289 lines
10 KiB
C++
289 lines
10 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#include "btCollisionDispatcher.h"
|
|
#include "LinearMath/btQuickprof.h"
|
|
|
|
#include "BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h"
|
|
|
|
#include "BulletCollision/CollisionShapes/btCollisionShape.h"
|
|
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
|
|
#include "BulletCollision/BroadphaseCollision/btOverlappingPairCache.h"
|
|
#include "LinearMath/btPoolAllocator.h"
|
|
#include "BulletCollision/CollisionDispatch/btCollisionConfiguration.h"
|
|
#include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h"
|
|
|
|
#ifdef BT_DEBUG
|
|
#include <stdio.h>
|
|
#endif
|
|
|
|
btCollisionDispatcher::btCollisionDispatcher(btCollisionConfiguration* collisionConfiguration) : m_dispatcherFlags(btCollisionDispatcher::CD_USE_RELATIVE_CONTACT_BREAKING_THRESHOLD),
|
|
m_collisionConfiguration(collisionConfiguration)
|
|
{
|
|
int i;
|
|
|
|
setNearCallback(defaultNearCallback);
|
|
|
|
m_collisionAlgorithmPoolAllocator = collisionConfiguration->getCollisionAlgorithmPool();
|
|
|
|
m_persistentManifoldPoolAllocator = collisionConfiguration->getPersistentManifoldPool();
|
|
|
|
for (i = 0; i < MAX_BROADPHASE_COLLISION_TYPES; i++)
|
|
{
|
|
for (int j = 0; j < MAX_BROADPHASE_COLLISION_TYPES; j++)
|
|
{
|
|
m_doubleDispatchContactPoints[i][j] = m_collisionConfiguration->getCollisionAlgorithmCreateFunc(i, j);
|
|
btAssert(m_doubleDispatchContactPoints[i][j]);
|
|
m_doubleDispatchClosestPoints[i][j] = m_collisionConfiguration->getClosestPointsAlgorithmCreateFunc(i, j);
|
|
}
|
|
}
|
|
}
|
|
|
|
void btCollisionDispatcher::registerCollisionCreateFunc(int proxyType0, int proxyType1, btCollisionAlgorithmCreateFunc* createFunc)
|
|
{
|
|
m_doubleDispatchContactPoints[proxyType0][proxyType1] = createFunc;
|
|
}
|
|
|
|
void btCollisionDispatcher::registerClosestPointsCreateFunc(int proxyType0, int proxyType1, btCollisionAlgorithmCreateFunc* createFunc)
|
|
{
|
|
m_doubleDispatchClosestPoints[proxyType0][proxyType1] = createFunc;
|
|
}
|
|
|
|
btCollisionDispatcher::~btCollisionDispatcher()
|
|
{
|
|
}
|
|
|
|
btPersistentManifold* btCollisionDispatcher::getNewManifold(const btCollisionObject* body0, const btCollisionObject* body1)
|
|
{
|
|
//btAssert(gNumManifold < 65535);
|
|
|
|
//optional relative contact breaking threshold, turned on by default (use setDispatcherFlags to switch off feature for improved performance)
|
|
|
|
btScalar contactBreakingThreshold = (m_dispatcherFlags & btCollisionDispatcher::CD_USE_RELATIVE_CONTACT_BREAKING_THRESHOLD) ? btMin(body0->getCollisionShape()->getContactBreakingThreshold(gContactBreakingThreshold), body1->getCollisionShape()->getContactBreakingThreshold(gContactBreakingThreshold))
|
|
: gContactBreakingThreshold;
|
|
|
|
btScalar contactProcessingThreshold = btMin(body0->getContactProcessingThreshold(), body1->getContactProcessingThreshold());
|
|
|
|
void* mem = m_persistentManifoldPoolAllocator->allocate(sizeof(btPersistentManifold));
|
|
if (NULL == mem)
|
|
{
|
|
//we got a pool memory overflow, by default we fallback to dynamically allocate memory. If we require a contiguous contact pool then assert.
