int i = 0; i < staging_buffer_blocks.size(); i++) {
// Clear all functions but the ones from this frame.
int block_idx = (i + staging_buffer_current) % staging_buffer_blocks.size();
if (staging_buffer_blocks[block_idx].frame_used == frames_drawn) {
break; // Ok, we reached something from this frame, abort.
}
staging_buffer_blocks.write[block_idx].frame_used = 0;
staging_buffer_blocks.write[block_idx].fill_amount = 0;
}
// Claim for current frame.
staging_buffer_blocks.write[staging_buffer_current].frame_used = frames_drawn;
}
}
}
// All was good, break.
break;
}
staging_buffer_used = true;
return OK;
}
Error RenderingDeviceD3D12::_buffer_update(Buffer *p_buffer, size_t p_offset, const uint8_t *p_data, size_t p_data_size, bool p_use_draw_command_list, uint32_t p_required_align) {
// Submitting may get chunked for various reasons, so convert this to a task.
size_t to_submit = p_data_size;
size_t submit_from = 0;
while (to_submit > 0) {
uint32_t block_write_offset;
uint32_t block_write_amount;
Error err = _staging_buffer_allocate(MIN(to_submit, staging_buffer_block_size), p_required_align, block_write_offset, block_write_amount);
if (err) {
return err;
}
// Map staging buffer.
void *data_ptr = nullptr;
{
HRESULT res = staging_buffer_blocks[staging_buffer_current].resource->Map(0, &VOID_RANGE, &data_ptr);
ERR_FAIL_COND_V_MSG(res, ERR_CANT_CREATE, "Map failed with error " + vformat("0x%08ux", res) + ".");
}
// Copy to staging buffer.
memcpy(((uint8_t *)data_ptr) + block_write_offset, p_data + submit_from, block_write_amount);
// Unmap.
staging_buffer_blocks[staging_buffer_current].resource->Unmap(0, &VOID_RANGE);
// Insert a command to copy this.
ID3D12GraphicsCommandList *command_list = (p_use_draw_command_list ? frames[frame].draw_command_list : frames[frame].setup_command_list).Get();
command_list->CopyBufferRegion(p_buffer->resource, submit_from + p_offset, staging_buffer_blocks[staging_buffer_current].resource, block_write_offset, block_write_amount);
staging_buffer_blocks.write[staging_buffer_current].fill_amount = block_write_offset + block_write_amount;
to_submit -= block_write_amount;
submit_from += block_write_amount;
}
return OK;
}
/*****************/
/**** TEXTURE ****/
/*****************/
RID RenderingDeviceD3D12::texture_create(const TextureFormat &p_format, const TextureView &p_view, const Vector<Vector<uint8_t>> &p_data) {
_THREAD_SAFE_METHOD_
D3D12_RESOURCE_DESC1 resource_desc = {}; // Using D3D12_RESOURCE_DESC1. Thanks to the layout, it's sliceable down to D3D12_RESOURCE_DESC if needed.
resource_desc.Alignment = 0; // D3D12MA will override this to use a smaller alignment than the default if possible.
Vector<DataFormat> allowed_formats;
if (p_format.shareable_formats.size()) {
ERR_FAIL_COND_V_MSG(p_format.shareable_formats.find(p_format.format) == -1, RID(),
"If supplied a list of shareable formats, the current format must be present in the list");
ERR_FAIL_COND_V_MSG(p_view.format_override != DATA_FORMAT_MAX && p_format.shareable_formats.find(p_view.format_override) == -1, RID(),
"If supplied a list of shareable formats, the current view format override must be present in the list");
allowed_formats = p_format.shareable_formats;
} else {
allowed_formats.push_back(p_format.format);
if (p_view.format_override != DATA_FORMAT_MAX) {
allowed_formats.push_back(p_view.format_override);
}
}
ERR_FAIL_INDEX_V(p_format.texture_type, TEXTURE_TYPE_MAX, RID());
resource_desc.Dimension = d3d12_texture_dimension[p_format.texture_type];
ERR_FAIL_COND_V_MSG(p_format.width < 1, RID(), "Width must be equal or greater than 1 for all textures");
resource_desc.Format = d3d12_formats[p_format.format].family;
resource_desc.Width = p_format.width;
if (resource_desc.Dimension == D3D12_RESOURCE_DIMENSION_TEXTURE3D || resource_desc.Dimension == D3D12_RESOURCE_DIMENSION_TEXTURE2D) {
ERR_FAIL_COND_V_MSG(p_format.height < 1, RID(), "Height must be equal or greater than 1 for 2D and 3D textures");
resource_desc.Height = p_format.height;
} else {
resource_desc.Height = 1;
}
if (resource_desc.Dimension == D3D12_RESOURCE_DIMENSION_TEXTURE3D) {
ERR_FAIL_COND_V_MSG(p_format.depth < 1, RID(), "Depth must be equal or greater than 1 for 3D textures");
resource_desc.DepthOrArraySize = p_format.depth;
} else {
resource_desc.DepthOrArraySize = 1;
}
ERR_FAIL_COND_V(p_format.mipmaps < 1, RID());
resource_desc.MipLevels = p_format.mipmaps;
if (p_format.texture_type == TEXTURE_TYPE_1D_ARRAY || p_format.texture_type == TEXTURE_TYPE_2D_ARRAY || p_format.texture_type == TEXTURE_TYPE_CUBE_ARRAY || p_format.texture_type == TEXTURE_TYPE_CUBE) {
ERR_FAIL_COND_V_MSG(p_format.array_layers < 1, RID(),
"Amount of layers must be equal or greater than 1 for arrays and cubemaps.");
ERR_FAIL_COND_V_MSG((p_format.texture_type == TEXTURE_TYPE_CUBE_ARRAY || p_format.texture_type == TEXTURE_TYPE_CUBE) && (p_format.array_layers % 6) != 0, RID(),
"Cubemap and cubemap array textures must provide a layer number that is multiple of 6");
resource_desc.DepthOrArraySize *= p_format.array_layers;
}
ERR_FAIL_INDEX_V(p_format.samples, TEXTURE_SAMPLES_MAX, RID());
// Usage.
if ((p_format.usage_bits & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) {
resource_desc.Flags |= D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET;
} else {
if ((p_format.usage_bits & TEXTURE_USAGE_CAN_COPY_TO_BIT)) {
resource_desc.Flags |= D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS; // For clearing via UAV.
}
}
if (p_format.usage_bits & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
resource_desc.Flags |= D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL;
}
if (p_format.usage_bits & TEXTURE_USAGE_STORAGE_BIT) {
resource_desc.Flags |= D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS;
}
resource_desc.SampleDesc = {};
DXGI_FORMAT format_to_test = (resource_desc.Flags & D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL) ? d3d12_formats[p_format.format].dsv_format : d3d12_formats[p_format.format].general_format;
if (!(resource_desc.Flags & D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS)) {
resource_desc.SampleDesc.Count = MIN(
_find_max_common_supported_sample_count(&format_to_test, 1),
rasterization_sample_count[p_format.samples]);
} else {
// No MSAA in D3D12 if storage. May have become possible recently where supported, though.
resource_desc.SampleDesc.Count = 1;
}
resource_desc.SampleDesc.Quality = resource_desc.SampleDesc.Count == 1 ? 0 : DXGI_STANDARD_MULTISAMPLE_QUALITY_PATTERN;
uint32_t required_mipmaps = get_image_required_mipmaps(p_format.width, p_format.height, p_format.depth);
ERR_FAIL_COND_V_MSG(required_mipmaps < p_format.mipmaps, RID(),
"Too many mipmaps requested for texture format and dimensions (" + itos(p_format.mipmaps) + "), maximum allowed: (" + itos(required_mipmaps) + ").");
if (p_data.size()) {
ERR_FAIL_COND_V_MSG(!(p_format.usage_bits & TEXTURE_USAGE_CAN_UPDATE_BIT), RID(),
"Texture needs the TEXTURE_USAGE_CAN_UPDATE_BIT usage flag in order to be updated at initialization or later");
int expected_images = p_format.array_layers;
ERR_FAIL_COND_V_MSG(p_data.size() != expected_images, RID(),
"Default supplied data for image format is of invalid length (" + itos(p_data.size()) + "), should be (" + itos(expected_images) + ").");
for (uint32_t i = 0; i < p_format.array_layers; i++) {
uint32_t required_size = get_image_format_required_size(p_format.format, p_format.width, p_format.height, p_format.depth, p_format.mipmaps);
ERR_FAIL_COND_V_MSG((uint32_t)p_data[i].size() != required_size, RID(),
"Data for slice index " + itos(i) + " (mapped to layer " + itos(i) + ") differs in size (supplied: " + itos(p_data[i].size()) + ") than what is required by the format (" + itos(required_size) + ").");
}
}
// Validate that this image is supported for the intended use.
// If views of different families are wanted, special setup is needed for proper sharing among them.
// Two options here:
// 1. If ID3DDevice10 is present and driver reports relaxed casting is, leverage its new extended resource creation API (via D3D12MA).
// 2. Otherwise, fall back to an approach based on abusing aliasing, hoping for the best.
bool cross_family_sharing = false;
ComPtr<ID3D12Device10> device10;
device.As(&device10);
bool relaxed_casting_available = device10.Get() && context->get_format_capabilities().relaxed_casting_supported;
LocalVector<DXGI_FORMAT> castable_formats;
HashMap<DataFormat, D3D12_RESOURCE_FLAGS> aliases_forbidden_flags;
D3D12_RESOURCE_FLAGS accum_forbidden_flags = {};
for (DataFormat curr_format : allowed_formats) {
// For now, we'll validate usages only the main format, to match what Vulkan RD does.
// TODO: The aliasing trick assumes the main format is the only writable one. We should either validate for that or handle a different order gracefully.
bool checking_main_format = curr_format == p_format.format;
String format_text = "'" + String(named_formats[p_format.format]) + "'";
ERR_FAIL_COND_V_MSG(d3d12_formats[curr_format].family == DXGI_FORMAT_UNKNOWN, RID(), "Format " + format_text + " is not supported.");
if (d3d12_formats[curr_format].family != d3d12_formats[allowed_formats[0]].family) {
cross_family_sharing = true;
}
if (relaxed_casting_available) {
castable_formats.push_back(d3d12_formats[curr_format].general_format);
}
D3D12_FEATURE_DATA_FORMAT_SUPPORT srv_rtv_support = {};
srv_rtv_support.Format = d3d12_formats[curr_format].general_format;
HRESULT res = device->CheckFeatureSupport(D3D12_FEATURE_FORMAT_SUPPORT, &srv_rtv_support, sizeof(srv_rtv_support));
ERR_FAIL_COND_V_MSG(res, RID(), "CheckFeatureSupport failed with error " + vformat("0x%08ux", res) + ".");
D3D12_FEATURE_DATA_FORMAT_SUPPORT uav_support = srv_rtv_support; // Fine for now.
D3D12_FEATURE_DATA_FORMAT_SUPPORT dsv_support = {};
dsv_support.Format = d3d12_formats[curr_format].dsv_format;
res = device->CheckFeatureSupport(D3D12_FEATURE_FORMAT_SUPPORT, &dsv_support, sizeof(dsv_support));
ERR_FAIL_COND_V_MSG(res, RID(), "CheckFeatureSupport failed with error " + vformat("0x%08ux", res) + ".");
if (checking_main_format) {
if ((p_format.usage_bits & (TEXTURE_USAGE_SAMPLING_BIT | TEXTURE_USAGE_COLOR_ATTACHMENT_BIT))) {
if (p_format.mipmaps && !(srv_rtv_support.Support1 & D3D12_FORMAT_SUPPORT1_MIP)) {
ERR_FAIL_V_MSG(RID(), "Format " + format_text + " does not support mip.maps.");
}
}
// Per https://docs.microsoft.com/en-us/windows/win32/api/d3d12/ne-d3d12-d3d12_format_support1,
// as long as the resource can be used as a texture, Sample() will work with point filter at least.
// However, we've empirically found that checking for at least D3D12_FORMAT_SUPPORT1_SHADER_LOAD is needed.
// That's almost good for integer formats. The problem is that theoretically there may be
// float formats that support LOAD but not SAMPLE fully, so this check will not detect
// such a flaw in the format. Linearly interpolated sampling would just not work on them.
// [[IMPLICIT_SAMPLE]]
if ((p_format.usage_bits & TEXTURE_USAGE_SAMPLING_BIT) && !(srv_rtv_support.Support1 & (D3D12_FORMAT_SUPPORT1_SHADER_LOAD | D3D12_FORMAT_SUPPORT1_SHADER_SAMPLE))) {
ERR_FAIL_V_MSG(RID(), "Format " + format_text + " does not support usage as a sampled texture.");
}
if ((p_format.usage_bits & TEXTURE_USAGE_SAMPLING_BIT) && d3d12_formats[curr_format].general_format == DXGI_FORMAT_UNKNOWN) {
ERR_FAIL_V_MSG(RID(), "Format " + format_text + " does not support usage as a sampled texture.");
}
if ((p_format.usage_bits & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT) && !(srv_rtv_support.Support1 & D3D12_FORMAT_SUPPORT1_RENDER_TARGET)) {
ERR_FAIL_V_MSG(RID(), "Format " + format_text + " does not support usage as color attachment.");
}
}
if ((p_format.usage_bits & TEXTURE_USAGE_CAN_COPY_TO_BIT)) {
// We need to check if the texture can be cleared; if it's not flagged for color attachment , we have to see if it's possible via a UAV.
if (!(p_format.usage_bits & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) {
if (!(uav_support.Support1 & D3D12_FORMAT_SUPPORT1_TYPED_UNORDERED_ACCESS_VIEW)) {
if (checking_main_format) {
ERR_FAIL_V_MSG(RID(), "Format " + format_text + " does not support usage as a copy-to texture, because clearing it is not supported.");
} else {
aliases_forbidden_flags[curr_format] |= D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS;
accum_forbidden_flags |= D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS;
}
}
}
}
if ((p_format.usage_bits & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) && !(dsv_support.Support1 & D3D12_FORMAT_SUPPORT1_DEPTH_STENCIL)) {
if (checking_main_format) {
printf("dxgiformat: %x\n", resource_desc.Format);
ERR_FAIL_V_MSG(RID(), "Format " + format_text + " does not support usage as depth-stencil attachment.");
} else {
aliases_forbidden_flags[curr_format] |= D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL;
accum_forbidden_flags |= D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL;
}
}
if ((p_format.usage_bits & TEXTURE_USAGE_STORAGE_BIT)) {
if (!(uav_support.Support1 & D3D12_FORMAT_SUPPORT1_TYPED_UNORDERED_ACCESS_VIEW)) { // Maybe check LOAD/STORE, too?
if (checking_main_format) {
ERR_FAIL_V_MSG(RID(), "Format " + format_text + " does not support usage as storage image.");
} else {
aliases_forbidden_flags[curr_format] |= D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS;
accum_forbidden_flags |= D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS;
}
}
}
if (checking_main_format) {
if ((p_format.usage_bits & TEXTURE_USAGE_STORAGE_ATOMIC_BIT) && !(uav_support.Support2 & D3D12_FORMAT_SUPPORT2_UAV_ATOMIC_ADD)) { // Check a basic atomic at least.
ERR_FAIL_V_MSG(RID(), "Format " + format_text + " does not support usage as atomic storage image.");
}
if ((p_format.usage_bits & TEXTURE_USAGE_VRS_ATTACHMENT_BIT) && d3d12_formats[curr_format].general_format != DXGI_FORMAT_R8_UINT) {
ERR_FAIL_V_MSG(RID(), "Format " + format_text + " does not support usage as VRS attachment.");
}
}
}
if (cross_family_sharing && !relaxed_casting_available) {
// At least guarantee the same layout among aliases.
resource_desc.Layout = D3D12_TEXTURE_LAYOUT_64KB_UNDEFINED_SWIZZLE;
// Per https://docs.microsoft.com/en-us/windows/win32/api/d3d12/ne-d3d12-d3d12_texture_layout.
if (p_format.texture_type == TEXTURE_TYPE_1D) {
ERR_FAIL_V_MSG(RID(), "This texture's views require aliasing, but that's not supported for a 1D texture.");
}
if (p_format.samples != TEXTURE_SAMPLES_1) {
ERR_FAIL_V_MSG(RID(), "This texture's views require aliasing, but that's not supported for a multi-sample texture.");
}
if ((p_format.usage_bits & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
ERR_FAIL_V_MSG(RID(), "This texture's views require aliasing, but that's not supported for a depth-stencil texture.");
}
if (d3d12_formats[p_format.format].family == DXGI_FORMAT_R32G32B32_TYPELESS) {
ERR_FAIL_V_MSG(RID(), "This texture's views require aliasing, but that's not supported for an R32G32B32 texture.");
}
} else {
resource_desc.Layout = D3D12_TEXTURE_LAYOUT_UNKNOWN;
}
if ((p_format.usage_bits & TEXTURE_USAGE_VRS_ATTACHMENT_BIT)) {
// For VRS images we can't use the typeless format.
resource_desc.Format = DXGI_FORMAT_R8_UINT;
}
// Some view validation.
if (p_view.format_override != DATA_FORMAT_MAX) {
ERR_FAIL_INDEX_V(p_view.format_override, DATA_FORMAT_MAX, RID());
}
ERR_FAIL_INDEX_V(p_view.swizzle_r, TEXTURE_SWIZZLE_MAX, RID());
ERR_FAIL_INDEX_V(p_view.swizzle_g, TEXTURE_SWIZZLE_MAX, RID());
ERR_FAIL_INDEX_V(p_view.swizzle_b, TEXTURE_SWIZZLE_MAX, RID());
ERR_FAIL_INDEX_V(p_view.swizzle_a, TEXTURE_SWIZZLE_MAX, RID());
// Allocate memory.
D3D12MA::ALLOCATION_DESC allocation_desc = {};
if (cross_family_sharing && !relaxed_casting_available) {
allocation_desc.Flags = D3D12MA::ALLOCATION_FLAG_CAN_ALIAS;
}
allocation_desc.HeapType = (p_format.usage_bits & TEXTURE_USAGE_CPU_READ_BIT) ? D3D12_HEAP_TYPE_READBACK : D3D12_HEAP_TYPE_DEFAULT;
if ((resource_desc.Flags & (D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET | D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL))) {
if (!(accum_forbidden_flags & (D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET | D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL))) {
allocation_desc.ExtraHeapFlags = D3D12_HEAP_FLAG_ALLOW_ONLY_RT_DS_TEXTURES;
}
} else {
allocation_desc.ExtraHeapFlags = D3D12_HEAP_FLAG_ALLOW_ONLY_NON_RT_DS_TEXTURES;
}
if ((resource_desc.Flags & D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS)) {
if (!(accum_forbidden_flags & D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS)) {
allocation_desc.ExtraHeapFlags |= D3D12_HEAP_FLAG_ALLOW_SHADER_ATOMICS;
}
}
#ifdef USE_SMALL_ALLOCS_POOL
uint32_t width, height;
uint32_t image_size = get_image_format_required_size(p_format.format, p_format.width, p_format.height, p_format.depth, p_format.mipmaps, &width, &height);
if (image_size <= SMALL_ALLOCATION_MAX_SIZE) {
allocation_desc.CustomPool = _find_or_create_small_allocs_pool(allocation_desc.HeapType, allocation_desc.ExtraHeapFlags);
}
#endif
Texture texture;
D3D12_RESOURCE_STATES initial_state = p_data.size() || (p_format.usage_bits & TEXTURE_USAGE_CPU_READ_BIT) ? D3D12_RESOURCE_STATE_COPY_DEST : D3D12_RESOURCE_STATE_ALL_SHADER_RESOURCE;
FLOAT black[4] = {};
D3D12_CLEAR_VALUE clear_value = CD3DX12_CLEAR_VALUE(d3d12_formats[p_format.format].general_format, black);
D3D12_CLEAR_VALUE *clear_value_ptr = (resource_desc.Flags & D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET) ? &clear_value : nullptr;
HRESULT res = {};
if (cross_family_sharing && relaxed_casting_available) {
res = context->get_allocator()->CreateResource3(
&allocation_desc,
&resource_desc,
D3D12_BARRIER_LAYOUT_COMMON, // Needed for barrier interop.
clear_value_ptr,
castable_formats.size(),
castable_formats.ptr(),
&texture.allocation,
IID_PPV_ARGS(&texture.owner_resource));
initial_state = D3D12_RESOURCE_STATE_COMMON; // Needed for barrier interop.
} else {
res = context->get_allocator()->CreateResource(
&allocation_desc,
(D3D12_RESOURCE_DESC *)&resource_desc,
initial_state,
clear_value_ptr,
&texture.allocation,
IID_PPV_ARGS(&texture.owner_resource));
}
ERR_FAIL_COND_V_MSG(res, RID(), "CreateResource failed with error " + vformat("0x%08ux", res) + ".");
texture.resource = texture.owner_resource;
image_memory += texture.allocation->GetSize();
texture.type = p_format.texture_type;
texture.format = p_format.format;
texture.planes = get_image_format_plane_count(p_format.format);
texture.width = p_format.width;
texture.height = p_format.height;
texture.depth = p_format.depth;
texture.layers = p_format.array_layers;
texture.mipmaps = p_format.mipmaps;
texture.owner_layers = texture.layers;
texture.owner_mipmaps = texture.mipmaps;
texture.base_mipmap = 0;
texture.base_layer = 0;
texture.is_resolve_buffer = p_format.is_resolve_buffer;
texture.usage_flags = p_format.usage_bits;
texture.samples = p_format.samples;
texture.allowed_shared_formats = p_format.shareable_formats;
texture.own_states.subresource_states.resize(texture.mipmaps * texture.layers);
for (uint32_t i = 0; i < texture.own_states.subresource_states.size(); i++) {
texture.own_states.subresource_states[i] = initial_state;
}
texture.bound = false;
// Describe view.
static const D3D12_SRV_DIMENSION view_dimensions[TEXTURE_TYPE_MAX] = {
D3D12_SRV_DIMENSION_TEXTURE1D,
D3D12_SRV_DIMENSION_TEXTURE2D,
D3D12_SRV_DIMENSION_TEXTURE3D,
D3D12_SRV_DIMENSION_TEXTURECUBE,
D3D12_SRV_DIMENSION_TEXTURE1DARRAY,
D3D12_SRV_DIMENSION_TEXTURE2DARRAY,
D3D12_SRV_DIMENSION_TEXTURECUBEARRAY,
};
static const D3D12_SRV_DIMENSION view_dimensions_ms[TEXTURE_TYPE_MAX] = {
D3D12_SRV_DIMENSION_UNKNOWN,
D3D12_SRV_DIMENSION_TEXTURE2DMS,
D3D12_SRV_DIMENSION_UNKNOWN,
D3D12_SRV_DIMENSION_UNKNOWN,
D3D12_SRV_DIMENSION_UNKNOWN,
D3D12_SRV_DIMENSION_TEXTURE2DMSARRAY,
D3D12_SRV_DIMENSION_UNKNOWN,
};
static const D3D12_UAV_DIMENSION uav_dimensions[TEXTURE_TYPE_MAX] = {
D3D12_UAV_DIMENSION_TEXTURE1D,
D3D12_UAV_DIMENSION_TEXTURE2D,
D3D12_UAV_DIMENSION_TEXTURE3D,
D3D12_UAV_DIMENSION_TEXTURE2DARRAY,
D3D12_UAV_DIMENSION_TEXTURE1DARRAY,
D3D12_UAV_DIMENSION_TEXTURE2DARRAY,
D3D12_UAV_DIMENSION_TEXTURE2DARRAY,
};
texture.srv_desc.ViewDimension = p_format.samples == TEXTURE_SAMPLES_1 ? view_dimensions[p_format.texture_type] : view_dimensions_ms[p_format.texture_type];
texture.owner_uav_desc.Format = d3d12_formats[p_format.format].general_format;
texture.owner_uav_desc.ViewDimension = p_format.samples == TEXTURE_SAMPLES_1 ? uav_dimensions[p_format.texture_type] : D3D12_UAV_DIMENSION_UNKNOWN;
UINT base_swizzle = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
if (p_view.format_override == DATA_FORMAT_MAX) {
texture.srv_desc.Format = d3d12_formats[p_format.format].general_format;
base_swizzle = d3d12_formats[p_format.format].swizzle;
} else {
texture.srv_desc.Format = d3d12_formats[p_view.format_override].general_format;
base_swizzle = d3d12_formats[p_view.format_override].swizzle;
}
// Apply requested swizzle (component mapping) on top of the one from the format database.
D3D12_SHADER_COMPONENT_MAPPING component_swizzles[TEXTURE_SWIZZLE_MAX] = {
D3D12_SHADER_COMPONENT_MAPPING_FORCE_VALUE_0, // Unused.
D3D12_SHADER_COMPONENT_MAPPING_FORCE_VALUE_0,
D3D12_SHADER_COMPONENT_MAPPING_FORCE_VALUE_1,
// These will be D3D12_SHADER_COMPONENT_MAPPING_FROM_MEMORY_COMPONENT_*.
D3D12_DECODE_SHADER_4_COMPONENT_MAPPING(0, base_swizzle),
D3D12_DECODE_SHADER_4_COMPONENT_MAPPING(1, base_swizzle),
D3D12_DECODE_SHADER_4_COMPONENT_MAPPING(2, base_swizzle),
D3D12_DECODE_SHADER_4_COMPONENT_MAPPING(3, base_swizzle),
};
texture.srv_desc.Shader4ComponentMapping = D3D12_ENCODE_SHADER_4_COMPONENT_MAPPING(
p_view.swizzle_r == TEXTURE_SWIZZLE_IDENTITY ? component_swizzles[TEXTURE_SWIZZLE_R] : component_swizzles[p_view.swizzle_r],
p_view.swizzle_g == TEXTURE_SWIZZLE_IDENTITY ? component_swizzles[TEXTURE_SWIZZLE_G] : component_swizzles[p_view.swizzle_g],
p_view.swizzle_b == TEXTURE_SWIZZLE_IDENTITY ? component_swizzles[TEXTURE_SWIZZLE_B] : component_swizzles[p_view.swizzle_b],
p_view.swizzle_a == TEXTURE_SWIZZLE_IDENTITY ? component_swizzles[TEXTURE_SWIZZLE_A] : component_swizzles[p_view.swizzle_a]);
switch (texture.srv_desc.ViewDimension) {
case D3D12_SRV_DIMENSION_TEXTURE1D: {
texture.srv_desc.Texture1D.MipLevels = p_format.mipmaps;
} break;
case D3D12_SRV_DIMENSION_TEXTURE1DARRAY: {
texture.srv_desc.Texture1DArray.MipLevels = p_format.mipmaps;
texture.srv_desc.Texture1DArray.ArraySize = p_format.array_layers;
} break;
case D3D12_SRV_DIMENSION_TEXTURE2D: {
texture.srv_desc.Texture2D.MipLevels = p_format.mipmaps;
} break;
case D3D12_SRV_DIMENSION_TEXTURE2DMS: {
} break;
case D3D12_SRV_DIMENSION_TEXTURE2DARRAY: {
texture.srv_desc.Texture2DArray.MipLevels = p_format.mipmaps;
texture.srv_desc.Texture2DArray.ArraySize = p_format.array_layers;
} break;
case D3D12_SRV_DIMENSION_TEXTURE2DMSARRAY: {
texture.srv_desc.Texture2DMSArray.ArraySize = p_format.array_layers;
} break;
case D3D12_SRV_DIMENSION_TEXTURECUBEARRAY: {
texture.srv_desc.TextureCubeArray.MipLevels = p_format.mipmaps;
texture.srv_desc.TextureCubeArray.NumCubes = p_format.array_layers / 6;
} break;
case D3D12_SRV_DIMENSION_TEXTURE3D: {
texture.srv_desc.Texture3D.MipLevels = p_format.mipmaps;
} break;
case D3D12_SRV_DIMENSION_TEXTURECUBE: {
texture.srv_desc.TextureCube.MipLevels = p_format.mipmaps;
} break;
}
switch (texture.owner_uav_desc.ViewDimension) {
case D3D12_UAV_DIMENSION_TEXTURE1DARRAY: {
texture.owner_uav_desc.Texture1DArray.ArraySize = p_format.array_layers;
} break;
case D3D12_UAV_DIMENSION_TEXTURE2DARRAY: {
// Either for an actual 2D texture array, cubemap or cubemap array.
texture.owner_uav_desc.Texture2DArray.ArraySize = p_format.array_layers;
} break;
case D3D12_UAV_DIMENSION_TEXTURE3D: {
texture.owner_uav_desc.Texture3D.WSize = p_format.depth;
} break;
default: {
}
}
texture.uav_desc = texture.owner_uav_desc;
if (p_view.format_override != DATA_FORMAT_MAX) {
texture.uav_desc.Format = d3d12_formats[p_view.format_override].general_format;
}
if (cross_family_sharing && !relaxed_casting_available) {
D3D12_RESOURCE_DESC resource_desc_backup = *(D3D12_RESOURCE_DESC *)&resource_desc;
D3D12MA::ALLOCATION_DESC allocation_desc_backup = allocation_desc;
texture.aliases.resize(texture.allowed_shared_formats.size());
for (int i = 0; i < texture.allowed_shared_formats.size(); i++) {
DataFormat curr_format = texture.allowed_shared_formats[i];
DXGI_FORMAT format_family = d3d12_formats[curr_format].family;
if (format_family == d3d12_formats[p_format.format].family) {
texture.aliases[i] = nullptr;
continue;
}
D3D12_RESOURCE_DESC alias_resource_desc = *(D3D12_RESOURCE_DESC *)&resource_desc;
alias_resource_desc.Format = format_family;
if (aliases_forbidden_flags.has(curr_format)) {
alias_resource_desc.Flags &= ~aliases_forbidden_flags[curr_format];
}
clear_value.Format = format_family;
res = context->get_allocator()->CreateAliasingResource(
texture.allocation,
0,
&alias_resource_desc,
initial_state,
(alias_resource_desc.Flags & D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET) ? clear_value_ptr : nullptr,
IID_PPV_ARGS(&texture.aliases[i]));
ERR_FAIL_COND_V_MSG(res, RID(), "CreateAliasingResource failed with error " + vformat("0x%08ux", res) + ".");
if (curr_format == p_view.format_override) {
texture.resource = texture.aliases[i];
}
}
}
RID id = texture_owner.make_rid(texture);
#ifdef DEV_ENABLED
set_resource_name(id, "RID:" + itos(id.get_id()));
#endif
if (p_data.size()) {
Texture *texture_ptr = texture_owner.get_or_null(id);
ERR_FAIL_NULL_V(texture_ptr, RID());
ID3D12GraphicsCommandList *command_list = frames[frame].setup_command_list.Get();
for (uint32_t i = 0; i < p_format.array_layers; i++) {
_texture_update(texture_ptr, i, p_data[i], RD::BARRIER_MASK_ALL_BARRIERS, command_list);
}
}
return id;
}
RID RenderingDeviceD3D12::texture_create_shared(const TextureView &p_view, RID p_with_texture) {
_THREAD_SAFE_METHOD_
Texture *src_texture = texture_owner.get_or_null(p_with_texture);
ERR_FAIL_NULL_V(src_texture, RID());
if (src_texture->owner.is_valid()) { // Ahh this is a share.
p_with_texture = src_texture->owner;
src_texture = texture_owner.get_or_null(src_texture->owner);
ERR_FAIL_NULL_V(src_texture, RID()); // This is a bug.
}
// Describe view.
Texture texture = *src_texture;
texture.own_states.subresource_states.clear();
texture.states = &src_texture->own_states;
UINT base_swizzle = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
if (p_view.format_override == DATA_FORMAT_MAX || p_view.format_override == texture.format) {
texture.srv_desc.Format = d3d12_formats[texture.format].general_format;
base_swizzle = d3d12_formats[texture.format].swizzle;
texture.uav_desc.Format = d3d12_formats[texture.format].general_format;
} else {
ERR_FAIL_INDEX_V(p_view.format_override, DATA_FORMAT_MAX, RID());
ERR_FAIL_COND_V_MSG(texture.allowed_shared_formats.find(p_view.format_override) == -1, RID(),
"Format override is not in the list of allowed shareable formats for original texture.");
texture.srv_desc.Format = d3d12_formats[p_view.format_override].general_format;
base_swizzle = d3d12_formats[p_view.format_override].swizzle;
texture.uav_desc.Format = d3d12_formats[p_view.format_override].general_format;
if (texture.aliases.size()) {
for (int i = 0; i < texture.allowed_shared_formats.size(); i++) {
if (texture.allowed_shared_formats[i] == p_view.format_override) {
texture.resource = texture.aliases[i];
break;
}
}
}
}
// Apply requested swizzle (component mapping) on top of the one from the format database.
D3D12_SHADER_COMPONENT_MAPPING component_swizzles[TEXTURE_SWIZZLE_MAX] = {
D3D12_SHADER_COMPONENT_MAPPING_FORCE_VALUE_0, // Unused.
D3D12_SHADER_COMPONENT_MAPPING_FORCE_VALUE_0,
D3D12_SHADER_COMPONENT_MAPPING_FORCE_VALUE_1,
// These will be D3D12_SHADER_COMPONENT_MAPPING_FROM_MEMORY_COMPONENT_*.
D3D12_DECODE_SHADER_4_COMPONENT_MAPPING(0, base_swizzle),
D3D12_DECODE_SHADER_4_COMPONENT_MAPPING(1, base_swizzle),
D3D12_DECODE_SHADER_4_COMPONENT_MAPPING(2, base_swizzle),
D3D12_DECODE_SHADER_4_COMPONENT_MAPPING(3, base_swizzle),
};
texture.srv_desc.Shader4ComponentMapping = D3D12_ENCODE_SHADER_4_COMPONENT_MAPPING(
p_view.swizzle_r == TEXTURE_SWIZZLE_IDENTITY ? component_swizzles[TEXTURE_SWIZZLE_R] : component_swizzles[p_view.swizzle_r],
p_view.swizzle_g == TEXTURE_SWIZZLE_IDENTITY ? component_swizzles[TEXTURE_SWIZZLE_G] : component_swizzles[p_view.swizzle_g],
p_view.swizzle_b == TEXTURE_SWIZZLE_IDENTITY ? component_swizzles[TEXTURE_SWIZZLE_B] : component_swizzles[p_view.swizzle_b],
p_view.swizzle_a == TEXTURE_SWIZZLE_IDENTITY ? component_swizzles[TEXTURE_SWIZZLE_A] : component_swizzles[p_view.swizzle_a]);
texture.owner = p_with_texture;
RID id = texture_owner.make_rid(texture);
#ifdef DEV_ENABLED
set_resource_name(id, "RID:" + itos(id.get_id()));
#endif
_add_dependency(id, p_with_texture);
return id;
}
RID RenderingDeviceD3D12::texture_create_from_extension(TextureType p_type, DataFormat p_format, TextureSamples p_samples, BitField<RenderingDevice::TextureUsageBits> p_flags, uint64_t p_image, uint64_t p_width, uint64_t p_height, uint64_t p_depth, uint64_t p_layers) {
ERR_FAIL_V_MSG(RID(), "Unimplemented!");
}
RID RenderingDeviceD3D12::texture_create_shared_from_slice(const TextureView &p_view, RID p_with_texture, uint32_t p_layer, uint32_t p_mipmap, uint32_t p_mipmaps, TextureSliceType p_slice_type, uint32_t p_layers) {
_THREAD_SAFE_METHOD_
Texture *src_texture = texture_owner.get_or_null(p_with_texture);
ERR_FAIL_NULL_V(src_texture, RID());
if (src_texture->owner.is_valid()) { // Ahh this is a share.
p_with_texture = src_texture->owner;
src_texture = texture_owner.get_or_null(src_texture->owner);
ERR_FAIL_NULL_V(src_texture, RID()); // This is a bug.
}
ERR_FAIL_COND_V_MSG(p_slice_type == TEXTURE_SLICE_CUBEMAP && (src_texture->type != TEXTURE_TYPE_CUBE && src_texture->type != TEXTURE_TYPE_CUBE_ARRAY), RID(),
"Can only create a cubemap slice from a cubemap or cubemap array mipmap");
ERR_FAIL_COND_V_MSG(p_slice_type == TEXTURE_SLICE_3D && src_texture->type != TEXTURE_TYPE_3D, RID(),
"Can only create a 3D slice from a 3D texture");
ERR_FAIL_COND_V_MSG(p_slice_type == TEXTURE_SLICE_2D_ARRAY && (src_texture->type != TEXTURE_TYPE_2D_ARRAY), RID(),
"Can only create an array slice from a 2D array mipmap");
// Describe view.
ERR_FAIL_UNSIGNED_INDEX_V(p_mipmap, src_texture->mipmaps, RID());
ERR_FAIL_COND_V(p_mipmap + p_mipmaps > src_texture->mipmaps, RID());
ERR_FAIL_UNSIGNED_INDEX_V(p_layer, src_texture->layers, RID());
int slice_layers = 1;
if (p_layers != 0) {
ERR_FAIL_COND_V_MSG(p_layers > 1 && p_slice_type != TEXTURE_SLICE_2D_ARRAY, RID(), "layer slicing only supported for 2D arrays");
ERR_FAIL_COND_V_MSG(p_layer + p_layers > src_texture->layers, RID(), "layer slice is out of bounds");
slice_layers = p_layers;
} else if (p_slice_type == TEXTURE_SLICE_2D_ARRAY) {
ERR_FAIL_COND_V_MSG(p_layer != 0, RID(), "layer must be 0 when obtaining a 2D array mipmap slice");
slice_layers = src_texture->layers;
} else if (p_slice_type == TEXTURE_SLICE_CUBEMAP) {
slice_layers = 6;
}
Texture texture = *src_texture;
get_image_format_required_size(texture.format, texture.width, texture.height, texture.depth, p_mipmap + 1, &texture.width, &texture.height);
texture.mipmaps = p_mipmaps;
texture.layers = slice_layers;
texture.base_mipmap = p_mipmap;
texture.base_layer = p_layer;
texture.own_states.subresource_states.clear();
texture.states = &src_texture->own_states;
UINT base_swizzle = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
if (p_view.format_override == DATA_FORMAT_MAX || p_view.format_override == texture.format) {
texture.srv_desc.Format = d3d12_formats[texture.format].general_format;
base_swizzle = d3d12_formats[texture.format].swizzle;
texture.uav_desc.Format = d3d12_formats[texture.format].general_format;
} else {
ERR_FAIL_INDEX_V(p_view.format_override, DATA_FORMAT_MAX, RID());
ERR_FAIL_COND_V_MSG(texture.allowed_shared_formats.find(p_view.format_override) == -1, RID(),
"Format override is not in the list of allowed shareable formats for original texture.");
texture.srv_desc.Format = d3d12_formats[p_view.format_override].general_format;
base_swizzle = d3d12_formats[p_view.format_override].swizzle;
texture.uav_desc.Format = d3d12_formats[p_view.format_override].general_format;
if (texture.aliases.size()) {
for (int i = 0; i < texture.allowed_shared_formats.size(); i++) {
if (texture.allowed_shared_formats[i] == p_view.format_override) {
texture.resource = texture.aliases[i];
break;
}
}
}
}
// Apply requested swizzle (component mapping) on top of the one from the format database.
D3D12_SHADER_COMPONENT_MAPPING component_swizzles[TEXTURE_SWIZZLE_MAX] = {
D3D12_SHADER_COMPONENT_MAPPING_FORCE_VALUE_0, // Unused.
D3D12_SHADER_COMPONENT_MAPPING_FORCE_VALUE_0,
D3D12_SHADER_COMPONENT_MAPPING_FORCE_VALUE_1,
// These will be D3D12_SHADER_COMPONENT_MAPPING_FROM_MEMORY_COMPONENT_*.
D3D12_DECODE_SHADER_4_COMPONENT_MAPPING(0, base_swizzle),
D3D12_DECODE_SHADER_4_COMPONENT_MAPPING(1, base_swizzle),
D3D12_DECODE_SHADER_4_COMPONENT_MAPPING(2, base_swizzle),
D3D12_DECODE_SHADER_4_COMPONENT_MAPPING(3, base_swizzle),
};
texture.srv_desc.Shader4ComponentMapping = D3D12_ENCODE_SHADER_4_COMPONENT_MAPPING(
p_view.swizzle_r == TEXTURE_SWIZZLE_IDENTITY ? component_swizzles[TEXTURE_SWIZZLE_R] : component_swizzles[p_view.swizzle_r],
p_view.swizzle_g == TEXTURE_SWIZZLE_IDENTITY ? component_swizzles[TEXTURE_SWIZZLE_G] : component_swizzles[p_view.swizzle_g],
p_view.swizzle_b == TEXTURE_SWIZZLE_IDENTITY ? component_swizzles[TEXTURE_SWIZZLE_B] : component_swizzles[p_view.swizzle_b],
p_view.swizzle_a == TEXTURE_SWIZZLE_IDENTITY ? component_swizzles[TEXTURE_SWIZZLE_A] : component_swizzles[p_view.swizzle_a]);
if (p_slice_type == TEXTURE_SLICE_CUBEMAP) {
ERR_FAIL_COND_V_MSG(p_layer >= src_texture->layers, RID(),
"Specified layer is invalid for cubemap");
ERR_FAIL_COND_V_MSG((p_layer % 6) != 0, RID(),
"Specified layer must be a multiple of 6.");
}
// Leveraging aliasing in members of the union as much as possible.
texture.srv_desc.Texture1D.MostDetailedMip = p_mipmap;
texture.srv_desc.Texture1D.MipLevels = 1;
texture.uav_desc.Texture1D.MipSlice = p_mipmap;
switch (p_slice_type) {
case TEXTURE_SLICE_2D: {
if (texture.srv_desc.ViewDimension == D3D12_SRV_DIMENSION_TEXTURE2D && p_layer == 0) {
CRASH_COND(texture.uav_desc.ViewDimension != D3D12_UAV_DIMENSION_TEXTURE2D);
} else if (texture.srv_desc.ViewDimension == D3D12_SRV_DIMENSION_TEXTURE2DMS && p_layer == 0) {
CRASH_COND(texture.uav_desc.ViewDimension != D3D12_UAV_DIMENSION_UNKNOWN);
} else if ((texture.srv_desc.ViewDimension == D3D12_SRV_DIMENSION_TEXTURE2DARRAY || (texture.srv_desc.ViewDimension == D3D12_SRV_DIMENSION_TEXTURE2D && p_layer)) || texture.srv_desc.ViewDimension == D3D12_SRV_DIMENSION_TEXTURECUBE || texture.srv_desc.ViewDimension == D3D12_SRV_DIMENSION_TEXTURECUBEARRAY) {
texture.srv_desc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE2DARRAY;
texture.srv_desc.Texture2DArray.FirstArraySlice = p_layer;
texture.srv_desc.Texture2DArray.ArraySize = 1;
texture.srv_desc.Texture2DArray.PlaneSlice = 0;
texture.srv_desc.Texture2DArray.ResourceMinLODClamp = 0.0f;
texture.uav_desc.ViewDimension = D3D12_UAV_DIMENSION_TEXTURE2DARRAY;
texture.uav_desc.Texture2DArray.FirstArraySlice = p_layer;
texture.uav_desc.Texture2DArray.ArraySize = 1;
texture.uav_desc.Texture2DArray.PlaneSlice = 0;
} else if ((texture.srv_desc.ViewDimension == D3D12_SRV_DIMENSION_TEXTURE2DMSARRAY || (texture.srv_desc.ViewDimension == D3D12_SRV_DIMENSION_TEXTURE2DMS && p_layer))) {
texture.srv_desc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE2DARRAY;
texture.srv_desc.Texture2DMSArray.FirstArraySlice = p_layer;
texture.srv_desc.Texture2DMSArray.ArraySize = 1;
texture.uav_desc.ViewDimension = D3D12_UAV_DIMENSION_UNKNOWN;
} else {
CRASH_NOW();
}
} break;
case TEXTURE_SLICE_CUBEMAP: {
if (texture.srv_desc.ViewDimension == D3D12_SRV_DIMENSION_TEXTURECUBE) {
CRASH_COND(texture.uav_desc.ViewDimension != D3D12_UAV_DIMENSION_TEXTURE2DARRAY);
} else if (texture.srv_desc.ViewDimension == D3D12_SRV_DIMENSION_TEXTURECUBE || p_layer == 0) {
texture.srv_desc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURECUBE;
CRASH_COND(texture.uav_desc.ViewDimension != D3D12_UAV_DIMENSION_TEXTURE2DARRAY);
texture.uav_desc.ViewDimension = D3D12_UAV_DIMENSION_TEXTURE2DARRAY;
texture.uav_desc.Texture2DArray.FirstArraySlice = 0;
texture.uav_desc.Texture2DArray.ArraySize = 6;
texture.uav_desc.Texture2DArray.PlaneSlice = 0;
} else if (texture.srv_desc.ViewDimension == D3D12_SRV_DIMENSION_TEXTURECUBEARRAY || p_layer != 0) {
texture.srv_desc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURECUBEARRAY;
texture.srv_desc.TextureCubeArray.First2DArrayFace = p_layer;
texture.srv_desc.TextureCubeArray.NumCubes = 1;
texture.srv_desc.TextureCubeArray.ResourceMinLODClamp = 0.0f;
CRASH_COND(texture.uav_desc.ViewDimension != D3D12_UAV_DIMENSION_TEXTURE2DARRAY);
texture.uav_desc.ViewDimension = D3D12_UAV_DIMENSION_TEXTURE2DARRAY;
texture.uav_desc.Texture2DArray.FirstArraySlice = p_layer;
texture.uav_desc.Texture2DArray.ArraySize = 6;
texture.uav_desc.Texture2DArray.PlaneSlice = 0;
} else {
CRASH_NOW();
}
} break;
case TEXTURE_SLICE_3D: {
CRASH_COND(texture.srv_desc.ViewDimension != D3D12_SRV_DIMENSION_TEXTURE3D);
CRASH_COND(texture.uav_desc.ViewDimension != D3D12_UAV_DIMENSION_TEXTURE3D);
texture.uav_desc.Texture3D.WSize = -1;
} break;
case TEXTURE_SLICE_2D_ARRAY: {
CRASH_COND(texture.srv_desc.ViewDimension != D3D12_SRV_DIMENSION_TEXTURE2DARRAY);
texture.srv_desc.Texture2DArray.FirstArraySlice = p_layer;
texture.srv_desc.Texture2DArray.ArraySize = slice_layers;
CRASH_COND(texture.uav_desc.ViewDimension != D3D12_UAV_DIMENSION_TEXTURE2DARRAY);
texture.uav_desc.Texture2DArray.FirstArraySlice = p_layer;
texture.uav_desc.Texture2DArray.ArraySize = slice_layers;
} break;
}
texture.owner = p_with_texture;
RID id = texture_owner.make_rid(texture);
#ifdef DEV_ENABLED
set_resource_name(id, "RID:" + itos(id.get_id()));
#endif
_add_dependency(id, p_with_texture);
return id;
}
Error RenderingDeviceD3D12::texture_update(RID p_texture, uint32_t p_layer, const Vector<uint8_t> &p_data, BitField<BarrierMask> p_post_barrier) {
ERR_FAIL_COND_V_MSG((draw_list || compute_list), ERR_INVALID_PARAMETER,
"Updating textures is forbidden during creation of a draw or compute list");
Texture *texture = texture_owner.get_or_null(p_texture);
ERR_FAIL_NULL_V(texture, ERR_INVALID_PARAMETER);
if (texture->owner != RID()) {
texture = texture_owner.get_or_null(texture->owner);
ERR_FAIL_NULL_V(texture, ERR_BUG); // This is a bug.