|
|
if ((m_dispatcherFlags & CD_DISABLE_CONTACTPOOL_DYNAMIC_ALLOCATION) == 0)
|
|
{
|
|
mem = btAlignedAlloc(sizeof(btPersistentManifold), 16);
|
|
}
|
|
else
|
|
{
|
|
btAssert(0);
|
|
//make sure to increase the m_defaultMaxPersistentManifoldPoolSize in the btDefaultCollisionConstructionInfo/btDefaultCollisionConfiguration
|
|
return 0;
|
|
}
|
|
}
|
|
btPersistentManifold* manifold = new (mem) btPersistentManifold(body0, body1, 0, contactBreakingThreshold, contactProcessingThreshold);
|
|
manifold->m_index1a = m_manifoldsPtr.size();
|
|
m_manifoldsPtr.push_back(manifold);
|
|
|
|
return manifold;
|
|
}
|
|
|
|
void btCollisionDispatcher::clearManifold(btPersistentManifold* manifold)
|
|
{
|
|
manifold->clearManifold();
|
|
}
|
|
|
|
void btCollisionDispatcher::releaseManifold(btPersistentManifold* manifold)
|
|
{
|
|
//printf("releaseManifold: gNumManifold %d\n",gNumManifold);
|
|
clearManifold(manifold);
|
|
|
|
int findIndex = manifold->m_index1a;
|
|
btAssert(findIndex < m_manifoldsPtr.size());
|
|
m_manifoldsPtr.swap(findIndex, m_manifoldsPtr.size() - 1);
|
|
m_manifoldsPtr[findIndex]->m_index1a = findIndex;
|
|
m_manifoldsPtr.pop_back();
|
|
|
|
manifold->~btPersistentManifold();
|
|
if (m_persistentManifoldPoolAllocator->validPtr(manifold))
|
|
{
|
|
m_persistentManifoldPoolAllocator->freeMemory(manifold);
|
|
}
|
|
else
|
|
{
|
|
btAlignedFree(manifold);
|
|
}
|
|
}
|
|
|
|
btCollisionAlgorithm* btCollisionDispatcher::findAlgorithm(const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, btPersistentManifold* sharedManifold, ebtDispatcherQueryType algoType)
|
|
{
|
|
btCollisionAlgorithmConstructionInfo ci;
|
|
|
|
ci.m_dispatcher1 = this;
|
|
ci.m_manifold = sharedManifold;
|
|
btCollisionAlgorithm* algo = 0;
|
|
if (algoType == BT_CONTACT_POINT_ALGORITHMS)
|
|
{
|
|
algo = m_doubleDispatchContactPoints[body0Wrap->getCollisionShape()->getShapeType()][body1Wrap->getCollisionShape()->getShapeType()]->CreateCollisionAlgorithm(ci, body0Wrap, body1Wrap);
|
|
}
|
|
else
|
|
{
|
|
algo = m_doubleDispatchClosestPoints[body0Wrap->getCollisionShape()->getShapeType()][body1Wrap->getCollisionShape()->getShapeType()]->CreateCollisionAlgorithm(ci, body0Wrap, body1Wrap);
|
|
}
|
|
|
|
return algo;
|
|
}
|
|
|
|
bool btCollisionDispatcher::needsResponse(const btCollisionObject* body0, const btCollisionObject* body1)
|
|
{
|
|
//here you can do filtering
|
|
bool hasResponse =
|
|
(body0->hasContactResponse() && body1->hasContactResponse());
|
|
//no response between two static/kinematic bodies:
|
|
hasResponse = hasResponse &&
|
|
((!body0->isStaticOrKinematicObject()) || (!body1->isStaticOrKinematicObject()));
|
|
return hasResponse;
|
|
}
|
|
|
|
bool btCollisionDispatcher::needsCollision(const btCollisionObject* body0, const btCollisionObject* body1)
|
|
{
|
|
btAssert(body0);
|
|
btAssert(body1);
|
|
|
|
bool needsCollision = true;
|
|
|
|
#ifdef BT_DEBUG
|
|
if (!(m_dispatcherFlags & btCollisionDispatcher::CD_STATIC_STATIC_REPORTED))
|
|
{
|
|
//broadphase filtering already deals with this
|
|
if (body0->isStaticOrKinematicObject() && body1->isStaticOrKinematicObject())
|
|
{
|
|
m_dispatcherFlags |= btCollisionDispatcher::CD_STATIC_STATIC_REPORTED;
|
|
printf("warning btCollisionDispatcher::needsCollision: static-static collision!\n");
|
|
}
|
|
}
|
|
#endif //BT_DEBUG
|
|
|
|
if ((!body0->isActive()) && (!body1->isActive()))
|
|
needsCollision = false;
|
|
else if ((!body0->checkCollideWith(body1)) || (!body1->checkCollideWith(body0)))
|
|
needsCollision = false;
|
|
|
|
return needsCollision;
|
|
}
|
|
|
|
///interface for iterating all overlapping collision pairs, no matter how those pairs are stored (array, set, map etc)
|
|
///this is useful for the collision dispatcher.