}
ID3D12GraphicsCommandList *command_list = frames[frame].draw_command_list.Get();
uint32_t subresource = D3D12CalcSubresource(0, p_layer, 0, texture->mipmaps, texture->layers);
_resource_transition_batch(texture, subresource, texture->planes, D3D12_RESOURCE_STATE_COPY_DEST);
_resource_transitions_flush(command_list);
Error err = _texture_update(texture, p_layer, p_data, p_post_barrier, command_list);
return err;
}
static _ALWAYS_INLINE_ void _copy_region(uint8_t const *__restrict p_src, uint8_t *__restrict p_dst, uint32_t p_src_x, uint32_t p_src_y, uint32_t p_src_w, uint32_t p_src_h, uint32_t p_src_full_w, uint32_t p_dst_pitch, uint32_t p_unit_size) {
uint32_t src_offset = (p_src_y * p_src_full_w + p_src_x) * p_unit_size;
uint32_t dst_offset = 0;
for (uint32_t y = p_src_h; y > 0; y--) {
uint8_t const *__restrict src = p_src + src_offset;
uint8_t *__restrict dst = p_dst + dst_offset;
for (uint32_t x = p_src_w * p_unit_size; x > 0; x--) {
*dst = *src;
src++;
dst++;
}
src_offset += p_src_full_w * p_unit_size;
dst_offset += p_dst_pitch;
}
}
Error RenderingDeviceD3D12::_texture_update(Texture *p_texture, uint32_t p_layer, const Vector<uint8_t> &p_data, BitField<BarrierMask> p_post_barrier, ID3D12GraphicsCommandList *p_command_list) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V_MSG(p_texture->bound, ERR_CANT_ACQUIRE_RESOURCE,
"Texture can't be updated while a render pass that uses it is being created. Ensure render pass is finalized (and that it was created with RENDER_PASS_CONTENTS_FINISH) to unbind this texture.");
ERR_FAIL_COND_V_MSG(!(p_texture->usage_flags & TEXTURE_USAGE_CAN_UPDATE_BIT), ERR_INVALID_PARAMETER,
"Texture requires the TEXTURE_USAGE_CAN_UPDATE_BIT in order to be updatable.");
uint32_t layer_count = p_texture->layers;
if (p_texture->type == TEXTURE_TYPE_CUBE || p_texture->type == TEXTURE_TYPE_CUBE_ARRAY) {
layer_count *= 6;
}
ERR_FAIL_COND_V(p_layer >= layer_count, ERR_INVALID_PARAMETER);
uint32_t width, height;
uint32_t image_size = get_image_format_required_size(p_texture->format, p_texture->width, p_texture->height, p_texture->depth, p_texture->mipmaps, &width, &height);
uint32_t required_size = image_size;
uint32_t required_align = get_compressed_image_format_block_byte_size(p_texture->format);
if (required_align == 1) {
required_align = get_image_format_pixel_size(p_texture->format);
}
if ((required_align % 4) != 0) { // Alignment rules are really strange.
required_align *= 4;
}
required_align = ALIGN(required_align, D3D12_TEXTURE_DATA_PLACEMENT_ALIGNMENT);
ERR_FAIL_COND_V_MSG(required_size != (uint32_t)p_data.size(), ERR_INVALID_PARAMETER,
"Required size for texture update (" + itos(required_size) + ") does not match data supplied size (" + itos(p_data.size()) + ").");
uint32_t region_size = texture_upload_region_size_px;
const uint8_t *r = p_data.ptr();
uint32_t mipmap_offset = 0;
uint32_t logic_width = p_texture->width;
uint32_t logic_height = p_texture->height;
for (uint32_t mm_i = 0; mm_i < p_texture->mipmaps; mm_i++) {
uint32_t depth;
uint32_t image_total = get_image_format_required_size(p_texture->format, p_texture->width, p_texture->height, p_texture->depth, mm_i + 1, &width, &height, &depth);
const uint8_t *read_ptr_mipmap = r + mipmap_offset;
image_size = image_total - mipmap_offset;
UINT dst_subresource = D3D12CalcSubresource(mm_i, p_layer, 0, p_texture->mipmaps, p_texture->layers);
CD3DX12_TEXTURE_COPY_LOCATION copy_dst(p_texture->resource, dst_subresource);
for (uint32_t z = 0; z < depth; z++) { // For 3D textures, depth may be > 0.
const uint8_t *read_ptr = read_ptr_mipmap + image_size * z / depth;
for (uint32_t y = 0; y < height; y += region_size) {
for (uint32_t x = 0; x < width; x += region_size) {
uint32_t region_w = MIN(region_size, width - x);
uint32_t region_h = MIN(region_size, height - y);
uint32_t pixel_size = get_image_format_pixel_size(p_texture->format);
uint32_t block_w, block_h;
get_compressed_image_format_block_dimensions(p_texture->format, block_w, block_h);
uint32_t region_pitch = (region_w * pixel_size * block_w) >> get_compressed_image_format_pixel_rshift(p_texture->format);
region_pitch = ALIGN(region_pitch, D3D12_TEXTURE_DATA_PITCH_ALIGNMENT);
uint32_t to_allocate = region_pitch * region_h;
uint32_t alloc_offset, alloc_size;
Error err = _staging_buffer_allocate(to_allocate, required_align, alloc_offset, alloc_size, false);
ERR_FAIL_COND_V(err, ERR_CANT_CREATE);
uint8_t *write_ptr;
{ // Map.
void *data_ptr = nullptr;
HRESULT res = staging_buffer_blocks[staging_buffer_current].resource->Map(0, &VOID_RANGE, &data_ptr);
ERR_FAIL_COND_V_MSG(res, ERR_CANT_CREATE, "Map failed with error " + vformat("0x%08ux", res) + ".");
write_ptr = (uint8_t *)data_ptr;
write_ptr += alloc_offset;
}
ERR_FAIL_COND_V(region_w % block_w, ERR_BUG);
ERR_FAIL_COND_V(region_pitch % block_w, ERR_BUG);
ERR_FAIL_COND_V(region_h % block_h, ERR_BUG);
if (block_w != 1 || block_h != 1) {
// Compressed image (functions).
// Must copy a block region.
uint32_t block_size = get_compressed_image_format_block_byte_size(p_texture->format);
// Re-create current variables in blocky format.
uint32_t xb = x / block_w;
uint32_t yb = y / block_h;
uint32_t wb = width / block_w;
// Uint32_t hb = height / block_h;.
uint32_t region_wb = region_w / block_w;
uint32_t region_hb = region_h / block_h;
_copy_region(read_ptr, write_ptr, xb, yb, region_wb, region_hb, wb, region_pitch, block_size);
} else {
// Regular image (pixels).
// Must copy a pixel region.
_copy_region(read_ptr, write_ptr, x, y, region_w, region_h, width, region_pitch, pixel_size);
}
{ // Unmap.
staging_buffer_blocks[staging_buffer_current].resource->Unmap(0, &VOID_RANGE);
}
D3D12_PLACED_SUBRESOURCE_FOOTPRINT src_footprint = {};
src_footprint.Offset = alloc_offset;
src_footprint.Footprint = CD3DX12_SUBRESOURCE_FOOTPRINT(
d3d12_formats[p_texture->format].family,
region_w,
region_h,
1,
region_pitch);
CD3DX12_TEXTURE_COPY_LOCATION copy_src(staging_buffer_blocks[staging_buffer_current].resource, src_footprint);
CD3DX12_BOX src_box(0, 0, region_w, region_h);
p_command_list->CopyTextureRegion(&copy_dst, x, y, z, &copy_src, &src_box);
staging_buffer_blocks.write[staging_buffer_current].fill_amount = alloc_offset + alloc_size;
}
}
}
mipmap_offset = image_total;
logic_width = MAX(1u, logic_width >> 1);
logic_height = MAX(1u, logic_height >> 1);
}
return OK;
}
Vector<uint8_t> RenderingDeviceD3D12::_texture_get_data_from_image(Texture *tex, uint32_t p_layer, bool p_2d) {
uint32_t width, height, depth;
uint32_t image_size = get_image_format_required_size(tex->format, tex->width, tex->height, p_2d ? 1 : tex->depth, tex->mipmaps, &width, &height, &depth);
Vector<uint8_t> image_data;
image_data.resize(image_size);
D3D12_RESOURCE_DESC res_desc = tex->resource->GetDesc();
uint32_t blockw, blockh;
get_compressed_image_format_block_dimensions(tex->format, blockw, blockh);
uint32_t block_size = get_compressed_image_format_block_byte_size(tex->format);
uint32_t pixel_size = get_image_format_pixel_size(tex->format);
{
uint8_t *w = image_data.ptrw();
uint32_t mipmap_offset = 0;
for (uint32_t mm_i = 0; mm_i < tex->mipmaps; mm_i++) {
uint32_t image_total = get_image_format_required_size(tex->format, tex->width, tex->height, p_2d ? 1 : tex->depth, mm_i + 1, &width, &height, &depth);
uint8_t *write_ptr_mipmap = w + mipmap_offset;
image_size = image_total - mipmap_offset;
UINT subresource = 0;
uint64_t image_total_src = 0;
D3D12_PLACED_SUBRESOURCE_FOOTPRINT layout = {};
device->GetCopyableFootprints(
&res_desc,
subresource,
1,
0,
&layout,
nullptr,
nullptr,
&image_total_src);
void *img_mem;
HRESULT res = tex->resource->Map(subresource, nullptr, &img_mem);
ERR_FAIL_COND_V_MSG(res, Vector<uint8_t>(), "Map failed with error " + vformat("0x%08ux", res) + ".");
for (uint32_t z = 0; z < depth; z++) {
uint8_t *write_ptr = write_ptr_mipmap + z * image_size / depth;
const uint8_t *slice_read_ptr = ((uint8_t *)img_mem) + layout.Offset + z * image_total_src / depth;
if (block_size > 1) {
// Compressed.
uint32_t line_width = (block_size * (width / blockw));
for (uint32_t y = 0; y < height / blockh; y++) {
const uint8_t *rptr = slice_read_ptr + y * layout.Footprint.RowPitch;
uint8_t *wptr = write_ptr + y * line_width;
memcpy(wptr, rptr, line_width);
}
} else {
// Uncompressed.
for (uint32_t y = 0; y < height; y++) {
const uint8_t *rptr = slice_read_ptr + y * layout.Footprint.RowPitch;
uint8_t *wptr = write_ptr + y * pixel_size * width;
memcpy(wptr, rptr, (uint64_t)pixel_size * width);
}
}
}
tex->resource->Unmap(subresource, nullptr);
mipmap_offset = image_total;
}
}
return image_data;
}
Vector<uint8_t> RenderingDeviceD3D12::texture_get_data(RID p_texture, uint32_t p_layer) {
_THREAD_SAFE_METHOD_
Texture *tex = texture_owner.get_or_null(p_texture);
ERR_FAIL_NULL_V(tex, Vector<uint8_t>());
ERR_FAIL_COND_V_MSG(tex->bound, Vector<uint8_t>(),
"Texture can't be retrieved while a render pass that uses it is being created. Ensure render pass is finalized (and that it was created with RENDER_PASS_CONTENTS_FINISH) to unbind this texture.");
ERR_FAIL_COND_V_MSG(!(tex->usage_flags & TEXTURE_USAGE_CAN_COPY_FROM_BIT), Vector<uint8_t>(),
"Texture requires the TEXTURE_USAGE_CAN_COPY_FROM_BIT in order to be retrieved.");
uint32_t layer_count = tex->layers;
if (tex->type == TEXTURE_TYPE_CUBE || tex->type == TEXTURE_TYPE_CUBE_ARRAY) {
layer_count *= 6;
}
ERR_FAIL_COND_V(p_layer >= layer_count, Vector<uint8_t>());
if (tex->usage_flags & TEXTURE_USAGE_CPU_READ_BIT) {
// Does not need anything fancy, map and read.
return _texture_get_data_from_image(tex, p_layer);
} else {
// Compute total image size.
uint32_t width, height, depth;
uint32_t final_buffer_size = get_image_format_required_size(tex->format, tex->width, tex->height, tex->depth, tex->mipmaps, &width, &height, &depth);
uint32_t block_w, block_h;
get_compressed_image_format_block_dimensions(tex->format, block_w, block_h);
uint32_t alignment = D3D12_TEXTURE_DATA_PITCH_ALIGNMENT;
// We'll use a potentially bigger buffer to account for mip sizes in which we need to use a bigger pitch to keep D3D12 happy.
uint32_t buffer_size = 0;
{
uint32_t computed_h = tex->height;
uint32_t computed_d = tex->depth;
uint32_t prev_size = 0;
for (uint32_t i = 0; i < tex->mipmaps; i++) {
uint32_t image_size = get_image_format_required_size(tex->format, tex->width, tex->height, tex->depth, i + 1);
uint32_t inferred_row_pitch = image_size / (computed_h * computed_d) * block_h;
uint32_t adjusted_row_pitch = ALIGN(inferred_row_pitch, alignment);
uint32_t adjusted_image_size = adjusted_row_pitch / block_h * computed_h * tex->depth;
uint32_t size = adjusted_image_size - prev_size;
prev_size = image_size;
buffer_size = ALIGN(buffer_size + size, D3D12_TEXTURE_DATA_PLACEMENT_ALIGNMENT);
computed_h = MAX(1u, computed_h >> 1);
computed_d = MAX(1u, computed_d >> 1);
}
}
// Allocate buffer.
ID3D12GraphicsCommandList *command_list = frames[frame].draw_command_list.Get(); // Makes more sense to retrieve.
Buffer tmp_buffer;
Error err = _buffer_allocate(&tmp_buffer, buffer_size, D3D12_RESOURCE_STATE_COPY_DEST, D3D12_HEAP_TYPE_READBACK);
ERR_FAIL_COND_V(err != OK, Vector<uint8_t>());
for (uint32_t i = 0; i < tex->mipmaps; i++) {
uint32_t subresource = D3D12CalcSubresource(i, p_layer, 0, tex->owner_mipmaps, tex->owner_layers);
_resource_transition_batch(tex, subresource, tex->planes, D3D12_RESOURCE_STATE_COPY_SOURCE);
}
_resource_transitions_flush(command_list);
uint32_t computed_w = tex->width;
uint32_t computed_h = tex->height;
uint32_t computed_d = tex->depth;
uint32_t prev_size = 0;
uint32_t offset = 0;
for (uint32_t i = 0; i < tex->mipmaps; i++) {
uint32_t image_size = get_image_format_required_size(tex->format, tex->width, tex->height, tex->depth, i + 1);
uint32_t size = image_size - prev_size;
prev_size = image_size;
D3D12_PLACED_SUBRESOURCE_FOOTPRINT dst_footprint = {};
dst_footprint.Offset = offset;
dst_footprint.Footprint.Width = MAX(block_w, computed_w);
dst_footprint.Footprint.Height = MAX(block_h, computed_h);
dst_footprint.Footprint.Depth = computed_d;
uint32_t inferred_row_pitch = size / (dst_footprint.Footprint.Height * computed_d) * block_h;
dst_footprint.Footprint.RowPitch = inferred_row_pitch;
dst_footprint.Footprint.Format = d3d12_formats[tex->format].family;
CD3DX12_TEXTURE_COPY_LOCATION copy_dst(tmp_buffer.resource, dst_footprint);
UINT src_subresource = D3D12CalcSubresource(i, p_layer, 0, tex->owner_mipmaps, tex->owner_layers);
CD3DX12_TEXTURE_COPY_LOCATION copy_src(tex->resource, src_subresource);
if (dst_footprint.Footprint.RowPitch % alignment) {
// Dammit! Now we must copy with an imposed pitch and then adjust row by row.
copy_dst.PlacedFootprint.Offset = ALIGN(offset, D3D12_TEXTURE_DATA_PLACEMENT_ALIGNMENT);
uint32_t adjusted_row_pitch = ALIGN(inferred_row_pitch, alignment);
copy_dst.PlacedFootprint.Footprint.RowPitch = adjusted_row_pitch;
command_list->CopyTextureRegion(&copy_dst, 0, 0, 0, &copy_src, nullptr);
_flush(true);
void *buffer_mem;
uint32_t adjusted_size = adjusted_row_pitch / block_h * dst_footprint.Footprint.Height * computed_d;
CD3DX12_RANGE range(offset, copy_dst.PlacedFootprint.Offset + adjusted_size);
HRESULT res = tmp_buffer.resource->Map(0, &range, &buffer_mem);
ERR_FAIL_COND_V_MSG(res, Vector<uint8_t>(), "Map failed with error " + vformat("0x%08ux", res) + ".");
for (uint32_t j = 0; j < dst_footprint.Footprint.Height / block_h * computed_d; j++) {
memmove((uint8_t *)buffer_mem + offset + j * inferred_row_pitch, (uint8_t *)buffer_mem + copy_dst.PlacedFootprint.Offset + j * adjusted_row_pitch, inferred_row_pitch);
}
tmp_buffer.resource->Unmap(0, nullptr);
} else if (offset % D3D12_TEXTURE_DATA_PLACEMENT_ALIGNMENT) {
// Row pitch is fine, but offset alignment is not good.
copy_dst.PlacedFootprint.Offset = ALIGN(offset, D3D12_TEXTURE_DATA_PLACEMENT_ALIGNMENT);
command_list->CopyTextureRegion(&copy_dst, 0, 0, 0, &copy_src, nullptr);
_flush(true);
void *buffer_mem;
CD3DX12_RANGE range(copy_dst.PlacedFootprint.Offset, size);
HRESULT res = tmp_buffer.resource->Map(0, &range, &buffer_mem);
ERR_FAIL_COND_V_MSG(res, Vector<uint8_t>(), "Map failed with error " + vformat("0x%08ux", res) + ".");
memmove((uint8_t *)buffer_mem + offset, (uint8_t *)buffer_mem + copy_dst.PlacedFootprint.Offset, size);
tmp_buffer.resource->Unmap(0, nullptr);
} else {
command_list->CopyTextureRegion(&copy_dst, 0, 0, 0, &copy_src, nullptr);
}
computed_w = MAX(1u, computed_w >> 1);
computed_h = MAX(1u, computed_h >> 1);
computed_d = MAX(1u, computed_d >> 1);
offset += size;
}
_flush(true);
void *buffer_mem;
CD3DX12_RANGE range(0, final_buffer_size);
HRESULT res = tmp_buffer.resource->Map(0, &range, &buffer_mem);
ERR_FAIL_COND_V_MSG(res, Vector<uint8_t>(), "Map failed with error " + vformat("0x%08ux", res) + ".");
Vector<uint8_t> buffer_data;
buffer_data.resize(final_buffer_size);
{
uint8_t *w = buffer_data.ptrw();
memcpy(w, buffer_mem, final_buffer_size);
}
tmp_buffer.resource->Unmap(0, nullptr);
_buffer_free(&tmp_buffer);
return buffer_data;
}
}
bool RenderingDeviceD3D12::texture_is_shared(RID p_texture) {
_THREAD_SAFE_METHOD_
Texture *tex = texture_owner.get_or_null(p_texture);
ERR_FAIL_NULL_V(tex, false);
return tex->owner.is_valid();
}
bool RenderingDeviceD3D12::texture_is_valid(RID p_texture) {
return texture_owner.owns(p_texture);
}
RenderingDevice::TextureFormat RenderingDeviceD3D12::texture_get_format(RID p_texture) {
_THREAD_SAFE_METHOD_
Texture *tex = texture_owner.get_or_null(p_texture);
ERR_FAIL_NULL_V(tex, TextureFormat());
TextureFormat tf;
tf.format = tex->format;
tf.width = tex->width;
tf.height = tex->height;
tf.depth = tex->depth;
tf.array_layers = tex->layers;
tf.mipmaps = tex->mipmaps;
tf.texture_type = tex->type;
tf.samples = tex->samples;
tf.usage_bits = tex->usage_flags;
tf.shareable_formats = tex->allowed_shared_formats;
tf.is_resolve_buffer = tex->is_resolve_buffer;
return tf;
}
Size2i RenderingDeviceD3D12::texture_size(RID p_texture) {
_THREAD_SAFE_METHOD_
Texture *tex = texture_owner.get_or_null(p_texture);
ERR_FAIL_NULL_V(tex, Size2i());
return Size2i(tex->width, tex->height);
}
uint64_t RenderingDeviceD3D12::texture_get_native_handle(RID p_texture) {
_THREAD_SAFE_METHOD_
Texture *tex = texture_owner.get_or_null(p_texture);
ERR_FAIL_NULL_V(tex, 0);
return (uint64_t)tex->resource;
}
Error RenderingDeviceD3D12::texture_copy(RID p_from_texture, RID p_to_texture, const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_size, uint32_t p_src_mipmap, uint32_t p_dst_mipmap, uint32_t p_src_layer, uint32_t p_dst_layer, BitField<BarrierMask> p_post_barrier) {
_THREAD_SAFE_METHOD_
Texture *src_tex = texture_owner.get_or_null(p_from_texture);
ERR_FAIL_NULL_V(src_tex, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V_MSG(src_tex->bound, ERR_INVALID_PARAMETER,
"Source texture can't be copied while a render pass that uses it is being created. Ensure render pass is finalized (and that it was created with RENDER_PASS_CONTENTS_FINISH) to unbind this texture.");
ERR_FAIL_COND_V_MSG(!(src_tex->usage_flags & TEXTURE_USAGE_CAN_COPY_FROM_BIT), ERR_INVALID_PARAMETER,
"Source texture requires the TEXTURE_USAGE_CAN_COPY_FROM_BIT in order to be retrieved.");
uint32_t src_layer_count = src_tex->layers;
uint32_t src_width, src_height, src_depth;
get_image_format_required_size(src_tex->format, src_tex->width, src_tex->height, src_tex->depth, p_src_mipmap + 1, &src_width, &src_height, &src_depth);
if (src_tex->type == TEXTURE_TYPE_CUBE || src_tex->type == TEXTURE_TYPE_CUBE_ARRAY) {
src_layer_count *= 6;
}
ERR_FAIL_COND_V(p_from.x < 0 || p_from.x + p_size.x > src_width, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(p_from.y < 0 || p_from.y + p_size.y > src_height, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(p_from.z < 0 || p_from.z + p_size.z > src_depth, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(p_src_mipmap >= src_tex->mipmaps, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(p_src_layer >= src_layer_count, ERR_INVALID_PARAMETER);
Texture *dst_tex = texture_owner.get_or_null(p_to_texture);
ERR_FAIL_NULL_V(dst_tex, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V_MSG(dst_tex->bound, ERR_INVALID_PARAMETER,
"Destination texture can't be copied while a render pass that uses it is being created. Ensure render pass is finalized (and that it was created with RENDER_PASS_CONTENTS_FINISH) to unbind this texture.");
ERR_FAIL_COND_V_MSG(!(dst_tex->usage_flags & TEXTURE_USAGE_CAN_COPY_TO_BIT), ERR_INVALID_PARAMETER,
"Destination texture requires the TEXTURE_USAGE_CAN_COPY_TO_BIT in order to be retrieved.");
uint32_t dst_layer_count = dst_tex->layers;
uint32_t dst_width, dst_height, dst_depth;
get_image_format_required_size(dst_tex->format, dst_tex->width, dst_tex->height, dst_tex->depth, p_dst_mipmap + 1, &dst_width, &dst_height, &dst_depth);
if (dst_tex->type == TEXTURE_TYPE_CUBE || dst_tex->type == TEXTURE_TYPE_CUBE_ARRAY) {
dst_layer_count *= 6;
}
ERR_FAIL_COND_V(p_to.x < 0 || p_to.x + p_size.x > dst_width, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(p_to.y < 0 || p_to.y + p_size.y > dst_height, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(p_to.z < 0 || p_to.z + p_size.z > dst_depth, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(p_dst_mipmap >= dst_tex->mipmaps, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(p_dst_layer >= dst_layer_count, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V_MSG((src_tex->usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) != (dst_tex->usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT), ERR_INVALID_PARAMETER,
"Source and destination texture must be of the same type (color or depth).");
ID3D12GraphicsCommandList *command_list = frames[frame].draw_command_list.Get();
uint32_t src_subresource = D3D12CalcSubresource(p_src_mipmap, p_src_layer, 0, src_tex->owner_mipmaps, src_tex->owner_layers);
_resource_transition_batch(src_tex, src_subresource, src_tex->planes, D3D12_RESOURCE_STATE_COPY_SOURCE);
uint32_t dst_subresource = D3D12CalcSubresource(p_dst_mipmap, p_dst_layer, 0, dst_tex->owner_mipmaps, dst_tex->owner_layers);
_resource_transition_batch(dst_tex, dst_subresource, dst_tex->planes, D3D12_RESOURCE_STATE_COPY_DEST);
_resource_transitions_flush(command_list);
{
CD3DX12_TEXTURE_COPY_LOCATION src_location(src_tex->resource, src_subresource);
CD3DX12_BOX src_box(p_from.x, p_from.y, p_from.z, p_from.x + p_size.x, p_from.y + p_size.y, p_from.z + p_size.z);
CD3DX12_TEXTURE_COPY_LOCATION dst_location(dst_tex->resource, dst_subresource);
command_list->CopyTextureRegion(
&dst_location,
p_to.x, p_to.y, p_to.z,
&src_location,
&src_box);
}
return OK;
}
Error RenderingDeviceD3D12::texture_resolve_multisample(RID p_from_texture, RID p_to_texture, BitField<BarrierMask> p_post_barrier) {
_THREAD_SAFE_METHOD_
Texture *src_tex = texture_owner.get_or_null(p_from_texture);
ERR_FAIL_NULL_V(src_tex, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V_MSG(src_tex->bound, ERR_INVALID_PARAMETER,
"Source texture can't be copied while a render pass that uses it is being created. Ensure render pass is finalized (and that it was created with RENDER_PASS_CONTENTS_FINISH) to unbind this texture.");
ERR_FAIL_COND_V_MSG(!(src_tex->usage_flags & TEXTURE_USAGE_CAN_COPY_FROM_BIT), ERR_INVALID_PARAMETER,
"Source texture requires the TEXTURE_USAGE_CAN_COPY_FROM_BIT in order to be retrieved.");
ERR_FAIL_COND_V_MSG(src_tex->type != TEXTURE_TYPE_2D, ERR_INVALID_PARAMETER, "Source texture must be 2D (or a slice of a 3D/Cube texture)");
ERR_FAIL_COND_V_MSG(src_tex->samples == TEXTURE_SAMPLES_1, ERR_INVALID_PARAMETER, "Source texture must be multisampled.");
Texture *dst_tex = texture_owner.get_or_null(p_to_texture);
ERR_FAIL_NULL_V(dst_tex, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V_MSG(dst_tex->bound, ERR_INVALID_PARAMETER,
"Destination texture can't be copied while a render pass that uses it is being created. Ensure render pass is finalized (and that it was created with RENDER_PASS_CONTENTS_FINISH) to unbind this texture.");
ERR_FAIL_COND_V_MSG(!(dst_tex->usage_flags & TEXTURE_USAGE_CAN_COPY_TO_BIT), ERR_INVALID_PARAMETER,
"Destination texture requires the TEXTURE_USAGE_CAN_COPY_TO_BIT in order to be retrieved.");
ERR_FAIL_COND_V_MSG(dst_tex->type != TEXTURE_TYPE_2D, ERR_INVALID_PARAMETER, "Destination texture must be 2D (or a slice of a 3D/Cube texture).");
ERR_FAIL_COND_V_MSG(dst_tex->samples != TEXTURE_SAMPLES_1, ERR_INVALID_PARAMETER, "Destination texture must not be multisampled.");
ERR_FAIL_COND_V_MSG(src_tex->format != dst_tex->format, ERR_INVALID_PARAMETER, "Source and Destination textures must be the same format.");
ERR_FAIL_COND_V_MSG(src_tex->width != dst_tex->width && src_tex->height != dst_tex->height && src_tex->depth != dst_tex->depth, ERR_INVALID_PARAMETER, "Source and Destination textures must have the same dimensions.");
ERR_FAIL_COND_V_MSG((src_tex->usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) != (dst_tex->usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT), ERR_INVALID_PARAMETER,
"Source and destination texture must be of the same type (color or depth).");
ID3D12GraphicsCommandList *command_list = frames[frame].draw_command_list.Get();
uint32_t src_subresource = D3D12CalcSubresource(src_tex->base_mipmap, src_tex->base_layer, 0, src_tex->owner_mipmaps, src_tex->owner_layers);
_resource_transition_batch(src_tex, src_subresource, src_tex->planes, D3D12_RESOURCE_STATE_RESOLVE_SOURCE);
uint32_t dst_subresource = D3D12CalcSubresource(dst_tex->base_mipmap, dst_tex->base_layer, 0, dst_tex->owner_mipmaps, dst_tex->owner_layers);
_resource_transition_batch(dst_tex, dst_subresource, dst_tex->planes, D3D12_RESOURCE_STATE_RESOLVE_DEST);
_resource_transitions_flush(command_list);
command_list->ResolveSubresource(dst_tex->resource, dst_subresource, src_tex->resource, src_subresource, d3d12_formats[src_tex->format].general_format);
return OK;
}
Error RenderingDeviceD3D12::texture_clear(RID p_texture, const Color &p_color, uint32_t p_base_mipmap, uint32_t p_mipmaps, uint32_t p_base_layer, uint32_t p_layers, BitField<BarrierMask> p_post_barrier) {
_THREAD_SAFE_METHOD_
Texture *src_tex = texture_owner.get_or_null(p_texture);
ERR_FAIL_NULL_V(src_tex, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V_MSG(src_tex->bound, ERR_INVALID_PARAMETER,
"Source texture can't be cleared while a render pass that uses it is being created. Ensure render pass is finalized (and that it was created with RENDER_PASS_CONTENTS_FINISH) to unbind this texture.");
ERR_FAIL_COND_V(p_layers == 0, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(p_mipmaps == 0, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V_MSG(!(src_tex->usage_flags & TEXTURE_USAGE_CAN_COPY_TO_BIT), ERR_INVALID_PARAMETER,
"Source texture requires the TEXTURE_USAGE_CAN_COPY_TO_BIT in order to be cleared.");
uint32_t src_layer_count = src_tex->layers;
if (src_tex->type == TEXTURE_TYPE_CUBE || src_tex->type == TEXTURE_TYPE_CUBE_ARRAY) {
src_layer_count *= 6;
}
ERR_FAIL_COND_V(p_base_mipmap + p_mipmaps > src_tex->mipmaps, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(p_base_layer + p_layers > src_layer_count, ERR_INVALID_PARAMETER);
if ((src_tex->usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) {
// Clear via RTV.
if (frames[frame].desc_heap_walkers.rtv.is_at_eof()) {
if (!frames[frame].desc_heaps_exhausted_reported.rtv) {
frames[frame].desc_heaps_exhausted_reported.rtv = true;
ERR_FAIL_V_MSG(ERR_BUSY,
"Cannot clear texture because there's no enough room in current frame's RENDER TARGET descriptors heap.\n"
"Please increase the value of the rendering/rendering_device/d3d12/max_misc_descriptors_per_frame project setting.");
} else {
return ERR_BUSY;
}
}
D3D12_RENDER_TARGET_VIEW_DESC rtv_desc = _make_rtv_for_texture(src_tex, p_base_mipmap, p_base_layer, p_layers);
rtv_desc.Format = src_tex->owner_uav_desc.Format;
ID3D12GraphicsCommandList *command_list = frames[frame].draw_command_list.Get();
for (uint32_t i = 0; i < p_layers; i++) {
for (uint32_t j = 0; j < p_mipmaps; j++) {
uint32_t subresource = D3D12CalcSubresource(src_tex->base_mipmap + p_base_mipmap + j, src_tex->base_layer + p_base_layer + i, 0, src_tex->owner_mipmaps, src_tex->owner_layers);
_resource_transition_batch(src_tex, subresource, src_tex->planes, D3D12_RESOURCE_STATE_RENDER_TARGET, src_tex->owner_resource);
}
}
_resource_transitions_flush(command_list);
device->CreateRenderTargetView(
src_tex->owner_resource,
&rtv_desc,
frames[frame].desc_heap_walkers.rtv.get_curr_cpu_handle());
command_list->ClearRenderTargetView(
frames[frame].desc_heap_walkers.rtv.get_curr_cpu_handle(),
p_color.components,
0,
nullptr);
frames[frame].desc_heap_walkers.rtv.advance();
} else {
// Clear via UAV.
if (frames[frame].desc_heap_walkers.resources.is_at_eof()) {
if (!frames[frame].desc_heaps_exhausted_reported.resources) {
frames[frame].desc_heaps_exhausted_reported.resources = true;
ERR_FAIL_V_MSG(ERR_BUSY,
"Cannot clear texture because there's no enough room in current frame's RESOURCE descriptors heap.\n"
"Please increase the value of the rendering/rendering_device/d3d12/max_resource_descriptors_per_frame project setting.");
} else {
return ERR_BUSY;
}
}
if (frames[frame].desc_heap_walkers.aux.is_at_eof()) {
if (!frames[frame].desc_heaps_exhausted_reported.aux) {
frames[frame].desc_heaps_exhausted_reported.aux = true;
ERR_FAIL_V_MSG(ERR_BUSY,
"Cannot clear texture because there's no enough room in current frame's AUX descriptors heap.\n"
"Please increase the value of the rendering/rendering_device/d3d12/max_misc_descriptors_per_frame project setting.");
} else {
return ERR_BUSY;
}
}
ID3D12GraphicsCommandList *command_list = frames[frame].draw_command_list.Get();
for (uint32_t i = 0; i < p_layers; i++) {
for (uint32_t j = 0; j < p_mipmaps; j++) {
uint32_t subresource = D3D12CalcSubresource(src_tex->base_mipmap + p_base_mipmap + j, src_tex->base_layer + p_base_layer + i, 0, src_tex->owner_mipmaps, src_tex->owner_layers);
_resource_transition_batch(src_tex, subresource, src_tex->planes, D3D12_RESOURCE_STATE_UNORDERED_ACCESS, src_tex->owner_resource);
}
}
_resource_transitions_flush(command_list);
device->CreateUnorderedAccessView(
src_tex->owner_resource,
nullptr,
&src_tex->owner_uav_desc,
frames[frame].desc_heap_walkers.aux.get_curr_cpu_handle());
device->CopyDescriptorsSimple(
1,
frames[frame].desc_heap_walkers.resources.get_curr_cpu_handle(),
frames[frame].desc_heap_walkers.aux.get_curr_cpu_handle(),
D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV);
UINT values[4] = {
(UINT)p_color.get_r8(),
(UINT)p_color.get_g8(),
(UINT)p_color.get_b8(),
(UINT)p_color.get_a8(),
};
command_list->ClearUnorderedAccessViewUint(
frames[frame].desc_heap_walkers.resources.get_curr_gpu_handle(),
frames[frame].desc_heap_walkers.aux.get_curr_cpu_handle(),
src_tex->owner_resource,
values,
0,
nullptr);
frames[frame].desc_heap_walkers.resources.advance();
frames[frame].desc_heap_walkers.aux.advance();
}
return OK;
}
bool RenderingDeviceD3D12::texture_is_format_supported_for_usage(DataFormat p_format, BitField<RenderingDevice::TextureUsageBits> p_usage) const {
ERR_FAIL_INDEX_V(p_format, DATA_FORMAT_MAX, false);
_THREAD_SAFE_METHOD_
D3D12_FEATURE_DATA_FORMAT_SUPPORT srv_rtv_support = {};
srv_rtv_support.Format = d3d12_formats[p_format].general_format;
HRESULT res = device->CheckFeatureSupport(D3D12_FEATURE_FORMAT_SUPPORT, &srv_rtv_support, sizeof(srv_rtv_support));
ERR_FAIL_COND_V_MSG(res, false, "CheckFeatureSupport failed with error " + vformat("0x%08ux", res) + ".");
D3D12_FEATURE_DATA_FORMAT_SUPPORT &uav_support = srv_rtv_support; // Fine for now.
D3D12_FEATURE_DATA_FORMAT_SUPPORT dsv_support = {};
dsv_support.Format = d3d12_formats[p_format].dsv_format;
res = device->CheckFeatureSupport(D3D12_FEATURE_FORMAT_SUPPORT, &dsv_support, sizeof(dsv_support));
ERR_FAIL_COND_V_MSG(res, false, "CheckFeatureSupport failed with error " + vformat("0x%08ux", res) + ".");
if ((p_usage & TEXTURE_USAGE_SAMPLING_BIT) && !(srv_rtv_support.Support1 & (D3D12_FORMAT_SUPPORT1_SHADER_LOAD | D3D12_FORMAT_SUPPORT1_SHADER_SAMPLE)) && d3d12_formats[p_format].general_format != DXGI_FORMAT_UNKNOWN) {
return false;
}
if ((p_usage & TEXTURE_USAGE_SAMPLING_BIT) && d3d12_formats[p_format].general_format == DXGI_FORMAT_UNKNOWN) {
return false;
}
if ((p_usage & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT) && !(srv_rtv_support.Support1 & D3D12_FORMAT_SUPPORT1_RENDER_TARGET)) {
return false;
}
if ((p_usage & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) && !(dsv_support.Support1 & D3D12_FORMAT_SUPPORT1_DEPTH_STENCIL)) {
printf("dxgiformat: %x\n", d3d12_formats[p_format].dsv_format);
return false;
}
if ((p_usage & TEXTURE_USAGE_STORAGE_BIT) && !(uav_support.Support1 & D3D12_FORMAT_SUPPORT1_TYPED_UNORDERED_ACCESS_VIEW)) { // Maybe check LOAD/STORE, too?
return false;
}
if ((p_usage & TEXTURE_USAGE_STORAGE_ATOMIC_BIT) && !(uav_support.Support2 & D3D12_FORMAT_SUPPORT2_UAV_ATOMIC_ADD)) { // Check a basic atomic at least.
return false;
}
if ((p_usage & TEXTURE_USAGE_VRS_ATTACHMENT_BIT) && d3d12_formats[p_format].general_format != DXGI_FORMAT_R8_UINT) {
return false;
}
return true;
}
/********************/
/**** ATTACHMENT ****/
/********************/
bool RenderingDeviceD3D12::_framebuffer_format_preprocess(FramebufferFormat *p_fb_format, uint32_t p_view_count) {
const Vector<AttachmentFormat> &attachments = p_fb_format->attachments;
LocalVector<int32_t> attachment_last_pass;
attachment_last_pass.resize(attachments.size());
if (p_view_count > 1) {
const D3D12Context::MultiviewCapabilities &capabilities = context->get_multiview_capabilities();
// This only works with multiview!
ERR_FAIL_COND_V_MSG(!capabilities.is_supported, false, "Multiview not supported");
// Make sure we limit this to the number of views we support.
ERR_FAIL_COND_V_MSG(p_view_count > capabilities.max_view_count, false, "Hardware does not support requested number of views for Multiview render pass");
}
int attachment_count = 0;
HashSet<DXGI_FORMAT> ms_attachment_formats;
for (int i = 0; i < attachments.size(); i++) {
if (attachments[i].usage_flags == AttachmentFormat::UNUSED_ATTACHMENT) {
continue;
}
ERR_FAIL_INDEX_V(attachments[i].format, DATA_FORMAT_MAX, false);
ERR_FAIL_INDEX_V(attachments[i].samples, TEXTURE_SAMPLES_MAX, false);
ERR_FAIL_COND_V_MSG(!(attachments[i].usage_flags & (TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | TEXTURE_USAGE_INPUT_ATTACHMENT_BIT | TEXTURE_USAGE_VRS_ATTACHMENT_BIT)),
ERR_INVALID_PARAMETER, "Texture format for index (" + itos(i) + ") requires an attachment (color, depth-stencil, input or VRS) bit set.");
attachment_last_pass[i] = -1;
attachment_count++;
if (attachments[i].samples != TEXTURE_SAMPLES_1) {
if ((attachments[i].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) {
ms_attachment_formats.insert(d3d12_formats[attachments[i].format].general_format);
} else if ((attachments[i].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
ms_attachment_formats.insert(d3d12_formats[attachments[i].format].dsv_format);
}
}
}
Vector<FramebufferPass> &passes = p_fb_format->passes;
for (int i = 0; i < passes.size(); i++) {
FramebufferPass *pass = &passes.write[i];
TextureSamples texture_samples = TEXTURE_SAMPLES_1;
bool is_multisample_first = true;
ERR_FAIL_COND_V(pass->color_attachments.size() > D3D12_SIMULTANEOUS_RENDER_TARGET_COUNT, false);
for (int j = 0; j < pass->color_attachments.size(); j++) {
int32_t attachment = pass->color_attachments[j];
if (attachment != FramebufferPass::ATTACHMENT_UNUSED) {
ERR_FAIL_INDEX_V_MSG(attachment, attachments.size(), false, "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), color attachment (" + itos(j) + ").");
ERR_FAIL_COND_V_MSG(!(attachments[attachment].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT), false, "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it's marked as depth, but it's not usable as color attachment.");
ERR_FAIL_COND_V_MSG(attachment_last_pass[attachment] == i, false, "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it already was used for something else before in this pass.");
if (is_multisample_first) {
texture_samples = attachments[attachment].samples;
is_multisample_first = false;
} else {
ERR_FAIL_COND_V_MSG(texture_samples != attachments[attachment].samples, false, "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), if an attachment is marked as multisample, all of them should be multisample and use the same number of samples.");
}
attachment_last_pass[attachment] = i;
}
}
for (int j = 0; j < pass->input_attachments.size(); j++) {
int32_t attachment = pass->input_attachments[j];
if (attachment != FramebufferPass::ATTACHMENT_UNUSED) {
ERR_FAIL_INDEX_V_MSG(attachment, attachments.size(), false, "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), input attachment (" + itos(j) + ").");
ERR_FAIL_COND_V_MSG(!(attachments[attachment].usage_flags & TEXTURE_USAGE_INPUT_ATTACHMENT_BIT), false, "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it isn't marked as an input texture.");
ERR_FAIL_COND_V_MSG(attachment_last_pass[attachment] == i, false, "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it already was used for something else before in this pass.");
if ((attachments[attachment].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
ERR_FAIL_V_MSG(false, "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), the D3D12 driver doesn't yet support using depth-stencil targets as input attachments.");
}
attachment_last_pass[attachment] = i;
}
}
if (pass->resolve_attachments.size() > 0) {
ERR_FAIL_COND_V_MSG(pass->resolve_attachments.size() != pass->color_attachments.size(), false, "The amount of resolve attachments (" + itos(pass->resolve_attachments.size()) + ") must match the number of color attachments (" + itos(pass->color_attachments.size()) + ").");
ERR_FAIL_COND_V_MSG(texture_samples == TEXTURE_SAMPLES_1, false, "Resolve attachments specified, but color attachments are not multisample.");
}
for (int j = 0; j < pass->resolve_attachments.size(); j++) {
int32_t attachment = pass->resolve_attachments[j];
if (attachment != FramebufferPass::ATTACHMENT_UNUSED) {
ERR_FAIL_INDEX_V_MSG(attachment, attachments.size(), false, "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), resolve attachment (" + itos(j) + ").");
ERR_FAIL_COND_V_MSG(pass->color_attachments[j] == FramebufferPass::ATTACHMENT_UNUSED, false, "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), resolve attachment (" + itos(j) + "), the respective color attachment is marked as unused.");
ERR_FAIL_COND_V_MSG(!(attachments[attachment].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT), false, "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), resolve attachment, it isn't marked as a color texture.");
ERR_FAIL_COND_V_MSG(attachment_last_pass[attachment] == i, false, "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it already was used for something else before in this pass.");
bool multisample = attachments[attachment].samples > TEXTURE_SAMPLES_1;
ERR_FAIL_COND_V_MSG(multisample, false, "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), resolve attachments can't be multisample.");
attachment_last_pass[attachment] = i;
}
}
if (pass->depth_attachment != FramebufferPass::ATTACHMENT_UNUSED) {
int32_t attachment = pass->depth_attachment;
ERR_FAIL_INDEX_V_MSG(attachment, attachments.size(), false, "Invalid framebuffer depth format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), depth attachment.");
ERR_FAIL_COND_V_MSG(!(attachments[attachment].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT), false, "Invalid framebuffer depth format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it's marked as depth, but it's not a depth attachment.");
ERR_FAIL_COND_V_MSG(attachment_last_pass[attachment] == i, false, "Invalid framebuffer depth format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it already was used for something else before in this pass.");
attachment_last_pass[attachment] = i;
if (is_multisample_first) {
texture_samples = attachments[attachment].samples;
is_multisample_first = false;
} else {
ERR_FAIL_COND_V_MSG(texture_samples != attachments[attachment].samples, false, "Invalid framebuffer depth format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), if an attachment is marked as multisample, all of them should be multisample and use the same number of samples including the depth.");
}
}
if (context->get_vrs_capabilities().ss_image_supported && pass->vrs_attachment != FramebufferPass::ATTACHMENT_UNUSED) {
int32_t attachment = pass->vrs_attachment;
ERR_FAIL_INDEX_V_MSG(attachment, attachments.size(), false, "Invalid framebuffer VRS format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), VRS attachment.");
ERR_FAIL_COND_V_MSG(!(attachments[attachment].usage_flags & TEXTURE_USAGE_VRS_ATTACHMENT_BIT), false, "Invalid framebuffer VRS format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it's marked as VRS, but it's not a VRS attachment.");
ERR_FAIL_COND_V_MSG(attachment_last_pass[attachment] == i, false, "Invalid framebuffer VRS attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it already was used for something else before in this pass.");
attachment_last_pass[attachment] = i;
}
for (int j = 0; j < pass->preserve_attachments.size(); j++) {
int32_t attachment = pass->preserve_attachments[j];
ERR_FAIL_COND_V_MSG(attachment == FramebufferPass::ATTACHMENT_UNUSED, false, "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), preserve attachment (" + itos(j) + "). Preserve attachments can't be unused.");
ERR_FAIL_INDEX_V_MSG(attachment, attachments.size(), false, "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), preserve attachment (" + itos(j) + ").");
if (attachment_last_pass[attachment] != i) {
// Preserve can still be used to keep depth or color from being discarded after use.
attachment_last_pass[attachment] = i;
}
}
p_fb_format->pass_samples.push_back(texture_samples);
}
if (p_fb_format->view_count > 1) {
const D3D12Context::MultiviewCapabilities capabilities = context->get_multiview_capabilities();
// For now this only works with multiview!
ERR_FAIL_COND_V_MSG(!capabilities.is_supported, ERR_UNAVAILABLE, "Multiview not supported");
// Make sure we limit this to the number of views we support.
ERR_FAIL_COND_V_MSG(p_fb_format->view_count > capabilities.max_view_count, ERR_UNAVAILABLE, "Hardware does not support requested number of views for Multiview render pass");
}
if (!ms_attachment_formats.is_empty()) {
LocalVector<DXGI_FORMAT> formats;
for (DXGI_FORMAT f : ms_attachment_formats) {
formats.push_back(f);
}
p_fb_format->max_supported_sample_count = _find_max_common_supported_sample_count(formats.ptr(), formats.size());
}
return true;
}
uint32_t RenderingDeviceD3D12::_find_max_common_supported_sample_count(const DXGI_FORMAT *p_formats, uint32_t p_num_formats) {
uint32_t common = UINT32_MAX;
for (uint32_t i = 0; i < p_num_formats; i++) {
if (format_sample_counts_mask_cache.has(p_formats[i])) {
common &= format_sample_counts_mask_cache[p_formats[i]];
} else {
D3D12_FEATURE_DATA_MULTISAMPLE_QUALITY_LEVELS msql = {};
msql.Format = p_formats[i];
uint32_t mask = 0;
for (int samples = 1 << (TEXTURE_SAMPLES_MAX - 1); samples >= 1; samples /= 2) {
msql.SampleCount = (UINT)samples;
HRESULT res = device->CheckFeatureSupport(D3D12_FEATURE_MULTISAMPLE_QUALITY_LEVELS, &msql, sizeof(msql));
if (SUCCEEDED(res) && msql.NumQualityLevels) {
int bit = get_shift_from_power_of_2(samples);
ERR_FAIL_COND_V(bit == -1, 1);
mask |= (uint32_t)(1 << bit);
}
}
format_sample_counts_mask_cache.insert(p_formats[i], mask);
common &= mask;
}
}
if (common == UINT32_MAX) {
return 1;
} else {
return (uint32_t)1 << nearest_shift(common);
}
}
RenderingDevice::FramebufferFormatID RenderingDeviceD3D12::framebuffer_format_create(const Vector<AttachmentFormat> &p_format, uint32_t p_view_count) {
FramebufferPass pass;
for (int i = 0; i < p_format.size(); i++) {
if (p_format[i].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
pass.depth_attachment = i;
} else {
pass.color_attachments.push_back(i);
}
}
Vector<FramebufferPass> passes;
passes.push_back(pass);
return framebuffer_format_create_multipass(p_format, passes, p_view_count);
}
RenderingDevice::FramebufferFormatID RenderingDeviceD3D12::framebuffer_format_create_multipass(const Vector<AttachmentFormat> &p_attachments, const Vector<FramebufferPass> &p_passes, uint32_t p_view_count) {
_THREAD_SAFE_METHOD_
FramebufferFormat fb_format;
fb_format.attachments = p_attachments;
fb_format.passes = p_passes;
fb_format.view_count = p_view_count;
if (!_framebuffer_format_preprocess(&fb_format, p_view_count)) {
return INVALID_ID;
}
FramebufferFormatID id = FramebufferFormatID(framebuffer_formats.size()) | (FramebufferFormatID(ID_TYPE_FRAMEBUFFER_FORMAT) << FramebufferFormatID(ID_BASE_SHIFT));
framebuffer_formats[id] = fb_format;
return id;
}
RenderingDevice::FramebufferFormatID RenderingDeviceD3D12::framebuffer_format_create_empty(TextureSamples p_samples) {
_THREAD_SAFE_METHOD_
FramebufferFormat fb_format;
fb_format.passes.push_back(FramebufferPass());
fb_format.pass_samples.push_back(p_samples);
FramebufferFormatID id = FramebufferFormatID(framebuffer_formats.size()) | (FramebufferFormatID(ID_TYPE_FRAMEBUFFER_FORMAT) << FramebufferFormatID(ID_BASE_SHIFT));
framebuffer_formats[id] = fb_format;
return id;
}
RenderingDevice::TextureSamples RenderingDeviceD3D12::framebuffer_format_get_texture_samples(FramebufferFormatID p_format, uint32_t p_pass) {
HashMap<FramebufferFormatID, FramebufferFormat>::Iterator E = framebuffer_formats.find(p_format);
ERR_FAIL_NULL_V(E, TEXTURE_SAMPLES_1);
ERR_FAIL_COND_V(p_pass >= uint32_t(E->value.pass_samples.size()), TEXTURE_SAMPLES_1);
return E->value.pass_samples[p_pass];
}
/***********************/
/**** RENDER TARGET ****/
/***********************/
RID RenderingDeviceD3D12::framebuffer_create_empty(const Size2i &p_size, TextureSamples p_samples, FramebufferFormatID p_format_check) {
_THREAD_SAFE_METHOD_
Framebuffer framebuffer;
framebuffer.format_id = framebuffer_format_create_empty(p_samples);
ERR_FAIL_COND_V(p_format_check != INVALID_FORMAT_ID && framebuffer.format_id != p_format_check, RID());
framebuffer.size = p_size;
return framebuffer_owner.make_rid(framebuffer);
}
RID RenderingDeviceD3D12::framebuffer_create(const Vector<RID> &p_texture_attachments, FramebufferFormatID p_format_check, uint32_t p_view_count) {
_THREAD_SAFE_METHOD_
FramebufferPass pass;
for (int i = 0; i < p_texture_attachments.size(); i++) {
Texture *texture = texture_owner.get_or_null(p_texture_attachments[i]);
ERR_FAIL_COND_V_MSG(texture && texture->layers != p_view_count, RID(), "Layers of our texture doesn't match view count for this framebuffer");
if (texture && texture->usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
pass.depth_attachment = i;
} else if (texture && texture->usage_flags & TEXTURE_USAGE_VRS_ATTACHMENT_BIT) {
pass.vrs_attachment = i;
} else {
if (texture && texture->is_resolve_buffer) {
pass.resolve_attachments.push_back(i);
} else {
pass.color_attachments.push_back(texture ? i : FramebufferPass::ATTACHMENT_UNUSED);
}
}
}
Vector<FramebufferPass> passes;
passes.push_back(pass);
return framebuffer_create_multipass(p_texture_attachments, passes, p_format_check, p_view_count);
}
D3D12_RENDER_TARGET_VIEW_DESC RenderingDeviceD3D12::_make_rtv_for_texture(const RenderingDeviceD3D12::Texture *p_texture, uint32_t p_mipmap_offset, uint32_t p_layer_offset, uint32_t p_layers) {
D3D12_RENDER_TARGET_VIEW_DESC rtv_desc = {};
rtv_desc.Format = p_texture->srv_desc.Format;
switch (p_texture->srv_desc.ViewDimension) {
case D3D12_SRV_DIMENSION_TEXTURE1D: {
rtv_desc.ViewDimension = D3D12_RTV_DIMENSION_TEXTURE1D;
rtv_desc.Texture1D.MipSlice = p_texture->srv_desc.Texture1D.MostDetailedMip + p_mipmap_offset;
} break;
case D3D12_SRV_DIMENSION_TEXTURE1DARRAY: {
rtv_desc.ViewDimension = D3D12_RTV_DIMENSION_TEXTURE1DARRAY;
rtv_desc.Texture1DArray.MipSlice = p_texture->srv_desc.Texture1DArray.MostDetailedMip + p_mipmap_offset;
rtv_desc.Texture1DArray.FirstArraySlice = p_texture->srv_desc.Texture1DArray.FirstArraySlice + p_layer_offset;
rtv_desc.Texture1DArray.ArraySize = p_layers == UINT32_MAX ? p_texture->srv_desc.Texture1DArray.ArraySize : p_layers;
} break;
case D3D12_SRV_DIMENSION_TEXTURE2D: {
rtv_desc.ViewDimension = D3D12_RTV_DIMENSION_TEXTURE2D;
rtv_desc.Texture2D.MipSlice = p_texture->srv_desc.Texture2D.MostDetailedMip + p_mipmap_offset;
rtv_desc.Texture2D.PlaneSlice = p_texture->srv_desc.Texture2D.PlaneSlice;
} break;
case D3D12_SRV_DIMENSION_TEXTURE2DARRAY: {
rtv_desc.ViewDimension = D3D12_RTV_DIMENSION_TEXTURE2DARRAY;
rtv_desc.Texture2DArray.MipSlice = p_texture->srv_desc.Texture2DArray.MostDetailedMip + p_mipmap_offset;
rtv_desc.Texture2DArray.FirstArraySlice = p_texture->srv_desc.Texture2DArray.FirstArraySlice + p_layer_offset;
rtv_desc.Texture2DArray.ArraySize = p_layers == UINT32_MAX ? p_texture->srv_desc.Texture2DArray.ArraySize : p_layers;
rtv_desc.Texture2DArray.PlaneSlice = p_texture->srv_desc.Texture2DArray.PlaneSlice;
} break;
case D3D12_SRV_DIMENSION_TEXTURE2DMS: {
rtv_desc.ViewDimension = D3D12_RTV_DIMENSION_TEXTURE2DMS;
} break;
case D3D12_SRV_DIMENSION_TEXTURE2DMSARRAY: {
rtv_desc.ViewDimension = D3D12_RTV_DIMENSION_TEXTURE2DMSARRAY;
rtv_desc.Texture2DMSArray.FirstArraySlice = p_texture->srv_desc.Texture2DMSArray.FirstArraySlice + p_layer_offset;
rtv_desc.Texture2DMSArray.ArraySize = p_layers == UINT32_MAX ? p_texture->srv_desc.Texture2DMSArray.ArraySize : p_layers;
} break;
case D3D12_SRV_DIMENSION_TEXTURE3D: {
rtv_desc.ViewDimension = D3D12_RTV_DIMENSION_TEXTURE3D;
rtv_desc.Texture3D.MipSlice = p_texture->srv_desc.Texture3D.MostDetailedMip + p_mipmap_offset;
rtv_desc.Texture3D.FirstWSlice = 0;
rtv_desc.Texture3D.WSize = p_texture->depth;
} break;
default: {
ERR_FAIL_V_MSG(D3D12_RENDER_TARGET_VIEW_DESC(), "Can't create an RTV from an SRV whose view dimension is " + itos(p_texture->srv_desc.ViewDimension) + ".");
}
}
return rtv_desc;
}
D3D12_DEPTH_STENCIL_VIEW_DESC RenderingDeviceD3D12::_make_dsv_for_texture(const RenderingDeviceD3D12::Texture *p_texture) {
D3D12_DEPTH_STENCIL_VIEW_DESC dsv_desc = {};
dsv_desc.Format = d3d12_formats[p_texture->format].dsv_format;
dsv_desc.Flags = D3D12_DSV_FLAG_NONE;
switch (p_texture->srv_desc.ViewDimension) {
case D3D12_SRV_DIMENSION_TEXTURE1D: {
dsv_desc.ViewDimension = D3D12_DSV_DIMENSION_TEXTURE1D;
dsv_desc.Texture1D.MipSlice = p_texture->srv_desc.Texture1D.MostDetailedMip;
} break;
case D3D12_SRV_DIMENSION_TEXTURE1DARRAY: {
dsv_desc.ViewDimension = D3D12_DSV_DIMENSION_TEXTURE1DARRAY;
dsv_desc.Texture1DArray.MipSlice = p_texture->srv_desc.Texture1DArray.MostDetailedMip;
dsv_desc.Texture1DArray.FirstArraySlice = p_texture->srv_desc.Texture1DArray.FirstArraySlice;
dsv_desc.Texture1DArray.ArraySize = p_texture->srv_desc.Texture1DArray.ArraySize;
} break;
case D3D12_SRV_DIMENSION_TEXTURE2D: {
dsv_desc.ViewDimension = D3D12_DSV_DIMENSION_TEXTURE2D;
dsv_desc.Texture2D.MipSlice = p_texture->srv_desc.Texture2D.MostDetailedMip;
} break;
case D3D12_SRV_DIMENSION_TEXTURE2DARRAY: {
dsv_desc.ViewDimension = D3D12_DSV_DIMENSION_TEXTURE2DARRAY;
dsv_desc.Texture2DArray.MipSlice = p_texture->srv_desc.Texture2DArray.MostDetailedMip;
dsv_desc.Texture2DArray.FirstArraySlice = p_texture->srv_desc.Texture2DArray.FirstArraySlice;
dsv_desc.Texture2DArray.ArraySize = p_texture->srv_desc.Texture2DArray.ArraySize;
} break;
case D3D12_SRV_DIMENSION_TEXTURE2DMS: {
dsv_desc.ViewDimension = D3D12_DSV_DIMENSION_TEXTURE2DMS;
dsv_desc.Texture2DMS.UnusedField_NothingToDefine = p_texture->srv_desc.Texture2DMS.UnusedField_NothingToDefine;
} break;
case D3D12_SRV_DIMENSION_TEXTURE2DMSARRAY: {
dsv_desc.ViewDimension = D3D12_DSV_DIMENSION_TEXTURE2DMSARRAY;
dsv_desc.Texture2DMSArray.FirstArraySlice = p_texture->srv_desc.Texture2DMSArray.FirstArraySlice;
dsv_desc.Texture2DMSArray.ArraySize = p_texture->srv_desc.Texture2DMSArray.ArraySize;
} break;
default: {
ERR_FAIL_V_MSG(D3D12_DEPTH_STENCIL_VIEW_DESC(), "Can't create an RTV from an SRV whose view dimension is " + itos(p_texture->srv_desc.ViewDimension) + ".");
}
}
return dsv_desc;
}
RID RenderingDeviceD3D12::framebuffer_create_multipass(const Vector<RID> &p_texture_attachments, const Vector<FramebufferPass> &p_passes, FramebufferFormatID p_format_check, uint32_t p_view_count) {
_THREAD_SAFE_METHOD_
Vector<AttachmentFormat> attachments;
attachments.resize(p_texture_attachments.size());
Vector<uint32_t> attachments_handle_inds;
attachments_handle_inds.resize(p_texture_attachments.size());
Size2i size;
bool size_set = false;
int num_color = 0;
int num_depth = 0;
for (int i = 0; i < p_texture_attachments.size(); i++) {
AttachmentFormat af;
Texture *texture = texture_owner.get_or_null(p_texture_attachments[i]);
if (!texture) {
af.usage_flags = AttachmentFormat::UNUSED_ATTACHMENT;
attachments_handle_inds.write[i] = UINT32_MAX;
} else {
ERR_FAIL_COND_V_MSG(texture->layers != p_view_count, RID(), "Layers of our texture doesn't match view count for this framebuffer");
if (!size_set) {
size.width = texture->width;
size.height = texture->height;
size_set = true;
} else if (texture->usage_flags & TEXTURE_USAGE_VRS_ATTACHMENT_BIT) {
// If this is not the first attachment we assume this is used as the VRS attachment.
// In this case this texture will be 1/16th the size of the color attachment.
// So we skip the size check.
} else {
ERR_FAIL_COND_V_MSG((uint32_t)size.width != texture->width || (uint32_t)size.height != texture->height, RID(),
"All textures in a framebuffer should be the same size.");
}
af.format = texture->format;
af.samples = texture->samples;
af.usage_flags = texture->usage_flags;
bool is_vrs = texture->usage_flags & TEXTURE_USAGE_VRS_ATTACHMENT_BIT && i == p_passes[0].vrs_attachment;
if (is_vrs) {
} else if ((texture->usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) {
attachments_handle_inds.write[i] = num_color;
num_color++;
} else if ((texture->usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
attachments_handle_inds.write[i] = num_depth;
num_depth++;
} else {
attachments_handle_inds.write[i] = UINT32_MAX;
}
}
attachments.write[i] = af;
}
ERR_FAIL_COND_V_MSG(!size_set, RID(), "All attachments unused.");
FramebufferFormatID format_id = framebuffer_format_create_multipass(attachments, p_passes, p_view_count);
if (format_id == INVALID_ID) {
return RID();
}
ERR_FAIL_COND_V_MSG(p_format_check != INVALID_ID && format_id != p_format_check, RID(),
"The format used to check this framebuffer differs from the intended framebuffer format.");
Framebuffer framebuffer;
framebuffer.format_id = format_id;
framebuffer.texture_ids = p_texture_attachments;
framebuffer.attachments_handle_inds = attachments_handle_inds;
framebuffer.size = size;
framebuffer.view_count = p_view_count;
{
if (num_color) {
Error err = framebuffer.rtv_heap.allocate(device.Get(), D3D12_DESCRIPTOR_HEAP_TYPE_RTV, num_color, false);
ERR_FAIL_COND_V(err, RID());
}
DescriptorsHeap::Walker rtv_heap_walker = framebuffer.rtv_heap.make_walker();
if (num_depth) {
Error err = framebuffer.dsv_heap.allocate(device.Get(), D3D12_DESCRIPTOR_HEAP_TYPE_DSV, num_depth, false);
ERR_FAIL_COND_V(err, RID());
}
DescriptorsHeap::Walker dsv_heap_walker = framebuffer.dsv_heap.make_walker();
for (int i = 0; i < p_texture_attachments.size(); i++) {
Texture *texture = texture_owner.get_or_null(p_texture_attachments[i]);
if (!texture) {
continue;
}
bool is_vrs = texture->usage_flags & TEXTURE_USAGE_VRS_ATTACHMENT_BIT && i == p_passes[0].vrs_attachment;
if (is_vrs) {
} else if ((texture->usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) {
D3D12_RENDER_TARGET_VIEW_DESC rtv_desc = _make_rtv_for_texture(texture);
device->CreateRenderTargetView(texture->resource, &rtv_desc, rtv_heap_walker.get_curr_cpu_handle());
rtv_heap_walker.advance();
} else if ((texture->usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
D3D12_DEPTH_STENCIL_VIEW_DESC dsv_desc = _make_dsv_for_texture(texture);
device->CreateDepthStencilView(texture->resource, &dsv_desc, dsv_heap_walker.get_curr_cpu_handle());
dsv_heap_walker.advance();
}
}
DEV_ASSERT(rtv_heap_walker.is_at_eof());
DEV_ASSERT(dsv_heap_walker.is_at_eof());
}
RID id = framebuffer_owner.make_rid(framebuffer);
for (int i = 0; i < p_texture_attachments.size(); i++) {
if (p_texture_attachments[i].is_valid()) {
_add_dependency(id, p_texture_attachments[i]);
}
}
return id;
}
RenderingDevice::FramebufferFormatID RenderingDeviceD3D12::framebuffer_get_format(RID p_framebuffer) {
_THREAD_SAFE_METHOD_
Framebuffer *framebuffer = framebuffer_owner.get_or_null(p_framebuffer);
ERR_FAIL_NULL_V(framebuffer, INVALID_ID);
return framebuffer->format_id;
}
bool RenderingDeviceD3D12::framebuffer_is_valid(RID p_framebuffer) const {
_THREAD_SAFE_METHOD_
return framebuffer_owner.owns(p_framebuffer);
}
void RenderingDeviceD3D12::framebuffer_set_invalidation_callback(RID p_framebuffer, InvalidationCallback p_callback, void *p_userdata) {
_THREAD_SAFE_METHOD_
Framebuffer *framebuffer = framebuffer_owner.get_or_null(p_framebuffer);
ERR_FAIL_NULL(framebuffer);
framebuffer->invalidated_callback = p_callback;
framebuffer->invalidated_callback_userdata = p_userdata;
}
/*****************/
/**** SAMPLER ****/
/*****************/
RID RenderingDeviceD3D12::sampler_create(const SamplerState &p_state) {
_THREAD_SAFE_METHOD_
D3D12_SAMPLER_DESC sampler_desc = {};
if (p_state.use_anisotropy) {
sampler_desc.Filter = D3D12_ENCODE_ANISOTROPIC_FILTER(D3D12_FILTER_REDUCTION_TYPE_STANDARD);
sampler_desc.MaxAnisotropy = p_state.anisotropy_max;
} else {
static const D3D12_FILTER_TYPE d3d12_filter_types[] = {
D3D12_FILTER_TYPE_POINT, // SAMPLER_FILTER_NEAREST.
D3D12_FILTER_TYPE_LINEAR, // SAMPLER_FILTER_LINEAR.
};
sampler_desc.Filter = D3D12_ENCODE_BASIC_FILTER(
d3d12_filter_types[p_state.min_filter],
d3d12_filter_types[p_state.mag_filter],
d3d12_filter_types[p_state.mip_filter],
p_state.enable_compare ? D3D12_FILTER_REDUCTION_TYPE_COMPARISON : D3D12_FILTER_REDUCTION_TYPE_STANDARD);
}
ERR_FAIL_INDEX_V(p_state.repeat_u, SAMPLER_REPEAT_MODE_MAX, RID());
sampler_desc.AddressU = address_modes[p_state.repeat_u];
ERR_FAIL_INDEX_V(p_state.repeat_v, SAMPLER_REPEAT_MODE_MAX, RID());
sampler_desc.AddressV = address_modes[p_state.repeat_v];
ERR_FAIL_INDEX_V(p_state.repeat_w, SAMPLER_REPEAT_MODE_MAX, RID());
sampler_desc.AddressW = address_modes[p_state.repeat_w];
ERR_FAIL_INDEX_V(p_state.border_color, SAMPLER_BORDER_COLOR_MAX, RID());
for (int i = 0; i < 4; i++) {
sampler_desc.BorderColor[i] = sampler_border_colors[p_state.border_color][i];
}
sampler_desc.MinLOD = p_state.min_lod;
sampler_desc.MaxLOD = p_state.max_lod;
sampler_desc.MipLODBias = p_state.lod_bias;
ERR_FAIL_INDEX_V(p_state.compare_op, COMPARE_OP_MAX, RID());
sampler_desc.ComparisonFunc = p_state.enable_compare ? compare_operators[p_state.compare_op] : D3D12_COMPARISON_FUNC_NEVER;
// TODO: Emulate somehow?
if (p_state.unnormalized_uvw) {
WARN_PRINT("Creating a sampler with unnormalized UVW, which is not supported.");
}
return sampler_owner.make_rid(sampler_desc);
}
bool RenderingDeviceD3D12::sampler_is_format_supported_for_filter(DataFormat p_format, SamplerFilter p_sampler_filter) const {
ERR_FAIL_INDEX_V(p_format, DATA_FORMAT_MAX, false);
_THREAD_SAFE_METHOD_
D3D12_FEATURE_DATA_FORMAT_SUPPORT srv_rtv_support = {};
srv_rtv_support.Format = d3d12_formats[p_format].general_format;
HRESULT res = device->CheckFeatureSupport(D3D12_FEATURE_FORMAT_SUPPORT, &srv_rtv_support, sizeof(srv_rtv_support));
ERR_FAIL_COND_V_MSG(res, false, "CheckFeatureSupport failed with error " + vformat("0x%08ux", res) + ".");
return (srv_rtv_support.Support1 & D3D12_FORMAT_SUPPORT1_SHADER_SAMPLE);
}
/**********************/
/**** VERTEX ARRAY ****/
/**********************/
RID RenderingDeviceD3D12::vertex_buffer_create(uint32_t p_size_bytes, const Vector<uint8_t> &p_data, bool p_use_as_storage) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V(p_data.size() && (uint32_t)p_data.size() != p_size_bytes, RID());
Buffer buffer;
D3D12_RESOURCE_STATES usage = D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER;
if (p_use_as_storage) {
usage |= D3D12_RESOURCE_STATE_UNORDERED_ACCESS;
}
Error err = _buffer_allocate(&buffer, p_size_bytes, usage, D3D12_HEAP_TYPE_DEFAULT);
ERR_FAIL_COND_V(err != OK, RID());
if (p_data.size()) {
uint64_t data_size = p_data.size();
const uint8_t *r = p_data.ptr();
_buffer_update(&buffer, 0, r, data_size);
}
RID id = vertex_buffer_owner.make_rid(buffer);
#ifdef DEV_ENABLED
set_resource_name(id, "RID:" + itos(id.get_id()));
#endif
return id;
}
// Internally reference counted, this ID is warranted to be unique for the same description, but needs to be freed as many times as it was allocated.
RenderingDevice::VertexFormatID RenderingDeviceD3D12::vertex_format_create(const Vector<VertexAttribute> &p_vertex_formats) {
_THREAD_SAFE_METHOD_
VertexDescriptionKey key;
key.vertex_formats = p_vertex_formats;
VertexFormatID *idptr = vertex_format_cache.getptr(key);
if (idptr) {
return *idptr;
}
// Does not exist, create one and cache it.
VertexDescriptionCache vdcache;
vdcache.elements_desc.resize(p_vertex_formats.size());
HashSet<int> used_locations;
for (int i = 0; i < p_vertex_formats.size(); i++) {
ERR_CONTINUE(p_vertex_formats[i].format >= DATA_FORMAT_MAX);
ERR_FAIL_COND_V(used_locations.has(p_vertex_formats[i].location), INVALID_ID);
ERR_FAIL_COND_V_MSG(get_format_vertex_size(p_vertex_formats[i].format) == 0, INVALID_ID,
"Data format for attachment (" + itos(i) + "), '" + named_formats[p_vertex_formats[i].format] + "', is not valid for a vertex array.");
// SPIRV-Cross maps `layout(location = <N>) in` to `TEXCOORD<N>`.
vdcache.elements_desc.write[i].SemanticName = "TEXCOORD"; // SPIRV-Cross will apply TEXCOORD semantic to vertex attributes.
vdcache.elements_desc.write[i].SemanticIndex = p_vertex_formats[i].location;
vdcache.elements_desc.write[i].Format = d3d12_formats[p_vertex_formats[i].format].general_format;
vdcache.elements_desc.write[i].InputSlot = i; // TODO: Can the same slot be used if data comes from the same buffer (regardless format)?
vdcache.elements_desc.write[i].AlignedByteOffset = p_vertex_formats[i].offset;
if (p_vertex_formats[i].frequency == VERTEX_FREQUENCY_INSTANCE) {
vdcache.elements_desc.write[i].InputSlotClass = D3D12_INPUT_CLASSIFICATION_PER_INSTANCE_DATA;
vdcache.elements_desc.write[i].InstanceDataStepRate = 1;
} else {
vdcache.elements_desc.write[i].InputSlotClass = D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA;
vdcache.elements_desc.write[i].InstanceDataStepRate = 0;
}
used_locations.insert(p_vertex_formats[i].location);
}
vdcache.vertex_formats = p_vertex_formats;
VertexFormatID id = VertexFormatID(vertex_format_cache.size()) | (VertexFormatID(ID_TYPE_VERTEX_FORMAT) << ID_BASE_SHIFT);
vertex_format_cache[key] = id;
vertex_formats[id] = vdcache;
return id;
}
RID RenderingDeviceD3D12::vertex_array_create(uint32_t p_vertex_count, VertexFormatID p_vertex_format, const Vector<RID> &p_src_buffers, const Vector<uint64_t> &p_offsets) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V(!vertex_formats.has(p_vertex_format), RID());
const VertexDescriptionCache &vd = vertex_formats[p_vertex_format];
ERR_FAIL_COND_V(vd.vertex_formats.size() != p_src_buffers.size(), RID());
for (int i = 0; i < p_src_buffers.size(); i++) {
ERR_FAIL_COND_V(!vertex_buffer_owner.owns(p_src_buffers[i]), RID());
}
VertexArray vertex_array;
if (!p_offsets.is_empty()) {
ERR_FAIL_COND_V(p_offsets.size() != p_src_buffers.size(), RID());
}
vertex_array.vertex_count = p_vertex_count;
vertex_array.description = p_vertex_format;
vertex_array.max_instances_allowed = 0xFFFFFFFF; // By default as many as you want.
HashSet<Buffer *> unique_buffers;
for (int i = 0; i < p_src_buffers.size(); i++) {
Buffer *buffer = vertex_buffer_owner.get_or_null(p_src_buffers[i]);
const VertexAttribute &atf = vd.vertex_formats[i];
// Validate with buffer.
{
uint32_t element_size = get_format_vertex_size(atf.format);
ERR_FAIL_COND_V(element_size == 0, RID()); // Should never happens since this was prevalidated.
if (atf.frequency == VERTEX_FREQUENCY_VERTEX) {
// Validate size for regular drawing.
uint64_t total_size = uint64_t(atf.stride) * (p_vertex_count - 1) + atf.offset + element_size;
ERR_FAIL_COND_V_MSG(total_size > buffer->size, RID(),
"Attachment (" + itos(i) + ") will read past the end of the buffer.");
} else {
// Validate size for instances drawing.
uint64_t available = buffer->size - atf.offset;
ERR_FAIL_COND_V_MSG(available < element_size, RID(),
"Attachment (" + itos(i) + ") uses instancing, but it's just too small.");
uint32_t instances_allowed = available / atf.stride;
vertex_array.max_instances_allowed = MIN(instances_allowed, vertex_array.max_instances_allowed);
}
}
unique_buffers.insert(buffer);
D3D12_VERTEX_BUFFER_VIEW view = {};
uint64_t data_offset = p_offsets.is_empty() ? 0 : p_offsets[i];
view.BufferLocation = buffer->resource->GetGPUVirtualAddress() + data_offset;
view.SizeInBytes = buffer->size;
view.StrideInBytes = atf.stride;
vertex_array.views.push_back(view);
}
for (Buffer *buffer : unique_buffers) {
vertex_array.unique_buffers.push_back(buffer);
}
RID id = vertex_array_owner.make_rid(vertex_array);
for (int i = 0; i < p_src_buffers.size(); i++) {
_add_dependency(id, p_src_buffers[i]);
}
return id;
}
RID RenderingDeviceD3D12::index_buffer_create(uint32_t p_index_count, IndexBufferFormat p_format, const Vector<uint8_t> &p_data, bool p_use_restart_indices) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V(p_index_count == 0, RID());
IndexBuffer index_buffer;
index_buffer.index_format = (p_format == INDEX_BUFFER_FORMAT_UINT16) ? DXGI_FORMAT_R16_UINT : DXGI_FORMAT_R32_UINT;
index_buffer.supports_restart_indices = p_use_restart_indices;
index_buffer.index_count = p_index_count;
uint32_t size_bytes = p_index_count * ((p_format == INDEX_BUFFER_FORMAT_UINT16) ? 2 : 4);
#ifdef DEBUG_ENABLED
if (p_data.size()) {
index_buffer.max_index = 0;
ERR_FAIL_COND_V_MSG((uint32_t)p_data.size() != size_bytes, RID(),
"Default index buffer initializer array size (" + itos(p_data.size()) + ") does not match format required size (" + itos(size_bytes) + ").");
const uint8_t *r = p_data.ptr();
if (p_format == INDEX_BUFFER_FORMAT_UINT16) {
const uint16_t *index16 = (const uint16_t *)r;
for (uint32_t i = 0; i < p_index_count; i++) {
if (p_use_restart_indices && index16[i] == 0xFFFF) {
continue; // Restart index, ignore.
}
index_buffer.max_index = MAX(index16[i], index_buffer.max_index);
}
} else {
const uint32_t *index32 = (const uint32_t *)r;
for (uint32_t i = 0; i < p_index_count; i++) {
if (p_use_restart_indices && index32[i] == 0xFFFFFFFF) {
continue; // Restart index, ignore.
}
index_buffer.max_index = MAX(index32[i], index_buffer.max_index);
}
}
} else {
index_buffer.max_index = 0xFFFFFFFF;
}
#else
index_buffer.max_index = 0xFFFFFFFF;
#endif
Error err = _buffer_allocate(&index_buffer, size_bytes, D3D12_RESOURCE_STATE_INDEX_BUFFER, D3D12_HEAP_TYPE_DEFAULT);
ERR_FAIL_COND_V(err != OK, RID());
if (p_data.size()) {
uint64_t data_size = p_data.size();
const uint8_t *r = p_data.ptr();
_buffer_update(&index_buffer, 0, r, data_size);
}
RID id = index_buffer_owner.make_rid(index_buffer);
#ifdef DEV_ENABLED
set_resource_name(id, "RID:" + itos(id.get_id()));
#endif
return id;
}
RID RenderingDeviceD3D12::index_array_create(RID p_index_buffer, uint32_t p_index_offset, uint32_t p_index_count) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V(!index_buffer_owner.owns(p_index_buffer), RID());
IndexBuffer *index_buffer = index_buffer_owner.get_or_null(p_index_buffer);
ERR_FAIL_COND_V(p_index_count == 0, RID());
ERR_FAIL_COND_V(p_index_offset + p_index_count > index_buffer->index_count, RID());
IndexArray index_array;
index_array.buffer = index_buffer;
index_array.max_index = index_buffer->max_index;
index_array.offset = p_index_offset;
index_array.indices = p_index_count;
index_array.supports_restart_indices = index_buffer->supports_restart_indices;
index_array.view.BufferLocation = index_buffer->resource->GetGPUVirtualAddress();
index_array.view.SizeInBytes = p_index_count * (index_buffer->index_format == DXGI_FORMAT_R16_UINT ? 2 : 4);
index_array.view.Format = index_buffer->index_format;
RID id = index_array_owner.make_rid(index_array);
_add_dependency(id, p_index_buffer);
return id;
}
/****************/
/**** SHADER ****/
/****************/
static const char *shader_uniform_names[RenderingDevice::UNIFORM_TYPE_MAX + 1] = {
"Sampler", "CombinedSampler", "Texture", "Image", "TextureBuffer", "SamplerTextureBuffer", "ImageBuffer", "UniformBuffer", "StorageBuffer", "InputAttachment", "N/A"
};
static uint32_t shader_stage_bit_offset_indices[RenderingDevice::SHADER_STAGE_MAX] = {
/* SHADER_STAGE_VERTEX */ 0,
/* SHADER_STAGE_FRAGMENT */ 1,
/* SHADER_STAGE_TESSELATION_CONTROL */ UINT32_MAX,
/* SHADER_STAGE_TESSELATION_EVALUATION */ UINT32_MAX,
/* SHADER_STAGE_COMPUTE */ 2,
};
String RenderingDeviceD3D12::_shader_uniform_debug(RID p_shader, int p_set) {
String ret;
const Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_NULL_V(shader, String());
for (int i = 0; i < shader->sets.size(); i++) {
if (p_set >= 0 && i != p_set) {
continue;
}
for (int j = 0; j < shader->sets[i].uniforms.size(); j++) {
const UniformInfo &ui = shader->sets[i].uniforms[j].info;
if (!ret.is_empty()) {
ret += "\n";
}
ret += "Set: " + itos(i) + " Binding: " + itos(ui.binding) + " Type: " + shader_uniform_names[ui.type] + " Writable: " + (ui.writable ? "Y" : "N") + " Length: " + itos(ui.length);
}
}
return ret;
}
uint32_t RenderingDeviceD3D12::_shader_patch_dxil_specialization_constant(
PipelineSpecializationConstantType p_type,
const void *p_value,
const uint64_t (&p_stages_bit_offsets)[D3D12_BITCODE_OFFSETS_NUM_STAGES],
HashMap<ShaderStage, Vector<uint8_t>> &r_stages_bytecodes,
bool p_is_first_patch) {
uint32_t patch_val = 0;
switch (p_type) {
case PIPELINE_SPECIALIZATION_CONSTANT_TYPE_INT: {
uint32_t int_value = *((const int *)p_value);
ERR_FAIL_COND_V(int_value & (1 << 31), 0);
patch_val = int_value;
} break;
case PIPELINE_SPECIALIZATION_CONSTANT_TYPE_BOOL: {
bool bool_value = *((const bool *)p_value);
patch_val = (uint32_t)bool_value;
} break;
case PIPELINE_SPECIALIZATION_CONSTANT_TYPE_FLOAT: {
uint32_t int_value = *((const int *)p_value);
ERR_FAIL_COND_V(int_value & (1 << 31), 0);
patch_val = (int_value >> 1);
} break;
}
// For VBR encoding to encode the number of bits we expect (32), we need to set the MSB unconditionally.
// However, signed VBR moves the MSB to the LSB, so setting the MSB to 1 wouldn't help. Therefore,
// the bit we set to 1 is the one at index 30.
patch_val |= (1 << 30);
patch_val <<= 1; // What signed VBR does.
auto tamper_bits = [](uint8_t *p_start, uint64_t p_bit_offset, uint64_t p_value) -> uint64_t {
uint64_t original = 0;
uint32_t curr_input_byte = p_bit_offset / 8;
uint8_t curr_input_bit = p_bit_offset % 8;
auto get_curr_input_bit = [&]() -> bool {
return ((p_start[curr_input_byte] >> curr_input_bit) & 1);
};
auto move_to_next_input_bit = [&]() {
if (curr_input_bit == 7) {
curr_input_bit = 0;
curr_input_byte++;
} else {
curr_input_bit++;
}
};
auto tamper_input_bit = [&](bool p_new_bit) {
p_start[curr_input_byte] &= ~((uint8_t)1 << curr_input_bit);
if (p_new_bit) {
p_start[curr_input_byte] |= (uint8_t)1 << curr_input_bit;
}
};
uint8_t value_bit_idx = 0;
for (uint32_t i = 0; i < 5; i++) { // 32 bits take 5 full bytes in VBR.
for (uint32_t j = 0; j < 7; j++) {
bool input_bit = get_curr_input_bit();
original |= (uint64_t)(input_bit ? 1 : 0) << value_bit_idx;
tamper_input_bit((p_value >> value_bit_idx) & 1);
move_to_next_input_bit();
value_bit_idx++;
}
#ifdef DEV_ENABLED
bool input_bit = get_curr_input_bit();
DEV_ASSERT(i < 4 && input_bit || i == 4 && !input_bit);
#endif
move_to_next_input_bit();
}
return original;
};
uint32_t stages_patched_mask = 0;
for (int stage = 0; stage < SHADER_STAGE_MAX; stage++) {
if (!r_stages_bytecodes.has((ShaderStage)stage)) {
continue;
}
uint64_t offset = p_stages_bit_offsets[shader_stage_bit_offset_indices[stage]];
if (offset == 0) {
// This constant does not appear at this stage.
continue;
}
Vector<uint8_t> &bytecode = r_stages_bytecodes[(ShaderStage)stage];
#ifdef DEV_ENABLED
uint64_t orig_patch_val = tamper_bits(bytecode.ptrw(), offset, patch_val);
// Checking against the value the NIR patch should have set.
DEV_ASSERT(!p_is_first_patch || ((orig_patch_val >> 1) & GODOT_NIR_SC_SENTINEL_MAGIC_MASK) == GODOT_NIR_SC_SENTINEL_MAGIC);
uint64_t readback_patch_val = tamper_bits(bytecode.ptrw(), offset, patch_val);
DEV_ASSERT(readback_patch_val == patch_val);
#else
tamper_bits(bytecode.ptrw(), offset, patch_val);
#endif
stages_patched_mask |= (1 << stage);
}
return stages_patched_mask;
}
bool RenderingDeviceD3D12::_shader_sign_dxil_bytecode(ShaderStage p_stage, Vector<uint8_t> &r_dxil_blob) {
dxil_validator *validator = get_dxil_validator_for_current_thread();
char *err = nullptr;
bool res = dxil_validate_module(validator, r_dxil_blob.ptrw(), r_dxil_blob.size(), &err);
if (!res) {
if (err) {
ERR_FAIL_COND_V_MSG(!res, false, "Shader signing invocation at stage " + String(shader_stage_names[p_stage]) + " failed:\n" + String(err));
} else {
ERR_FAIL_COND_V_MSG(!res, false, "Shader signing invocation at stage " + String(shader_stage_names[p_stage]) + " failed.");
}
}
return true;
}
// Version 1: Initial.
// Version 2: 64-bit vertex input mask.
#define SHADER_BINARY_VERSION 2
String RenderingDeviceD3D12::shader_get_binary_cache_key() const {
return "D3D12-SV" + itos(SHADER_BINARY_VERSION);
}
enum RootSignatureLocationType {
RS_LOC_TYPE_RESOURCE,
RS_LOC_TYPE_SAMPLER,
};
enum ResourceClass {
RES_CLASS_INVALID,
RES_CLASS_CBV,
RES_CLASS_SRV,
RES_CLASS_UAV,
};
// Phase 1: SPIR-V reflection, where the Vulkan/RD interface of the shader is discovered.
// Phase 2: SPIR-V to DXIL translation, where the DXIL interface is discovered, which may have gaps due to optimizations.
struct RenderingDeviceD3D12ShaderBinaryDataBinding {
// - Phase 1.
uint32_t type;
uint32_t binding;
uint32_t stages;
uint32_t length; // Size of arrays (in total elements), or ubos (in bytes * total elements).
uint32_t writable;
// - Phase 2.
uint32_t res_class;
uint32_t has_sampler;
uint32_t dxil_stages;
struct RootSignatureLocation {
uint32_t root_param_idx = UINT32_MAX; // UINT32_MAX if unused.
uint32_t range_idx = UINT32_MAX; // UINT32_MAX if unused.
};
RootSignatureLocation root_sig_locations[2]; // Index is RootSignatureLocationType.
// We need to sort these to fill the root signature locations properly.
bool operator<(const RenderingDeviceD3D12ShaderBinaryDataBinding &p_other) const {
return binding < p_other.binding;
}
};
struct RenderingDeviceD3D12ShaderBinarySpecializationConstant {
// - Phase 1.
uint32_t type;
uint32_t constant_id;
union {
uint32_t int_value;
float float_value;
bool bool_value;
};
// - Phase 2.
uint64_t stages_bit_offsets[D3D12_BITCODE_OFFSETS_NUM_STAGES];
};
struct RenderingDeviceD3D12ShaderBinaryData {
uint64_t vertex_input_mask;
uint32_t fragment_output_mask;
uint32_t specialization_constants_count;
uint32_t spirv_specialization_constants_ids_mask;
uint32_t is_compute;
uint32_t compute_local_size[3];
uint32_t set_count;
uint32_t push_constant_size;
uint32_t dxil_push_constant_stages; // Phase 2.
uint32_t nir_runtime_data_root_param_idx; // Phase 2.
uint32_t stage_count;
uint32_t shader_name_len;
uint32_t root_signature_len;
uint32_t root_signature_crc;
};
Vector<uint8_t> RenderingDeviceD3D12::shader_compile_binary_from_spirv(const Vector<ShaderStageSPIRVData> &p_spirv, const String &p_shader_name) {
SpirvReflectionData spirv_data;
if (_reflect_spirv(p_spirv, spirv_data) != OK) {
return Vector<uint8_t>();
}
// Collect reflection data into binary data.
RenderingDeviceD3D12ShaderBinaryData binary_data = {};
Vector<Vector<RenderingDeviceD3D12ShaderBinaryDataBinding>> uniform_info;
Vector<RenderingDeviceD3D12ShaderBinarySpecializationConstant> specialization_constants;
{
binary_data.vertex_input_mask = spirv_data.vertex_input_mask;
binary_data.fragment_output_mask = spirv_data.fragment_output_mask;
binary_data.specialization_constants_count = spirv_data.specialization_constants.size();
binary_data.is_compute = spirv_data.is_compute;
binary_data.compute_local_size[0] = spirv_data.compute_local_size[0];
binary_data.compute_local_size[1] = spirv_data.compute_local_size[1];
binary_data.compute_local_size[2] = spirv_data.compute_local_size[2];
binary_data.set_count = spirv_data.uniforms.size();
binary_data.push_constant_size = spirv_data.push_constant_size;
binary_data.nir_runtime_data_root_param_idx = UINT32_MAX;
binary_data.stage_count = p_spirv.size();
for (const Vector<SpirvReflectionData::Uniform> &spirv_set : spirv_data.uniforms) {
Vector<RenderingDeviceD3D12ShaderBinaryDataBinding> set_bindings;
for (const SpirvReflectionData::Uniform &spirv_uniform : spirv_set) {
RenderingDeviceD3D12ShaderBinaryDataBinding binding{};
binding.type = (uint32_t)spirv_uniform.type;
binding.binding = spirv_uniform.binding;
binding.stages = (uint32_t)spirv_uniform.stages_mask;
binding.length = spirv_uniform.length;
binding.writable = (uint32_t)spirv_uniform.writable;
set_bindings.push_back(binding);
}
uniform_info.push_back(set_bindings);
}
for (const SpirvReflectionData::SpecializationConstant &spirv_sc : spirv_data.specialization_constants) {
RenderingDeviceD3D12ShaderBinarySpecializationConstant spec_constant{};
spec_constant.type = (uint32_t)spirv_sc.type;
spec_constant.constant_id = spirv_sc.constant_id;
spec_constant.int_value = spirv_sc.int_value;
specialization_constants.push_back(spec_constant);
binary_data.spirv_specialization_constants_ids_mask |= (1 << spirv_sc.constant_id);
}
}
// Translate SPIR-V shaders to DXIL, and collect shader info from the new representation.
HashMap<ShaderStage, Vector<uint8_t>> dxil_blobs;
BitField<ShaderStage> stages_processed;
{
HashMap<int, nir_shader *> stages_nir_shaders;
auto free_nir_shaders = [&]() {
for (KeyValue<int, nir_shader *> &E : stages_nir_shaders) {
ralloc_free(E.value);
}
stages_nir_shaders.clear();
};
// This is based on spirv2dxil.c. May need updates when it changes.
// Also, this has to stay around until after linking.
nir_shader_compiler_options nir_options = *dxil_get_nir_compiler_options();
nir_options.lower_base_vertex = false;
dxil_spirv_runtime_conf dxil_runtime_conf = {};
dxil_runtime_conf.runtime_data_cbv.register_space = RUNTIME_DATA_SPACE;
dxil_runtime_conf.runtime_data_cbv.base_shader_register = RUNTIME_DATA_REGISTER;
dxil_runtime_conf.push_constant_cbv.register_space = ROOT_CONSTANT_SPACE;
dxil_runtime_conf.push_constant_cbv.base_shader_register = ROOT_CONSTANT_REGISTER;
dxil_runtime_conf.zero_based_vertex_instance_id = true;
dxil_runtime_conf.zero_based_compute_workgroup_id = true;
dxil_runtime_conf.declared_read_only_images_as_srvs = true;
// Making this explicit to let maintainers know that in practice this didn't improve performance,
// probably because data generated by one shader and consumed by another one forces the resource
// to transition from UAV to SRV, and back, instead of being an UAV all the time.