|
|
class btCollisionPairCallback : public btOverlapCallback
|
|
{
|
|
const btDispatcherInfo& m_dispatchInfo;
|
|
btCollisionDispatcher* m_dispatcher;
|
|
|
|
public:
|
|
btCollisionPairCallback(const btDispatcherInfo& dispatchInfo, btCollisionDispatcher* dispatcher)
|
|
: m_dispatchInfo(dispatchInfo),
|
|
m_dispatcher(dispatcher)
|
|
{
|
|
}
|
|
|
|
/*btCollisionPairCallback& operator=(btCollisionPairCallback& other)
|
|
{
|
|
m_dispatchInfo = other.m_dispatchInfo;
|
|
m_dispatcher = other.m_dispatcher;
|
|
return *this;
|
|
}
|
|
*/
|
|
|
|
virtual ~btCollisionPairCallback() {}
|
|
|
|
virtual bool processOverlap(btBroadphasePair& pair)
|
|
{
|
|
(*m_dispatcher->getNearCallback())(pair, *m_dispatcher, m_dispatchInfo);
|
|
return false;
|
|
}
|
|
};
|
|
|
|
void btCollisionDispatcher::dispatchAllCollisionPairs(btOverlappingPairCache* pairCache, const btDispatcherInfo& dispatchInfo, btDispatcher* dispatcher)
|
|
{
|
|
//m_blockedForChanges = true;
|
|
|
|
btCollisionPairCallback collisionCallback(dispatchInfo, this);
|
|
|
|
{
|
|
BT_PROFILE("processAllOverlappingPairs");
|
|
pairCache->processAllOverlappingPairs(&collisionCallback, dispatcher, dispatchInfo);
|
|
}
|
|
|
|
//m_blockedForChanges = false;
|
|
}
|
|
|
|
//by default, Bullet will use this near callback
|
|
void btCollisionDispatcher::defaultNearCallback(btBroadphasePair& collisionPair, btCollisionDispatcher& dispatcher, const btDispatcherInfo& dispatchInfo)
|
|
{
|
|
btCollisionObject* colObj0 = (btCollisionObject*)collisionPair.m_pProxy0->m_clientObject;
|
|
btCollisionObject* colObj1 = (btCollisionObject*)collisionPair.m_pProxy1->m_clientObject;
|
|
|
|
if (dispatcher.needsCollision(colObj0, colObj1))
|
|
{
|
|
btCollisionObjectWrapper obj0Wrap(0, colObj0->getCollisionShape(), colObj0, colObj0->getWorldTransform(), -1, -1);
|
|
btCollisionObjectWrapper obj1Wrap(0, colObj1->getCollisionShape(), colObj1, colObj1->getWorldTransform(), -1, -1);
|
|
|
|
//dispatcher will keep algorithms persistent in the collision pair
|
|
if (!collisionPair.m_algorithm)
|
|
{
|
|
collisionPair.m_algorithm = dispatcher.findAlgorithm(&obj0Wrap, &obj1Wrap, 0, BT_CONTACT_POINT_ALGORITHMS);
|
|
}
|
|
|
|
if (collisionPair.m_algorithm)
|
|
{
|
|
btManifoldResult contactPointResult(&obj0Wrap, &obj1Wrap);
|
|
|
|
if (dispatchInfo.m_dispatchFunc == btDispatcherInfo::DISPATCH_DISCRETE)
|
|
{
|
|
//discrete collision detection query
|
|
|
|
collisionPair.m_algorithm->processCollision(&obj0Wrap, &obj1Wrap, dispatchInfo, &contactPointResult);
|
|
}
|
|
else
|
|
{
|
|
//continuous collision detection query, time of impact (toi)
|
|
btScalar toi = collisionPair.m_algorithm->calculateTimeOfImpact(colObj0, colObj1, dispatchInfo, &contactPointResult);
|
|
if (dispatchInfo.m_timeOfImpact > toi)
|
|
dispatchInfo.m_timeOfImpact = toi;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void* btCollisionDispatcher::allocateCollisionAlgorithm(int size)
|
|
{
|
|
void* mem = m_collisionAlgorithmPoolAllocator->allocate(size);
|
|
if (NULL == mem)
|
|
{
|
|
//warn user for overflow?
|
|
return btAlignedAlloc(static_cast<size_t>(size), 16);
|
|
}
|
|
return mem;
|
|
}
|
|
|
|
void btCollisionDispatcher::freeCollisionAlgorithm(void* ptr)
|
|
{
|
|
if (m_collisionAlgorithmPoolAllocator->validPtr(ptr))
|
|
{
|
|
m_collisionAlgorithmPoolAllocator->freeMemory(ptr);
|
|
}
|
|
else
|
|
{
|
|
btAlignedFree(ptr);
|
|
}
|
|
}
|