// In case someone wants to try, care must be taken so in case of incompatible bindings across stages
// happen as a result, all the stages are re-translated. That can happen if, for instance, a stage only
// uses an allegedly writable resource only for reading but the next stage doesn't.
dxil_runtime_conf.inferred_read_only_images_as_srvs = false;
// - Translate SPIR-V to NIR.
for (int i = 0; i < p_spirv.size(); i++) {
ShaderStage stage = (ShaderStage)p_spirv[i].shader_stage;
ShaderStage stage_flag = (ShaderStage)(1 << p_spirv[i].shader_stage);
stages_processed.set_flag(stage_flag);
{
char *entry_point = "main";
static const gl_shader_stage SPIRV_TO_MESA_STAGES[SHADER_STAGE_MAX] = {
/* SHADER_STAGE_VERTEX */ MESA_SHADER_VERTEX,
/* SHADER_STAGE_FRAGMENT */ MESA_SHADER_FRAGMENT,
/* SHADER_STAGE_TESSELATION_CONTROL */ MESA_SHADER_TESS_CTRL,
/* SHADER_STAGE_TESSELATION_EVALUATION */ MESA_SHADER_TESS_EVAL,
/* SHADER_STAGE_COMPUTE */ MESA_SHADER_COMPUTE,
};
nir_shader *nir_shader = spirv_to_nir(
(const uint32_t *)p_spirv[i].spir_v.ptr(),
p_spirv[i].spir_v.size() / sizeof(uint32_t),
nullptr,
0,
SPIRV_TO_MESA_STAGES[stage],
entry_point,
dxil_spirv_nir_get_spirv_options(), &nir_options);
if (!nir_shader) {
free_nir_shaders();
ERR_FAIL_V_MSG(Vector<uint8_t>(), "Shader translation (step 1) at stage " + String(shader_stage_names[stage]) + " failed.");
}
#ifdef DEV_ENABLED
nir_validate_shader(nir_shader, "Validate before feeding NIR to the DXIL compiler");
#endif
if (stage == SHADER_STAGE_VERTEX) {
dxil_runtime_conf.yz_flip.y_mask = 0xffff;
dxil_runtime_conf.yz_flip.mode = DXIL_SPIRV_Y_FLIP_UNCONDITIONAL;
} else {
dxil_runtime_conf.yz_flip.y_mask = 0;
dxil_runtime_conf.yz_flip.mode = DXIL_SPIRV_YZ_FLIP_NONE;
}
// This is based on spirv2dxil.c. May need updates when it changes.
dxil_spirv_nir_prep(nir_shader);
bool requires_runtime_data = {};
dxil_spirv_nir_passes(nir_shader, &dxil_runtime_conf, &requires_runtime_data);
stages_nir_shaders[stage] = nir_shader;
}
}
// - Link NIR shaders.
for (int i = SHADER_STAGE_MAX - 1; i >= 0; i--) {
if (!stages_nir_shaders.has(i)) {
continue;
}
nir_shader *shader = stages_nir_shaders[i];
nir_shader *prev_shader = nullptr;
for (int j = i - 1; j >= 0; j--) {
if (stages_nir_shaders.has(j)) {
prev_shader = stages_nir_shaders[j];
break;
}
}
if (prev_shader) {
bool requires_runtime_data = {};
dxil_spirv_nir_link(shader, prev_shader, &dxil_runtime_conf, &requires_runtime_data);
}
}
// - Translate NIR to DXIL.
for (int i = 0; i < p_spirv.size(); i++) {
ShaderStage stage = (ShaderStage)p_spirv[i].shader_stage;
struct ShaderData {
ShaderStage stage;
RenderingDeviceD3D12ShaderBinaryData &binary_data;
Vector<Vector<RenderingDeviceD3D12ShaderBinaryDataBinding>> &uniform_info;
Vector<RenderingDeviceD3D12ShaderBinarySpecializationConstant> &specialization_constants;
} shader_data{ stage, binary_data, uniform_info, specialization_constants };
GodotNirCallbacks godot_nir_callbacks = {};
godot_nir_callbacks.data = &shader_data;
godot_nir_callbacks.report_resource = [](uint32_t p_register, uint32_t p_space, uint32_t p_dxil_type, void *p_data) {
ShaderData &shader_data = *(ShaderData *)p_data;
// Types based on Mesa's dxil_container.h.
static const uint32_t DXIL_RES_SAMPLER = 1;
static const ResourceClass DXIL_TYPE_TO_CLASS[] = {
/* DXIL_RES_INVALID */ RES_CLASS_INVALID,
/* DXIL_RES_SAMPLER */ RES_CLASS_INVALID, // Handling sampler as a flag.
/* DXIL_RES_CBV */ RES_CLASS_CBV,
/* DXIL_RES_SRV_TYPED */ RES_CLASS_SRV,
/* DXIL_RES_SRV_RAW */ RES_CLASS_SRV,
/* DXIL_RES_SRV_STRUCTURED */ RES_CLASS_SRV,
/* DXIL_RES_UAV_TYPED */ RES_CLASS_UAV,
/* DXIL_RES_UAV_RAW */ RES_CLASS_UAV,
/* DXIL_RES_UAV_STRUCTURED */ RES_CLASS_UAV,
/* DXIL_RES_UAV_STRUCTURED_WITH_COUNTER */ RES_CLASS_INVALID,
};
DEV_ASSERT(p_dxil_type < ARRAY_SIZE(DXIL_TYPE_TO_CLASS));
ResourceClass res_class = DXIL_TYPE_TO_CLASS[p_dxil_type];
if (p_register == ROOT_CONSTANT_REGISTER && p_space == ROOT_CONSTANT_SPACE) {
DEV_ASSERT(res_class == RES_CLASS_CBV);
shader_data.binary_data.dxil_push_constant_stages |= (1 << shader_data.stage);
} else if (p_register == RUNTIME_DATA_REGISTER && p_space == RUNTIME_DATA_SPACE) {
DEV_ASSERT(res_class == RES_CLASS_CBV);
shader_data.binary_data.nir_runtime_data_root_param_idx = 1; // Temporary, to be determined later.
} else {
DEV_ASSERT(p_space == 0);
uint32_t set = p_register / GODOT_NIR_DESCRIPTOR_SET_MULTIPLIER;
uint32_t binding = (p_register % GODOT_NIR_DESCRIPTOR_SET_MULTIPLIER) / GODOT_NIR_BINDING_MULTIPLIER;
DEV_ASSERT(set < (uint32_t)shader_data.uniform_info.size());
bool found = false;
for (int i = 0; i < shader_data.uniform_info[set].size(); i++) {
if (shader_data.uniform_info[set][i].binding != binding) {
continue;
}
RenderingDeviceD3D12ShaderBinaryDataBinding &binding_info = shader_data.uniform_info.write[set].write[i];
binding_info.dxil_stages |= (1 << shader_data.stage);
if (res_class != RES_CLASS_INVALID) {
DEV_ASSERT(binding_info.res_class == (uint32_t)RES_CLASS_INVALID || binding_info.res_class == (uint32_t)res_class);
binding_info.res_class = res_class;
} else if (p_dxil_type == DXIL_RES_SAMPLER) {
binding_info.has_sampler = (uint32_t) true;
} else {
CRASH_NOW();
}
found = true;
break;
}
DEV_ASSERT(found);
}
};
godot_nir_callbacks.report_sc_bit_offset_fn = [](uint32_t p_sc_id, uint64_t p_bit_offset, void *p_data) {
ShaderData &shader_data = *(ShaderData *)p_data;
bool found = false;
for (int i = 0; i < shader_data.specialization_constants.size(); i++) {
if (shader_data.specialization_constants[i].constant_id != p_sc_id) {
continue;
}
uint32_t offset_idx = shader_stage_bit_offset_indices[shader_data.stage];
DEV_ASSERT(shader_data.specialization_constants.write[i].stages_bit_offsets[offset_idx] == 0);
shader_data.specialization_constants.write[i].stages_bit_offsets[offset_idx] = p_bit_offset;
found = true;
break;
}
DEV_ASSERT(found);
};
godot_nir_callbacks.report_bitcode_bit_offset_fn = [](uint64_t p_bit_offset, void *p_data) {
DEV_ASSERT(p_bit_offset % 8 == 0);
ShaderData &shader_data = *(ShaderData *)p_data;
uint32_t offset_idx = shader_stage_bit_offset_indices[shader_data.stage];
for (int i = 0; i < shader_data.specialization_constants.size(); i++) {
if (shader_data.specialization_constants.write[i].stages_bit_offsets[offset_idx] == 0) {
// This SC has been optimized out from this stage.
continue;
}
shader_data.specialization_constants.write[i].stages_bit_offsets[offset_idx] += p_bit_offset;
}
};
auto shader_model_d3d_to_dxil = [](D3D_SHADER_MODEL p_d3d_shader_model) -> dxil_shader_model {
static_assert(SHADER_MODEL_6_0 == 0x60000);
static_assert(SHADER_MODEL_6_3 == 0x60003);
static_assert(D3D_SHADER_MODEL_6_0 == 0x60);
static_assert(D3D_SHADER_MODEL_6_3 == 0x63);
return (dxil_shader_model)((p_d3d_shader_model >> 4) * 0x10000 + (p_d3d_shader_model & 0xf));
};
nir_to_dxil_options nir_to_dxil_options = {};
nir_to_dxil_options.environment = DXIL_ENVIRONMENT_VULKAN;
nir_to_dxil_options.shader_model_max = shader_model_d3d_to_dxil(context->get_shader_capabilities().shader_model);
nir_to_dxil_options.validator_version_max = dxil_get_validator_version(get_dxil_validator_for_current_thread());
nir_to_dxil_options.godot_nir_callbacks = &godot_nir_callbacks;
dxil_logger logger = {};
logger.log = [](void *p_priv, const char *p_msg) {
#ifdef DEBUG_ENABLED
print_verbose(p_msg);
#endif
};
blob dxil_blob = {};
bool ok = nir_to_dxil(stages_nir_shaders[stage], &nir_to_dxil_options, &logger, &dxil_blob);
ralloc_free(stages_nir_shaders[stage]);
stages_nir_shaders.erase(stage);
if (!ok) {
free_nir_shaders();
ERR_FAIL_V_MSG(Vector<uint8_t>(), "Shader translation at stage " + String(shader_stage_names[stage]) + " failed.");
}
Vector<uint8_t> blob_copy;
blob_copy.resize(dxil_blob.size);
memcpy(blob_copy.ptrw(), dxil_blob.data, dxil_blob.size);
blob_finish(&dxil_blob);
dxil_blobs.insert(stage, blob_copy);
}
}
#if 0
if (dxil_blobs.has(SHADER_STAGE_FRAGMENT)) {
Ref<FileAccess> f = FileAccess::open("res://1.dxil", FileAccess::WRITE);
f->store_buffer(dxil_blobs[SHADER_STAGE_FRAGMENT].ptr(), dxil_blobs[SHADER_STAGE_FRAGMENT].size());
}
#endif
// Patch with default values of specialization constants.
if (specialization_constants.size()) {
for (const RenderingDeviceD3D12ShaderBinarySpecializationConstant &sc : specialization_constants) {
_shader_patch_dxil_specialization_constant((PipelineSpecializationConstantType)sc.type, &sc.int_value, sc.stages_bit_offsets, dxil_blobs, true);
}
#if 0
if (dxil_blobs.has(SHADER_STAGE_FRAGMENT)) {
Ref<FileAccess> f = FileAccess::open("res://2.dxil", FileAccess::WRITE);
f->store_buffer(dxil_blobs[SHADER_STAGE_FRAGMENT].ptr(), dxil_blobs[SHADER_STAGE_FRAGMENT].size());
}
#endif
}
// Sign.
for (KeyValue<ShaderStage, Vector<uint8_t>> &E : dxil_blobs) {
ShaderStage stage = E.key;
Vector<uint8_t> &dxil_blob = E.value;
bool sign_ok = _shader_sign_dxil_bytecode(stage, dxil_blob);
ERR_FAIL_COND_V(!sign_ok, Vector<uint8_t>());
}
// Build the root signature.
ComPtr<ID3DBlob> root_sig_blob;
{
auto stages_to_d3d12_visibility = [](uint32_t p_stages_mask) -> D3D12_SHADER_VISIBILITY {
switch (p_stages_mask) {
case SHADER_STAGE_VERTEX_BIT: {
return D3D12_SHADER_VISIBILITY_VERTEX;
}
case SHADER_STAGE_FRAGMENT_BIT: {
return D3D12_SHADER_VISIBILITY_PIXEL;
}
default: {
return D3D12_SHADER_VISIBILITY_ALL;
}
}
};
LocalVector<D3D12_ROOT_PARAMETER1> root_params;
// Root (push) constants.
if (binary_data.dxil_push_constant_stages) {
CD3DX12_ROOT_PARAMETER1 push_constant;
push_constant.InitAsConstants(
binary_data.push_constant_size / sizeof(uint32_t),
ROOT_CONSTANT_REGISTER,
ROOT_CONSTANT_SPACE,
stages_to_d3d12_visibility(binary_data.dxil_push_constant_stages));
root_params.push_back(push_constant);
}
// NIR-DXIL runtime data.
if (binary_data.nir_runtime_data_root_param_idx == 1) { // Set above to 1 when discovering runtime data is needed.
DEV_ASSERT(!binary_data.is_compute); // Could be supported if needed, but it's pointless as of now.
binary_data.nir_runtime_data_root_param_idx = root_params.size();
CD3DX12_ROOT_PARAMETER1 nir_runtime_data;
nir_runtime_data.InitAsConstants(
sizeof(dxil_spirv_vertex_runtime_data) / sizeof(uint32_t),
RUNTIME_DATA_REGISTER,
RUNTIME_DATA_SPACE,
D3D12_SHADER_VISIBILITY_VERTEX);
root_params.push_back(nir_runtime_data);
}
// Descriptor tables (up to two per uniform set, for resources and/or samplers).
// These have to stay around until serialization!
struct TraceableDescriptorTable {
uint32_t stages_mask = {};
Vector<D3D12_DESCRIPTOR_RANGE1> ranges;
Vector<RenderingDeviceD3D12ShaderBinaryDataBinding::RootSignatureLocation *> root_sig_locations;
};
Vector<TraceableDescriptorTable> resource_tables_maps;
Vector<TraceableDescriptorTable> sampler_tables_maps;
for (int set = 0; set < uniform_info.size(); set++) {
bool first_resource_in_set = true;
bool first_sampler_in_set = true;
uniform_info.write[set].sort();
for (int i = 0; i < uniform_info[set].size(); i++) {
const RenderingDeviceD3D12ShaderBinaryDataBinding &binding = uniform_info[set][i];
bool really_used = binding.dxil_stages != 0;
#ifdef DEV_ENABLED
bool anybody_home = (ResourceClass)binding.res_class != RES_CLASS_INVALID || binding.has_sampler;
DEV_ASSERT(anybody_home == really_used);
#endif
if (!really_used) {
continue; // Existed in SPIR-V; went away in DXIL.
}
auto insert_range = [](D3D12_DESCRIPTOR_RANGE_TYPE p_range_type,
uint32_t p_num_descriptors,
uint32_t p_dxil_register,
uint32_t p_dxil_stages_mask,
RenderingDeviceD3D12ShaderBinaryDataBinding::RootSignatureLocation(&p_root_sig_locations),
Vector<TraceableDescriptorTable> &r_tables,
bool &r_first_in_set) {
if (r_first_in_set) {
r_tables.resize(r_tables.size() + 1);
r_first_in_set = false;
}
TraceableDescriptorTable &table = r_tables.write[r_tables.size() - 1];
table.stages_mask |= p_dxil_stages_mask;
CD3DX12_DESCRIPTOR_RANGE1 range;
// Due to the aliasing hack for SRV-UAV of different families,
// we can be causing an unintended change of data (sometimes the validation layers catch it).
D3D12_DESCRIPTOR_RANGE_FLAGS flags = D3D12_DESCRIPTOR_RANGE_FLAG_NONE;
if (p_range_type == D3D12_DESCRIPTOR_RANGE_TYPE_SRV || p_range_type == D3D12_DESCRIPTOR_RANGE_TYPE_UAV) {
flags = D3D12_DESCRIPTOR_RANGE_FLAG_DATA_VOLATILE;
} else if (p_range_type == D3D12_DESCRIPTOR_RANGE_TYPE_CBV) {
flags = D3D12_DESCRIPTOR_RANGE_FLAG_DATA_STATIC_WHILE_SET_AT_EXECUTE;
}
range.Init(p_range_type, p_num_descriptors, p_dxil_register, 0, flags);
table.ranges.push_back(range);
table.root_sig_locations.push_back(&p_root_sig_locations);
};
uint32_t num_descriptors = 1;
D3D12_DESCRIPTOR_RANGE_TYPE resource_range_type = {};
switch ((ResourceClass)binding.res_class) {
case RES_CLASS_INVALID: {
num_descriptors = binding.length;
DEV_ASSERT(binding.has_sampler);
} break;
case RES_CLASS_CBV: {
resource_range_type = D3D12_DESCRIPTOR_RANGE_TYPE_CBV;
DEV_ASSERT(!binding.has_sampler);
} break;
case RES_CLASS_SRV: {
resource_range_type = D3D12_DESCRIPTOR_RANGE_TYPE_SRV;
num_descriptors = MAX(1u, binding.length); // An unbound R/O buffer is reflected as zero-size.
} break;
case RES_CLASS_UAV: {
resource_range_type = D3D12_DESCRIPTOR_RANGE_TYPE_UAV;
num_descriptors = MAX(1u, binding.length); // An unbound R/W buffer is reflected as zero-size.
DEV_ASSERT(!binding.has_sampler);
} break;
}
uint32_t dxil_register = set * GODOT_NIR_DESCRIPTOR_SET_MULTIPLIER + binding.binding * GODOT_NIR_BINDING_MULTIPLIER;
if (binding.res_class != RES_CLASS_INVALID) {
insert_range(
resource_range_type,
num_descriptors,
dxil_register,
uniform_info[set][i].dxil_stages,
uniform_info.write[set].write[i].root_sig_locations[RS_LOC_TYPE_RESOURCE],
resource_tables_maps,
first_resource_in_set);
}
if (binding.has_sampler) {
insert_range(
D3D12_DESCRIPTOR_RANGE_TYPE_SAMPLER,
num_descriptors,
dxil_register,
uniform_info[set][i].dxil_stages,
uniform_info.write[set].write[i].root_sig_locations[RS_LOC_TYPE_SAMPLER],
sampler_tables_maps,
first_sampler_in_set);
}
}
}
auto make_descriptor_tables = [&root_params, &stages_to_d3d12_visibility](const Vector<TraceableDescriptorTable> &p_tables) {
for (const TraceableDescriptorTable &table : p_tables) {
D3D12_SHADER_VISIBILITY visibility = stages_to_d3d12_visibility(table.stages_mask);
DEV_ASSERT(table.ranges.size() == table.root_sig_locations.size());
for (int i = 0; i < table.ranges.size(); i++) {
// By now we know very well which root signature location corresponds to the pointed uniform.
table.root_sig_locations[i]->root_param_idx = root_params.size();
table.root_sig_locations[i]->range_idx = i;
}
CD3DX12_ROOT_PARAMETER1 root_table;
root_table.InitAsDescriptorTable(table.ranges.size(), table.ranges.ptr(), visibility);
root_params.push_back(root_table);
}
};
make_descriptor_tables(resource_tables_maps);
make_descriptor_tables(sampler_tables_maps);
CD3DX12_VERSIONED_ROOT_SIGNATURE_DESC root_sig_desc = {};
D3D12_ROOT_SIGNATURE_FLAGS root_sig_flags =
D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS |
D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS |
D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS |
D3D12_ROOT_SIGNATURE_FLAG_DENY_AMPLIFICATION_SHADER_ROOT_ACCESS |
D3D12_ROOT_SIGNATURE_FLAG_DENY_MESH_SHADER_ROOT_ACCESS;
if (!stages_processed.has_flag(SHADER_STAGE_VERTEX_BIT)) {
root_sig_flags |= D3D12_ROOT_SIGNATURE_FLAG_DENY_VERTEX_SHADER_ROOT_ACCESS;
}
if (!stages_processed.has_flag(SHADER_STAGE_FRAGMENT_BIT)) {
root_sig_flags |= D3D12_ROOT_SIGNATURE_FLAG_DENY_PIXEL_SHADER_ROOT_ACCESS;
}
if (binary_data.vertex_input_mask) {
root_sig_flags |= D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT;
}
root_sig_desc.Init_1_1(root_params.size(), root_params.ptr(), 0, nullptr, root_sig_flags);
ComPtr<ID3DBlob> error_blob;
HRESULT res = D3DX12SerializeVersionedRootSignature(&root_sig_desc, D3D_ROOT_SIGNATURE_VERSION_1_1, root_sig_blob.GetAddressOf(), error_blob.GetAddressOf());
ERR_FAIL_COND_V_MSG(res, Vector<uint8_t>(),
"Serialization of root signature failed with error " + vformat("0x%08ux", res) + " and the following message:\n" + String((char *)error_blob->GetBufferPointer(), error_blob->GetBufferSize()));
binary_data.root_signature_crc = crc32(0, nullptr, 0);
binary_data.root_signature_crc = crc32(binary_data.root_signature_crc, (const Bytef *)root_sig_blob->GetBufferPointer(), root_sig_blob->GetBufferSize());
}
Vector<Vector<uint8_t>> compressed_stages;
Vector<uint32_t> zstd_size;
uint32_t stages_binary_size = 0;
for (int i = 0; i < p_spirv.size(); i++) {
Vector<uint8_t> zstd;
Vector<uint8_t> &dxil_blob = dxil_blobs[p_spirv[i].shader_stage];
zstd.resize(Compression::get_max_compressed_buffer_size(dxil_blob.size(), Compression::MODE_ZSTD));
int dst_size = Compression::compress(zstd.ptrw(), dxil_blob.ptr(), dxil_blob.size(), Compression::MODE_ZSTD);
zstd_size.push_back(dst_size);
zstd.resize(dst_size);
compressed_stages.push_back(zstd);
uint32_t s = compressed_stages[i].size();
if (s % 4 != 0) {
s += 4 - (s % 4);
}
stages_binary_size += s;
}
CharString shader_name_utf = p_shader_name.utf8();
binary_data.shader_name_len = shader_name_utf.length();
uint32_t total_size = sizeof(uint32_t) * 3; // Header + version + main datasize;.
total_size += sizeof(RenderingDeviceD3D12ShaderBinaryData);
total_size += binary_data.shader_name_len;
if ((binary_data.shader_name_len % 4) != 0) { // Alignment rules are really strange.
total_size += 4 - (binary_data.shader_name_len % 4);
}
for (int i = 0; i < uniform_info.size(); i++) {
total_size += sizeof(uint32_t);
total_size += uniform_info[i].size() * sizeof(RenderingDeviceD3D12ShaderBinaryDataBinding);
}
total_size += sizeof(RenderingDeviceD3D12ShaderBinarySpecializationConstant) * specialization_constants.size();
total_size += compressed_stages.size() * sizeof(uint32_t) * 3; // Sizes.
total_size += stages_binary_size;
binary_data.root_signature_len = root_sig_blob->GetBufferSize();
total_size += binary_data.root_signature_len;
Vector<uint8_t> ret;
ret.resize(total_size);
{
uint32_t offset = 0;
uint8_t *binptr = ret.ptrw();
binptr[0] = 'G';
binptr[1] = 'S';
binptr[2] = 'B';
binptr[3] = 'D'; // Godot shader binary data.
offset += 4;
encode_uint32(SHADER_BINARY_VERSION, binptr + offset);
offset += sizeof(uint32_t);
encode_uint32(sizeof(RenderingDeviceD3D12ShaderBinaryData), binptr + offset);
offset += sizeof(uint32_t);
memcpy(binptr + offset, &binary_data, sizeof(RenderingDeviceD3D12ShaderBinaryData));
offset += sizeof(RenderingDeviceD3D12ShaderBinaryData);
if (binary_data.shader_name_len > 0) {
memcpy(binptr + offset, shader_name_utf.ptr(), binary_data.shader_name_len);
offset += binary_data.shader_name_len;
if ((binary_data.shader_name_len % 4) != 0) { // Alignment rules are really strange.
offset += 4 - (binary_data.shader_name_len % 4);
}
}
for (int i = 0; i < uniform_info.size(); i++) {
int count = uniform_info[i].size();
encode_uint32(count, binptr + offset);
offset += sizeof(uint32_t);
if (count > 0) {
memcpy(binptr + offset, uniform_info[i].ptr(), sizeof(RenderingDeviceD3D12ShaderBinaryDataBinding) * count);
offset += sizeof(RenderingDeviceD3D12ShaderBinaryDataBinding) * count;
}
}
if (specialization_constants.size()) {
memcpy(binptr + offset, specialization_constants.ptr(), sizeof(RenderingDeviceD3D12ShaderBinarySpecializationConstant) * specialization_constants.size());
offset += sizeof(RenderingDeviceD3D12ShaderBinarySpecializationConstant) * specialization_constants.size();
}
for (int i = 0; i < compressed_stages.size(); i++) {
encode_uint32(p_spirv[i].shader_stage, binptr + offset);
offset += sizeof(uint32_t);
encode_uint32(dxil_blobs[p_spirv[i].shader_stage].size(), binptr + offset);
offset += sizeof(uint32_t);
encode_uint32(zstd_size[i], binptr + offset);
offset += sizeof(uint32_t);
memcpy(binptr + offset, compressed_stages[i].ptr(), compressed_stages[i].size());
uint32_t s = compressed_stages[i].size();
if (s % 4 != 0) {
s += 4 - (s % 4);
}
offset += s;
}
memcpy(binptr + offset, root_sig_blob->GetBufferPointer(), root_sig_blob->GetBufferSize());
offset += root_sig_blob->GetBufferSize();
ERR_FAIL_COND_V(offset != (uint32_t)ret.size(), Vector<uint8_t>());
}
return ret;
}
RID RenderingDeviceD3D12::shader_create_from_bytecode(const Vector<uint8_t> &p_shader_binary, RID p_placeholder) {
const uint8_t *binptr = p_shader_binary.ptr();
uint32_t binsize = p_shader_binary.size();
uint32_t read_offset = 0;
// Consistency check.
ERR_FAIL_COND_V(binsize < sizeof(uint32_t) * 3 + sizeof(RenderingDeviceD3D12ShaderBinaryData), RID());
ERR_FAIL_COND_V(binptr[0] != 'G' || binptr[1] != 'S' || binptr[2] != 'B' || binptr[3] != 'D', RID());
uint32_t bin_version = decode_uint32(binptr + 4);
ERR_FAIL_COND_V(bin_version != SHADER_BINARY_VERSION, RID());
uint32_t bin_data_size = decode_uint32(binptr + 8);
const RenderingDeviceD3D12ShaderBinaryData &binary_data = *(reinterpret_cast<const RenderingDeviceD3D12ShaderBinaryData *>(binptr + 12));
uint64_t vertex_input_mask = binary_data.vertex_input_mask;
uint32_t fragment_output_mask = binary_data.fragment_output_mask;
bool is_compute = binary_data.is_compute;
const uint32_t compute_local_size[3] = { binary_data.compute_local_size[0], binary_data.compute_local_size[1], binary_data.compute_local_size[2] };
read_offset += sizeof(uint32_t) * 3 + bin_data_size;
String name;
if (binary_data.shader_name_len) {
name.parse_utf8((const char *)(binptr + read_offset), binary_data.shader_name_len);
read_offset += binary_data.shader_name_len;
if ((binary_data.shader_name_len % 4) != 0) { // Alignment rules are really strange.
read_offset += 4 - (binary_data.shader_name_len % 4);
}
}
Vector<Shader::Set> set_info;
set_info.resize(binary_data.set_count);
for (uint32_t i = 0; i < binary_data.set_count; i++) {
ERR_FAIL_COND_V(read_offset + sizeof(uint32_t) >= binsize, RID());
uint32_t set_count = decode_uint32(binptr + read_offset);
read_offset += sizeof(uint32_t);
const RenderingDeviceD3D12ShaderBinaryDataBinding *set_ptr = reinterpret_cast<const RenderingDeviceD3D12ShaderBinaryDataBinding *>(binptr + read_offset);
uint32_t set_size = set_count * sizeof(RenderingDeviceD3D12ShaderBinaryDataBinding);
ERR_FAIL_COND_V(read_offset + set_size >= binsize, RID());
for (uint32_t j = 0; j < set_count; j++) {
Shader::ShaderUniformInfo sui;
sui.info.type = UniformType(set_ptr[j].type);
sui.info.writable = set_ptr[j].writable;
sui.info.length = set_ptr[j].length;
sui.info.binding = set_ptr[j].binding;
sui.binding.stages = set_ptr[j].dxil_stages;
sui.binding.res_class = (ResourceClass)set_ptr[j].res_class;
static_assert(sizeof(UniformBindingInfo::root_sig_locations) == sizeof(RenderingDeviceD3D12ShaderBinaryDataBinding::root_sig_locations));
memcpy(&sui.binding.root_sig_locations, &set_ptr[j].root_sig_locations, sizeof(UniformBindingInfo::root_sig_locations));
set_info.write[i].uniforms.push_back(sui);
if (sui.binding.root_sig_locations.resource.root_param_idx != UINT32_MAX) {
set_info.write[i].num_root_params.resources++;
}
if (sui.binding.root_sig_locations.sampler.root_param_idx != UINT32_MAX) {
set_info.write[i].num_root_params.samplers++;
}
}
read_offset += set_size;
}
ERR_FAIL_COND_V(read_offset + binary_data.specialization_constants_count * sizeof(RenderingDeviceD3D12ShaderBinarySpecializationConstant) >= binsize, RID());
Vector<Shader::SpecializationConstant> specialization_constants;
for (uint32_t i = 0; i < binary_data.specialization_constants_count; i++) {
const RenderingDeviceD3D12ShaderBinarySpecializationConstant &src_sc = *(reinterpret_cast<const RenderingDeviceD3D12ShaderBinarySpecializationConstant *>(binptr + read_offset));
Shader::SpecializationConstant sc;
sc.constant.int_value = src_sc.int_value;
sc.constant.type = PipelineSpecializationConstantType(src_sc.type);
sc.constant.constant_id = src_sc.constant_id;
memcpy(sc.stages_bit_offsets, src_sc.stages_bit_offsets, sizeof(sc.stages_bit_offsets));
specialization_constants.push_back(sc);
read_offset += sizeof(RenderingDeviceD3D12ShaderBinarySpecializationConstant);
}
HashMap<ShaderStage, Vector<uint8_t>> stages_bytecode;
for (uint32_t i = 0; i < binary_data.stage_count; i++) {
ERR_FAIL_COND_V(read_offset + sizeof(uint32_t) * 3 >= binsize, RID());
uint32_t stage = decode_uint32(binptr + read_offset);
read_offset += sizeof(uint32_t);
uint32_t dxil_size = decode_uint32(binptr + read_offset);
read_offset += sizeof(uint32_t);
uint32_t zstd_size = decode_uint32(binptr + read_offset);
read_offset += sizeof(uint32_t);
// Decompress.
Vector<uint8_t> dxil;
dxil.resize(dxil_size);
int dec_dxil_size = Compression::decompress(dxil.ptrw(), dxil.size(), binptr + read_offset, zstd_size, Compression::MODE_ZSTD);
ERR_FAIL_COND_V(dec_dxil_size != (int32_t)dxil_size, RID());
stages_bytecode[ShaderStage(stage)] = dxil;
if (zstd_size % 4 != 0) {
zstd_size += 4 - (zstd_size % 4);
}
ERR_FAIL_COND_V(read_offset + zstd_size > binsize, RID());
read_offset += zstd_size;
}
const uint8_t *root_sig_data_ptr = binptr + read_offset;
ComPtr<ID3D12RootSignatureDeserializer> root_sig_deserializer;
HRESULT res = D3D12CreateRootSignatureDeserializer(root_sig_data_ptr, binary_data.root_signature_len, IID_PPV_ARGS(root_sig_deserializer.GetAddressOf()));
ERR_FAIL_COND_V_MSG(res, RID(), "D3D12CreateRootSignatureDeserializer failed with error " + vformat("0x%08ux", res) + ".");
read_offset += binary_data.root_signature_len;
ERR_FAIL_COND_V(read_offset != binsize, RID());
// TODO: Need to lock?
_THREAD_SAFE_METHOD_
ComPtr<ID3D12RootSignature> root_signature;
res = device->CreateRootSignature(0, root_sig_data_ptr, binary_data.root_signature_len, IID_PPV_ARGS(root_signature.GetAddressOf()));
ERR_FAIL_COND_V_MSG(res, RID(), "CreateRootSignature failed with error " + vformat("0x%08ux", res) + ".");
RID id;
if (p_placeholder.is_null()) {
id = shader_owner.make_rid();
} else {
id = p_placeholder;
}
Shader *shader = shader_owner.get_or_null(id);
ERR_FAIL_NULL_V(shader, RID());
shader->vertex_input_mask = vertex_input_mask;
shader->fragment_output_mask = fragment_output_mask;
shader->spirv_push_constant_size = binary_data.push_constant_size;
shader->dxil_push_constant_size = binary_data.dxil_push_constant_stages ? binary_data.push_constant_size : 0;
shader->nir_runtime_data_root_param_idx = binary_data.nir_runtime_data_root_param_idx;
shader->is_compute = is_compute;
shader->compute_local_size[0] = compute_local_size[0];
shader->compute_local_size[1] = compute_local_size[1];
shader->compute_local_size[2] = compute_local_size[2];
shader->specialization_constants = specialization_constants;
shader->spirv_specialization_constants_ids_mask = binary_data.spirv_specialization_constants_ids_mask;
shader->name = name;
shader->root_signature = root_signature;
shader->root_signature_deserializer = root_sig_deserializer;
shader->root_signature_desc = root_sig_deserializer->GetRootSignatureDesc();
shader->root_signature_crc = binary_data.root_signature_crc;
shader->stages_bytecode = stages_bytecode;
// Proceed to create descriptor sets.
for (uint32_t i = 0; i < binary_data.set_count; i++) {
uint32_t format = 0; // No format, default.
Shader::Set &set = set_info.write[i];
if (set.uniforms.size()) {
// Has data, needs an actual format;.
UniformSetFormat usformat;
usformat.uniform_info.resize(set.uniforms.size());
for (int j = 0; j < set.uniforms.size(); j++) {
usformat.uniform_info.write[j] = set.uniforms[j].info;
}
RBMap<UniformSetFormat, uint32_t>::Element *E = uniform_set_format_cache.find(usformat);
if (E) {
format = E->get();
} else {
format = uniform_set_format_cache.size() + 1;
E = uniform_set_format_cache.insert(usformat, format);
uniform_set_format_cache_reverse.push_back(E);
DEV_ASSERT(uniform_set_format_cache_reverse.size() == uniform_set_format_cache.size());
}
}
shader->sets.push_back(set);
shader->set_formats.push_back(format);
}
#ifdef DEV_ENABLED
set_resource_name(id, "RID:" + itos(id.get_id()));
#endif
return id;
}
RID RenderingDeviceD3D12::shader_create_placeholder() {
Shader shader;
return shader_owner.make_rid(shader);
}
uint64_t RenderingDeviceD3D12::shader_get_vertex_input_attribute_mask(RID p_shader) {
_THREAD_SAFE_METHOD_
const Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_NULL_V(shader, 0);
return shader->vertex_input_mask;
}
/******************/
/**** UNIFORMS ****/
/******************/
RID RenderingDeviceD3D12::uniform_buffer_create(uint32_t p_size_bytes, const Vector<uint8_t> &p_data) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V(p_data.size() && (uint32_t)p_data.size() != p_size_bytes, RID());
Buffer buffer;
Error err = _buffer_allocate(&buffer, p_size_bytes, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER, D3D12_HEAP_TYPE_DEFAULT);
ERR_FAIL_COND_V(err != OK, RID());
if (p_data.size()) {
uint64_t data_size = p_data.size();
const uint8_t *r = p_data.ptr();
_buffer_update(&buffer, 0, r, data_size);
}
RID id = uniform_buffer_owner.make_rid(buffer);
#ifdef DEV_ENABLED
set_resource_name(id, "RID:" + itos(id.get_id()));
#endif
return id;
}
RID RenderingDeviceD3D12::storage_buffer_create(uint32_t p_size_bytes, const Vector<uint8_t> &p_data, BitField<StorageBufferUsage> p_usage) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V(p_data.size() && (uint32_t)p_data.size() != p_size_bytes, RID());
Buffer buffer;
D3D12_RESOURCE_STATES states = D3D12_RESOURCE_STATE_COPY_SOURCE | D3D12_RESOURCE_STATE_COPY_DEST | D3D12_RESOURCE_STATE_UNORDERED_ACCESS;
if (p_usage.has_flag(STORAGE_BUFFER_USAGE_DISPATCH_INDIRECT)) {
states |= D3D12_RESOURCE_STATE_INDIRECT_ARGUMENT;
}
Error err = _buffer_allocate(&buffer, p_size_bytes, states, D3D12_HEAP_TYPE_DEFAULT);
ERR_FAIL_COND_V(err != OK, RID());
if (p_data.size()) {
uint64_t data_size = p_data.size();
const uint8_t *r = p_data.ptr();
_buffer_update(&buffer, 0, r, data_size);
}
return storage_buffer_owner.make_rid(buffer);
}
RID RenderingDeviceD3D12::texture_buffer_create(uint32_t p_size_elements, DataFormat p_format, const Vector<uint8_t> &p_data) {
_THREAD_SAFE_METHOD_
uint32_t element_size = get_format_vertex_size(p_format);
ERR_FAIL_COND_V_MSG(element_size == 0, RID(), "Format requested is not supported for texture buffers");
uint64_t size_bytes = uint64_t(element_size) * p_size_elements;
ERR_FAIL_COND_V(p_data.size() && (uint32_t)p_data.size() != size_bytes, RID());
TextureBuffer texture_buffer;
Error err = _buffer_allocate(&texture_buffer.buffer, size_bytes, D3D12_RESOURCE_STATE_ALL_SHADER_RESOURCE, D3D12_HEAP_TYPE_DEFAULT);
ERR_FAIL_COND_V(err != OK, RID());
if (p_data.size()) {
uint64_t data_size = p_data.size();
const uint8_t *r = p_data.ptr();
_buffer_update(&texture_buffer.buffer, 0, r, data_size);
}
// Allocate the view.
RID id = texture_buffer_owner.make_rid(texture_buffer);
#ifdef DEV_ENABLED
set_resource_name(id, "RID:" + itos(id.get_id()));
#endif
return id;
}
Error RenderingDeviceD3D12::DescriptorsHeap::allocate(ID3D12Device *p_device, D3D12_DESCRIPTOR_HEAP_TYPE p_type, uint32_t p_descriptor_count, bool p_for_gpu) {
ERR_FAIL_COND_V(heap, ERR_ALREADY_EXISTS);
ERR_FAIL_COND_V(p_descriptor_count == 0, ERR_INVALID_PARAMETER);
handle_size = p_device->GetDescriptorHandleIncrementSize(p_type);
desc.Type = p_type;
desc.NumDescriptors = p_descriptor_count;
desc.Flags = p_for_gpu ? D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE : D3D12_DESCRIPTOR_HEAP_FLAG_NONE;
HRESULT res = p_device->CreateDescriptorHeap(&desc, IID_PPV_ARGS(heap.GetAddressOf()));
ERR_FAIL_COND_V_MSG(res, ERR_CANT_CREATE, "CreateDescriptorHeap failed with error " + vformat("0x%08ux", res) + ".");
return OK;
}
RenderingDeviceD3D12::DescriptorsHeap::Walker RenderingDeviceD3D12::DescriptorsHeap::make_walker() const {
Walker walker;
walker.handle_size = handle_size;
walker.handle_count = desc.NumDescriptors;
if (heap) {
walker.first_cpu_handle = heap->GetCPUDescriptorHandleForHeapStart();
if ((desc.Flags & D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE)) {
walker.first_gpu_handle = heap->GetGPUDescriptorHandleForHeapStart();
}
}
return walker;
}
void RenderingDeviceD3D12::DescriptorsHeap::Walker::advance(uint32_t p_count) {
ERR_FAIL_COND_MSG(handle_index + p_count > handle_count, "Would advance past EOF.");
handle_index += p_count;
}
D3D12_CPU_DESCRIPTOR_HANDLE RenderingDeviceD3D12::DescriptorsHeap::Walker::get_curr_cpu_handle() {
ERR_FAIL_COND_V_MSG(is_at_eof(), D3D12_CPU_DESCRIPTOR_HANDLE(), "Heap walker is at EOF.");
return D3D12_CPU_DESCRIPTOR_HANDLE{ first_cpu_handle.ptr + handle_index * handle_size };
}
D3D12_GPU_DESCRIPTOR_HANDLE RenderingDeviceD3D12::DescriptorsHeap::Walker::get_curr_gpu_handle() {
ERR_FAIL_COND_V_MSG(!first_gpu_handle.ptr, D3D12_GPU_DESCRIPTOR_HANDLE(), "Can't provide a GPU handle from a non-GPU descriptors heap.");
ERR_FAIL_COND_V_MSG(is_at_eof(), D3D12_GPU_DESCRIPTOR_HANDLE(), "Heap walker is at EOF.");
return D3D12_GPU_DESCRIPTOR_HANDLE{ first_gpu_handle.ptr + handle_index * handle_size };
}
static void _add_descriptor_count_for_uniform(RenderingDevice::UniformType p_type, uint32_t p_binding_length, bool p_dobule_srv_uav_ambiguous, uint32_t &r_num_resources, uint32_t &r_num_samplers, bool &r_srv_uav_ambiguity) {
r_srv_uav_ambiguity = false;
// Some resource types can be SRV or UAV, depending on what NIR-DXIL decided for a specific shader variant.
// The goal is to generate both SRV and UAV for the descriptor sets' heaps and copy only the relevant one
// to the frame descriptor heap at binding time.
// [[SRV_UAV_AMBIGUITY]]
switch (p_type) {
case RenderingDevice::UNIFORM_TYPE_SAMPLER: {
r_num_samplers += p_binding_length;
} break;
case RenderingDevice::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE:
case RenderingDevice::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE_BUFFER: {
r_num_resources += p_binding_length;
r_num_samplers += p_binding_length;
} break;
case RenderingDevice::UNIFORM_TYPE_UNIFORM_BUFFER: {
r_num_resources += 1;
} break;
case RenderingDevice::UNIFORM_TYPE_STORAGE_BUFFER: {
r_num_resources += p_dobule_srv_uav_ambiguous ? 2 : 1;
r_srv_uav_ambiguity = true;
} break;
case RenderingDevice::UNIFORM_TYPE_IMAGE: {
r_num_resources += p_binding_length * (p_dobule_srv_uav_ambiguous ? 2 : 1);
r_srv_uav_ambiguity = true;
} break;
default: {
r_num_resources += p_binding_length;
}
}
}
RID RenderingDeviceD3D12::uniform_set_create(const Vector<Uniform> &p_uniforms, RID p_shader, uint32_t p_shader_set) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V(p_uniforms.size() == 0, RID());
Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_NULL_V(shader, RID());
ERR_FAIL_COND_V_MSG(p_shader_set >= (uint32_t)shader->sets.size() || shader->sets[p_shader_set].uniforms.size() == 0, RID(),
"Desired set (" + itos(p_shader_set) + ") not used by shader.");
// See that all sets in shader are satisfied.
const Shader::Set &set = shader->sets[p_shader_set];
uint32_t uniform_count = p_uniforms.size();
const Uniform *uniforms = p_uniforms.ptr();
uint32_t set_uniform_count = set.uniforms.size();
const Shader::ShaderUniformInfo *set_uniforms = set.uniforms.ptr();
// Do a first pass to count resources and samplers, and error checking.
uint32_t num_resource_descs = 0;
uint32_t num_sampler_descs = 0;
LocalVector<int> uniform_indices;
uniform_indices.resize(set_uniform_count);
for (uint32_t i = 0; i < set_uniform_count; i++) {
const UniformInfo &set_uniform = set_uniforms[i].info;
int uniform_idx = -1;
for (int j = 0; j < (int)uniform_count; j++) {
if (uniforms[j].binding == set_uniform.binding) {
uniform_idx = j;
}
}
ERR_FAIL_COND_V_MSG(uniform_idx == -1, RID(),
"All the shader bindings for the given set must be covered by the uniforms provided. Binding (" + itos(set_uniform.binding) + "), set (" + itos(p_shader_set) + ") was not provided.");
uniform_indices[i] = uniform_idx;
const Uniform &uniform = uniforms[uniform_idx];
ERR_FAIL_COND_V_MSG(uniform.uniform_type != set_uniform.type, RID(),
"Mismatch uniform type for binding (" + itos(set_uniform.binding) + "), set (" + itos(p_shader_set) + "). Expected '" + shader_uniform_names[set_uniform.type] + "', supplied: '" + shader_uniform_names[uniform.uniform_type] + "'.");
// Since the uniform set may be created for a shader different than the one that will be actually bound,
// which may have a different set of uniforms optimized out, the stages mask we can check now is not reliable.
// Therefore, we can't make any assumptions here about descriptors that we may not need to create,
// pixel or vertex-only shader resource states, etc.
bool srv_uav_ambiguity = false;
_add_descriptor_count_for_uniform(uniform.uniform_type, set_uniform.length, true, num_resource_descs, num_sampler_descs, srv_uav_ambiguity);
}
struct {
DescriptorsHeap resources;
DescriptorsHeap samplers;
} desc_heaps;
#ifdef DEV_ENABLED
LocalVector<UniformSet::ResourceDescInfo> resources_desc_info;
#endif
if (num_resource_descs) {
Error err = desc_heaps.resources.allocate(device.Get(), D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV, num_resource_descs, false);
ERR_FAIL_COND_V(err, RID());
}
if (num_sampler_descs) {
Error err = desc_heaps.samplers.allocate(device.Get(), D3D12_DESCRIPTOR_HEAP_TYPE_SAMPLER, num_sampler_descs, false);
ERR_FAIL_COND_V(err, RID());
}
struct {
DescriptorsHeap::Walker resources;
DescriptorsHeap::Walker samplers;
} desc_heap_walkers;
desc_heap_walkers.resources = desc_heaps.resources.make_walker();
desc_heap_walkers.samplers = desc_heaps.samplers.make_walker();
// Used for verification to make sure a uniform set does not use a framebuffer bound texture.
LocalVector<UniformSet::AttachableTexture> attachable_textures;
struct RIDState {
bool is_buffer = false;
uint64_t shader_uniform_idx_mask = 0;
ResourceState state;
};
HashMap<Resource *, RIDState> resource_states;
for (uint32_t i = 0; i < set_uniform_count; i++) {
const Shader::ShaderUniformInfo &set_uniform = set_uniforms[i];
const Uniform &uniform = uniforms[uniform_indices[i]];
// Stages defined in the shader may be missing for a uniform due to the optimizer,
// but the opposite (extraneous stages present in the uniform stages mask) would be an error.
DEV_ASSERT(!(shader->is_compute && (set_uniform.binding.stages & (SHADER_STAGE_VERTEX_BIT | SHADER_STAGE_FRAGMENT_BIT))));
DEV_ASSERT(!(!shader->is_compute && (set_uniform.binding.stages & SHADER_STAGE_COMPUTE_BIT)));
switch (uniform.uniform_type) {
case UNIFORM_TYPE_SAMPLER: {
if (uniform.get_id_count() != (uint32_t)set_uniform.info.length) {
if (set_uniform.info.length > 1) {
ERR_FAIL_V_MSG(RID(), "Sampler (binding: " + itos(uniform.binding) + ") is an array of (" + itos(set_uniform.info.length) + ") sampler elements, so it should be provided equal number of sampler IDs to satisfy it (IDs provided: " + itos(uniform.get_id_count()) + ").");
} else {
ERR_FAIL_V_MSG(RID(), "Sampler (binding: " + itos(uniform.binding) + ") should provide one ID referencing a sampler (IDs provided: " + itos(uniform.get_id_count()) + ").");
}
}
for (uint32_t j = 0; j < uniform.get_id_count(); j++) {
D3D12_SAMPLER_DESC *sampler_desc = sampler_owner.get_or_null(uniform.get_id(j));
ERR_FAIL_COND_V_MSG(!sampler_desc, RID(), "Sampler (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") is not a valid sampler.");
device->CreateSampler(sampler_desc, desc_heap_walkers.samplers.get_curr_cpu_handle());
desc_heap_walkers.samplers.advance();
}
} break;
case UNIFORM_TYPE_SAMPLER_WITH_TEXTURE: {
if (uniform.get_id_count() != (uint32_t)set_uniform.info.length * 2) {
if (set_uniform.info.length > 1) {
ERR_FAIL_V_MSG(RID(), "SamplerTexture (binding: " + itos(uniform.binding) + ") is an array of (" + itos(set_uniform.info.length) + ") sampler&texture elements, so it should provided twice the amount of IDs (sampler,texture pairs) to satisfy it (IDs provided: " + itos(uniform.get_id_count()) + ").");
} else {
ERR_FAIL_V_MSG(RID(), "SamplerTexture (binding: " + itos(uniform.binding) + ") should provide two IDs referencing a sampler and then a texture (IDs provided: " + itos(uniform.get_id_count()) + ").");
}
}
for (uint32_t j = 0; j < uniform.get_id_count(); j += 2) {
D3D12_SAMPLER_DESC *sampler_desc = sampler_owner.get_or_null(uniform.get_id(j));
ERR_FAIL_COND_V_MSG(!sampler_desc, RID(), "SamplerTexture (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") is not a valid sampler.");
RID rid = uniform.get_id(j + 1);
Texture *texture = texture_owner.get_or_null(rid);
ERR_FAIL_COND_V_MSG(!texture, RID(), "SamplerTexture (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") is not a valid texture.");
ERR_FAIL_COND_V_MSG(!(texture->usage_flags & TEXTURE_USAGE_SAMPLING_BIT), RID(),
"Texture (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") needs the TEXTURE_USAGE_SAMPLING_BIT usage flag set in order to be used as uniform.");
device->CreateSampler(sampler_desc, desc_heap_walkers.samplers.get_curr_cpu_handle());
desc_heap_walkers.samplers.advance();
device->CreateShaderResourceView(texture->resource, &texture->srv_desc, desc_heap_walkers.resources.get_curr_cpu_handle());
#ifdef DEV_ENABLED
resources_desc_info.push_back({ D3D12_DESCRIPTOR_RANGE_TYPE_SRV, texture->srv_desc.ViewDimension });
#endif
desc_heap_walkers.resources.advance();
RIDState &rs = resource_states[texture];
rs.shader_uniform_idx_mask |= ((uint64_t)1 << i);
rs.state.extend(D3D12_RESOURCE_STATE_ALL_SHADER_RESOURCE);
if (texture->usage_flags & (TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | TEXTURE_USAGE_INPUT_ATTACHMENT_BIT)) {
UniformSet::AttachableTexture attachable_texture;
attachable_texture.bind = set_uniform.info.binding;
attachable_texture.texture = texture->owner.is_valid() ? texture->owner : uniform.get_id(j + 1);
attachable_textures.push_back(attachable_texture);
}
DEV_ASSERT(!texture->owner.is_valid() || texture_owner.get_or_null(texture->owner));
}
} break;
case UNIFORM_TYPE_TEXTURE: {
if (uniform.get_id_count() != (uint32_t)set_uniform.info.length) {
if (set_uniform.info.length > 1) {
ERR_FAIL_V_MSG(RID(), "Texture (binding: " + itos(uniform.binding) + ") is an array of (" + itos(set_uniform.info.length) + ") textures, so it should be provided equal number of texture IDs to satisfy it (IDs provided: " + itos(uniform.get_id_count()) + ").");
} else {
ERR_FAIL_V_MSG(RID(), "Texture (binding: " + itos(uniform.binding) + ") should provide one ID referencing a texture (IDs provided: " + itos(uniform.get_id_count()) + ").");
}
}
for (uint32_t j = 0; j < uniform.get_id_count(); j++) {
RID rid = uniform.get_id(j);
Texture *texture = texture_owner.get_or_null(rid);
ERR_FAIL_COND_V_MSG(!texture, RID(), "Texture (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") is not a valid texture.");
ERR_FAIL_COND_V_MSG(!(texture->usage_flags & TEXTURE_USAGE_SAMPLING_BIT), RID(),
"Texture (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") needs the TEXTURE_USAGE_SAMPLING_BIT usage flag set in order to be used as uniform.");
device->CreateShaderResourceView(texture->resource, &texture->srv_desc, desc_heap_walkers.resources.get_curr_cpu_handle());
#ifdef DEV_ENABLED
resources_desc_info.push_back({ D3D12_DESCRIPTOR_RANGE_TYPE_SRV, texture->srv_desc.ViewDimension });
#endif
desc_heap_walkers.resources.advance();
RIDState &rs = resource_states[texture];
rs.shader_uniform_idx_mask |= ((uint64_t)1 << i);
rs.state.extend(D3D12_RESOURCE_STATE_ALL_SHADER_RESOURCE);
if ((texture->usage_flags & (TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | TEXTURE_USAGE_INPUT_ATTACHMENT_BIT))) {
UniformSet::AttachableTexture attachable_texture;
attachable_texture.bind = set_uniform.info.binding;
attachable_texture.texture = texture->owner.is_valid() ? texture->owner : uniform.get_id(j);
attachable_textures.push_back(attachable_texture);
}
DEV_ASSERT(!texture->owner.is_valid() || texture_owner.get_or_null(texture->owner));
}
} break;
case UNIFORM_TYPE_IMAGE: {
if (uniform.get_id_count() != (uint32_t)set_uniform.info.length) {
if (set_uniform.info.length > 1) {
ERR_FAIL_V_MSG(RID(), "Image (binding: " + itos(uniform.binding) + ") is an array of (" + itos(set_uniform.info.length) + ") textures, so it should be provided equal number of texture IDs to satisfy it (IDs provided: " + itos(uniform.get_id_count()) + ").");
} else {
ERR_FAIL_V_MSG(RID(), "Image (binding: " + itos(uniform.binding) + ") should provide one ID referencing a texture (IDs provided: " + itos(uniform.get_id_count()) + ").");
}
}
for (uint32_t j = 0; j < uniform.get_id_count(); j++) {
RID rid = uniform.get_id(j);
Texture *texture = texture_owner.get_or_null(rid);
ERR_FAIL_COND_V_MSG(!texture, RID(),
"Image (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") is not a valid texture.");
ERR_FAIL_COND_V_MSG(!(texture->usage_flags & TEXTURE_USAGE_STORAGE_BIT), RID(),
"Image (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") needs the TEXTURE_USAGE_STORAGE_BIT usage flag set in order to be used as uniform.");
RIDState &rs = resource_states[texture];
rs.shader_uniform_idx_mask |= ((uint64_t)1 << i);
rs.state.extend(D3D12_RESOURCE_STATE_ALL_SHADER_RESOURCE | D3D12_RESOURCE_STATE_UNORDERED_ACCESS);
}
// SRVs first. [[SRV_UAV_AMBIGUITY]]
for (uint32_t j = 0; j < uniform.get_id_count(); j++) {
RID rid = uniform.get_id(j);
Texture *texture = texture_owner.get_or_null(rid);
ERR_FAIL_COND_V_MSG(!texture, RID(),
"Image (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") is not a valid texture.");
ERR_FAIL_COND_V_MSG(!(texture->usage_flags & TEXTURE_USAGE_STORAGE_BIT), RID(),
"Image (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") needs the TEXTURE_USAGE_STORAGE_BIT usage flag set in order to be used as uniform.");
device->CreateShaderResourceView(texture->resource, &texture->srv_desc, desc_heap_walkers.resources.get_curr_cpu_handle());
#ifdef DEV_ENABLED
resources_desc_info.push_back({ D3D12_DESCRIPTOR_RANGE_TYPE_SRV, texture->srv_desc.ViewDimension });
#endif
desc_heap_walkers.resources.advance();
DEV_ASSERT(!texture->owner.is_valid() || texture_owner.get_or_null(texture->owner));
}
// UAVs then. [[SRV_UAV_AMBIGUITY]]
for (uint32_t j = 0; j < uniform.get_id_count(); j++) {
RID rid = uniform.get_id(j);
Texture *texture = texture_owner.get_or_null(rid);
device->CreateUnorderedAccessView(texture->resource, nullptr, &texture->uav_desc, desc_heap_walkers.resources.get_curr_cpu_handle());
#ifdef DEV_ENABLED
resources_desc_info.push_back({ D3D12_DESCRIPTOR_RANGE_TYPE_UAV, {} });
#endif
desc_heap_walkers.resources.advance();
}
} break;
case UNIFORM_TYPE_TEXTURE_BUFFER: {
if (uniform.get_id_count() != (uint32_t)set_uniform.info.length) {
if (set_uniform.info.length > 1) {
ERR_FAIL_V_MSG(RID(), "Buffer (binding: " + itos(uniform.binding) + ") is an array of (" + itos(set_uniform.info.length) + ") texture buffer elements, so it should be provided equal number of texture buffer IDs to satisfy it (IDs provided: " + itos(uniform.get_id_count()) + ").");
} else {
ERR_FAIL_V_MSG(RID(), "Buffer (binding: " + itos(uniform.binding) + ") should provide one ID referencing a texture buffer (IDs provided: " + itos(uniform.get_id_count()) + ").");
}
}
for (uint32_t j = 0; j < uniform.get_id_count(); j++) {
TextureBuffer *buffer = texture_buffer_owner.get_or_null(uniform.get_id(j));
ERR_FAIL_COND_V_MSG(!buffer, RID(), "Texture Buffer (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") is not a valid texture buffer.");
CRASH_NOW_MSG("Unimplemented!");
}
} break;
case UNIFORM_TYPE_SAMPLER_WITH_TEXTURE_BUFFER: {
CRASH_NOW();
if (uniform.get_id_count() != (uint32_t)set_uniform.info.length * 2) {
if (set_uniform.info.length > 1) {
ERR_FAIL_V_MSG(RID(), "SamplerBuffer (binding: " + itos(uniform.binding) + ") is an array of (" + itos(set_uniform.info.length) + ") sampler buffer elements, so it should provided twice the amount of IDs (sampler,buffer pairs) to satisfy it (IDs provided: " + itos(uniform.get_id_count()) + ").");
} else {
ERR_FAIL_V_MSG(RID(), "SamplerBuffer (binding: " + itos(uniform.binding) + ") should provide two IDs referencing a sampler and then a texture buffer (IDs provided: " + itos(uniform.get_id_count()) + ").");
}
}
for (uint32_t j = 0; j < uniform.get_id_count(); j += 2) {
D3D12_SAMPLER_DESC *sampler_desc = sampler_owner.get_or_null(uniform.get_id(j));
ERR_FAIL_COND_V_MSG(!sampler_desc, RID(), "SamplerBuffer (binding: " + itos(uniform.binding) + ", index " + itos(j + 1) + ") is not a valid sampler.");
TextureBuffer *buffer = texture_buffer_owner.get_or_null(uniform.get_id(j + 1));
ERR_FAIL_COND_V_MSG(!buffer, RID(), "SamplerBuffer (binding: " + itos(uniform.binding) + ", index " + itos(j + 1) + ") is not a valid texture buffer.");
device->CreateSampler(sampler_desc, desc_heap_walkers.samplers.get_curr_cpu_handle());
desc_heap_walkers.samplers.advance();
CRASH_NOW_MSG("Unimplemented!");
}
} break;
case UNIFORM_TYPE_IMAGE_BUFFER: {
// Todo.
} break;
case UNIFORM_TYPE_UNIFORM_BUFFER: {
ERR_FAIL_COND_V_MSG(uniform.get_id_count() != 1, RID(),
"Uniform buffer supplied (binding: " + itos(uniform.binding) + ") must provide one ID (" + itos(uniform.get_id_count()) + " provided).");
RID rid = uniform.get_id(0);
Buffer *buffer = uniform_buffer_owner.get_or_null(rid);
ERR_FAIL_COND_V_MSG(!buffer, RID(), "Uniform buffer supplied (binding: " + itos(uniform.binding) + ") is invalid.");
ERR_FAIL_COND_V_MSG(buffer->size < (uint32_t)set_uniform.info.length, RID(),
"Uniform buffer supplied (binding: " + itos(uniform.binding) + ") size (" + itos(buffer->size) + " is smaller than size of shader uniform: (" + itos(set_uniform.info.length) + ").");
D3D12_CONSTANT_BUFFER_VIEW_DESC cbv_desc = {};
cbv_desc.BufferLocation = buffer->resource->GetGPUVirtualAddress();
cbv_desc.SizeInBytes = ALIGN(buffer->size, 256);
device->CreateConstantBufferView(&cbv_desc, desc_heap_walkers.resources.get_curr_cpu_handle());
desc_heap_walkers.resources.advance();
#ifdef DEV_ENABLED
resources_desc_info.push_back({ D3D12_DESCRIPTOR_RANGE_TYPE_CBV, {} });
#endif
RIDState &rs = resource_states[buffer];
rs.is_buffer = true;
rs.shader_uniform_idx_mask |= ((uint64_t)1 << i);
rs.state.extend(D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER);
} break;
case UNIFORM_TYPE_STORAGE_BUFFER: {
ERR_FAIL_COND_V_MSG(uniform.get_id_count() != 1, RID(),
"Storage buffer supplied (binding: " + itos(uniform.binding) + ") must provide one ID (" + itos(uniform.get_id_count()) + " provided).");
RID rid = uniform.get_id(0);
Buffer *buffer = nullptr;
if (storage_buffer_owner.owns(rid)) {
buffer = storage_buffer_owner.get_or_null(rid);
} else if (vertex_buffer_owner.owns(rid)) {
buffer = vertex_buffer_owner.get_or_null(rid);
// Due to [[SRV_UAV_AMBIGUITY]] we can't make this check because it wouldn't make sense in the case of an SRV (r/o storage buffer).
//ERR_FAIL_COND_V_MSG(!(buffer->usage & D3D12_RESOURCE_STATE_UNORDERED_ACCESS), RID(), "Vertex buffer supplied (binding: " + itos(uniform.binding) + ") was not created with storage flag.");
}
ERR_FAIL_COND_V_MSG(!buffer, RID(), "Storage buffer supplied (binding: " + itos(uniform.binding) + ") is invalid.");
// If 0, then it's sized at link time.
ERR_FAIL_COND_V_MSG(set_uniform.info.length > 0 && buffer->size != (uint32_t)set_uniform.info.length, RID(),
"Storage buffer supplied (binding: " + itos(uniform.binding) + ") size (" + itos(buffer->size) + " does not match size of shader uniform: (" + itos(set_uniform.info.length) + ").");
RIDState &rs = resource_states[buffer];
rs.shader_uniform_idx_mask |= ((uint64_t)1 << i);
rs.is_buffer = true;
rs.state.extend(D3D12_RESOURCE_STATE_ALL_SHADER_RESOURCE | D3D12_RESOURCE_STATE_UNORDERED_ACCESS);
// SRV first. [[SRV_UAV_AMBIGUITY]]
{
D3D12_SHADER_RESOURCE_VIEW_DESC srv_desc = {};
srv_desc.Format = DXGI_FORMAT_R32_TYPELESS;
srv_desc.ViewDimension = D3D12_SRV_DIMENSION_BUFFER;
srv_desc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
srv_desc.Buffer.FirstElement = 0;
srv_desc.Buffer.NumElements = (buffer->size + 3) / 4;
srv_desc.Buffer.StructureByteStride = 0;
srv_desc.Buffer.Flags = D3D12_BUFFER_SRV_FLAG_RAW;
device->CreateShaderResourceView(buffer->resource, &srv_desc, desc_heap_walkers.resources.get_curr_cpu_handle());
#ifdef DEV_ENABLED
resources_desc_info.push_back({ D3D12_DESCRIPTOR_RANGE_TYPE_SRV, srv_desc.ViewDimension });
#endif
desc_heap_walkers.resources.advance();
}
// UAV then. [[SRV_UAV_AMBIGUITY]]
{
if ((buffer->usage & D3D12_RESOURCE_STATE_UNORDERED_ACCESS)) {
D3D12_UNORDERED_ACCESS_VIEW_DESC uav_desc = {};
uav_desc.Format = DXGI_FORMAT_R32_TYPELESS;
uav_desc.ViewDimension = D3D12_UAV_DIMENSION_BUFFER;
uav_desc.Buffer.FirstElement = 0;
uav_desc.Buffer.NumElements = (buffer->size + 3) / 4;
uav_desc.Buffer.StructureByteStride = 0;
uav_desc.Buffer.CounterOffsetInBytes = 0;
uav_desc.Buffer.Flags = D3D12_BUFFER_UAV_FLAG_RAW;
device->CreateUnorderedAccessView(buffer->resource, nullptr, &uav_desc, desc_heap_walkers.resources.get_curr_cpu_handle());
#ifdef DEV_ENABLED
resources_desc_info.push_back({ D3D12_DESCRIPTOR_RANGE_TYPE_UAV, {} });
#endif
} else {
// If can't transition to UAV, leave this one empty since it won't be
// used, and trying to create an UAV view would trigger a validation error.
}
desc_heap_walkers.resources.advance();
}
} break;
case UNIFORM_TYPE_INPUT_ATTACHMENT: {
ERR_FAIL_COND_V_MSG(shader->is_compute, RID(), "InputAttachment (binding: " + itos(uniform.binding) + ") supplied for compute shader (this is not allowed).");
if (uniform.get_id_count() != (uint32_t)set_uniform.info.length) {
if (set_uniform.info.length > 1) {
ERR_FAIL_V_MSG(RID(), "InputAttachment (binding: " + itos(uniform.binding) + ") is an array of (" + itos(set_uniform.info.length) + ") textures, so it should be provided equal number of texture IDs to satisfy it (IDs provided: " + itos(uniform.get_id_count()) + ").");
} else {
ERR_FAIL_V_MSG(RID(), "InputAttachment (binding: " + itos(uniform.binding) + ") should provide one ID referencing a texture (IDs provided: " + itos(uniform.get_id_count()) + ").");
}
}
for (uint32_t j = 0; j < uniform.get_id_count(); j++) {
RID rid = uniform.get_id(j);
Texture *texture = texture_owner.get_or_null(rid);
ERR_FAIL_COND_V_MSG(!texture, RID(),
"InputAttachment (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") is not a valid texture.");
ERR_FAIL_COND_V_MSG(!(texture->usage_flags & TEXTURE_USAGE_SAMPLING_BIT), RID(),
"InputAttachment (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") needs the TEXTURE_USAGE_SAMPLING_BIT usage flag set in order to be used as uniform.");
device->CreateShaderResourceView(texture->resource, &texture->srv_desc, desc_heap_walkers.resources.get_curr_cpu_handle());
#ifdef DEV_ENABLED
resources_desc_info.push_back({ D3D12_DESCRIPTOR_RANGE_TYPE_SRV, texture->srv_desc.ViewDimension });
#endif
desc_heap_walkers.resources.advance();
RIDState &rs = resource_states[texture];
rs.shader_uniform_idx_mask |= ((uint64_t)1 << i);
rs.state.extend(D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE);
DEV_ASSERT(!texture->owner.is_valid() || texture_owner.get_or_null(texture->owner));
}
} break;
default: {
}
}
}
DEV_ASSERT(desc_heap_walkers.resources.is_at_eof());
DEV_ASSERT(desc_heap_walkers.samplers.is_at_eof());
UniformSet uniform_set;
uniform_set.desc_heaps.resources = desc_heaps.resources;
uniform_set.desc_heaps.samplers = desc_heaps.samplers;
uniform_set.format = shader->set_formats[p_shader_set];
uniform_set.attachable_textures = attachable_textures;
uniform_set.shader_set = p_shader_set;
uniform_set.shader_id = p_shader;
#ifdef DEV_ENABLED
uniform_set._resources_desc_info = resources_desc_info;
uniform_set._shader = shader;
#endif
{
uniform_set.resource_states.resize(resource_states.size());
uint32_t i = 0;
for (const KeyValue<Resource *, RIDState> &E : resource_states) {
UniformSet::StateRequirement sr;
sr.resource = E.key;
sr.is_buffer = E.value.is_buffer;
sr.states = E.value.state.get_state_mask();
sr.shader_uniform_idx_mask = E.value.shader_uniform_idx_mask;
uniform_set.resource_states.write[i] = sr;
i++;
}
}
RID id = uniform_set_owner.make_rid(uniform_set);
// Add dependencies.
_add_dependency(id, p_shader);
for (uint32_t i = 0; i < uniform_count; i++) {
const Uniform &uniform = uniforms[i];
int id_count = uniform.get_id_count();
for (int j = 0; j < id_count; j++) {
_add_dependency(id, uniform.get_id(j));
}
}
return id;
}
bool RenderingDeviceD3D12::uniform_set_is_valid(RID p_uniform_set) {
return uniform_set_owner.owns(p_uniform_set);
}
void RenderingDeviceD3D12::uniform_set_set_invalidation_callback(RID p_uniform_set, InvalidationCallback p_callback, void *p_userdata) {
UniformSet *us = uniform_set_owner.get_or_null(p_uniform_set);
ERR_FAIL_NULL(us);
us->invalidated_callback = p_callback;
us->invalidated_callback_userdata = p_userdata;
}
Error RenderingDeviceD3D12::buffer_copy(RID p_src_buffer, RID p_dst_buffer, uint32_t p_src_offset, uint32_t p_dst_offset, uint32_t p_size, BitField<BarrierMask> p_post_barrier) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V_MSG(draw_list, ERR_INVALID_PARAMETER,
"Copying buffers is forbidden during creation of a draw list");
ERR_FAIL_COND_V_MSG(compute_list, ERR_INVALID_PARAMETER,
"Copying buffers is forbidden during creation of a compute list");
Buffer *src_buffer = _get_buffer_from_owner(p_src_buffer);
if (!src_buffer) {
ERR_FAIL_V_MSG(ERR_INVALID_PARAMETER, "Source buffer argument is not a valid buffer of any type.");
}
Buffer *dst_buffer = _get_buffer_from_owner(p_dst_buffer);
if (!dst_buffer) {
ERR_FAIL_V_MSG(ERR_INVALID_PARAMETER, "Destination buffer argument is not a valid buffer of any type.");
}
// Validate the copy's dimensions for both buffers.
ERR_FAIL_COND_V_MSG((p_size + p_src_offset) > src_buffer->size, ERR_INVALID_PARAMETER, "Size is larger than the source buffer.");
ERR_FAIL_COND_V_MSG((p_size + p_dst_offset) > dst_buffer->size, ERR_INVALID_PARAMETER, "Size is larger than the destination buffer.");
// Perform the copy.
ID3D12GraphicsCommandList *command_list = frames[frame].draw_command_list.Get();
_resource_transition_batch(src_buffer, 0, 1, D3D12_RESOURCE_STATE_COPY_SOURCE);
_resource_transition_batch(src_buffer, 0, 1, D3D12_RESOURCE_STATE_COPY_DEST);
_resource_transitions_flush(command_list);
command_list->CopyBufferRegion(dst_buffer->resource, p_dst_offset, src_buffer->resource, p_src_offset, p_size);
return OK;
}
Error RenderingDeviceD3D12::buffer_update(RID p_buffer, uint32_t p_offset, uint32_t p_size, const void *p_data, BitField<BarrierMask> p_post_barrier) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V_MSG(draw_list, ERR_INVALID_PARAMETER,
"Updating buffers is forbidden during creation of a draw list");
ERR_FAIL_COND_V_MSG(compute_list, ERR_INVALID_PARAMETER,
"Updating buffers is forbidden during creation of a compute list");
Buffer *buffer = _get_buffer_from_owner(p_buffer);
if (!buffer) {
ERR_FAIL_V_MSG(ERR_INVALID_PARAMETER, "Buffer argument is not a valid buffer of any type.");
}
ERR_FAIL_COND_V_MSG(p_offset + p_size > buffer->size, ERR_INVALID_PARAMETER,
"Attempted to write buffer (" + itos((p_offset + p_size) - buffer->size) + " bytes) past the end.");
ID3D12GraphicsCommandList *command_list = frames[frame].draw_command_list.Get();
_resource_transition_batch(buffer, 0, 1, D3D12_RESOURCE_STATE_COPY_DEST);
_resource_transitions_flush(command_list);
Error err = _buffer_update(buffer, p_offset, (uint8_t *)p_data, p_size, p_post_barrier);
if (err) {
return err;
}
return OK;
}
Error RenderingDeviceD3D12::buffer_clear(RID p_buffer, uint32_t p_offset, uint32_t p_size, BitField<BarrierMask> p_post_barrier) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V_MSG((p_size % 4) != 0, ERR_INVALID_PARAMETER,
"Size must be a multiple of four");
ERR_FAIL_COND_V_MSG(draw_list, ERR_INVALID_PARAMETER,
"Updating buffers in is forbidden during creation of a draw list");
ERR_FAIL_COND_V_MSG(compute_list, ERR_INVALID_PARAMETER,
"Updating buffers is forbidden during creation of a compute list");
Buffer *buffer = _get_buffer_from_owner(p_buffer);
if (!buffer) {
ERR_FAIL_V_MSG(ERR_INVALID_PARAMETER, "Buffer argument is not a valid buffer of any type.");
}
ERR_FAIL_COND_V_MSG(p_offset + p_size > buffer->size, ERR_INVALID_PARAMETER,
"Attempted to write buffer (" + itos((p_offset + p_size) - buffer->size) + " bytes) past the end.");
if (frames[frame].desc_heap_walkers.resources.is_at_eof()) {
if (!frames[frame].desc_heaps_exhausted_reported.resources) {
frames[frame].desc_heaps_exhausted_reported.resources = true;
ERR_FAIL_V_MSG(ERR_BUSY,
"Cannot clear buffer because there's no enough room in current frame's RESOURCE descriptors heap.\n"
"Please increase the value of the rendering/rendering_device/d3d12/max_resource_descriptors_per_frame project setting.");
} else {
return ERR_BUSY;
}
}
if (frames[frame].desc_heap_walkers.aux.is_at_eof()) {
if (!frames[frame].desc_heaps_exhausted_reported.aux) {
frames[frame].desc_heaps_exhausted_reported.aux = true;
ERR_FAIL_V_MSG(ERR_BUSY,
"Cannot clear buffer because there's no enough room in current frame's AUX descriptors heap.\n"
"Please increase the value of the rendering/rendering_device/d3d12/max_misc_descriptors_per_frame project setting.");
} else {
return ERR_BUSY;
}
}
ID3D12GraphicsCommandList *command_list = frames[frame].draw_command_list.Get();
_resource_transition_batch(buffer, 0, 1, D3D12_RESOURCE_STATE_UNORDERED_ACCESS);
_resource_transitions_flush(command_list);
D3D12_UNORDERED_ACCESS_VIEW_DESC uav_desc = {};
uav_desc.Format = DXGI_FORMAT_R32_TYPELESS;
uav_desc.ViewDimension = D3D12_UAV_DIMENSION_BUFFER;
uav_desc.Buffer.FirstElement = 0;
uav_desc.Buffer.NumElements = (buffer->size + 3) / 4;
uav_desc.Buffer.StructureByteStride = 0;
uav_desc.Buffer.CounterOffsetInBytes = 0;
uav_desc.Buffer.Flags = D3D12_BUFFER_UAV_FLAG_RAW;
device->CreateUnorderedAccessView(
buffer->resource,
nullptr,
&uav_desc,
frames[frame].desc_heap_walkers.aux.get_curr_cpu_handle());
device->CopyDescriptorsSimple(
1,
frames[frame].desc_heap_walkers.resources.get_curr_cpu_handle(),
frames[frame].desc_heap_walkers.aux.get_curr_cpu_handle(),
D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV);
static const UINT values[4] = {};
command_list->ClearUnorderedAccessViewUint(
frames[frame].desc_heap_walkers.resources.get_curr_gpu_handle(),
frames[frame].desc_heap_walkers.aux.get_curr_cpu_handle(),
buffer->resource,
values,
0,
nullptr);
frames[frame].desc_heap_walkers.resources.advance();
frames[frame].desc_heap_walkers.aux.advance();
return OK;
}
Vector<uint8_t> RenderingDeviceD3D12::buffer_get_data(RID p_buffer, uint32_t p_offset, uint32_t p_size) {
_THREAD_SAFE_METHOD_
// Get the vulkan buffer and the potential stage/access possible.
Buffer *buffer = _get_buffer_from_owner(p_buffer);
if (!buffer) {
ERR_FAIL_V_MSG(Vector<uint8_t>(), "Buffer is either invalid or this type of buffer can't be retrieved. Only Index and Vertex buffers allow retrieving.");
}
ID3D12GraphicsCommandList *command_list = frames[frame].draw_command_list.Get();
// Size of buffer to retrieve.
if (!p_size) {
p_size = buffer->size;
} else {
ERR_FAIL_COND_V_MSG(p_size + p_offset > buffer->size, Vector<uint8_t>(),
"Size is larger than the buffer.");
}
_resource_transition_batch(buffer, 0, 1, D3D12_RESOURCE_STATE_COPY_SOURCE);
_resource_transitions_flush(command_list);
Buffer tmp_buffer;
Error err = _buffer_allocate(&tmp_buffer, p_size, D3D12_RESOURCE_STATE_COPY_DEST, D3D12_HEAP_TYPE_READBACK);
ERR_FAIL_COND_V(err != OK, Vector<uint8_t>());
command_list->CopyBufferRegion(tmp_buffer.resource, 0, buffer->resource, p_offset, p_size);
// Flush everything so memory can be safely mapped.
_flush(true);
void *buffer_mem;
HRESULT res = tmp_buffer.resource->Map(0, &VOID_RANGE, &buffer_mem);
ERR_FAIL_COND_V_MSG(res, Vector<uint8_t>(), "Map failed with error " + vformat("0x%08ux", res) + ".");
Vector<uint8_t> buffer_data;
{
buffer_data.resize(buffer->size);
uint8_t *w = buffer_data.ptrw();
memcpy(w, buffer_mem, buffer->size);
}
tmp_buffer.resource->Unmap(0, &VOID_RANGE);
_buffer_free(&tmp_buffer);
return buffer_data;
}
/*******************/
/**** PIPELINES ****/
/*******************/
Error RenderingDeviceD3D12::_apply_specialization_constants(
const Shader *p_shader,
const Vector<PipelineSpecializationConstant> &p_specialization_constants,
HashMap<ShaderStage, Vector<uint8_t>> &r_final_stages_bytecode) {
// If something needs to be patched, COW will do the trick.
r_final_stages_bytecode = p_shader->stages_bytecode;
uint32_t stages_re_sign_mask = 0;
for (const PipelineSpecializationConstant &psc : p_specialization_constants) {
if (!(p_shader->spirv_specialization_constants_ids_mask & (1 << psc.constant_id))) {
// This SC wasn't even in the original SPIR-V shader.
continue;
}
for (const Shader::SpecializationConstant &sc : p_shader->specialization_constants) {
if (psc.constant_id == sc.constant.constant_id) {
ERR_FAIL_COND_V_MSG(psc.type != sc.constant.type, ERR_INVALID_PARAMETER, "Specialization constant provided for id (" + itos(sc.constant.constant_id) + ") is of the wrong type.");
if (psc.int_value != sc.constant.int_value) {
stages_re_sign_mask |= _shader_patch_dxil_specialization_constant(psc.type, &psc.int_value, sc.stages_bit_offsets, r_final_stages_bytecode, false);
}
break;
}
}
}
// Re-sign patched stages.
for (KeyValue<ShaderStage, Vector<uint8_t>> &E : r_final_stages_bytecode) {
ShaderStage stage = E.key;
if ((stages_re_sign_mask & (1 << stage))) {
Vector<uint8_t> &bytecode = E.value;
bool sign_ok = _shader_sign_dxil_bytecode(stage, bytecode);
ERR_FAIL_COND_V(!sign_ok, ERR_QUERY_FAILED);
}
}
return OK;
}
#ifdef DEV_ENABLED
String RenderingDeviceD3D12::_build_pipeline_blob_filename(
const Vector<uint8_t> &p_blob,
const Shader *p_shader,
const Vector<PipelineSpecializationConstant> &p_specialization_constants,
const String &p_extra_name_suffix,
const String &p_forced_id) {
String id;
if (p_forced_id == "") {
HashingContext hc;
hc.start(HashingContext::HASH_MD5);
hc.update(p_blob);
Vector<uint8_t> hash_bin = hc.finish();
String hash_str = String::hex_encode_buffer(hash_bin.ptr(), hash_bin.size());
} else {
id = p_forced_id;
}
Vector<String> sc_str_pieces;
for (const Shader::SpecializationConstant &sc : p_shader->specialization_constants) {
uint32_t int_value = sc.constant.int_value;
for (const PipelineSpecializationConstant &psc : p_specialization_constants) {
if (psc.constant_id == sc.constant.constant_id) {
int_value = psc.int_value;
break;
}
}
sc_str_pieces.push_back(itos(sc.constant.constant_id) + "=" + itos(int_value));
}
String res = p_shader->name.replace(":", "-");
res += "." + id;
res += "." + String("_").join(sc_str_pieces);
if (p_extra_name_suffix != "") {
res += "." + p_extra_name_suffix;
}
return res;
}
void RenderingDeviceD3D12::_save_pso_blob(
ID3D12PipelineState *p_pso,
const Shader *p_shader,
const Vector<PipelineSpecializationConstant> &p_specialization_constants) {
ComPtr<ID3DBlob> pso_blob;
p_pso->GetCachedBlob(pso_blob.GetAddressOf());
Vector<uint8_t> pso_vector;
pso_vector.resize(pso_blob->GetBufferSize());
memcpy(pso_vector.ptrw(), pso_blob->GetBufferPointer(), pso_blob->GetBufferSize());
String base_filename = _build_pipeline_blob_filename(pso_vector, p_shader, p_specialization_constants);
Ref<FileAccess> fa = FileAccess::open("pso." + base_filename + ".bin", FileAccess::WRITE);
fa->store_buffer((const uint8_t *)pso_blob->GetBufferPointer(), pso_blob->GetBufferSize());
}
void RenderingDeviceD3D12::_save_stages_bytecode(
const HashMap<ShaderStage, Vector<uint8_t>> &p_stages_bytecode,
const Shader *p_shader,
const RID p_shader_rid,
const Vector<PipelineSpecializationConstant> &p_specialization_constants) {
for (const KeyValue<ShaderStage, Vector<uint8_t>> &E : p_stages_bytecode) {
ShaderStage stage = E.key;
const Vector<uint8_t> &bytecode = E.value;
String base_filename = _build_pipeline_blob_filename(bytecode, p_shader, p_specialization_constants, shader_stage_names[stage], itos(p_shader_rid.get_id()));
Ref<FileAccess> fa = FileAccess::open("dxil." + base_filename + ".bin", FileAccess::WRITE);
fa->store_buffer(bytecode.ptr(), bytecode.size());
}
}
#endif
/*************************/
/**** RENDER PIPELINE ****/
/*************************/
RID RenderingDeviceD3D12::render_pipeline_create(RID p_shader, FramebufferFormatID p_framebuffer_format, VertexFormatID p_vertex_format, RenderPrimitive p_render_primitive, const PipelineRasterizationState &p_rasterization_state, const PipelineMultisampleState &p_multisample_state, const PipelineDepthStencilState &p_depth_stencil_state, const PipelineColorBlendState &p_blend_state, BitField<PipelineDynamicStateFlags> p_dynamic_state_flags, uint32_t p_for_render_pass, const Vector<PipelineSpecializationConstant> &p_specialization_constants) {
#ifdef DEV_ENABLED
//#define DEBUG_CREATE_DEBUG_PSO
//#define DEBUG_SAVE_PSO_BLOBS
//#define DEBUG_SAVE_DXIL_BLOBS
#endif
_THREAD_SAFE_METHOD_
// Needs a shader.
Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_NULL_V(shader, RID());
ERR_FAIL_COND_V_MSG(shader->is_compute, RID(),
"Compute shaders can't be used in render pipelines");
if (p_framebuffer_format == INVALID_ID) {
// If nothing provided, use an empty one (no attachments).
p_framebuffer_format = framebuffer_format_create(Vector<AttachmentFormat>());
}
ERR_FAIL_COND_V(!framebuffer_formats.has(p_framebuffer_format), RID());
const FramebufferFormat &fb_format = framebuffer_formats[p_framebuffer_format];
const FramebufferPass &pass = fb_format.passes[p_for_render_pass];
{ // Validate shader vs framebuffer.
ERR_FAIL_COND_V_MSG(p_for_render_pass >= uint32_t(fb_format.passes.size()), RID(), "Render pass requested for pipeline creation (" + itos(p_for_render_pass) + ") is out of bounds");
uint32_t output_mask = 0;
for (int i = 0; i < pass.color_attachments.size(); i++) {
if (pass.color_attachments[i] != FramebufferPass::ATTACHMENT_UNUSED) {
output_mask |= 1 << i;
}
}
ERR_FAIL_COND_V_MSG(shader->fragment_output_mask != output_mask, RID(),
"Mismatch fragment shader output mask (" + itos(shader->fragment_output_mask) + ") and framebuffer color output mask (" + itos(output_mask) + ") when binding both in render pipeline.");
}
CD3DX12_PIPELINE_STATE_STREAM pipeline_desc;
RenderPipeline::DynamicParams dyn_params;
// Attachment formats.
{
for (int i = 0; i < pass.color_attachments.size(); i++) {
int32_t attachment = pass.color_attachments[i];
if (attachment == FramebufferPass::ATTACHMENT_UNUSED) {
(&pipeline_desc.RTVFormats)->RTFormats[i] = DXGI_FORMAT_UNKNOWN;
} else {
(&pipeline_desc.RTVFormats)->RTFormats[i] = d3d12_formats[fb_format.attachments[attachment].format].general_format;
}
}
(&pipeline_desc.RTVFormats)->NumRenderTargets = pass.color_attachments.size();
if (pass.depth_attachment == FramebufferPass::ATTACHMENT_UNUSED) {
pipeline_desc.DSVFormat = DXGI_FORMAT_UNKNOWN;
} else {
pipeline_desc.DSVFormat = d3d12_formats[fb_format.attachments[pass.depth_attachment].format].dsv_format;
}
}
// Vertex.
if (p_vertex_format != INVALID_ID) {
// Uses vertices, else it does not.
ERR_FAIL_COND_V(!vertex_formats.has(p_vertex_format), RID());
const VertexDescriptionCache &vd = vertex_formats[p_vertex_format];
(&pipeline_desc.InputLayout)->pInputElementDescs = vd.elements_desc.ptr();
(&pipeline_desc.InputLayout)->NumElements = vd.elements_desc.size();
// Validate with inputs.
for (uint32_t i = 0; i < 64; i++) {
if (!(shader->vertex_input_mask & (1ULL << i))) {
continue;
}
bool found = false;
for (int j = 0; j < vd.vertex_formats.size(); j++) {
if (vd.vertex_formats[j].location == i) {
found = true;
}
}
ERR_FAIL_COND_V_MSG(!found, RID(),
"Shader vertex input location (" + itos(i) + ") not provided in vertex input description for pipeline creation.");
}
} else {
// Does not use vertices.
ERR_FAIL_COND_V_MSG(shader->vertex_input_mask != 0, RID(),
"Shader contains vertex inputs, but no vertex input description was provided for pipeline creation.");
}
// Input assembly & tessellation.
ERR_FAIL_INDEX_V(p_render_primitive, RENDER_PRIMITIVE_MAX, RID());
static const D3D12_PRIMITIVE_TOPOLOGY_TYPE topology_types[RENDER_PRIMITIVE_MAX] = {
D3D12_PRIMITIVE_TOPOLOGY_TYPE_POINT,
D3D12_PRIMITIVE_TOPOLOGY_TYPE_LINE,
D3D12_PRIMITIVE_TOPOLOGY_TYPE_LINE,
D3D12_PRIMITIVE_TOPOLOGY_TYPE_LINE,
D3D12_PRIMITIVE_TOPOLOGY_TYPE_LINE,
D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE,
D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE,
D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE,
D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE,
D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE,
D3D12_PRIMITIVE_TOPOLOGY_TYPE_PATCH,
};
static const D3D12_PRIMITIVE_TOPOLOGY topologies[RENDER_PRIMITIVE_MAX] = {
D3D_PRIMITIVE_TOPOLOGY_POINTLIST,
D3D_PRIMITIVE_TOPOLOGY_LINELIST,
D3D_PRIMITIVE_TOPOLOGY_LINELIST_ADJ,
D3D_PRIMITIVE_TOPOLOGY_LINESTRIP,
D3D_PRIMITIVE_TOPOLOGY_LINESTRIP_ADJ,
D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST,
D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST_ADJ,
D3D_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP,
D3D_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP_ADJ,
D3D_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP,
D3D_PRIMITIVE_TOPOLOGY_1_CONTROL_POINT_PATCHLIST,
};
pipeline_desc.PrimitiveTopologyType = topology_types[p_render_primitive];
if (p_render_primitive == RENDER_PRIMITIVE_TESSELATION_PATCH) {
ERR_FAIL_COND_V(p_rasterization_state.patch_control_points < 1 || p_rasterization_state.patch_control_points > 32, RID()); // Is there any way to get the true point count limit?
dyn_params.primitive_topology = (D3D12_PRIMITIVE_TOPOLOGY)((int)D3D_PRIMITIVE_TOPOLOGY_1_CONTROL_POINT_PATCHLIST + p_rasterization_state.patch_control_points);
} else {
dyn_params.primitive_topology = topologies[p_render_primitive];
}
if (p_render_primitive == RENDER_PRIMITIVE_TRIANGLE_STRIPS_WITH_RESTART_INDEX) {
// TODO: This is right for 16-bit indices; for 32-bit there's a different enum value to set, but we don't know at this point.
pipeline_desc.IBStripCutValue = D3D12_INDEX_BUFFER_STRIP_CUT_VALUE_0xFFFF;
} else {
pipeline_desc.IBStripCutValue = D3D12_INDEX_BUFFER_STRIP_CUT_VALUE_DISABLED;
}
// Rasterization.
(&pipeline_desc.RasterizerState)->DepthClipEnable = !p_rasterization_state.enable_depth_clamp;
// In D3D12, discard can be supported with some extra effort (empty pixel shader + disable depth/stencil test); that said, unsupported by now.
ERR_FAIL_COND_V(p_rasterization_state.discard_primitives, RID());
(&pipeline_desc.RasterizerState)->FillMode = p_rasterization_state.wireframe ? D3D12_FILL_MODE_WIREFRAME : D3D12_FILL_MODE_SOLID;
static const D3D12_CULL_MODE cull_mode[3] = {
D3D12_CULL_MODE_NONE,
D3D12_CULL_MODE_FRONT,
D3D12_CULL_MODE_BACK,
};
ERR_FAIL_INDEX_V(p_rasterization_state.cull_mode, 3, RID());
(&pipeline_desc.RasterizerState)->CullMode = cull_mode[p_rasterization_state.cull_mode];
(&pipeline_desc.RasterizerState)->FrontCounterClockwise = p_rasterization_state.front_face == POLYGON_FRONT_FACE_COUNTER_CLOCKWISE;
// In D3D12, there's still a point in setting up depth bias with no depth buffer, but just zeroing (disabling) it all in such case is closer to Vulkan.
if (p_rasterization_state.depth_bias_enabled && fb_format.passes[p_for_render_pass].depth_attachment != FramebufferPass::ATTACHMENT_UNUSED) {
(&pipeline_desc.RasterizerState)->DepthBias = p_rasterization_state.depth_bias_constant_factor;
(&pipeline_desc.RasterizerState)->DepthBiasClamp = p_rasterization_state.depth_bias_clamp;
(&pipeline_desc.RasterizerState)->SlopeScaledDepthBias = p_rasterization_state.depth_bias_slope_factor;
} else {
(&pipeline_desc.RasterizerState)->DepthBias = 0;
(&pipeline_desc.RasterizerState)->DepthBiasClamp = 0.0f;
(&pipeline_desc.RasterizerState)->SlopeScaledDepthBias = 0.0f;
}
(&pipeline_desc.RasterizerState)->ForcedSampleCount = 0;
(&pipeline_desc.RasterizerState)->ConservativeRaster = D3D12_CONSERVATIVE_RASTERIZATION_MODE_OFF;
(&pipeline_desc.RasterizerState)->MultisampleEnable = rasterization_sample_count[p_multisample_state.sample_count] != 1;
(&pipeline_desc.RasterizerState)->AntialiasedLineEnable = true;
// In D3D12, there's no line width.
ERR_FAIL_COND_V(!Math::is_equal_approx(p_rasterization_state.line_width, 1.0f), RID());
// Multisample.
ERR_FAIL_COND_V(p_multisample_state.enable_sample_shading, RID()); // How one enables this in D3D12?
if ((&pipeline_desc.RTVFormats)->NumRenderTargets || pipeline_desc.DSVFormat != DXGI_FORMAT_UNKNOWN) {
uint32_t sample_count = MIN(
fb_format.max_supported_sample_count,
rasterization_sample_count[p_multisample_state.sample_count]);
(&pipeline_desc.SampleDesc)->Count = sample_count;
} else {
(&pipeline_desc.SampleDesc)->Count = 1;
}
if ((&pipeline_desc.SampleDesc)->Count > 1) {
(&pipeline_desc.SampleDesc)->Quality = DXGI_STANDARD_MULTISAMPLE_QUALITY_PATTERN;
} else {
(&pipeline_desc.SampleDesc)->Quality = 0;
}
if (p_multisample_state.sample_mask.size()) {
// Use sample mask.
ERR_FAIL_COND_V(rasterization_sample_count[p_multisample_state.sample_count] != (uint32_t)p_multisample_state.sample_mask.size(), RID());
for (int i = 1; i < p_multisample_state.sample_mask.size(); i++) {
// In D3D12 there's a single sample mask for every pixel.
ERR_FAIL_COND_V(p_multisample_state.sample_mask[i] != p_multisample_state.sample_mask[0], RID());
}
pipeline_desc.SampleMask = p_multisample_state.sample_mask[0];
} else {
pipeline_desc.SampleMask = 0xffffffff;
}
// Depth stencil.
if (pass.depth_attachment == FramebufferPass::ATTACHMENT_UNUSED) {
(&pipeline_desc.DepthStencilState)->DepthEnable = false;
(&pipeline_desc.DepthStencilState)->StencilEnable = false;
} else {
(&pipeline_desc.DepthStencilState)->DepthEnable = p_depth_stencil_state.enable_depth_test;
(&pipeline_desc.DepthStencilState)->DepthWriteMask = p_depth_stencil_state.enable_depth_write ? D3D12_DEPTH_WRITE_MASK_ALL : D3D12_DEPTH_WRITE_MASK_ZERO;
ERR_FAIL_INDEX_V(p_depth_stencil_state.depth_compare_operator, COMPARE_OP_MAX, RID());
(&pipeline_desc.DepthStencilState)->DepthFunc = compare_operators[p_depth_stencil_state.depth_compare_operator];
(&pipeline_desc.DepthStencilState)->DepthBoundsTestEnable = p_depth_stencil_state.enable_depth_range;
(&pipeline_desc.DepthStencilState)->StencilEnable = p_depth_stencil_state.enable_stencil;
// In D3D12 some elements can't be different across front and back.
ERR_FAIL_COND_V(p_depth_stencil_state.front_op.compare_mask != p_depth_stencil_state.back_op.compare_mask, RID());
ERR_FAIL_COND_V(p_depth_stencil_state.front_op.write_mask != p_depth_stencil_state.back_op.write_mask, RID());
ERR_FAIL_COND_V(p_depth_stencil_state.front_op.reference != p_depth_stencil_state.back_op.reference, RID());
(&pipeline_desc.DepthStencilState)->StencilReadMask = p_depth_stencil_state.front_op.compare_mask;
(&pipeline_desc.DepthStencilState)->StencilWriteMask = p_depth_stencil_state.front_op.write_mask;
ERR_FAIL_INDEX_V(p_depth_stencil_state.front_op.fail, STENCIL_OP_MAX, RID());
(&pipeline_desc.DepthStencilState)->FrontFace.StencilFailOp = stencil_operations[p_depth_stencil_state.front_op.fail];
ERR_FAIL_INDEX_V(p_depth_stencil_state.front_op.pass, STENCIL_OP_MAX, RID());
(&pipeline_desc.DepthStencilState)->FrontFace.StencilPassOp = stencil_operations[p_depth_stencil_state.front_op.pass];
ERR_FAIL_INDEX_V(p_depth_stencil_state.front_op.depth_fail, STENCIL_OP_MAX, RID());
(&pipeline_desc.DepthStencilState)->FrontFace.StencilDepthFailOp = stencil_operations[p_depth_stencil_state.front_op.depth_fail];
ERR_FAIL_INDEX_V(p_depth_stencil_state.front_op.compare, COMPARE_OP_MAX, RID());
(&pipeline_desc.DepthStencilState)->FrontFace.StencilFunc = compare_operators[p_depth_stencil_state.front_op.compare];
ERR_FAIL_INDEX_V(p_depth_stencil_state.back_op.fail, STENCIL_OP_MAX, RID());
(&pipeline_desc.DepthStencilState)->BackFace.StencilFailOp = stencil_operations[p_depth_stencil_state.back_op.fail];
ERR_FAIL_INDEX_V(p_depth_stencil_state.back_op.pass, STENCIL_OP_MAX, RID());
(&pipeline_desc.DepthStencilState)->BackFace.StencilPassOp = stencil_operations[p_depth_stencil_state.back_op.pass];
ERR_FAIL_INDEX_V(p_depth_stencil_state.back_op.depth_fail, STENCIL_OP_MAX, RID());
(&pipeline_desc.DepthStencilState)->BackFace.StencilDepthFailOp = stencil_operations[p_depth_stencil_state.back_op.depth_fail];
ERR_FAIL_INDEX_V(p_depth_stencil_state.back_op.compare, COMPARE_OP_MAX, RID());
(&pipeline_desc.DepthStencilState)->BackFace.StencilFunc = compare_operators[p_depth_stencil_state.back_op.compare];
dyn_params.depth_bounds_min = p_depth_stencil_state.enable_depth_range ? p_depth_stencil_state.depth_range_min : 0.0f;
dyn_params.depth_bounds_max = p_depth_stencil_state.enable_depth_range ? p_depth_stencil_state.depth_range_max : 1.0f;
dyn_params.stencil_reference = p_depth_stencil_state.front_op.reference;
}
// Blend state.
(&pipeline_desc.BlendState)->AlphaToCoverageEnable = p_multisample_state.enable_alpha_to_coverage;
{
ERR_FAIL_COND_V(p_blend_state.attachments.size() < pass.color_attachments.size(), RID());
bool all_attachments_same_blend = true;
for (int i = 0; i < pass.color_attachments.size(); i++) {
const PipelineColorBlendState::Attachment &bs = p_blend_state.attachments[i];
D3D12_RENDER_TARGET_BLEND_DESC &bd = (&pipeline_desc.BlendState)->RenderTarget[i];
bd.BlendEnable = bs.enable_blend;
bd.LogicOpEnable = p_blend_state.enable_logic_op;
bd.LogicOp = logic_operations[p_blend_state.logic_op];
ERR_FAIL_INDEX_V(bs.src_color_blend_factor, BLEND_FACTOR_MAX, RID());
bd.SrcBlend = blend_factors[bs.src_color_blend_factor];
ERR_FAIL_INDEX_V(bs.dst_color_blend_factor, BLEND_FACTOR_MAX, RID());
bd.DestBlend = blend_factors[bs.dst_color_blend_factor];
ERR_FAIL_INDEX_V(bs.color_blend_op, BLEND_OP_MAX, RID());
bd.BlendOp = blend_operations[bs.color_blend_op];
ERR_FAIL_INDEX_V(bs.src_alpha_blend_factor, BLEND_FACTOR_MAX, RID());
bd.SrcBlendAlpha = blend_factors[bs.src_alpha_blend_factor];
ERR_FAIL_INDEX_V(bs.dst_alpha_blend_factor, BLEND_FACTOR_MAX, RID());
bd.DestBlendAlpha = blend_factors[bs.dst_alpha_blend_factor];
ERR_FAIL_INDEX_V(bs.alpha_blend_op, BLEND_OP_MAX, RID());
bd.BlendOpAlpha = blend_operations[bs.alpha_blend_op];
if (bs.write_r) {
bd.RenderTargetWriteMask |= D3D12_COLOR_WRITE_ENABLE_RED;
}
if (bs.write_g) {
bd.RenderTargetWriteMask |= D3D12_COLOR_WRITE_ENABLE_GREEN;
}
if (bs.write_b) {
bd.RenderTargetWriteMask |= D3D12_COLOR_WRITE_ENABLE_BLUE;
}
if (bs.write_a) {
bd.RenderTargetWriteMask |= D3D12_COLOR_WRITE_ENABLE_ALPHA;
}
if (i > 0 && all_attachments_same_blend) {
all_attachments_same_blend = &(&pipeline_desc.BlendState)->RenderTarget[i] == &(&pipeline_desc.BlendState)->RenderTarget[0];
}
}
// Per D3D12 docs, if logic op used, independent blending is not supported.
ERR_FAIL_COND_V(p_blend_state.enable_logic_op && !all_attachments_same_blend, RID());
(&pipeline_desc.BlendState)->IndependentBlendEnable = !all_attachments_same_blend;
}
dyn_params.blend_constant = p_blend_state.blend_constant;
// Stages bytecodes + specialization constants.
pipeline_desc.pRootSignature = shader->root_signature.Get();
#ifdef DEBUG_CREATE_DEBUG_PSO
pipeline_desc.Flags = D3D12_PIPELINE_STATE_FLAG_TOOL_DEBUG;
#endif
HashMap<ShaderStage, Vector<uint8_t>> final_stages_bytecode;
Error err = _apply_specialization_constants(shader, p_specialization_constants, final_stages_bytecode);
ERR_FAIL_COND_V(err, RID());
#ifdef DEV_ENABLED
// Ensure signing worked.
for (KeyValue<ShaderStage, Vector<uint8_t>> &E : final_stages_bytecode) {
bool any_non_zero = false;
for (int j = 0; j < 16; j++) {
if (E.value.ptr()[4 + j]) {
any_non_zero = true;
break;
}
}
DEV_ASSERT(any_non_zero);
}
#endif
if (shader->stages_bytecode.has(SHADER_STAGE_VERTEX)) {
pipeline_desc.VS = D3D12_SHADER_BYTECODE{
final_stages_bytecode[SHADER_STAGE_VERTEX].ptr(),
(SIZE_T)final_stages_bytecode[SHADER_STAGE_VERTEX].size()
};
}
if (shader->stages_bytecode.has(SHADER_STAGE_FRAGMENT)) {
pipeline_desc.PS = D3D12_SHADER_BYTECODE{
final_stages_bytecode[SHADER_STAGE_FRAGMENT].ptr(),
(SIZE_T)final_stages_bytecode[SHADER_STAGE_FRAGMENT].size()
};
}
RenderPipeline pipeline;
{
ComPtr<ID3D12Device2> device2;
device.As(&device2);
HRESULT res = {};
if (device2) {
D3D12_PIPELINE_STATE_STREAM_DESC pssd = {};
pssd.pPipelineStateSubobjectStream = &pipeline_desc;
pssd.SizeInBytes = sizeof(pipeline_desc);
res = device2->CreatePipelineState(&pssd, IID_PPV_ARGS(pipeline.pso.GetAddressOf()));
} else {
// Some features won't be available (like depth bounds).
// TODO: Check and/or report error then?
D3D12_GRAPHICS_PIPELINE_STATE_DESC desc = pipeline_desc.GraphicsDescV0();
res = device->CreateGraphicsPipelineState(&desc, IID_PPV_ARGS(pipeline.pso.GetAddressOf()));
}
ERR_FAIL_COND_V_MSG(res, RID(), "CreateGraphicsPipelineState failed with error " + vformat("0x%08ux", res) + " for shader '" + shader->name + "'.");
#ifdef DEBUG_SAVE_PSO_BLOBS
_save_pso_blob(pipeline.pso.Get(), shader, p_specialization_constants);
#endif
#ifdef DEBUG_SAVE_DXIL_BLOBS
_save_stages_bytecode(final_stages_bytecode, shader, p_shader, p_specialization_constants);
#endif
}
{
Vector<Vector<UniformBindingInfo>> bindings;
bindings.resize(shader->sets.size());
for (int i = 0; i < shader->sets.size(); i++) {
bindings.write[i].resize(shader->sets[i].uniforms.size());
for (int j = 0; j < shader->sets[i].uniforms.size(); j++) {
bindings.write[i].write[j] = shader->sets[i].uniforms[j].binding;
}
}
pipeline_bindings[next_pipeline_binding_id] = bindings;
pipeline.bindings_id = next_pipeline_binding_id;
next_pipeline_binding_id++;
}
pipeline.root_signature_crc = shader->root_signature_crc;
pipeline.set_formats = shader->set_formats;
pipeline.shader = p_shader;
pipeline.spirv_push_constant_size = shader->spirv_push_constant_size;
pipeline.dxil_push_constant_size = shader->dxil_push_constant_size;
pipeline.nir_runtime_data_root_param_idx = shader->nir_runtime_data_root_param_idx;
pipeline.dyn_params = dyn_params;
#ifdef DEBUG_ENABLED
pipeline.validation.dynamic_state = p_dynamic_state_flags;
pipeline.validation.framebuffer_format = p_framebuffer_format;
pipeline.validation.render_pass = p_for_render_pass;
pipeline.validation.vertex_format = p_vertex_format;
pipeline.validation.uses_restart_indices = pipeline_desc.IBStripCutValue != D3D12_INDEX_BUFFER_STRIP_CUT_VALUE_DISABLED;
static const uint32_t primitive_divisor[RENDER_PRIMITIVE_MAX] = {
1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1
};
pipeline.validation.primitive_divisor = primitive_divisor[p_render_primitive];
static const uint32_t primitive_minimum[RENDER_PRIMITIVE_MAX] = {
1,
2,
2,
2,
2,
3,
3,
3,
3,
3,
1,
};
pipeline.validation.primitive_minimum = primitive_minimum[p_render_primitive];
#endif
// Create ID to associate with this pipeline.
RID id = render_pipeline_owner.make_rid(pipeline);
#ifdef DEV_ENABLED
set_resource_name(id, "RID:" + itos(id.get_id()));
#endif
// Now add all the dependencies.
_add_dependency(id, p_shader);
return id;
}
bool RenderingDeviceD3D12::render_pipeline_is_valid(RID p_pipeline) {
_THREAD_SAFE_METHOD_
return render_pipeline_owner.owns(p_pipeline);
}
/**************************/
/**** COMPUTE PIPELINE ****/
/**************************/
RID RenderingDeviceD3D12::compute_pipeline_create(RID p_shader, const Vector<PipelineSpecializationConstant> &p_specialization_constants) {
#ifdef DEV_ENABLED
//#define DEBUG_CREATE_DEBUG_PSO
//#define DEBUG_SAVE_PSO_BLOBS
//#define DEBUG_SAVE_DXIL_BLOBS
#endif
_THREAD_SAFE_METHOD_
// Needs a shader.
Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_NULL_V(shader, RID());
ERR_FAIL_COND_V_MSG(!shader->is_compute, RID(),
"Non-compute shaders can't be used in compute pipelines");
CD3DX12_PIPELINE_STATE_STREAM pipeline_desc = {};
// Stages bytecodes + specialization constants.
pipeline_desc.pRootSignature = shader->root_signature.Get();
#ifdef DEBUG_CREATE_DEBUG_PSO
pipeline_desc.Flags = D3D12_PIPELINE_STATE_FLAG_TOOL_DEBUG;
#endif
HashMap<ShaderStage, Vector<uint8_t>> final_stages_bytecode;
Error err = _apply_specialization_constants(shader, p_specialization_constants, final_stages_bytecode);
ERR_FAIL_COND_V(err, RID());
pipeline_desc.CS = D3D12_SHADER_BYTECODE{
final_stages_bytecode[SHADER_STAGE_COMPUTE].ptr(),
(SIZE_T)final_stages_bytecode[SHADER_STAGE_COMPUTE].size()
};
ComputePipeline pipeline;
{
ComPtr<ID3D12Device2> device2;
device.As(&device2);
HRESULT res = {};
if (device2) {
D3D12_PIPELINE_STATE_STREAM_DESC pssd = {};
pssd.pPipelineStateSubobjectStream = &pipeline_desc;
pssd.SizeInBytes = sizeof(pipeline_desc);
res = device2->CreatePipelineState(&pssd, IID_PPV_ARGS(pipeline.pso.GetAddressOf()));
} else {
D3D12_COMPUTE_PIPELINE_STATE_DESC desc = pipeline_desc.ComputeDescV0();
res = device->CreateComputePipelineState(&desc, IID_PPV_ARGS(pipeline.pso.GetAddressOf()));
}
ERR_FAIL_COND_V_MSG(res, RID(), "CreateComputePipelineState failed with error " + vformat("0x%08ux", res) + " for shader '" + shader->name + "'.");
#ifdef DEBUG_SAVE_PSO_BLOBS
_save_pso_blob(pipeline.pso.Get(), shader, p_specialization_constants);
#endif
#ifdef DEBUG_SAVE_DXIL_BLOBS
_save_stages_bytecode(final_stages_bytecode, shader, p_shader, p_specialization_constants);
#endif
}
{
Vector<Vector<UniformBindingInfo>> bindings;
bindings.resize(shader->sets.size());
for (int i = 0; i < shader->sets.size(); i++) {
bindings.write[i].resize(shader->sets[i].uniforms.size());
for (int j = 0; j < shader->sets[i].uniforms.size(); j++) {
bindings.write[i].write[j] = shader->sets[i].uniforms[j].binding;
}
}
pipeline_bindings[next_pipeline_binding_id] = bindings;
pipeline.bindings_id = next_pipeline_binding_id;
next_pipeline_binding_id++;
}
pipeline.root_signature_crc = shader->root_signature_crc;
pipeline.set_formats = shader->set_formats;
pipeline.shader = p_shader;
pipeline.spirv_push_constant_size = shader->spirv_push_constant_size;
pipeline.dxil_push_constant_size = shader->dxil_push_constant_size;
pipeline.local_group_size[0] = shader->compute_local_size[0];
pipeline.local_group_size[1] = shader->compute_local_size[1];
pipeline.local_group_size[2] = shader->compute_local_size[2];
// Create ID to associate with this pipeline.
RID id = compute_pipeline_owner.make_rid(pipeline);
#ifdef DEV_ENABLED
set_resource_name(id, "RID:" + itos(id.get_id()));
#endif
// Now add all the dependencies.
_add_dependency(id, p_shader);
return id;
}
bool RenderingDeviceD3D12::compute_pipeline_is_valid(RID p_pipeline) {
return compute_pipeline_owner.owns(p_pipeline);
}
/****************/
/**** SCREEN ****/
/****************/
int RenderingDeviceD3D12::screen_get_width(DisplayServer::WindowID p_screen) const {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V_MSG(local_device.is_valid(), -1, "Local devices have no screen");
return context->window_get_width(p_screen);
}
int RenderingDeviceD3D12::screen_get_height(DisplayServer::WindowID p_screen) const {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V_MSG(local_device.is_valid(), -1, "Local devices have no screen");
return context->window_get_height(p_screen);
}
RenderingDevice::FramebufferFormatID RenderingDeviceD3D12::screen_get_framebuffer_format() const {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V_MSG(local_device.is_valid(), INVALID_ID, "Local devices have no screen");
// Very hacky, but not used often per frame so I guess ok.
DXGI_FORMAT d3d12_format = context->get_screen_format();
DataFormat format = DATA_FORMAT_MAX;
for (int i = 0; i < DATA_FORMAT_MAX; i++) {
if (d3d12_format == d3d12_formats[i].general_format) {
format = DataFormat(i);
break;
}
}
ERR_FAIL_COND_V(format == DATA_FORMAT_MAX, INVALID_ID);
AttachmentFormat attachment;
attachment.format = format;
attachment.samples = TEXTURE_SAMPLES_1;
attachment.usage_flags = TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
Vector<AttachmentFormat> screen_attachment;
screen_attachment.push_back(attachment);
return const_cast<RenderingDeviceD3D12 *>(this)->framebuffer_format_create(screen_attachment);
}
/*******************/
/**** DRAW LIST ****/
/*******************/
RenderingDevice::DrawListID RenderingDeviceD3D12::draw_list_begin_for_screen(DisplayServer::WindowID p_screen, const Color &p_clear_color) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V_MSG(local_device.is_valid(), INVALID_ID, "Local devices have no screen");
ERR_FAIL_COND_V_MSG(draw_list != nullptr, INVALID_ID, "Only one draw list can be active at the same time.");
ERR_FAIL_COND_V_MSG(compute_list != nullptr, INVALID_ID, "Only one draw/compute list can be active at the same time.");
if (!context->window_is_valid_swapchain(p_screen)) {
return INVALID_ID;
}
Size2i size = Size2i(context->window_get_width(p_screen), context->window_get_height(p_screen));
_draw_list_allocate(Rect2i(Vector2i(), size), 0, 0);
Vector<Color> clear_colors;
clear_colors.push_back(p_clear_color);
curr_screen_framebuffer = Framebuffer();
curr_screen_framebuffer.window_id = p_screen;
curr_screen_framebuffer.format_id = screen_get_framebuffer_format();
curr_screen_framebuffer.size = size;
curr_screen_framebuffer.screen_rtv_handle = context->window_get_framebuffer_rtv_handle(p_screen);
ID3D12GraphicsCommandList *command_list = frames[frame].draw_command_list.Get();
Error err = _draw_list_render_pass_begin(&curr_screen_framebuffer, INITIAL_ACTION_CLEAR, FINAL_ACTION_READ, INITIAL_ACTION_DROP, FINAL_ACTION_DISCARD, clear_colors, 0.0f, 0, Rect2i(), Point2i(), size, command_list, Vector<RID>());
if (err != OK) {
return INVALID_ID;
}
return int64_t(ID_TYPE_DRAW_LIST) << ID_BASE_SHIFT;
}
Error RenderingDeviceD3D12::_draw_list_render_pass_begin(Framebuffer *framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_colors, float p_clear_depth, uint32_t p_clear_stencil, const Rect2 &p_region, Point2i viewport_offset, Point2i viewport_size, ID3D12GraphicsCommandList *command_list, const Vector<RID> &p_storage_textures) {
const FramebufferFormat &fb_format = framebuffer_formats[framebuffer->format_id];
bool is_screen = framebuffer->window_id != DisplayServer::INVALID_WINDOW_ID;
if (!is_screen) {
ERR_FAIL_COND_V(fb_format.attachments.size() != framebuffer->texture_ids.size(), ERR_BUG);
}
CD3DX12_RECT region_rect(0, 0, framebuffer->size.x, framebuffer->size.y);
if (p_region != Rect2() && p_region != Rect2(Vector2(), viewport_size)) { // Check custom region.
Rect2i viewport(viewport_offset, viewport_size);
Rect2i regioni = p_region;
if (!viewport.encloses(regioni)) {
ERR_FAIL_V_MSG(ERR_INVALID_PARAMETER, "When supplying a custom region, it must be contained within the framebuffer rectangle");
}
viewport_offset = regioni.position;
viewport_size = regioni.size;
region_rect = CD3DX12_RECT(
p_region.position.x,
p_region.position.y,
p_region.position.x + p_region.size.x,
p_region.position.y + p_region.size.y);
}
if (p_initial_color_action == INITIAL_ACTION_CLEAR) { // Check clear values.
int color_count = 0;
if (is_screen) {
color_count = 1;
} else {
for (int i = 0; i < framebuffer->texture_ids.size(); i++) {
Texture *texture = texture_owner.get_or_null(framebuffer->texture_ids[i]);
if (!texture || (!(texture->usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) && !(i != 0 && texture->usage_flags & TEXTURE_USAGE_VRS_ATTACHMENT_BIT))) {
if (!texture || !texture->is_resolve_buffer) {
color_count++;
}
}
}
}
ERR_FAIL_COND_V_MSG(p_clear_colors.size() != color_count, ERR_INVALID_PARAMETER,
"Clear color values supplied (" + itos(p_clear_colors.size()) + ") differ from the amount required for framebuffer color attachments (" + itos(color_count) + ").");
}
struct SetupInfo {
enum {
ACTION_NONE,
ACTION_DISCARD,
ACTION_CLEAR,
} action = ACTION_NONE;
UINT num_rects = 0;
D3D12_RECT *rect_ptr = nullptr;
D3D12_RESOURCE_STATES new_state = {};
SetupInfo(InitialAction p_action, D3D12_RECT *p_region_rect, bool p_is_color) {
switch (p_action) {
case INITIAL_ACTION_CLEAR: {
action = ACTION_CLEAR;
} break;
case INITIAL_ACTION_CLEAR_REGION: {
action = ACTION_CLEAR;
num_rects = 1;
rect_ptr = p_region_rect;
} break;
case INITIAL_ACTION_CLEAR_REGION_CONTINUE: {
action = ACTION_CLEAR;
num_rects = 1;
rect_ptr = p_region_rect;
} break;
case INITIAL_ACTION_KEEP: {
} break;
case INITIAL_ACTION_DROP: {
action = ACTION_DISCARD; // TODO: Are we really intended to do a resource Discard() as initial action, when final action can already do?
} break;
case INITIAL_ACTION_CONTINUE: {
} break;
}
}
};
SetupInfo setup_color(p_initial_color_action, &region_rect, true);
SetupInfo setup_depth(p_initial_depth_action, &region_rect, false);
draw_list_bound_textures.clear();
draw_list_unbind_color_textures = p_final_color_action != FINAL_ACTION_CONTINUE;
draw_list_unbind_depth_textures = p_final_depth_action != FINAL_ACTION_CONTINUE;
ID3D12Resource **discards = (ID3D12Resource **)alloca(sizeof(ID3D12Resource *) * fb_format.attachments.size());
uint32_t num_discards = 0;
struct RTVClear {
D3D12_CPU_DESCRIPTOR_HANDLE handle;
Color color;
};
RTVClear *rtv_clears = (RTVClear *)alloca(sizeof(RTVClear) * fb_format.attachments.size());
uint32_t num_rtv_clears = 0;
bool dsv_clear = false;
DescriptorsHeap::Walker rtv_heap_walker = framebuffer->rtv_heap.make_walker();
int color_index = 0;
for (int i = 0; i < fb_format.attachments.size(); i++) {
RID texture_rid;
Texture *texture = nullptr;
if (!is_screen) {
texture_rid = framebuffer->texture_ids[i];
if (texture_rid.is_null()) {
color_index++;
continue;
}
texture = texture_owner.get_or_null(texture_rid);
ERR_FAIL_NULL_V(texture, ERR_BUG);
texture->bound = true;
draw_list_bound_textures.push_back(texture_rid);
}
// We can setup a framebuffer where we write to our VRS texture to set it up.
// We make the assumption here that if our texture is actually used as our VRS attachment,
// it is used as such for each subpass. This is fairly certain seeing the restrictions on subpasses (in Vulkan).
// [[VRS_EVERY_SUBPASS_OR_NONE]]
bool is_vrs = fb_format.attachments[i].usage_flags & TEXTURE_USAGE_VRS_ATTACHMENT_BIT && i == fb_format.passes[0].vrs_attachment;
if (is_vrs) {
DEV_ASSERT(!is_screen);
DEV_ASSERT(texture->owner_mipmaps == 1);
DEV_ASSERT(texture->owner_layers == 1);
_resource_transition_batch(texture, 0, texture->planes, D3D12_RESOURCE_STATE_SHADING_RATE_SOURCE);
} else {
if ((fb_format.attachments[i].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) {
if (!is_screen) { // Screen backbuffers are transitioned in prepare_buffers().
for (uint32_t j = 0; j < texture->layers; j++) {
for (uint32_t k = 0; k < texture->mipmaps; k++) {
uint32_t subresource = D3D12CalcSubresource(texture->base_mipmap + k, texture->base_layer + j, 0, texture->owner_mipmaps, texture->owner_layers);
_resource_transition_batch(texture, subresource, texture->planes, D3D12_RESOURCE_STATE_RENDER_TARGET);
}
}
}
if (setup_color.action == SetupInfo::ACTION_DISCARD) {
ID3D12Resource *resource = is_screen ? context->window_get_framebuffer_texture(framebuffer->window_id) : texture->resource;
discards[num_discards++] = resource;
} else if (setup_color.action == SetupInfo::ACTION_CLEAR) {
D3D12_CPU_DESCRIPTOR_HANDLE handle = is_screen ? framebuffer->screen_rtv_handle : rtv_heap_walker.get_curr_cpu_handle();
Color clear_color = color_index < p_clear_colors.size() ? p_clear_colors[color_index] : Color();
rtv_clears[num_rtv_clears++] = RTVClear{ handle, clear_color };
}
color_index++;
if (!is_screen) {
rtv_heap_walker.advance();
}
} else if ((fb_format.attachments[i].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
DEV_ASSERT(!is_screen);
for (uint32_t j = 0; j < texture->layers; j++) {
for (uint32_t k = 0; k < texture->mipmaps; k++) {
uint32_t subresource = D3D12CalcSubresource(texture->base_mipmap + k, texture->base_layer + j, 0, texture->owner_mipmaps, texture->owner_layers);
_resource_transition_batch(texture, subresource, texture->planes, D3D12_RESOURCE_STATE_DEPTH_WRITE);
}
}
if (setup_depth.action == SetupInfo::ACTION_DISCARD) {
discards[num_discards++] = texture->resource;
} else if (setup_depth.action == SetupInfo::ACTION_CLEAR) {
dsv_clear = true;
}
}
}
}
for (int i = 0; i < p_storage_textures.size(); i++) {
Texture *texture = texture_owner.get_or_null(p_storage_textures[i]);
if (!texture) {
continue;
}
ERR_CONTINUE_MSG(!(texture->usage_flags & TEXTURE_USAGE_STORAGE_BIT), "Supplied storage texture " + itos(i) + " for draw list is not set to be used for storage.");
}
_resource_transitions_flush(frames[frame].draw_command_list.Get());
for (uint32_t i = 0; i < num_discards; i++) {
command_list->DiscardResource(discards[i], nullptr);
}
for (uint32_t i = 0; i < num_rtv_clears; i++) {
command_list->ClearRenderTargetView(
rtv_clears[i].handle,
rtv_clears[i].color.components,
setup_color.num_rects,
setup_color.rect_ptr);
}
if (dsv_clear) {
command_list->ClearDepthStencilView(
framebuffer->dsv_heap.get_heap()->GetCPUDescriptorHandleForHeapStart(),
D3D12_CLEAR_FLAG_DEPTH | D3D12_CLEAR_FLAG_STENCIL,
p_clear_depth,
p_clear_stencil,
setup_depth.num_rects,
setup_depth.rect_ptr);
}
{
CD3DX12_VIEWPORT viewport(
viewport_offset.x,
viewport_offset.y,
viewport_size.x,
viewport_size.y,
0.0f,
1.0f);
command_list->RSSetViewports(1, &viewport);
CD3DX12_RECT scissor(
viewport_offset.x,
viewport_offset.y,
viewport_offset.x + viewport_size.x,
viewport_offset.y + viewport_size.y);
command_list->RSSetScissorRects(1, &scissor);
}
draw_list_subpass_count = fb_format.passes.size();
draw_list_current_subpass = 0;
draw_list_final_color_action = p_final_color_action;
draw_list_final_depth_action = p_final_depth_action;
draw_list_framebuffer = framebuffer;
draw_list_viewport_size = viewport_size;
_draw_list_subpass_begin();
return OK;
}
RenderingDevice::DrawListID RenderingDeviceD3D12::draw_list_begin(RID p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values, float p_clear_depth, uint32_t p_clear_stencil, const Rect2 &p_region, const Vector<RID> &p_storage_textures) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V_MSG(draw_list != nullptr, INVALID_ID, "Only one draw list can be active at the same time.");
ERR_FAIL_COND_V_MSG(compute_list != nullptr && !compute_list->state.allow_draw_overlap, INVALID_ID, "Only one draw/compute list can be active at the same time.");
Framebuffer *framebuffer = framebuffer_owner.get_or_null(p_framebuffer);
ERR_FAIL_NULL_V(framebuffer, INVALID_ID);
ID3D12GraphicsCommandList *command_list = frames[frame].draw_command_list.Get();
Error err = _draw_list_render_pass_begin(framebuffer, p_initial_color_action, p_final_color_action, p_initial_depth_action, p_final_depth_action, p_clear_color_values, p_clear_depth, p_clear_stencil, p_region, Point2i(), framebuffer->size, command_list, p_storage_textures);
if (err != OK) {
return INVALID_ID;
}
_draw_list_allocate(Rect2i(Point2i(), framebuffer->size), 0, 0);
return int64_t(ID_TYPE_DRAW_LIST) << ID_BASE_SHIFT;
}
Error RenderingDeviceD3D12::draw_list_begin_split(RID p_framebuffer, uint32_t p_splits, DrawListID *r_split_ids, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values, float p_clear_depth, uint32_t p_clear_stencil, const Rect2 &p_region, const Vector<RID> &p_storage_textures) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V_MSG(draw_list != nullptr, ERR_BUSY, "Only one draw list can be active at the same time.");
ERR_FAIL_COND_V_MSG(compute_list != nullptr && !compute_list->state.allow_draw_overlap, ERR_BUSY, "Only one draw/compute list can be active at the same time.");
ERR_FAIL_COND_V(p_splits < 1, ERR_INVALID_DECLARATION);
Framebuffer *framebuffer = framebuffer_owner.get_or_null(p_framebuffer);
ERR_FAIL_NULL_V(framebuffer, ERR_INVALID_DECLARATION);
ID3D12GraphicsCommandList *frame_command_list = frames[frame].draw_command_list.Get();
Error err = _draw_list_render_pass_begin(framebuffer, p_initial_color_action, p_final_color_action, p_initial_depth_action, p_final_depth_action, p_clear_color_values, p_clear_depth, p_clear_stencil, p_region, Point2i(), framebuffer->size, frame_command_list, p_storage_textures);
if (err != OK) {
return ERR_CANT_CREATE;
}
err = _draw_list_allocate(Rect2i(Point2i(), framebuffer->size), p_splits, 0);
if (err != OK) {
return err;
}
for (uint32_t i = 0; i < p_splits; i++) {
// In Vulkan, we'd be setting viewports and scissors for each split here;
// D3D12 doesn't need it (it's even forbidden, for that matter).
r_split_ids[i] = (int64_t(ID_TYPE_SPLIT_DRAW_LIST) << ID_BASE_SHIFT) + i;
}
return OK;
}
RenderingDeviceD3D12::DrawList *RenderingDeviceD3D12::_get_draw_list_ptr(DrawListID p_id) {
if (p_id < 0) {
return nullptr;
}
if (!draw_list) {
return nullptr;
} else if (p_id == (int64_t(ID_TYPE_DRAW_LIST) << ID_BASE_SHIFT)) {
if (draw_list_split) {
return nullptr;
}
return draw_list;
} else if (p_id >> DrawListID(ID_BASE_SHIFT) == ID_TYPE_SPLIT_DRAW_LIST) {
if (!draw_list_split) {
return nullptr;
}
uint64_t index = p_id & ((DrawListID(1) << DrawListID(ID_BASE_SHIFT)) - 1); // Mask.
if (index >= draw_list_count) {
return nullptr;
}
return &draw_list[index];
} else {
return nullptr;
}
}
void RenderingDeviceD3D12::draw_list_set_blend_constants(DrawListID p_list, const Color &p_color) {
DrawList *dl = _get_draw_list_ptr(p_list);
ERR_FAIL_NULL(dl);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified.");
#endif
dl->command_list->OMSetBlendFactor(p_color.components);
}
void RenderingDeviceD3D12::draw_list_bind_render_pipeline(DrawListID p_list, RID p_render_pipeline) {
DrawList *dl = _get_draw_list_ptr(p_list);
ERR_FAIL_NULL(dl);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified.");
#endif
const RenderPipeline *pipeline = render_pipeline_owner.get_or_null(p_render_pipeline);
ERR_FAIL_NULL(pipeline);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND(pipeline->validation.framebuffer_format != draw_list_framebuffer->format_id && pipeline->validation.render_pass != draw_list_current_subpass);
#endif
if (p_render_pipeline == dl->state.pipeline) {
return; // Redundant state, return.
}
dl->state.pipeline = p_render_pipeline;
dl->state.pso = pipeline->pso.Get();
dl->command_list->IASetPrimitiveTopology(pipeline->dyn_params.primitive_topology);
dl->command_list->OMSetBlendFactor(pipeline->dyn_params.blend_constant.components);
dl->command_list->OMSetStencilRef(pipeline->dyn_params.stencil_reference);
ID3D12GraphicsCommandList1 *command_list_1 = nullptr;
dl->command_list->QueryInterface<ID3D12GraphicsCommandList1>(&command_list_1);
if (command_list_1) {
command_list_1->OMSetDepthBounds(pipeline->dyn_params.depth_bounds_min, pipeline->dyn_params.depth_bounds_max);
command_list_1->Release();
}
Shader *shader = shader_owner.get_or_null(pipeline->shader);
if (dl->state.pipeline_shader != pipeline->shader) {
if (dl->state.root_signature_crc != pipeline->root_signature_crc) {
dl->command_list->SetGraphicsRootSignature(shader->root_signature.Get());
dl->state.root_signature_crc = pipeline->root_signature_crc;
// Root signature changed, so current descriptor set bindings become invalid.
for (uint32_t i = 0; i < dl->state.set_count; i++) {
dl->state.sets[i].bound = false;
}
if (pipeline->nir_runtime_data_root_param_idx != UINT32_MAX) {
// Set the viewport size part of the DXIL-NIR runtime data, which is the only we know to need currently.
constexpr dxil_spirv_vertex_runtime_data dummy_data = {};
uint32_t offset = constexpr((char *)&dummy_data.viewport_width - (char *)&dummy_data) / 4;
dl->command_list->SetGraphicsRoot32BitConstants(pipeline->nir_runtime_data_root_param_idx, 2, &draw_list_viewport_size, offset);
}
}
const uint32_t *pformats = pipeline->set_formats.ptr(); // Pipeline set formats.
dl->state.set_count = pipeline->set_formats.size(); // Update set count.
for (uint32_t i = 0; i < dl->state.set_count; i++) {
dl->state.sets[i].pipeline_expected_format = pformats[i];
#ifdef DEV_ENABLED
dl->state.sets[i]._pipeline_expected_format = pformats[i] ? &uniform_set_format_cache_reverse[pformats[i] - 1]->key().uniform_info : nullptr;
#endif
}
if (pipeline->spirv_push_constant_size) {
#ifdef DEBUG_ENABLED
dl->validation.pipeline_push_constant_supplied = false;
#endif
}
dl->state.pipeline_shader = pipeline->shader;
dl->state.pipeline_dxil_push_constant_size = pipeline->dxil_push_constant_size;
dl->state.pipeline_bindings_id = pipeline->bindings_id;
#ifdef DEV_ENABLED
dl->state._shader = shader;
#endif
}
#ifdef DEBUG_ENABLED
// Update render pass pipeline info.
dl->validation.pipeline_active = true;
dl->validation.pipeline_dynamic_state = pipeline->validation.dynamic_state;
dl->validation.pipeline_vertex_format = pipeline->validation.vertex_format;
dl->validation.pipeline_uses_restart_indices = pipeline->validation.uses_restart_indices;
dl->validation.pipeline_primitive_divisor = pipeline->validation.primitive_divisor;
dl->validation.pipeline_primitive_minimum = pipeline->validation.primitive_minimum;
dl->validation.pipeline_spirv_push_constant_size = pipeline->spirv_push_constant_size;
#endif
}
void RenderingDeviceD3D12::draw_list_bind_uniform_set(DrawListID p_list, RID p_uniform_set, uint32_t p_index) {
DrawList *dl = _get_draw_list_ptr(p_list);
ERR_FAIL_NULL(dl);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified.");
#endif
const UniformSet *uniform_set = uniform_set_owner.get_or_null(p_uniform_set);
ERR_FAIL_NULL(uniform_set);
if (p_index > dl->state.set_count) {
dl->state.set_count = p_index;
}
dl->state.sets[p_index].bound = false; // Needs rebind.
dl->state.sets[p_index].uniform_set_format = uniform_set->format;
dl->state.sets[p_index].uniform_set = p_uniform_set;
#ifdef DEV_ENABLED
dl->state.sets[p_index]._uniform_set = uniform_set_owner.get_or_null(p_uniform_set);
#endif
#ifdef DEBUG_ENABLED
{ // Validate that textures bound are not attached as framebuffer bindings.
uint32_t attachable_count = uniform_set->attachable_textures.size();
const UniformSet::AttachableTexture *attachable_ptr = uniform_set->attachable_textures.ptr();
uint32_t bound_count = draw_list_bound_textures.size();
const RID *bound_ptr = draw_list_bound_textures.ptr();
for (uint32_t i = 0; i < attachable_count; i++) {
for (uint32_t j = 0; j < bound_count; j++) {
ERR_FAIL_COND_MSG(attachable_ptr[i].texture == bound_ptr[j],
"Attempted to use the same texture in framebuffer attachment and a uniform (set: " + itos(p_index) + ", binding: " + itos(attachable_ptr[i].bind) + "), this is not allowed.");
}
}
}
#endif
}
void RenderingDeviceD3D12::draw_list_bind_vertex_array(DrawListID p_list, RID p_vertex_array) {
DrawList *dl = _get_draw_list_ptr(p_list);
ERR_FAIL_NULL(dl);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified.");
#endif
const VertexArray *vertex_array = vertex_array_owner.get_or_null(p_vertex_array);
ERR_FAIL_NULL(vertex_array);
if (dl->state.vertex_array == p_vertex_array) {
return; // Already set.
}
dl->state.vertex_array = p_vertex_array;
#ifdef DEBUG_ENABLED
dl->validation.vertex_format = vertex_array->description;
dl->validation.vertex_max_instances_allowed = vertex_array->max_instances_allowed;
#endif
dl->validation.vertex_array_size = vertex_array->vertex_count;
for (Buffer *buffer : vertex_array->unique_buffers) {
_resource_transition_batch(buffer, 0, 1, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER);
}
_resource_transitions_flush(dl->command_list);
dl->command_list->IASetVertexBuffers(0, vertex_array->views.size(), vertex_array->views.ptr());
}
void RenderingDeviceD3D12::draw_list_bind_index_array(DrawListID p_list, RID p_index_array) {
DrawList *dl = _get_draw_list_ptr(p_list);
ERR_FAIL_NULL(dl);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified.");
#endif
const IndexArray *index_array = index_array_owner.get_or_null(p_index_array);
ERR_FAIL_NULL(index_array);
if (dl->state.index_array == p_index_array) {
return; // Already set.
}
dl->state.index_array = p_index_array;
#ifdef DEBUG_ENABLED
dl->validation.index_array_max_index = index_array->max_index;
#endif
dl->validation.index_array_size = index_array->indices;
dl->validation.index_array_offset = index_array->offset;
_resource_transition_batch(index_array->buffer, 0, 1, D3D12_RESOURCE_STATE_INDEX_BUFFER);
_resource_transitions_flush(dl->command_list);
dl->command_list->IASetIndexBuffer(&index_array->view);
}
void RenderingDeviceD3D12::draw_list_set_line_width(DrawListID p_list, float p_width) {
DrawList *dl = _get_draw_list_ptr(p_list);
ERR_FAIL_NULL(dl);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified.");
#endif
if (!Math::is_equal_approx(p_width, 1.0f)) {
ERR_FAIL_MSG("Setting line widths other than 1.0 is not supported by the Direct3D 12 rendering driver.");
}
}
void RenderingDeviceD3D12::_bind_uniform_set(UniformSet *p_uniform_set, const Shader::Set &p_shader_set, const Vector<UniformBindingInfo> &p_bindings, ID3D12GraphicsCommandList *p_command_list, bool p_for_compute) {
using SetRootDescriptorTableFn = void (STDMETHODCALLTYPE ID3D12GraphicsCommandList::*)(UINT, D3D12_GPU_DESCRIPTOR_HANDLE);
SetRootDescriptorTableFn set_root_desc_table_fn = p_for_compute ? &ID3D12GraphicsCommandList::SetComputeRootDescriptorTable : &ID3D12GraphicsCommandList1::SetGraphicsRootDescriptorTable;
// If this set's descriptors have already been set for the current execution and a compatible root signature, reuse!
uint32_t root_sig_crc = p_for_compute ? compute_list->state.root_signature_crc : draw_list->state.root_signature_crc;
UniformSet::RecentBind *last_bind = nullptr;
for (int i = 0; i < ARRAY_SIZE(p_uniform_set->recent_binds); i++) {
if (p_uniform_set->recent_binds[i].execution_index == frames[frame].execution_index) {
if (p_uniform_set->recent_binds[i].root_signature_crc == root_sig_crc) {
for (const RootDescriptorTable &table : p_uniform_set->recent_binds[i].root_tables.resources) {
(p_command_list->*set_root_desc_table_fn)(table.root_param_idx, table.start_gpu_handle);
}
for (const RootDescriptorTable &table : p_uniform_set->recent_binds[i].root_tables.samplers) {
(p_command_list->*set_root_desc_table_fn)(table.root_param_idx, table.start_gpu_handle);
}
#ifdef DEV_ENABLED
p_uniform_set->recent_binds[i].uses++;
frames[frame].uniform_set_reused++;
#endif
return;
} else {
if (!last_bind || p_uniform_set->recent_binds[i].uses < last_bind->uses) {
// Prefer this one since it's been used less or we still haven't a better option.
last_bind = &p_uniform_set->recent_binds[i];
}
}
} else {
// Prefer this one since it's unused.
last_bind = &p_uniform_set->recent_binds[i];
last_bind->uses = 0;
}
}
struct {
DescriptorsHeap::Walker *resources = nullptr;
DescriptorsHeap::Walker *samplers = nullptr;
} frame_heap_walkers;
frame_heap_walkers.resources = &frames[frame].desc_heap_walkers.resources;
frame_heap_walkers.samplers = &frames[frame].desc_heap_walkers.samplers;
struct {
DescriptorsHeap::Walker resources;
DescriptorsHeap::Walker samplers;
} set_heap_walkers;
set_heap_walkers.resources = p_uniform_set->desc_heaps.resources.make_walker();
set_heap_walkers.samplers = p_uniform_set->desc_heaps.samplers.make_walker();
#ifdef DEV_ENABLED
// Whether we have stages where the uniform is actually used should match
// whether we have any root signature locations for it.
for (int i = 0; i < p_shader_set.uniforms.size(); i++) {
bool has_rs_locations = false;
if (p_bindings[i].root_sig_locations.resource.root_param_idx != UINT32_MAX ||
p_bindings[i].root_sig_locations.sampler.root_param_idx != UINT32_MAX) {
has_rs_locations = true;
break;
}
bool has_stages = p_bindings[i].stages;
DEV_ASSERT(has_rs_locations == has_stages);
}
#endif
last_bind->root_tables.resources.reserve(p_shader_set.num_root_params.resources);
last_bind->root_tables.resources.clear();
last_bind->root_tables.samplers.reserve(p_shader_set.num_root_params.samplers);
last_bind->root_tables.samplers.clear();
last_bind->uses++;
struct {
RootDescriptorTable *resources = nullptr;
RootDescriptorTable *samplers = nullptr;
} tables;
for (int i = 0; i < p_shader_set.uniforms.size(); i++) {
const Shader::ShaderUniformInfo &uniform_info = p_shader_set.uniforms[i];
uint32_t num_resource_descs = 0;
uint32_t num_sampler_descs = 0;
bool srv_uav_ambiguity = false;
_add_descriptor_count_for_uniform(uniform_info.info.type, uniform_info.info.length, false, num_resource_descs, num_sampler_descs, srv_uav_ambiguity);
bool resource_used = false;
if (p_bindings[i].stages) {
{
const UniformBindingInfo::RootSignatureLocation &rs_loc_resource = p_bindings[i].root_sig_locations.resource;
if (rs_loc_resource.root_param_idx != UINT32_MAX) { // Location used?
DEV_ASSERT(num_resource_descs);
DEV_ASSERT(!(srv_uav_ambiguity && (p_bindings[i].res_class != RES_CLASS_SRV && p_bindings[i].res_class != RES_CLASS_UAV))); // [[SRV_UAV_AMBIGUITY]]
bool must_flush_table = tables.resources && rs_loc_resource.root_param_idx != tables.resources->root_param_idx;
if (must_flush_table) {
// Check the root signature data has been filled ordered.
DEV_ASSERT(rs_loc_resource.root_param_idx > tables.resources->root_param_idx);
(p_command_list->*set_root_desc_table_fn)(tables.resources->root_param_idx, tables.resources->start_gpu_handle);
tables.resources = nullptr;
}
if (unlikely(frame_heap_walkers.resources->get_free_handles() < num_resource_descs)) {
if (!frames[frame].desc_heaps_exhausted_reported.resources) {
frames[frame].desc_heaps_exhausted_reported.resources = true;
ERR_FAIL_MSG("Cannot bind uniform set because there's no enough room in current frame's RESOURCES descriptor heap.\n"
"Please increase the value of the rendering/rendering_device/d3d12/max_resource_descriptors_per_frame project setting.");
} else {
return;
}
}
if (!tables.resources) {
DEV_ASSERT(last_bind->root_tables.resources.size() < last_bind->root_tables.resources.get_capacity());
last_bind->root_tables.resources.resize(last_bind->root_tables.resources.size() + 1);
tables.resources = &last_bind->root_tables.resources[last_bind->root_tables.resources.size() - 1];
tables.resources->root_param_idx = rs_loc_resource.root_param_idx;
tables.resources->start_gpu_handle = frame_heap_walkers.resources->get_curr_gpu_handle();
}
// If there is ambiguity and it didn't clarify as SRVs, skip them, which come first. [[SRV_UAV_AMBIGUITY]]
if (srv_uav_ambiguity && p_bindings[i].res_class != RES_CLASS_SRV) {
set_heap_walkers.resources.advance(num_resource_descs);
}
// TODO: Batch to avoid multiple calls where possible (in any case, flush before setting root descriptor tables, or even batch that as well).
device->CopyDescriptorsSimple(
num_resource_descs,
frame_heap_walkers.resources->get_curr_cpu_handle(),
set_heap_walkers.resources.get_curr_cpu_handle(),
D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV);
frame_heap_walkers.resources->advance(num_resource_descs);
// If there is ambiguity and it didn't clarify as UAVs, skip them, which come later. [[SRV_UAV_AMBIGUITY]]
if (srv_uav_ambiguity && p_bindings[i].res_class != RES_CLASS_UAV) {
set_heap_walkers.resources.advance(num_resource_descs);
}
resource_used = true;
}
}
{
const UniformBindingInfo::RootSignatureLocation &rs_loc_sampler = p_bindings[i].root_sig_locations.sampler;
if (rs_loc_sampler.root_param_idx != UINT32_MAX) { // Location used?
DEV_ASSERT(num_sampler_descs);
DEV_ASSERT(!srv_uav_ambiguity); // [[SRV_UAV_AMBIGUITY]]
bool must_flush_table = tables.samplers && rs_loc_sampler.root_param_idx != tables.samplers->root_param_idx;
if (must_flush_table) {
// Check the root signature data has been filled ordered.
DEV_ASSERT(rs_loc_sampler.root_param_idx > tables.samplers->root_param_idx);
(p_command_list->*set_root_desc_table_fn)(tables.samplers->root_param_idx, tables.samplers->start_gpu_handle);
tables.samplers = nullptr;
}
if (unlikely(frame_heap_walkers.samplers->get_free_handles() < num_sampler_descs)) {
if (!frames[frame].desc_heaps_exhausted_reported.samplers) {
frames[frame].desc_heaps_exhausted_reported.samplers = true;
ERR_FAIL_MSG("Cannot bind uniform set because there's no enough room in current frame's SAMPLERS descriptors heap.\n"
"Please increase the value of the rendering/rendering_device/d3d12/max_sampler_descriptors_per_frame project setting.");
} else {
return;
}
}
if (!tables.samplers) {
DEV_ASSERT(last_bind->root_tables.samplers.size() < last_bind->root_tables.samplers.get_capacity());
last_bind->root_tables.samplers.resize(last_bind->root_tables.samplers.size() + 1);
tables.samplers = &last_bind->root_tables.samplers[last_bind->root_tables.samplers.size() - 1];
tables.samplers->root_param_idx = rs_loc_sampler.root_param_idx;
tables.samplers->start_gpu_handle = frame_heap_walkers.samplers->get_curr_gpu_handle();
}
// TODO: Batch to avoid multiple calls where possible (in any case, flush before setting root descriptor tables, or even batch that as well).
device->CopyDescriptorsSimple(
num_sampler_descs,
frame_heap_walkers.samplers->get_curr_cpu_handle(),
set_heap_walkers.samplers.get_curr_cpu_handle(),
D3D12_DESCRIPTOR_HEAP_TYPE_SAMPLER);
frame_heap_walkers.samplers->advance(num_sampler_descs);
}
}
}
// Uniform set descriptor heaps are always full (descriptors are created for every uniform in them) despite
// the shader variant a given set is created upon may not need all of them due to DXC optimizations.
// Therefore, at this point we have to advance through the descriptor set descriptor's heap unconditionally.
set_heap_walkers.resources.advance(num_resource_descs);
if (srv_uav_ambiguity) {
DEV_ASSERT(num_resource_descs);
if (!resource_used) {
set_heap_walkers.resources.advance(num_resource_descs); // Additional skip, since both SRVs and UAVs have to be bypassed.
}
}
set_heap_walkers.samplers.advance(num_sampler_descs);
}
DEV_ASSERT(set_heap_walkers.resources.is_at_eof());
DEV_ASSERT(set_heap_walkers.samplers.is_at_eof());
{
bool must_flush_table = tables.resources;
if (must_flush_table) {
(p_command_list->*set_root_desc_table_fn)(tables.resources->root_param_idx, tables.resources->start_gpu_handle);
}
}
{
bool must_flush_table = tables.samplers;
if (must_flush_table) {
(p_command_list->*set_root_desc_table_fn)(tables.samplers->root_param_idx, tables.samplers->start_gpu_handle);
}
}
last_bind->root_signature_crc = root_sig_crc;
last_bind->execution_index = frames[frame].execution_index;
}
void RenderingDeviceD3D12::_apply_uniform_set_resource_states(const UniformSet *p_uniform_set, const Shader::Set &p_shader_set) {
for (const UniformSet::StateRequirement &sr : p_uniform_set->resource_states) {
#ifdef DEV_ENABLED
{
uint32_t stages = 0;
D3D12_RESOURCE_STATES wanted_state = {};
bool writable = false;
// Doing the full loop for debugging since the real one below may break early,
// but we want an exhaustive check
uint64_t inv_uniforms_mask = ~sr.shader_uniform_idx_mask; // Inverting the mask saves operations.
for (uint8_t bit = 0; inv_uniforms_mask != UINT64_MAX; bit++) {
uint64_t bit_mask = ((uint64_t)1 << bit);
if (likely((inv_uniforms_mask & bit_mask))) {
continue;
}
inv_uniforms_mask |= bit_mask;
const Shader::ShaderUniformInfo &info = p_shader_set.uniforms[bit];
if (unlikely(!info.binding.stages)) {
continue;
}
D3D12_RESOURCE_STATES required_states = sr.states;
// Resolve a case of SRV/UAV ambiguity now. [[SRV_UAV_AMBIGUITY]]
if ((required_states & D3D12_RESOURCE_STATE_ALL_SHADER_RESOURCE) && (required_states & D3D12_RESOURCE_STATE_UNORDERED_ACCESS)) {
if (info.binding.res_class == RES_CLASS_SRV) {
required_states &= ~D3D12_RESOURCE_STATE_UNORDERED_ACCESS;
} else {
required_states = D3D12_RESOURCE_STATE_UNORDERED_ACCESS;
}
}
if (stages) { // Second occurrence at least?
CRASH_COND_MSG(info.info.writable != writable, "A resource is used in the same uniform set both as R/O and R/W. That's not supported and shouldn't happen.");
CRASH_COND_MSG(required_states != wanted_state, "A resource is used in the same uniform set with different resource states. The code needs to be enhanced to support that.");
} else {
wanted_state = required_states;
stages |= info.binding.stages;
writable = info.info.writable;
}
DEV_ASSERT((wanted_state == D3D12_RESOURCE_STATE_UNORDERED_ACCESS) == (bool)(wanted_state & D3D12_RESOURCE_STATE_UNORDERED_ACCESS));
if (wanted_state == D3D12_RESOURCE_STATE_UNORDERED_ACCESS || wanted_state == D3D12_RESOURCE_STATE_RENDER_TARGET) {
if (!sr.is_buffer) {
Texture *texture = (Texture *)sr.resource;
CRASH_COND_MSG(texture->resource != texture->owner_resource, "The texture format used for UAV or RTV must be the main one.");
}
}
}
}
#endif
// We may have assumed D3D12_RESOURCE_STATE_ALL_SHADER_RESOURCE for a resource,
// because at uniform set creation time we couldn't know for sure which stages
// it would be used in (due to the fact that a set can be created against a different,
// albeit compatible, shader, which may make a different usage in the end).
// However, now we know and can exclude up to one unneeded state.
// TODO: If subresources involved already in the needed state, or scheduled for it,
// maybe it's more optimal not to do anything here
uint32_t stages = 0;
D3D12_RESOURCE_STATES wanted_state = {};
uint64_t inv_uniforms_mask = ~sr.shader_uniform_idx_mask; // Inverting the mask saves operations.
for (uint8_t bit = 0; inv_uniforms_mask != UINT64_MAX; bit++) {
uint64_t bit_mask = ((uint64_t)1 << bit);
if (likely((inv_uniforms_mask & bit_mask))) {
continue;
}
inv_uniforms_mask |= bit_mask;
const Shader::ShaderUniformInfo &info = p_shader_set.uniforms[bit];
if (unlikely(!info.binding.stages)) {
continue;
}
if (!stages) {
D3D12_RESOURCE_STATES required_states = sr.states;
// Resolve a case of SRV/UAV ambiguity now. [[SRV_UAV_AMBIGUITY]]
if ((required_states & D3D12_RESOURCE_STATE_ALL_SHADER_RESOURCE) && (required_states & D3D12_RESOURCE_STATE_UNORDERED_ACCESS)) {
if (info.binding.res_class == RES_CLASS_SRV) {
required_states &= ~D3D12_RESOURCE_STATE_UNORDERED_ACCESS;
} else {
required_states = D3D12_RESOURCE_STATE_UNORDERED_ACCESS;
}
}
wanted_state = required_states;
if (!(wanted_state & D3D12_RESOURCE_STATE_ALL_SHADER_RESOURCE)) {
// By now, we already know the resource is used, and with no PS/NON_PS disjuntive; no need to check further.
break;
}
}
stages |= info.binding.stages;
if (stages == (SHADER_STAGE_VERTEX_BIT | SHADER_STAGE_FRAGMENT_BIT) || stages == SHADER_STAGE_COMPUTE_BIT) {
// By now, we already know the resource is used, and as both PS/NON_PS; no need to check further.
break;
}
}
if (likely(wanted_state)) {
if ((wanted_state & D3D12_RESOURCE_STATE_ALL_SHADER_RESOURCE)) {
if (stages == SHADER_STAGE_VERTEX_BIT || stages == SHADER_STAGE_COMPUTE_BIT) {
D3D12_RESOURCE_STATES unneeded_states = D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE;
wanted_state &= ~unneeded_states;
} else if (stages == SHADER_STAGE_FRAGMENT_BIT) {
D3D12_RESOURCE_STATES unneeded_states = D3D12_RESOURCE_STATE_NON_PIXEL_SHADER_RESOURCE;
wanted_state &= ~unneeded_states;
}
}
if (likely(wanted_state)) {
if (sr.is_buffer) {
_resource_transition_batch(sr.resource, 0, 1, wanted_state);
} else {
Texture *texture = (Texture *)sr.resource;
for (uint32_t i = 0; i < texture->layers; i++) {
for (uint32_t j = 0; j < texture->mipmaps; j++) {
uint32_t subresource = D3D12CalcSubresource(texture->base_mipmap + j, texture->base_layer + i, 0, texture->owner_mipmaps, texture->owner_layers);
_resource_transition_batch(texture, subresource, texture->planes, wanted_state, texture->owner_resource);
}
}
}
}
}
}
}
void RenderingDeviceD3D12::draw_list_set_push_constant(DrawListID p_list, const void *p_data, uint32_t p_data_size) {
DrawList *dl = _get_draw_list_ptr(p_list);
ERR_FAIL_NULL(dl);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified.");
#endif
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(p_data_size != dl->validation.pipeline_spirv_push_constant_size,
"This render pipeline requires (" + itos(dl->validation.pipeline_spirv_push_constant_size) + ") bytes of push constant data, supplied: (" + itos(p_data_size) + ")");
#endif
if (dl->state.pipeline_dxil_push_constant_size) {
dl->command_list->SetGraphicsRoot32BitConstants(0, p_data_size / sizeof(uint32_t), p_data, 0);
}
#ifdef DEBUG_ENABLED
dl->validation.pipeline_push_constant_supplied = true;
#endif
}
void RenderingDeviceD3D12::draw_list_draw(DrawListID p_list, bool p_use_indices, uint32_t p_instances, uint32_t p_procedural_vertices) {
DrawList *dl = _get_draw_list_ptr(p_list);
ERR_FAIL_NULL(dl);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified.");
#endif
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!dl->validation.pipeline_active,
"No render pipeline was set before attempting to draw.");
if (dl->validation.pipeline_vertex_format != INVALID_ID) {
// Pipeline uses vertices, validate format.
ERR_FAIL_COND_MSG(dl->validation.vertex_format == INVALID_ID,
"No vertex array was bound, and render pipeline expects vertices.");
// Make sure format is right.
ERR_FAIL_COND_MSG(dl->validation.pipeline_vertex_format != dl->validation.vertex_format,
"The vertex format used to create the pipeline does not match the vertex format bound.");
// Make sure number of instances is valid.
ERR_FAIL_COND_MSG(p_instances > dl->validation.vertex_max_instances_allowed,
"Number of instances requested (" + itos(p_instances) + " is larger than the maximum number supported by the bound vertex array (" + itos(dl->validation.vertex_max_instances_allowed) + ").");
}
if (dl->validation.pipeline_spirv_push_constant_size) {
// Using push constants, check that they were supplied.
ERR_FAIL_COND_MSG(!dl->validation.pipeline_push_constant_supplied,
"The shader in this pipeline requires a push constant to be set before drawing, but it's not present.");
}
#endif
// Bind descriptor sets.
Shader *shader = shader_owner.get_or_null(dl->state.pipeline_shader);
struct SetToBind {
uint32_t set;
UniformSet *uniform_set;
const Shader::Set *shader_set;
};
SetToBind *sets_to_bind = (SetToBind *)alloca(sizeof(SetToBind) * dl->state.set_count);
uint32_t num_sets_to_bind = 0;
for (uint32_t i = 0; i < dl->state.set_count; i++) {
if (dl->state.sets[i].pipeline_expected_format == 0) {
continue; // Nothing expected by this pipeline.
}
#ifdef DEBUG_ENABLED
if (dl->state.sets[i].pipeline_expected_format != dl->state.sets[i].uniform_set_format) {
if (dl->state.sets[i].uniform_set_format == 0) {
ERR_FAIL_MSG("Uniforms were never supplied for set (" + itos(i) + ") at the time of drawing, which are required by the pipeline");
} else if (uniform_set_owner.owns(dl->state.sets[i].uniform_set)) {
UniformSet *us = uniform_set_owner.get_or_null(dl->state.sets[i].uniform_set);
ERR_FAIL_MSG("Uniforms supplied for set (" + itos(i) + "):\n" + _shader_uniform_debug(us->shader_id, us->shader_set) + "\nare not the same format as required by the pipeline shader. Pipeline shader requires the following bindings:\n" + _shader_uniform_debug(dl->state.pipeline_shader));
} else {
ERR_FAIL_MSG("Uniforms supplied for set (" + itos(i) + ", which was was just freed) are not the same format as required by the pipeline shader. Pipeline shader requires the following bindings:\n" + _shader_uniform_debug(dl->state.pipeline_shader));
}
}
#endif
UniformSet *uniform_set = uniform_set_owner.get_or_null(dl->state.sets[i].uniform_set);
const Shader::Set &shader_set = shader->sets[i];
_apply_uniform_set_resource_states(uniform_set, shader_set);
if (!dl->state.sets[i].bound) {
sets_to_bind[num_sets_to_bind].set = i;
sets_to_bind[num_sets_to_bind].uniform_set = uniform_set;
sets_to_bind[num_sets_to_bind].shader_set = &shader_set;
num_sets_to_bind++;
dl->state.sets[i].bound = true;
}
}
_resource_transitions_flush(dl->command_list);
for (uint32_t i = 0; i < num_sets_to_bind; i++) {
_bind_uniform_set(sets_to_bind[i].uniform_set, *sets_to_bind[i].shader_set, pipeline_bindings[dl->state.pipeline_bindings_id][sets_to_bind[i].set], dl->command_list, false);
}
if (dl->state.bound_pso != dl->state.pso) {
dl->command_list->SetPipelineState(dl->state.pso);
dl->state.bound_pso = dl->state.pso;
}
if (p_use_indices) {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(p_procedural_vertices > 0,
"Procedural vertices can't be used together with indices.");
ERR_FAIL_COND_MSG(!dl->validation.index_array_size,
"Draw command requested indices, but no index buffer was set.");
ERR_FAIL_COND_MSG(dl->validation.pipeline_uses_restart_indices != dl->validation.index_buffer_uses_restart_indices,
"The usage of restart indices in index buffer does not match the render primitive in the pipeline.");
#endif
uint32_t to_draw = dl->validation.index_array_size;
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(to_draw < dl->validation.pipeline_primitive_minimum,
"Too few indices (" + itos(to_draw) + ") for the render primitive set in the render pipeline (" + itos(dl->validation.pipeline_primitive_minimum) + ").");
ERR_FAIL_COND_MSG((to_draw % dl->validation.pipeline_primitive_divisor) != 0,
"Index amount (" + itos(to_draw) + ") must be a multiple of the amount of indices required by the render primitive (" + itos(dl->validation.pipeline_primitive_divisor) + ").");
#endif
dl->command_list->DrawIndexedInstanced(to_draw, p_instances, dl->validation.index_array_offset, 0, 0);
} else {
uint32_t to_draw;
if (p_procedural_vertices > 0) {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(dl->validation.pipeline_vertex_format != INVALID_ID,
"Procedural vertices requested, but pipeline expects a vertex array.");
#endif
to_draw = p_procedural_vertices;
} else {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(dl->validation.pipeline_vertex_format == INVALID_ID,
"Draw command lacks indices, but pipeline format does not use vertices.");
#endif
to_draw = dl->validation.vertex_array_size;
}
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(to_draw < dl->validation.pipeline_primitive_minimum,
"Too few vertices (" + itos(to_draw) + ") for the render primitive set in the render pipeline (" + itos(dl->validation.pipeline_primitive_minimum) + ").");
ERR_FAIL_COND_MSG((to_draw % dl->validation.pipeline_primitive_divisor) != 0,
"Vertex amount (" + itos(to_draw) + ") must be a multiple of the amount of vertices required by the render primitive (" + itos(dl->validation.pipeline_primitive_divisor) + ").");
#endif
dl->command_list->DrawInstanced(to_draw, p_instances, 0, 0);
}
}
void RenderingDeviceD3D12::draw_list_enable_scissor(DrawListID p_list, const Rect2 &p_rect) {
DrawList *dl = _get_draw_list_ptr(p_list);
ERR_FAIL_NULL(dl);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified.");
#endif
Rect2i rect = p_rect;
rect.position += dl->viewport.position;
rect = dl->viewport.intersection(rect);
if (rect.get_area() == 0) {
return;
}
CD3DX12_RECT scissor(
rect.position.x,
rect.position.y,
rect.position.x + rect.size.width,
rect.position.y + rect.size.height);
dl->command_list->RSSetScissorRects(1, &scissor);
}
void RenderingDeviceD3D12::draw_list_disable_scissor(DrawListID p_list) {
DrawList *dl = _get_draw_list_ptr(p_list);
ERR_FAIL_NULL(dl);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified.");
#endif
CD3DX12_RECT scissor(
dl->viewport.position.x,
dl->viewport.position.y,
dl->viewport.position.x + dl->viewport.size.width,
dl->viewport.position.y + dl->viewport.size.height);
dl->command_list->RSSetScissorRects(1, &scissor);
}
uint32_t RenderingDeviceD3D12::draw_list_get_current_pass() {
return draw_list_current_subpass;
}
void RenderingDeviceD3D12::_draw_list_subpass_begin() { // [[MANUAL_SUBPASSES]]
const FramebufferFormat &fb_format = framebuffer_formats[draw_list_framebuffer->format_id];
const FramebufferPass &pass = fb_format.passes[draw_list_current_subpass];
ID3D12GraphicsCommandList *command_list = frames[frame].draw_command_list.Get();
bool is_screen = draw_list_framebuffer->window_id != DisplayServer::INVALID_WINDOW_ID;
if (is_screen) {
DEV_ASSERT(!draw_list_framebuffer->dsv_heap.get_descriptor_count());
command_list->OMSetRenderTargets(1, &draw_list_framebuffer->screen_rtv_handle, true, nullptr);
} else {
D3D12_CPU_DESCRIPTOR_HANDLE *rtv_handles = (D3D12_CPU_DESCRIPTOR_HANDLE *)alloca(sizeof(D3D12_CPU_DESCRIPTOR_HANDLE) * pass.color_attachments.size());
DescriptorsHeap::Walker rtv_heap_walker = draw_list_framebuffer->rtv_heap.make_walker();
for (int i = 0; i < pass.color_attachments.size(); i++) {
uint32_t attachment = pass.color_attachments[i];
if (attachment == FramebufferPass::ATTACHMENT_UNUSED) {
if (!frames[frame].null_rtv_handle.ptr) {
// No null descriptor-handle created for this frame yet.
if (frames[frame].desc_heap_walkers.rtv.is_at_eof()) {
if (!frames[frame].desc_heaps_exhausted_reported.rtv) {
frames[frame].desc_heaps_exhausted_reported.rtv = true;
ERR_FAIL_MSG("Cannot begin subpass because there's no enough room in current frame's RENDER TARGET descriptors heap.\n"
"Please increase the value of the rendering/rendering_device/d3d12/max_misc_descriptors_per_frame project setting.");
} else {
return;
}
}
D3D12_RENDER_TARGET_VIEW_DESC rtv_desc_null = {};
rtv_desc_null.Format = DXGI_FORMAT_R8_UINT;
rtv_desc_null.ViewDimension = D3D12_RTV_DIMENSION_TEXTURE2D;
frames[frame].null_rtv_handle = frames[frame].desc_heap_walkers.rtv.get_curr_cpu_handle();
device->CreateRenderTargetView(nullptr, &rtv_desc_null, frames[frame].null_rtv_handle);
frames[frame].desc_heap_walkers.rtv.advance();
}
rtv_handles[i] = frames[frame].null_rtv_handle;
} else {
uint32_t rt_index = draw_list_framebuffer->attachments_handle_inds[attachment];
rtv_heap_walker.rewind();
rtv_heap_walker.advance(rt_index);
rtv_handles[i] = rtv_heap_walker.get_curr_cpu_handle();
}
}
D3D12_CPU_DESCRIPTOR_HANDLE dsv_handle = {};
{
DescriptorsHeap::Walker dsv_heap_walker = draw_list_framebuffer->dsv_heap.make_walker();
if (pass.depth_attachment != FramebufferPass::ATTACHMENT_UNUSED) {
uint32_t ds_index = draw_list_framebuffer->attachments_handle_inds[pass.depth_attachment];
dsv_heap_walker.rewind();
dsv_heap_walker.advance(ds_index);
dsv_handle = dsv_heap_walker.get_curr_cpu_handle();
}
}
command_list->OMSetRenderTargets(pass.color_attachments.size(), rtv_handles, false, dsv_handle.ptr ? &dsv_handle : nullptr);
// [[VRS_EVERY_SUBPASS_OR_NONE]]
if (context->get_vrs_capabilities().ss_image_supported && draw_list_current_subpass == 0) {
if (execution_index != vrs_state_execution_index) {
vrs_state = {};
}
Texture *vrs_texture = nullptr;
RID vrs_texture_id;
if (pass.vrs_attachment != FramebufferPass::ATTACHMENT_UNUSED) {
vrs_texture_id = draw_list_framebuffer->texture_ids[pass.vrs_attachment];
vrs_texture = texture_owner.get_or_null(vrs_texture_id);
if (!vrs_texture) {
vrs_texture_id = RID();
}
}
if (vrs_texture_id != vrs_state.texture_bound) {
ID3D12GraphicsCommandList5 *command_list_5 = nullptr;
command_list->QueryInterface<ID3D12GraphicsCommandList5>(&command_list_5);
DEV_ASSERT(command_list_5);
if (vrs_texture_id.is_valid()) {
if (!vrs_state.configured) {
static const D3D12_SHADING_RATE_COMBINER combiners[D3D12_RS_SET_SHADING_RATE_COMBINER_COUNT] = {
D3D12_SHADING_RATE_COMBINER_PASSTHROUGH,
D3D12_SHADING_RATE_COMBINER_OVERRIDE,
};
command_list_5->RSSetShadingRate(D3D12_SHADING_RATE_1X1, combiners);
vrs_state.configured = true;
command_list_5->RSSetShadingRateImage(vrs_texture->resource);
vrs_state.texture_bound = vrs_texture_id;
}
} else {
command_list_5->RSSetShadingRateImage(nullptr);
vrs_state.texture_bound = RID();
}
command_list_5->Release();
}
vrs_state_execution_index = execution_index;
}
}
}
void RenderingDeviceD3D12::_draw_list_subpass_end() { // [[MANUAL_SUBPASSES]]
const FramebufferFormat &fb_format = framebuffer_formats[draw_list_framebuffer->format_id];
const FramebufferPass &pass = fb_format.passes[draw_list_current_subpass];
ID3D12GraphicsCommandList *command_list = frames[frame].draw_command_list.Get();
struct Resolve {
ID3D12Resource *src_res;
uint32_t src_subres;
ID3D12Resource *dst_res;
uint32_t dst_subres;
DXGI_FORMAT format;
};
Resolve *resolves = (Resolve *)alloca(sizeof(Resolve) * pass.resolve_attachments.size());
uint32_t num_resolves = 0;
for (int i = 0; i < pass.resolve_attachments.size(); i++) {
int32_t color_index = pass.color_attachments[i];
int32_t resolve_index = pass.resolve_attachments[i];
DEV_ASSERT((color_index == FramebufferPass::ATTACHMENT_UNUSED) == (resolve_index == FramebufferPass::ATTACHMENT_UNUSED));
if (color_index == FramebufferPass::ATTACHMENT_UNUSED || draw_list_framebuffer->texture_ids[color_index].is_null()) {
continue;
}
Texture *src_tex = texture_owner.get_or_null(draw_list_framebuffer->texture_ids[color_index]);
uint32_t src_subresource = D3D12CalcSubresource(src_tex->base_mipmap, src_tex->base_layer, 0, src_tex->owner_mipmaps, src_tex->owner_layers);
_resource_transition_batch(src_tex, src_subresource, src_tex->planes, D3D12_RESOURCE_STATE_RESOLVE_SOURCE);
Texture *dst_tex = texture_owner.get_or_null(draw_list_framebuffer->texture_ids[resolve_index]);
uint32_t dst_subresource = D3D12CalcSubresource(dst_tex->base_mipmap, dst_tex->base_layer, 0, dst_tex->owner_mipmaps, dst_tex->owner_layers);
_resource_transition_batch(dst_tex, dst_subresource, dst_tex->planes, D3D12_RESOURCE_STATE_RESOLVE_DEST);
resolves[num_resolves].src_res = src_tex->resource;
resolves[num_resolves].src_subres = src_subresource;
resolves[num_resolves].dst_res = dst_tex->resource;
resolves[num_resolves].dst_subres = dst_subresource;
resolves[num_resolves].format = d3d12_formats[src_tex->format].general_format;
num_resolves++;
}
_resource_transitions_flush(command_list);
for (uint32_t i = 0; i < num_resolves; i++) {
command_list->ResolveSubresource(resolves[i].dst_res, resolves[i].dst_subres, resolves[i].src_res, resolves[i].src_subres, resolves[i].format);
}
}
RenderingDevice::DrawListID RenderingDeviceD3D12::draw_list_switch_to_next_pass() {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V(draw_list == nullptr, INVALID_ID);
ERR_FAIL_COND_V(draw_list_current_subpass >= draw_list_subpass_count - 1, INVALID_FORMAT_ID);
_draw_list_subpass_end();
draw_list_current_subpass++;
_draw_list_subpass_begin();
Rect2i viewport;
_draw_list_free(&viewport);
_draw_list_allocate(viewport, 0, draw_list_current_subpass);
return int64_t(ID_TYPE_DRAW_LIST) << ID_BASE_SHIFT;
}
Error RenderingDeviceD3D12::draw_list_switch_to_next_pass_split(uint32_t p_splits, DrawListID *r_split_ids) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V(draw_list == nullptr, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(draw_list_current_subpass >= draw_list_subpass_count - 1, ERR_INVALID_PARAMETER);
_draw_list_subpass_end();
draw_list_current_subpass++;
_draw_list_subpass_begin();
Rect2i viewport;
_draw_list_free(&viewport);
_draw_list_allocate(viewport, p_splits, draw_list_current_subpass);
for (uint32_t i = 0; i < p_splits; i++) {
r_split_ids[i] = (int64_t(ID_TYPE_SPLIT_DRAW_LIST) << ID_BASE_SHIFT) + i;
}
return OK;
}
Error RenderingDeviceD3D12::_draw_list_allocate(const Rect2i &p_viewport, uint32_t p_splits, uint32_t p_subpass) {
if (p_splits == 0) {
draw_list = memnew(DrawList);
draw_list->command_list = frames[frame].draw_command_list.Get();
draw_list->viewport = p_viewport;
draw_list_count = 0;
draw_list_split = false;
} else {
if (p_splits > (uint32_t)split_draw_list_allocators.size()) {
uint32_t from = split_draw_list_allocators.size();
split_draw_list_allocators.resize(p_splits);
for (uint32_t i = from; i < p_splits; i++) {
HRESULT res = device->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_BUNDLE, IID_PPV_ARGS(&split_draw_list_allocators.write[i].command_allocator));
ERR_FAIL_COND_V_MSG(res, ERR_CANT_CREATE, "CreateCommandAllocator failed with error " + vformat("0x%08ux", res) + ".");
for (int j = 0; j < frame_count; j++) {
ID3D12GraphicsCommandList *command_list = nullptr;
res = device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_BUNDLE, split_draw_list_allocators[i].command_allocator, nullptr, IID_PPV_ARGS(&command_list));
ERR_FAIL_COND_V_MSG(res, ERR_CANT_CREATE, "CreateCommandList failed with error " + vformat("0x%08ux", res) + ".");
split_draw_list_allocators.write[i].command_lists.push_back(command_list);
}
}
}
draw_list = memnew_arr(DrawList, p_splits);
draw_list_count = p_splits;
draw_list_split = true;
for (uint32_t i = 0; i < p_splits; i++) {
ID3D12GraphicsCommandList *command_list = split_draw_list_allocators[i].command_lists[frame];
HRESULT res = frames[frame].setup_command_allocator->Reset();
ERR_FAIL_COND_V_MSG(ERR_CANT_CREATE, ERR_CANT_CREATE, "Command allocator Reset failed with error " + vformat("0x%08ux", res) + ".");
res = command_list->Reset(split_draw_list_allocators[i].command_allocator, nullptr);
if (res) {
memdelete_arr(draw_list);
draw_list = nullptr;
ERR_FAIL_V_MSG(ERR_CANT_CREATE, "Command allocator Reset failed with error " + vformat("0x%08ux", res) + ".");
}
draw_list[i].command_list = command_list;
draw_list[i].viewport = p_viewport;
}
}
return OK;
}
void RenderingDeviceD3D12::_draw_list_free(Rect2i *r_last_viewport) {
if (draw_list_split) {
// Send all command buffers.
for (uint32_t i = 0; i < draw_list_count; i++) {
draw_list[i].command_list->Close();
frames[frame].draw_command_list->ExecuteBundle(draw_list[i].command_list);
if (r_last_viewport) {
if (i == 0 || draw_list[i].viewport_set) {
*r_last_viewport = draw_list[i].viewport;
}
}
}
memdelete_arr(draw_list);
draw_list = nullptr;
} else {
if (r_last_viewport) {
*r_last_viewport = draw_list->viewport;
}
// Just end the list.
memdelete(draw_list);
draw_list = nullptr;
}
draw_list_count = 0;
}
void RenderingDeviceD3D12::draw_list_end(BitField<BarrierMask> p_post_barrier) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_MSG(!draw_list, "Immediate draw list is already inactive.");
_draw_list_subpass_end();
const FramebufferFormat &fb_format = framebuffer_formats[draw_list_framebuffer->format_id];
bool is_screen = draw_list_framebuffer->window_id != DisplayServer::INVALID_WINDOW_ID;
ID3D12GraphicsCommandList *command_list = frames[frame].draw_command_list.Get();
for (int i = 0; i < fb_format.attachments.size(); i++) {
Texture *texture = nullptr;
if (!is_screen) {
texture = texture_owner.get_or_null(draw_list_framebuffer->texture_ids[i]);
}
if ((fb_format.attachments[i].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) {
switch (draw_list_final_color_action) {
case FINAL_ACTION_READ: {
// Nothing to do now.
} break;
case FINAL_ACTION_DISCARD: {
ID3D12Resource *resource = is_screen ? context->window_get_framebuffer_texture(draw_list_framebuffer->window_id) : texture->resource;
command_list->DiscardResource(resource, nullptr);
} break;
case FINAL_ACTION_CONTINUE: {
ERR_FAIL_COND(draw_list_unbind_color_textures); // Bug!
} break;
}
} else if ((fb_format.attachments[i].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
ERR_FAIL_COND(is_screen); // Bug!
switch (draw_list_final_depth_action) {
case FINAL_ACTION_READ: {
// Nothing to do now.
} break;
case FINAL_ACTION_DISCARD: {
ID3D12Resource *resource = is_screen ? context->window_get_framebuffer_texture(draw_list_framebuffer->window_id) : texture->resource;
command_list->DiscardResource(resource, nullptr);
} break;
case FINAL_ACTION_CONTINUE: {
ERR_FAIL_COND(draw_list_unbind_depth_textures); // Bug!
} break;
}
}
}
draw_list_subpass_count = 0;
draw_list_current_subpass = 0;
draw_list_framebuffer = nullptr;
_draw_list_free();
for (int i = 0; i < draw_list_bound_textures.size(); i++) {
Texture *texture = texture_owner.get_or_null(draw_list_bound_textures[i]);
ERR_CONTINUE(!texture); // Wtf.
if (draw_list_unbind_color_textures && (texture->usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) {
texture->bound = false;
}
if (draw_list_unbind_depth_textures && (texture->usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
texture->bound = false;
}
}
draw_list_bound_textures.clear();
}
/***********************/
/**** COMPUTE LISTS ****/
/***********************/
RenderingDevice::ComputeListID RenderingDeviceD3D12::compute_list_begin(bool p_allow_draw_overlap) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V_MSG(!p_allow_draw_overlap && draw_list != nullptr, INVALID_ID, "Only one draw list can be active at the same time.");
ERR_FAIL_COND_V_MSG(compute_list != nullptr, INVALID_ID, "Only one draw/compute list can be active at the same time.");
compute_list = memnew(ComputeList);
compute_list->command_list = frames[frame].draw_command_list.Get();
compute_list->state.allow_draw_overlap = p_allow_draw_overlap;
return ID_TYPE_COMPUTE_LIST;
}
void RenderingDeviceD3D12::compute_list_bind_compute_pipeline(ComputeListID p_list, RID p_compute_pipeline) {
// Must be called within a compute list, the class mutex is locked during that time
ERR_FAIL_COND(p_list != ID_TYPE_COMPUTE_LIST);
ERR_FAIL_NULL(compute_list);
ComputeList *cl = compute_list;
const ComputePipeline *pipeline = compute_pipeline_owner.get_or_null(p_compute_pipeline);
ERR_FAIL_NULL(pipeline);
if (p_compute_pipeline == cl->state.pipeline) {
return; // Redundant state, return.
}
cl->state.pipeline = p_compute_pipeline;
cl->state.pso = pipeline->pso.Get();
Shader *shader = shader_owner.get_or_null(pipeline->shader);
if (cl->state.pipeline_shader != pipeline->shader) {
if (cl->state.root_signature_crc != pipeline->root_signature_crc) {
cl->command_list->SetComputeRootSignature(shader->root_signature.Get());
cl->state.root_signature_crc = pipeline->root_signature_crc;
// Root signature changed, so current descriptor set bindings become invalid.
for (uint32_t i = 0; i < cl->state.set_count; i++) {
cl->state.sets[i].bound = false;
}
}
const uint32_t *pformats = pipeline->set_formats.ptr(); // Pipeline set formats.
cl->state.set_count = pipeline->set_formats.size(); // Update set count.
for (uint32_t i = 0; i < cl->state.set_count; i++) {
cl->state.sets[i].pipeline_expected_format = pformats[i];
#ifdef DEV_ENABLED
cl->state.sets[i]._pipeline_expected_format = pformats[i] ? &uniform_set_format_cache_reverse[pformats[i] - 1]->key().uniform_info : nullptr;
#endif
}
if (pipeline->spirv_push_constant_size) {
#ifdef DEBUG_ENABLED
cl->validation.pipeline_push_constant_supplied = false;
#endif
}
cl->state.pipeline_shader = pipeline->shader;
cl->state.pipeline_dxil_push_constant_size = pipeline->dxil_push_constant_size;
cl->state.pipeline_bindings_id = pipeline->bindings_id;
cl->state.local_group_size[0] = pipeline->local_group_size[0];
cl->state.local_group_size[1] = pipeline->local_group_size[1];
cl->state.local_group_size[2] = pipeline->local_group_size[2];
#ifdef DEV_ENABLED
cl->state._shader = shader;
#endif
}
#ifdef DEBUG_ENABLED
// Update compute pass pipeline info.
cl->validation.pipeline_active = true;
cl->validation.pipeline_spirv_push_constant_size = pipeline->spirv_push_constant_size;
#endif
}
void RenderingDeviceD3D12::compute_list_bind_uniform_set(ComputeListID p_list, RID p_uniform_set, uint32_t p_index) {
// Must be called within a compute list, the class mutex is locked during that time
ERR_FAIL_COND(p_list != ID_TYPE_COMPUTE_LIST);
ERR_FAIL_NULL(compute_list);
ComputeList *cl = compute_list;
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!cl->validation.active, "Submitted Compute Lists can no longer be modified.");
#endif
UniformSet *uniform_set = uniform_set_owner.get_or_null(p_uniform_set);
ERR_FAIL_NULL(uniform_set);
if (p_index > cl->state.set_count) {
cl->state.set_count = p_index;
}
cl->state.sets[p_index].bound = false; // Needs rebind.
cl->state.sets[p_index].uniform_set_format = uniform_set->format;
cl->state.sets[p_index].uniform_set = p_uniform_set;
#ifdef DEV_ENABLED
cl->state.sets[p_index]._uniform_set = uniform_set_owner.get_or_null(p_uniform_set);
#endif
}
void RenderingDeviceD3D12::compute_list_set_push_constant(ComputeListID p_list, const void *p_data, uint32_t p_data_size) {
ERR_FAIL_COND(p_list != ID_TYPE_COMPUTE_LIST);
ERR_FAIL_NULL(compute_list);
ComputeList *cl = compute_list;
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!cl->validation.active, "Submitted Compute Lists can no longer be modified.");
#endif
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(p_data_size != cl->validation.pipeline_spirv_push_constant_size,
"This render pipeline requires (" + itos(cl->validation.pipeline_spirv_push_constant_size) + ") bytes of push constant data, supplied: (" + itos(p_data_size) + ")");
#endif
if (cl->state.pipeline_dxil_push_constant_size) {
cl->command_list->SetComputeRoot32BitConstants(0, p_data_size / sizeof(uint32_t), p_data, 0);
}
#ifdef DEBUG_ENABLED
cl->validation.pipeline_push_constant_supplied = true;
#endif
}
void RenderingDeviceD3D12::compute_list_dispatch(ComputeListID p_list, uint32_t p_x_groups, uint32_t p_y_groups, uint32_t p_z_groups) {
// Must be called within a compute list, the class mutex is locked during that time
ERR_FAIL_COND(p_list != ID_TYPE_COMPUTE_LIST);
ERR_FAIL_NULL(compute_list);
ComputeList *cl = compute_list;
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(p_x_groups == 0, "Dispatch amount of X compute groups (" + itos(p_x_groups) + ") is zero.");
ERR_FAIL_COND_MSG(p_z_groups == 0, "Dispatch amount of Z compute groups (" + itos(p_z_groups) + ") is zero.");
ERR_FAIL_COND_MSG(p_y_groups == 0, "Dispatch amount of Y compute groups (" + itos(p_y_groups) + ") is zero.");
ERR_FAIL_COND_MSG(p_x_groups > D3D12_CS_DISPATCH_MAX_THREAD_GROUPS_PER_DIMENSION,
"Dispatch amount of X compute groups (" + itos(p_x_groups) + ") is larger than device limit (" + itos(D3D12_CS_DISPATCH_MAX_THREAD_GROUPS_PER_DIMENSION) + ")");
ERR_FAIL_COND_MSG(p_y_groups > D3D12_CS_DISPATCH_MAX_THREAD_GROUPS_PER_DIMENSION,
"Dispatch amount of Y compute groups (" + itos(p_x_groups) + ") is larger than device limit (" + itos(D3D12_CS_DISPATCH_MAX_THREAD_GROUPS_PER_DIMENSION) + ")");
ERR_FAIL_COND_MSG(p_z_groups > D3D12_CS_DISPATCH_MAX_THREAD_GROUPS_PER_DIMENSION,
"Dispatch amount of Z compute groups (" + itos(p_x_groups) + ") is larger than device limit (" + itos(D3D12_CS_DISPATCH_MAX_THREAD_GROUPS_PER_DIMENSION) + ")");
ERR_FAIL_COND_MSG(!cl->validation.active, "Submitted Compute Lists can no longer be modified.");
#endif
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!cl->validation.pipeline_active, "No compute pipeline was set before attempting to draw.");
if (cl->validation.pipeline_spirv_push_constant_size) {
// Using push constants, check that they were supplied.
ERR_FAIL_COND_MSG(!cl->validation.pipeline_push_constant_supplied,
"The shader in this pipeline requires a push constant to be set before drawing, but it's not present.");
}
#endif
// Bind descriptor sets.
Shader *shader = shader_owner.get_or_null(cl->state.pipeline_shader);
struct SetToBind {
uint32_t set;
UniformSet *uniform_set;
const Shader::Set *shader_set;
};
SetToBind *sets_to_bind = (SetToBind *)alloca(sizeof(SetToBind) * cl->state.set_count);
uint32_t num_sets_to_bind = 0;
for (uint32_t i = 0; i < cl->state.set_count; i++) {
if (cl->state.sets[i].pipeline_expected_format == 0) {
continue; // Nothing expected by this pipeline.
}
#ifdef DEBUG_ENABLED
if (cl->state.sets[i].pipeline_expected_format != cl->state.sets[i].uniform_set_format) {
if (cl->state.sets[i].uniform_set_format == 0) {
ERR_FAIL_MSG("Uniforms were never supplied for set (" + itos(i) + ") at the time of drawing, which are required by the pipeline");
} else if (uniform_set_owner.owns(cl->state.sets[i].uniform_set)) {
UniformSet *us = uniform_set_owner.get_or_null(cl->state.sets[i].uniform_set);
ERR_FAIL_MSG("Uniforms supplied for set (" + itos(i) + "):\n" + _shader_uniform_debug(us->shader_id, us->shader_set) + "\nare not the same format as required by the pipeline shader. Pipeline shader requires the following bindings:\n" + _shader_uniform_debug(cl->state.pipeline_shader));
} else {
ERR_FAIL_MSG("Uniforms supplied for set (" + itos(i) + ", which was was just freed) are not the same format as required by the pipeline shader. Pipeline shader requires the following bindings:\n" + _shader_uniform_debug(cl->state.pipeline_shader));
}
}
#endif
UniformSet *uniform_set = uniform_set_owner.get_or_null(cl->state.sets[i].uniform_set);
const Shader::Set &shader_set = shader->sets[i];
_apply_uniform_set_resource_states(uniform_set, shader_set);
if (!cl->state.sets[i].bound) {
sets_to_bind[num_sets_to_bind].set = i;
sets_to_bind[num_sets_to_bind].uniform_set = uniform_set;
sets_to_bind[num_sets_to_bind].shader_set = &shader_set;
num_sets_to_bind++;
cl->state.sets[i].bound = true;
}
}
_resource_transitions_flush(cl->command_list);
for (uint32_t i = 0; i < num_sets_to_bind; i++) {
_bind_uniform_set(sets_to_bind[i].uniform_set, *sets_to_bind[i].shader_set, pipeline_bindings[cl->state.pipeline_bindings_id][sets_to_bind[i].set], cl->command_list, true);
}
if (cl->state.bound_pso != cl->state.pso) {
cl->command_list->SetPipelineState(cl->state.pso);
cl->state.bound_pso = cl->state.pso;
}
cl->command_list->Dispatch(p_x_groups, p_y_groups, p_z_groups);
}
void RenderingDeviceD3D12::compute_list_dispatch_threads(ComputeListID p_list, uint32_t p_x_threads, uint32_t p_y_threads, uint32_t p_z_threads) {
ERR_FAIL_COND(p_list != ID_TYPE_COMPUTE_LIST);
ERR_FAIL_NULL(compute_list);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(p_x_threads == 0, "Dispatch amount of X compute threads (" + itos(p_x_threads) + ") is zero.");
ERR_FAIL_COND_MSG(p_y_threads == 0, "Dispatch amount of Y compute threads (" + itos(p_y_threads) + ") is zero.");
ERR_FAIL_COND_MSG(p_z_threads == 0, "Dispatch amount of Z compute threads (" + itos(p_z_threads) + ") is zero.");
#endif
ComputeList *cl = compute_list;
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!cl->validation.pipeline_active, "No compute pipeline was set before attempting to draw.");
if (cl->validation.pipeline_spirv_push_constant_size) {
// Using push constants, check that they were supplied.
ERR_FAIL_COND_MSG(!cl->validation.pipeline_push_constant_supplied,
"The shader in this pipeline requires a push constant to be set before drawing, but it's not present.");
}
#endif
compute_list_dispatch(p_list, (p_x_threads - 1) / cl->state.local_group_size[0] + 1, (p_y_threads - 1) / cl->state.local_group_size[1] + 1, (p_z_threads - 1) / cl->state.local_group_size[2] + 1);
}
void RenderingDeviceD3D12::compute_list_dispatch_indirect(ComputeListID p_list, RID p_buffer, uint32_t p_offset) {
ERR_FAIL_COND(p_list != ID_TYPE_COMPUTE_LIST);
ERR_FAIL_NULL(compute_list);
ComputeList *cl = compute_list;
Buffer *buffer = storage_buffer_owner.get_or_null(p_buffer);
ERR_FAIL_NULL(buffer);
ERR_FAIL_COND_MSG(!(buffer->usage & D3D12_RESOURCE_STATE_INDIRECT_ARGUMENT), "Buffer provided was not created to do indirect dispatch.");
ERR_FAIL_COND_MSG(p_offset + 12 > buffer->size, "Offset provided (+12) is past the end of buffer.");
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_MSG(!cl->validation.pipeline_active, "No compute pipeline was set before attempting to draw.");
if (cl->validation.pipeline_spirv_push_constant_size) {
// Using push constants, check that they were supplied.
ERR_FAIL_COND_MSG(!cl->validation.pipeline_push_constant_supplied,
"The shader in this pipeline requires a push constant to be set before drawing, but it's not present.");
}
#endif
// Bind descriptor sets.
Shader *shader = shader_owner.get_or_null(cl->state.pipeline_shader);
struct SetToBind {
uint32_t set;
UniformSet *uniform_set;
const Shader::Set *shader_set;
};
SetToBind *sets_to_bind = (SetToBind *)alloca(sizeof(SetToBind) * cl->state.set_count);
uint32_t num_sets_to_bind = 0;
for (uint32_t i = 0; i < cl->state.set_count; i++) {
if (cl->state.sets[i].pipeline_expected_format == 0) {
continue; // Nothing expected by this pipeline.
}
#ifdef DEBUG_ENABLED
if (cl->state.sets[i].pipeline_expected_format != cl->state.sets[i].uniform_set_format) {
if (cl->state.sets[i].uniform_set_format == 0) {
ERR_FAIL_MSG("Uniforms were never supplied for set (" + itos(i) + ") at the time of drawing, which are required by the pipeline");
} else if (uniform_set_owner.owns(cl->state.sets[i].uniform_set)) {
UniformSet *us = uniform_set_owner.get_or_null(cl->state.sets[i].uniform_set);
ERR_FAIL_MSG("Uniforms supplied for set (" + itos(i) + "):\n" + _shader_uniform_debug(us->shader_id, us->shader_set) + "\nare not the same format as required by the pipeline shader. Pipeline shader requires the following bindings:\n" + _shader_uniform_debug(cl->state.pipeline_shader));
} else {
ERR_FAIL_MSG("Uniforms supplied for set (" + itos(i) + ", which was was just freed) are not the same format as required by the pipeline shader. Pipeline shader requires the following bindings:\n" + _shader_uniform_debug(cl->state.pipeline_shader));
}
}
#endif
UniformSet *uniform_set = uniform_set_owner.get_or_null(cl->state.sets[i].uniform_set);
const Shader::Set &shader_set = shader->sets[i];
_apply_uniform_set_resource_states(uniform_set, shader_set);
if (!cl->state.sets[i].bound) {
sets_to_bind[num_sets_to_bind].set = i;
sets_to_bind[num_sets_to_bind].uniform_set = uniform_set;
sets_to_bind[num_sets_to_bind].shader_set = &shader_set;
num_sets_to_bind++;
cl->state.sets[i].bound = true;
}
}
_resource_transition_batch(buffer, 0, 1, D3D12_RESOURCE_STATE_INDIRECT_ARGUMENT);
_resource_transitions_flush(cl->command_list);
for (uint32_t i = 0; i < num_sets_to_bind; i++) {
_bind_uniform_set(sets_to_bind[i].uniform_set, *sets_to_bind[i].shader_set, pipeline_bindings[cl->state.pipeline_bindings_id][sets_to_bind[i].set], cl->command_list, true);
}
if (cl->state.bound_pso != cl->state.pso) {
cl->command_list->SetPipelineState(cl->state.pso);
cl->state.bound_pso = cl->state.pso;
}
cl->command_list->ExecuteIndirect(indirect_dispatch_cmd_sig.Get(), 1, buffer->resource, p_offset, nullptr, 0);
}
void RenderingDeviceD3D12::compute_list_add_barrier(ComputeListID p_list) {
// Must be called within a compute list, the class mutex is locked during that time
#ifdef FORCE_FULL_BARRIER
full_barrier();
#else
// Due to D3D12 resource-wise barriers, this is no op.
#endif
}
void RenderingDeviceD3D12::compute_list_end(BitField<BarrierMask> p_post_barrier) {
ERR_FAIL_NULL(compute_list);
#ifdef FORCE_FULL_BARRIER
full_barrier();
#endif
memdelete(compute_list);
compute_list = nullptr;
}
void RenderingDeviceD3D12::barrier(BitField<BarrierMask> p_from, BitField<BarrierMask> p_to) {
// Due to D3D12 resource-wise barriers, this is no op.
}
void RenderingDeviceD3D12::full_barrier() {
#ifndef DEBUG_ENABLED
ERR_PRINT("Full barrier is debug-only, should not be used in production");
#endif
// In the resource barriers world, we can force a full barrier by discarding some resource, as per
// https://microsoft.github.io/DirectX-Specs/d3d/D3D12EnhancedBarriers.html#synchronous-copy-discard-and-resolve.
frames[frame].draw_command_list->DiscardResource(texture_owner.get_or_null(aux_resource)->resource, nullptr);
}
void RenderingDeviceD3D12::_free_internal(RID p_id) {
#ifdef DEV_ENABLED
String resource_name;
if (resource_names.has(p_id)) {
resource_name = resource_names[p_id];
resource_names.erase(p_id);
}
#endif
// Push everything so it's disposed of next time this frame index is processed (means, it's safe to do it).
if (texture_owner.owns(p_id)) {
Texture *texture = texture_owner.get_or_null(p_id);
frames[frame].textures_to_dispose_of.push_back(*texture);
texture_owner.free(p_id);
} else if (framebuffer_owner.owns(p_id)) {
Framebuffer *framebuffer = framebuffer_owner.get_or_null(p_id);
frames[frame].framebuffers_to_dispose_of.push_back(*framebuffer);
if (framebuffer->invalidated_callback != nullptr) {
framebuffer->invalidated_callback(framebuffer->invalidated_callback_userdata);
}
framebuffer_owner.free(p_id);
} else if (sampler_owner.owns(p_id)) {
sampler_owner.free(p_id);
} else if (vertex_buffer_owner.owns(p_id)) {
Buffer *vertex_buffer = vertex_buffer_owner.get_or_null(p_id);
frames[frame].buffers_to_dispose_of.push_back(*vertex_buffer);
vertex_buffer_owner.free(p_id);
} else if (vertex_array_owner.owns(p_id)) {
vertex_array_owner.free(p_id);
} else if (index_buffer_owner.owns(p_id)) {
IndexBuffer *index_buffer = index_buffer_owner.get_or_null(p_id);
frames[frame].buffers_to_dispose_of.push_back(*index_buffer);
index_buffer_owner.free(p_id);
} else if (index_array_owner.owns(p_id)) {
index_array_owner.free(p_id);
} else if (shader_owner.owns(p_id)) {
Shader *shader = shader_owner.get_or_null(p_id);
frames[frame].shaders_to_dispose_of.push_back(*shader);
shader_owner.free(p_id);
} else if (uniform_buffer_owner.owns(p_id)) {
Buffer *uniform_buffer = uniform_buffer_owner.get_or_null(p_id);
frames[frame].buffers_to_dispose_of.push_back(*uniform_buffer);
uniform_buffer_owner.free(p_id);
} else if (texture_buffer_owner.owns(p_id)) {
TextureBuffer *texture_buffer = texture_buffer_owner.get_or_null(p_id);
frames[frame].buffers_to_dispose_of.push_back(texture_buffer->buffer);
texture_buffer_owner.free(p_id);
} else if (storage_buffer_owner.owns(p_id)) {
Buffer *storage_buffer = storage_buffer_owner.get_or_null(p_id);
frames[frame].buffers_to_dispose_of.push_back(*storage_buffer);
storage_buffer_owner.free(p_id);
} else if (uniform_set_owner.owns(p_id)) {
UniformSet *uniform_set = uniform_set_owner.get_or_null(p_id);
uniform_set_owner.free(p_id);
if (uniform_set->invalidated_callback != nullptr) {
uniform_set->invalidated_callback(uniform_set->invalidated_callback_userdata);
}
} else if (render_pipeline_owner.owns(p_id)) {
RenderPipeline *pipeline = render_pipeline_owner.get_or_null(p_id);
frames[frame].render_pipelines_to_dispose_of.push_back(*pipeline);
render_pipeline_owner.free(p_id);
} else if (compute_pipeline_owner.owns(p_id)) {
ComputePipeline *pipeline = compute_pipeline_owner.get_or_null(p_id);
frames[frame].compute_pipelines_to_dispose_of.push_back(*pipeline);
compute_pipeline_owner.free(p_id);
} else {
#ifdef DEV_ENABLED
ERR_PRINT("Attempted to free invalid ID: " + itos(p_id.get_id()) + " " + resource_name);
#else
ERR_PRINT("Attempted to free invalid ID: " + itos(p_id.get_id()));
#endif
}
}
void RenderingDeviceD3D12::free(RID p_id) {
_THREAD_SAFE_METHOD_
_free_dependencies(p_id); // Recursively erase dependencies first, to avoid potential API problems.
_free_internal(p_id);
}
void RenderingDeviceD3D12::set_resource_name(RID p_id, const String p_name) {
if (texture_owner.owns(p_id)) {
Texture *texture = texture_owner.get_or_null(p_id);
// Don't set the source texture's name when calling on a texture view.
if (texture->owner.is_null()) {
context->set_object_name(texture->resource, p_name);
}
} else if (framebuffer_owner.owns(p_id)) {
// No D3D12 object to name.
} else if (sampler_owner.owns(p_id)) {
// No D3D12 object to name.
} else if (shader_owner.owns(p_id)) {
Shader *shader = shader_owner.get_or_null(p_id);
context->set_object_name(shader->root_signature.Get(), p_name + " Root Signature");
} else if (uniform_set_owner.owns(p_id)) {
// No D3D12 object to name.
} else if (render_pipeline_owner.owns(p_id)) {
RenderPipeline *pipeline = render_pipeline_owner.get_or_null(p_id);
context->set_object_name(pipeline->pso.Get(), p_name);
} else if (compute_pipeline_owner.owns(p_id)) {
ComputePipeline *pipeline = compute_pipeline_owner.get_or_null(p_id);
context->set_object_name(pipeline->pso.Get(), p_name);
} else {
Buffer *buffer = _get_buffer_from_owner(p_id);
if (buffer) {
context->set_object_name(buffer->resource, p_name);
} else {
ERR_PRINT("Attempted to name invalid ID: " + itos(p_id.get_id()));
return;
}
}
#ifdef DEV_ENABLED
resource_names[p_id] = p_name;
#endif
}
void RenderingDeviceD3D12::draw_command_begin_label(String p_label_name, const Color p_color) {
_THREAD_SAFE_METHOD_
context->command_begin_label(frames[frame].draw_command_list.Get(), p_label_name, p_color);
}
void RenderingDeviceD3D12::draw_command_insert_label(String p_label_name, const Color p_color) {
_THREAD_SAFE_METHOD_
context->command_insert_label(frames[frame].draw_command_list.Get(), p_label_name, p_color);
}
void RenderingDeviceD3D12::draw_command_end_label() {
_THREAD_SAFE_METHOD_
context->command_end_label(frames[frame].draw_command_list.Get());
}
String RenderingDeviceD3D12::get_device_vendor_name() const {
return context->get_device_vendor_name();
}
String RenderingDeviceD3D12::get_device_name() const {
return context->get_device_name();
}
RenderingDevice::DeviceType RenderingDeviceD3D12::get_device_type() const {
return context->get_device_type();
}
String RenderingDeviceD3D12::get_device_api_version() const {
return context->get_device_api_version();
}
String RenderingDeviceD3D12::get_device_pipeline_cache_uuid() const {
return context->get_device_pipeline_cache_uuid();
}
void RenderingDeviceD3D12::_finalize_command_bufers() {
if (draw_list) {
ERR_PRINT("Found open draw list at the end of the frame, this should never happen (further drawing will likely not work).");
}
if (compute_list) {
ERR_PRINT("Found open compute list at the end of the frame, this should never happen (further compute will likely not work).");
}
{ // Complete the setup buffer (that needs to be processed before anything else).
frames[frame].setup_command_list->Close();
frames[frame].draw_command_list->Close();
}
}
void RenderingDeviceD3D12::_begin_frame() {
// Erase pending resources.
_free_pending_resources(frame);
HRESULT res = frames[frame].setup_command_allocator->Reset();
ERR_FAIL_COND_MSG(res, "Command allocator Reset failed with error " + vformat("0x%08ux", res) + ".");
res = frames[frame].setup_command_list->Reset(frames[frame].setup_command_allocator.Get(), nullptr);
ERR_FAIL_COND_MSG(res, "Command list Reset failed with error " + vformat("0x%08ux", res) + ".");
res = frames[frame].draw_command_allocator->Reset();
ERR_FAIL_COND_MSG(res, "Command allocator Reset failed with error " + vformat("0x%08ux", res) + ".");
res = frames[frame].draw_command_list->Reset(frames[frame].draw_command_allocator.Get(), nullptr);
ERR_FAIL_COND_MSG(res, "Command list Reset failed with error " + vformat("0x%08ux", res) + ".");
ID3D12DescriptorHeap *heaps[] = {
frames[frame].desc_heaps.resources.get_heap(),
frames[frame].desc_heaps.samplers.get_heap(),
};
frames[frame].draw_command_list->SetDescriptorHeaps(2, heaps);
frames[frame].desc_heap_walkers.resources.rewind();
frames[frame].desc_heap_walkers.samplers.rewind();
frames[frame].desc_heap_walkers.aux.rewind();
frames[frame].desc_heap_walkers.rtv.rewind();
frames[frame].desc_heaps_exhausted_reported = {};
frames[frame].null_rtv_handle = {};
#ifdef DEBUG_COUNT_BARRIERS
print_verbose(vformat("Last frame: %d barriers (%d batches); %.1f ms", frame_barriers_count, frame_barriers_batches_count, frame_barriers_cpu_time * 0.001f));
frame_barriers_count = 0;
frame_barriers_batches_count = 0;
frame_barriers_cpu_time = 0;
#endif
if (local_device.is_null()) {
context->append_command_list(frames[frame].draw_command_list.Get());
context->set_setup_list(frames[frame].setup_command_list.Get()); // Append now so it's added before everything else.
}
// Advance current frame.
frames_drawn++;
// Advance staging buffer if used.
if (staging_buffer_used) {
staging_buffer_current = (staging_buffer_current + 1) % staging_buffer_blocks.size();
staging_buffer_used = false;
}
context->get_allocator()->SetCurrentFrameIndex(Engine::get_singleton()->get_frames_drawn());
if (frames[frame].timestamp_count) {
frames[frame].setup_command_list->ResolveQueryData(frames[frame].timestamp_heap.Get(), D3D12_QUERY_TYPE_TIMESTAMP, 0, frames[frame].timestamp_count, frames[frame].timestamp_result_values_buffer.resource, 0);
uint64_t *gpu_timestamps = nullptr;
res = frames[frame].timestamp_result_values_buffer.resource->Map(0, nullptr, (void **)&gpu_timestamps);
if (SUCCEEDED(res)) {
memcpy(frames[frame].timestamp_result_values.ptr(), gpu_timestamps, sizeof(uint64_t) * frames[frame].timestamp_count);
frames[frame].timestamp_result_values_buffer.resource->Unmap(0, nullptr);
}
SWAP(frames[frame].timestamp_names, frames[frame].timestamp_result_names);
SWAP(frames[frame].timestamp_cpu_values, frames[frame].timestamp_cpu_result_values);
}
frames[frame].timestamp_result_count = frames[frame].timestamp_count;
frames[frame].timestamp_count = 0;
frames[frame].index = Engine::get_singleton()->get_frames_drawn();
frames[frame].execution_index = execution_index;
#ifdef DEV_ENABLED
frames[frame].uniform_set_reused = 0;
#endif
}
void RenderingDeviceD3D12::swap_buffers() {
ERR_FAIL_COND_MSG(local_device.is_valid(), "Local devices can't swap buffers.");
_THREAD_SAFE_METHOD_
context->postpare_buffers(frames[frame].draw_command_list.Get());
screen_prepared = false;
_finalize_command_bufers();
context->swap_buffers();
execution_index++;
frame = (frame + 1) % frame_count;
_begin_frame();
}
void RenderingDeviceD3D12::submit() {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_MSG(local_device.is_null(), "Only local devices can submit and sync.");
ERR_FAIL_COND_MSG(local_device_processing, "device already submitted, call sync to wait until done.");
_finalize_command_bufers();
ID3D12CommandList *command_lists[2] = { frames[frame].setup_command_list.Get(), frames[frame].draw_command_list.Get() };
context->local_device_push_command_lists(local_device, command_lists, 2);
execution_index++;
local_device_processing = true;
}
void RenderingDeviceD3D12::sync() {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_MSG(local_device.is_null(), "Only local devices can submit and sync.");
ERR_FAIL_COND_MSG(!local_device_processing, "sync can only be called after a submit");
context->local_device_sync(local_device);
_begin_frame();
local_device_processing = false;
}
#ifdef USE_SMALL_ALLOCS_POOL
D3D12MA::Pool *RenderingDeviceD3D12::_find_or_create_small_allocs_pool(D3D12_HEAP_TYPE p_heap_type, D3D12_HEAP_FLAGS p_heap_flags) {
D3D12_HEAP_FLAGS effective_heap_flags = p_heap_flags;
if (context->get_allocator()->GetD3D12Options().ResourceHeapTier != D3D12_RESOURCE_HEAP_TIER_1) {
// Heap tier 2 allows mixing resource types liberally.
effective_heap_flags &= ~(D3D12_HEAP_FLAG_ALLOW_ONLY_BUFFERS | D3D12_HEAP_FLAG_ALLOW_ONLY_NON_RT_DS_TEXTURES | D3D12_HEAP_FLAG_ALLOW_ONLY_RT_DS_TEXTURES);
}
AllocPoolKey pool_key;
pool_key.heap_type = p_heap_type;
pool_key.heap_flags = effective_heap_flags;
if (small_allocs_pools.has(pool_key.key)) {
return small_allocs_pools[pool_key.key].Get();
}
#ifdef DEV_ENABLED
print_verbose("Creating D3D12MA small objects pool for heap type " + itos(p_heap_type) + " and heap flags " + itos(p_heap_flags));
#endif
D3D12MA::POOL_DESC poolDesc = {};
poolDesc.HeapProperties.Type = p_heap_type;
poolDesc.HeapFlags = effective_heap_flags;
ComPtr<D3D12MA::Pool> pool;
HRESULT res = context->get_allocator()->CreatePool(&poolDesc, pool.GetAddressOf());
small_allocs_pools[pool_key.key] = pool; // Don't try to create it again if failed the first time.
ERR_FAIL_COND_V_MSG(res, nullptr, "CreatePool failed with error " + vformat("0x%08ux", res) + ".");
return pool.Get();
}
#endif
void RenderingDeviceD3D12::_free_pending_resources(int p_frame) {
// Free in dependency usage order, so nothing weird happens.
// Pipelines.
while (frames[p_frame].render_pipelines_to_dispose_of.front()) {
RenderPipeline *rp = &frames[p_frame].render_pipelines_to_dispose_of.front()->get();
pipeline_bindings.erase(rp->bindings_id);
frames[p_frame].render_pipelines_to_dispose_of.pop_front();
}
while (frames[p_frame].compute_pipelines_to_dispose_of.front()) {
ComputePipeline *cp = &frames[p_frame].compute_pipelines_to_dispose_of.front()->get();
pipeline_bindings.erase(cp->bindings_id);
frames[p_frame].compute_pipelines_to_dispose_of.pop_front();
}
// Shaders.
frames[p_frame].shaders_to_dispose_of.clear();
// Framebuffers.
frames[p_frame].framebuffers_to_dispose_of.clear();
// Textures.
while (frames[p_frame].textures_to_dispose_of.front()) {
Texture *texture = &frames[p_frame].textures_to_dispose_of.front()->get();
if (texture->bound) {
WARN_PRINT("Deleted a texture while it was bound.");
}
if (texture->owner.is_null()) {
// Actually owns the image and the allocation too.
image_memory -= texture->allocation->GetSize();
for (uint32_t i = 0; i < texture->aliases.size(); i++) {
if (texture->aliases[i]) {
texture->aliases[i]->Release();
}
}
texture->resource->Release();
texture->resource = nullptr;
texture->allocation->Release();
texture->allocation = nullptr;
}
frames[p_frame].textures_to_dispose_of.pop_front();
}
// Buffers.
while (frames[p_frame].buffers_to_dispose_of.front()) {
_buffer_free(&frames[p_frame].buffers_to_dispose_of.front()->get());
frames[p_frame].buffers_to_dispose_of.pop_front();
}
}
void RenderingDeviceD3D12::prepare_screen_for_drawing() {
_THREAD_SAFE_METHOD_
context->prepare_buffers(frames[frame].draw_command_list.Get());
screen_prepared = true;
}
uint32_t RenderingDeviceD3D12::get_frame_delay() const {
return frame_count;
}
uint64_t RenderingDeviceD3D12::get_memory_usage(MemoryType p_type) const {
if (p_type == MEMORY_BUFFERS) {
return buffer_memory;
} else if (p_type == MEMORY_TEXTURES) {
return image_memory;
} else {
D3D12MA::TotalStatistics stats;
context->get_allocator()->CalculateStatistics(&stats);
return stats.Total.Stats.BlockBytes;
}
}
void RenderingDeviceD3D12::_flush(bool p_flush_current_frame) {
if (local_device.is_valid() && !p_flush_current_frame) {
return; // Flushing previous frames has no effect with local device.
}
if (p_flush_current_frame) {
frames[frame].setup_command_list->Close();
frames[frame].draw_command_list->Close();
}
if (local_device.is_valid()) {
ID3D12CommandList *command_lists[2] = { frames[frame].setup_command_list.Get(), frames[frame].draw_command_list.Get() };
context->local_device_push_command_lists(local_device, command_lists, 2);
execution_index++;
context->local_device_sync(local_device);
HRESULT res = frames[frame].setup_command_allocator->Reset();
ERR_FAIL_COND_MSG(res, "Command allocator Reset failed with error " + vformat("0x%08ux", res) + ".");
res = frames[frame].setup_command_list->Reset(frames[frame].setup_command_allocator.Get(), nullptr);
ERR_FAIL_COND_MSG(res, "Command allocator Reset failed with error " + vformat("0x%08ux", res) + ".");
res = frames[frame].draw_command_allocator->Reset();
ERR_FAIL_COND_MSG(res, "Command allocator Reset failed with error " + vformat("0x%08ux", res) + ".");
res = frames[frame].draw_command_list->Reset(frames[frame].draw_command_allocator.Get(), nullptr);
ERR_FAIL_COND_MSG(res, "Command allocator Reset failed with error " + vformat("0x%08ux", res) + ".");
ID3D12DescriptorHeap *heaps[] = {
frames[frame].desc_heaps.resources.get_heap(),
frames[frame].desc_heaps.samplers.get_heap(),
};
frames[frame].draw_command_list->SetDescriptorHeaps(2, heaps);
frames[frame].desc_heap_walkers.resources.rewind();
frames[frame].desc_heap_walkers.samplers.rewind();
frames[frame].desc_heap_walkers.aux.rewind();
frames[frame].desc_heap_walkers.rtv.rewind();
frames[frame].desc_heaps_exhausted_reported = {};
frames[frame].null_rtv_handle = {};
frames[frame].execution_index = execution_index;
} else {
context->flush(p_flush_current_frame, p_flush_current_frame);
// Re-create the setup command.
if (p_flush_current_frame) {
execution_index++;
HRESULT res = frames[frame].setup_command_allocator->Reset();
ERR_FAIL_COND_MSG(res, "Command allocator Reset failed with error " + vformat("0x%08ux", res) + ".");
res = frames[frame].draw_command_allocator->Reset();
ERR_FAIL_COND_MSG(res, "Command allocator Reset failed with error " + vformat("0x%08ux", res) + ".");
res = frames[frame].setup_command_list->Reset(frames[frame].setup_command_allocator.Get(), nullptr);
ERR_FAIL_COND_MSG(res, "Command list Reset failed with error " + vformat("0x%08ux", res) + ".");
res = frames[frame].draw_command_list->Reset(frames[frame].draw_command_allocator.Get(), nullptr);
ERR_FAIL_COND_MSG(res, "Command list Reset failed with error " + vformat("0x%08ux", res) + ".");
ID3D12DescriptorHeap *heaps[] = {
frames[frame].desc_heaps.resources.get_heap(),
frames[frame].desc_heaps.samplers.get_heap(),
};
frames[frame].draw_command_list->SetDescriptorHeaps(2, heaps);
frames[frame].desc_heap_walkers.resources.rewind();
frames[frame].desc_heap_walkers.samplers.rewind();
frames[frame].desc_heap_walkers.aux.rewind();
frames[frame].desc_heap_walkers.rtv.rewind();
frames[frame].desc_heaps_exhausted_reported = {};
frames[frame].null_rtv_handle = {};
frames[frame].execution_index = execution_index;
context->set_setup_list(frames[frame].setup_command_list.Get()); // Append now so it's added before everything else.
context->append_command_list(frames[frame].draw_command_list.Get());
}
}
}
void RenderingDeviceD3D12::initialize(D3D12Context *p_context, bool p_local_device) {
// Get our device capabilities.
{
device_capabilities.version_major = p_context->get_feat_level_major();
device_capabilities.version_minor = p_context->get_feat_level_minor();
}
context = p_context;
device = p_context->get_device();
if (p_local_device) {
frame_count = 1;
local_device = p_context->local_device_create();
device = p_context->local_device_get_d3d12_device(local_device);
} else {
frame_count = p_context->get_swapchain_image_count() + 1;
}
limits = p_context->get_device_limits();
max_timestamp_query_elements = 256;
{ // Create command signature for indirect dispatch.
D3D12_INDIRECT_ARGUMENT_DESC iarg_desc = {};
iarg_desc.Type = D3D12_INDIRECT_ARGUMENT_TYPE_DISPATCH;
D3D12_COMMAND_SIGNATURE_DESC cs_desc = {};
cs_desc.ByteStride = sizeof(D3D12_DISPATCH_ARGUMENTS);
cs_desc.NumArgumentDescs = 1;
cs_desc.pArgumentDescs = &iarg_desc;
cs_desc.NodeMask = 0;
HRESULT res = device->CreateCommandSignature(&cs_desc, nullptr, IID_PPV_ARGS(indirect_dispatch_cmd_sig.GetAddressOf()));
ERR_FAIL_COND_MSG(res, "CreateCommandSignature failed with error " + vformat("0x%08ux", res) + ".");
}
uint32_t resource_descriptors_per_frame = GLOBAL_DEF("rendering/rendering_device/d3d12/max_resource_descriptors_per_frame", 16384);
uint32_t sampler_descriptors_per_frame = GLOBAL_DEF("rendering/rendering_device/d3d12/max_sampler_descriptors_per_frame", 1024);
uint32_t misc_descriptors_per_frame = GLOBAL_DEF("rendering/rendering_device/d3d12/max_misc_descriptors_per_frame", 512);
frames.resize(frame_count);
frame = 0;
// Create setup and frame buffers.
for (int i = 0; i < frame_count; i++) {
frames[i].index = 0;
{ // Create descriptor heaps.
Error err = frames[i].desc_heaps.resources.allocate(device.Get(), D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV, resource_descriptors_per_frame, true);
ERR_FAIL_COND_MSG(err, "Creating the frame's RESOURCE descriptors heap failed.");
err = frames[i].desc_heaps.samplers.allocate(device.Get(), D3D12_DESCRIPTOR_HEAP_TYPE_SAMPLER, sampler_descriptors_per_frame, true);
ERR_FAIL_COND_MSG(err, "Creating the frame's SAMPLER descriptors heap failed.");
err = frames[i].desc_heaps.aux.allocate(device.Get(), D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV, misc_descriptors_per_frame, false);
ERR_FAIL_COND_MSG(err, "Creating the frame's AUX descriptors heap failed.");
err = frames[i].desc_heaps.rtv.allocate(device.Get(), D3D12_DESCRIPTOR_HEAP_TYPE_RTV, misc_descriptors_per_frame, false);
ERR_FAIL_COND_MSG(err, "Creating the frame's RENDER TARGET descriptors heap failed.");
frames[i].desc_heap_walkers.resources = frames[i].desc_heaps.resources.make_walker();
frames[i].desc_heap_walkers.samplers = frames[i].desc_heaps.samplers.make_walker();
frames[i].desc_heap_walkers.aux = frames[i].desc_heaps.aux.make_walker();
frames[i].desc_heap_walkers.rtv = frames[i].desc_heaps.rtv.make_walker();
}
{ // Create command allocators.
HRESULT res = device->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_DIRECT, IID_PPV_ARGS(frames[i].setup_command_allocator.GetAddressOf()));
ERR_CONTINUE_MSG(res, "CreateCommandAllocator failed with error " + vformat("0x%08ux", res) + ".");
res = device->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_DIRECT, IID_PPV_ARGS(frames[i].draw_command_allocator.GetAddressOf()));
ERR_CONTINUE_MSG(res, "CreateCommandAllocator failed with error " + vformat("0x%08ux", res) + ".");
}
{ // Create command lists.
HRESULT res = device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, frames[i].setup_command_allocator.Get(), nullptr, IID_PPV_ARGS(frames[i].setup_command_list.GetAddressOf()));
ERR_CONTINUE_MSG(res, "CreateCommandList failed with error " + vformat("0x%08ux", res) + ".");
res = device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, frames[i].draw_command_allocator.Get(), nullptr, IID_PPV_ARGS(frames[i].draw_command_list.GetAddressOf()));
ERR_CONTINUE_MSG(res, "CreateCommandList failed with error " + vformat("0x%08ux", res) + ".");
if (i > 0) {
frames[i].setup_command_list->Close();
frames[i].draw_command_list->Close();
}
}
if (i == 0) {
ID3D12DescriptorHeap *heaps[] = {
frames[frame].desc_heaps.resources.get_heap(),
frames[frame].desc_heaps.samplers.get_heap(),
};
frames[frame].draw_command_list->SetDescriptorHeaps(2, heaps);
}
{
// Create query heap.
D3D12_QUERY_HEAP_DESC qh_desc = {};
qh_desc.Type = D3D12_QUERY_HEAP_TYPE_TIMESTAMP;
qh_desc.Count = max_timestamp_query_elements;
qh_desc.NodeMask = 0;
HRESULT res = device->CreateQueryHeap(&qh_desc, IID_PPV_ARGS(frames[i].timestamp_heap.GetAddressOf()));
ERR_CONTINUE_MSG(res, "CreateQueryHeap failed with error " + vformat("0x%08ux", res) + ".");
frames[i].timestamp_names.resize(max_timestamp_query_elements);
frames[i].timestamp_cpu_values.resize(max_timestamp_query_elements);
frames[i].timestamp_count = 0;
frames[i].timestamp_result_names.resize(max_timestamp_query_elements);
frames[i].timestamp_cpu_result_values.resize(max_timestamp_query_elements);
frames[i].timestamp_result_values.resize(max_timestamp_query_elements);
Error err = _buffer_allocate(&frames[i].timestamp_result_values_buffer, sizeof(uint64_t) * max_timestamp_query_elements, D3D12_RESOURCE_STATE_COMMON, D3D12_HEAP_TYPE_READBACK);
ERR_CONTINUE(err);
frames[i].timestamp_result_count = 0;
}
}
if (local_device.is_null()) {
context->set_setup_list(frames[0].setup_command_list.Get()); // Append now so it's added before everything else.
context->append_command_list(frames[0].draw_command_list.Get());
}
staging_buffer_block_size = GLOBAL_GET("rendering/rendering_device/staging_buffer/block_size_kb");
staging_buffer_block_size = MAX(4u, staging_buffer_block_size);
staging_buffer_block_size *= 1024; // Kb -> bytes.
staging_buffer_max_size = GLOBAL_GET("rendering/rendering_device/staging_buffer/max_size_mb");
staging_buffer_max_size = MAX(1u, staging_buffer_max_size);
staging_buffer_max_size *= 1024 * 1024;
if (staging_buffer_max_size < staging_buffer_block_size * 4) {
// Validate enough functions.
staging_buffer_max_size = staging_buffer_block_size * 4;
}
texture_upload_region_size_px = GLOBAL_GET("rendering/rendering_device/staging_buffer/texture_upload_region_size_px");
texture_upload_region_size_px = nearest_power_of_2_templated(texture_upload_region_size_px);
frames_drawn = frame_count; // Start from frame count, so everything else is immediately old.
execution_index = 1;
// Ensure current staging block is valid and at least one per frame exists.
staging_buffer_current = 0;
staging_buffer_used = false;
for (int i = 0; i < frame_count; i++) {
// Staging was never used, create a block.
Error err = _insert_staging_block();
ERR_CONTINUE(err != OK);
}
{
aux_resource = texture_create(TextureFormat(), TextureView());
ERR_FAIL_COND(!aux_resource.is_valid());
}
draw_list = nullptr;
draw_list_count = 0;
draw_list_split = false;
vrs_state_execution_index = 0;
vrs_state = {};
compute_list = nullptr;
glsl_type_singleton_init_or_ref();
}
dxil_validator *RenderingDeviceD3D12::get_dxil_validator_for_current_thread() {
MutexLock lock(dxil_mutex);
int thread_idx = WorkerThreadPool::get_singleton()->get_thread_index();
if (dxil_validators.has(thread_idx)) {
return dxil_validators[thread_idx];
}
#ifdef DEV_ENABLED
print_verbose("Creating DXIL validator for worker thread index " + itos(thread_idx));
#endif
dxil_validator *dxil_validator = dxil_create_validator(nullptr);
CRASH_COND(!dxil_validator);
dxil_validators.insert(thread_idx, dxil_validator);
return dxil_validator;
}
template <class T>
void RenderingDeviceD3D12::_free_rids(T &p_owner, const char *p_type) {
List<RID> owned;
p_owner.get_owned_list(&owned);
if (owned.size()) {
if (owned.size() == 1) {
WARN_PRINT(vformat("1 RID of type \"%s\" was leaked.", p_type));
} else {
WARN_PRINT(vformat("%d RIDs of type \"%s\" were leaked.", owned.size(), p_type));
}
for (const RID &E : owned) {
#ifdef DEV_ENABLED
if (resource_names.has(E)) {
print_line(String(" - ") + resource_names[E]);
}
#endif
free(E);
}
}
}
void RenderingDeviceD3D12::capture_timestamp(const String &p_name) {
ERR_FAIL_COND_MSG(draw_list != nullptr, "Capturing timestamps during draw list creation is not allowed. Offending timestamp was: " + p_name);
ERR_FAIL_COND(frames[frame].timestamp_count >= max_timestamp_query_elements);
// This should be optional for profiling, else it will slow things down.
full_barrier();
frames[frame].draw_command_list->EndQuery(frames[frame].timestamp_heap.Get(), D3D12_QUERY_TYPE_TIMESTAMP, frames[frame].timestamp_count);
frames[frame].timestamp_names[frames[frame].timestamp_count] = p_name;
frames[frame].timestamp_cpu_values[frames[frame].timestamp_count] = OS::get_singleton()->get_ticks_usec();
frames[frame].timestamp_count++;
}
uint64_t RenderingDeviceD3D12::get_driver_resource(DriverResource p_resource, RID p_rid, uint64_t p_index) {
_THREAD_SAFE_METHOD_
return 0;
}
uint32_t RenderingDeviceD3D12::get_captured_timestamps_count() const {
return frames[frame].timestamp_result_count;
}
uint64_t RenderingDeviceD3D12::get_captured_timestamps_frame() const {
return frames[frame].index;
}
uint64_t RenderingDeviceD3D12::get_captured_timestamp_gpu_time(uint32_t p_index) const {
ERR_FAIL_UNSIGNED_INDEX_V(p_index, frames[frame].timestamp_result_count, 0);
return frames[frame].timestamp_result_values[p_index] / (double)limits.timestamp_frequency * 1000000000.0;
}
uint64_t RenderingDeviceD3D12::get_captured_timestamp_cpu_time(uint32_t p_index) const {
ERR_FAIL_UNSIGNED_INDEX_V(p_index, frames[frame].timestamp_result_count, 0);
return frames[frame].timestamp_cpu_result_values[p_index];
}
String RenderingDeviceD3D12::get_captured_timestamp_name(uint32_t p_index) const {
ERR_FAIL_UNSIGNED_INDEX_V(p_index, frames[frame].timestamp_result_count, String());
return frames[frame].timestamp_result_names[p_index];
}
uint64_t RenderingDeviceD3D12::limit_get(Limit p_limit) const {
switch (p_limit) {
case LIMIT_MAX_TEXTURES_PER_SHADER_STAGE:
return limits.max_srvs_per_shader_stage;
case LIMIT_MAX_UNIFORM_BUFFER_SIZE:
return 65536;
case LIMIT_MAX_VIEWPORT_DIMENSIONS_X:
case LIMIT_MAX_VIEWPORT_DIMENSIONS_Y:
return 16384; // Based on max. texture size. Maybe not correct.
case LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_X:
return D3D12_CS_DISPATCH_MAX_THREAD_GROUPS_PER_DIMENSION;
case LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_Y:
return D3D12_CS_DISPATCH_MAX_THREAD_GROUPS_PER_DIMENSION;
case LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_Z:
return D3D12_CS_DISPATCH_MAX_THREAD_GROUPS_PER_DIMENSION;
case LIMIT_MAX_COMPUTE_WORKGROUP_SIZE_X:
return D3D12_CS_THREAD_GROUP_MAX_X;
case LIMIT_MAX_COMPUTE_WORKGROUP_SIZE_Y:
return D3D12_CS_THREAD_GROUP_MAX_Y;
case LIMIT_MAX_COMPUTE_WORKGROUP_SIZE_Z:
return D3D12_CS_THREAD_GROUP_MAX_Z;
case LIMIT_SUBGROUP_SIZE:
// Note in min/max. Shader model 6.6 supports it (see https://microsoft.github.io/DirectX-Specs/d3d/HLSL_SM_6_6_WaveSize.html),
// but at this time I don't know the implications on the transpilation to DXIL, etc.
case LIMIT_SUBGROUP_MIN_SIZE:
case LIMIT_SUBGROUP_MAX_SIZE: {
D3D12Context::SubgroupCapabilities subgroup_capabilities = context->get_subgroup_capabilities();
return subgroup_capabilities.size;
}
case LIMIT_SUBGROUP_IN_SHADERS: {
D3D12Context::SubgroupCapabilities subgroup_capabilities = context->get_subgroup_capabilities();
return subgroup_capabilities.supported_stages_flags_rd();
}
case LIMIT_SUBGROUP_OPERATIONS: {
D3D12Context::SubgroupCapabilities subgroup_capabilities = context->get_subgroup_capabilities();
return subgroup_capabilities.supported_operations_flags_rd();
}
case LIMIT_VRS_TEXEL_WIDTH:
case LIMIT_VRS_TEXEL_HEIGHT: {
return context->get_vrs_capabilities().ss_image_tile_size;
}
default:
// It's important to return a number that at least won't overflow any typical integer type.
#ifdef DEV_ENABLED
WARN_PRINT("Returning maximum value for unknown limit " + itos(p_limit) + ".");
#endif
return (uint64_t)1 << 30;
}
}
bool RenderingDeviceD3D12::has_feature(const Features p_feature) const {
switch (p_feature) {
case SUPPORTS_MULTIVIEW: {
D3D12Context::MultiviewCapabilities multiview_capabilies = context->get_multiview_capabilities();
return multiview_capabilies.is_supported && multiview_capabilies.max_view_count > 1;
} break;
case SUPPORTS_FSR_HALF_FLOAT: {
return context->get_shader_capabilities().native_16bit_ops && context->get_storage_buffer_capabilities().storage_buffer_16_bit_access_is_supported;
} break;
case SUPPORTS_ATTACHMENT_VRS: {
D3D12Context::VRSCapabilities vrs_capabilities = context->get_vrs_capabilities();
return vrs_capabilities.ss_image_supported;
} break;
case SUPPORTS_FRAGMENT_SHADER_WITH_ONLY_SIDE_EFFECTS: {
return true;
} break;
default: {
return false;
}
}
}
void RenderingDeviceD3D12::finalize() {
// Free all resources.
_flush(false);
free(aux_resource);
_free_rids(render_pipeline_owner, "Pipeline");
_free_rids(compute_pipeline_owner, "Compute");
_free_rids(uniform_set_owner, "UniformSet");
_free_rids(texture_buffer_owner, "TextureBuffer");
_free_rids(storage_buffer_owner, "StorageBuffer");
_free_rids(uniform_buffer_owner, "UniformBuffer");
_free_rids(shader_owner, "Shader");
_free_rids(index_array_owner, "IndexArray");
_free_rids(index_buffer_owner, "IndexBuffer");
_free_rids(vertex_array_owner, "VertexArray");
_free_rids(vertex_buffer_owner, "VertexBuffer");
_free_rids(framebuffer_owner, "Framebuffer");
_free_rids(sampler_owner, "Sampler");
{
// For textures it's a bit more difficult because they may be shared.
List<RID> owned;
texture_owner.get_owned_list(&owned);
if (owned.size()) {
if (owned.size() == 1) {
WARN_PRINT("1 RID of type \"Texture\" was leaked.");
} else {
WARN_PRINT(vformat("%d RIDs of type \"Texture\" were leaked.", owned.size()));
}
// Free shared first.
for (List<RID>::Element *E = owned.front(); E;) {
List<RID>::Element *N = E->next();
if (texture_is_shared(E->get())) {
#ifdef DEV_ENABLED
if (resource_names.has(E->get())) {
print_line(String(" - ") + resource_names[E->get()]);
}
#endif
free(E->get());
owned.erase(E);
}
E = N;
}
// Free non shared second, this will avoid an error trying to free unexisting textures due to dependencies.
for (const RID &E : owned) {
#ifdef DEV_ENABLED
if (resource_names.has(E)) {
print_line(String(" - ") + resource_names[E]);
}
#endif
free(E);
}
}
}
// Free everything pending.
for (int i = 0; i < frame_count; i++) {
int f = (frame + i) % frame_count;
_free_pending_resources(f);
frames[i].timestamp_result_values_buffer.allocation->Release();
frames[i].timestamp_result_values_buffer.resource->Release();
}
frames.clear();
pipeline_bindings.clear();
next_pipeline_binding_id = 1;
for (int i = 0; i < split_draw_list_allocators.size(); i++) {
for (int j = 0; i < split_draw_list_allocators[i].command_lists.size(); j++) {
split_draw_list_allocators[i].command_lists[j]->Release();
}
split_draw_list_allocators[i].command_allocator->Release();
}
res_barriers_requests.clear();
res_barriers.clear();
for (int i = 0; i < staging_buffer_blocks.size(); i++) {
staging_buffer_blocks[i].allocation->Release();
staging_buffer_blocks[i].resource->Release();
}
#ifdef USE_SMALL_ALLOCS_POOL
small_allocs_pools.clear();
#endif
indirect_dispatch_cmd_sig.Reset();
vertex_formats.clear();
framebuffer_formats.clear();
// All these should be clear at this point.
ERR_FAIL_COND(dependency_map.size());
ERR_FAIL_COND(reverse_dependency_map.size());
{
MutexLock lock(dxil_mutex);
for (const KeyValue<int, dxil_validator *> &E : dxil_validators) {
dxil_destroy_validator(E.value);
}
}
glsl_type_singleton_decref();
}
RenderingDevice *RenderingDeviceD3D12::create_local_device() {
RenderingDeviceD3D12 *rd = memnew(RenderingDeviceD3D12);
rd->initialize(context, true);
return rd;
}
RenderingDeviceD3D12::RenderingDeviceD3D12() {
device_capabilities.device_family = DEVICE_DIRECTX;
}
RenderingDeviceD3D12::~RenderingDeviceD3D12() {
if (local_device.is_valid()) {
finalize();
context->local_device_free(local_device);
}
}