29e07dfa4e
This allows distro unbundling again for distros that ship Bullet 2.89+.
873 lines
30 KiB
C++
873 lines
30 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
///Specialized capsule-capsule collision algorithm has been added for Bullet 2.75 release to increase ragdoll performance
|
|
///If you experience problems with capsule-capsule collision, try to define BT_DISABLE_CAPSULE_CAPSULE_COLLIDER and report it in the Bullet forums
|
|
///with reproduction case
|
|
//#define BT_DISABLE_CAPSULE_CAPSULE_COLLIDER 1
|
|
//#define ZERO_MARGIN
|
|
|
|
#include "btConvexConvexAlgorithm.h"
|
|
|
|
//#include <stdio.h>
|
|
#include "BulletCollision/NarrowPhaseCollision/btDiscreteCollisionDetectorInterface.h"
|
|
#include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
|
|
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
|
|
#include "BulletCollision/CollisionShapes/btConvexShape.h"
|
|
#include "BulletCollision/CollisionShapes/btCapsuleShape.h"
|
|
#include "BulletCollision/CollisionShapes/btTriangleShape.h"
|
|
#include "BulletCollision/CollisionShapes/btConvexPolyhedron.h"
|
|
|
|
#include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
|
|
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
|
|
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
|
|
#include "BulletCollision/CollisionShapes/btBoxShape.h"
|
|
#include "BulletCollision/CollisionDispatch/btManifoldResult.h"
|
|
|
|
#include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h"
|
|
#include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
|
|
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
|
|
#include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
|
|
|
|
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
|
|
#include "BulletCollision/CollisionShapes/btSphereShape.h"
|
|
|
|
#include "BulletCollision/NarrowPhaseCollision/btMinkowskiPenetrationDepthSolver.h"
|
|
|
|
#include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.h"
|
|
#include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
|
|
#include "BulletCollision/NarrowPhaseCollision/btPolyhedralContactClipping.h"
|
|
#include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h"
|
|
|
|
///////////
|
|
|
|
static SIMD_FORCE_INLINE void segmentsClosestPoints(
|
|
btVector3& ptsVector,
|
|
btVector3& offsetA,
|
|
btVector3& offsetB,
|
|
btScalar& tA, btScalar& tB,
|
|
const btVector3& translation,
|
|
const btVector3& dirA, btScalar hlenA,
|
|
const btVector3& dirB, btScalar hlenB)
|
|
{
|
|
// compute the parameters of the closest points on each line segment
|
|
|
|
btScalar dirA_dot_dirB = btDot(dirA, dirB);
|
|
btScalar dirA_dot_trans = btDot(dirA, translation);
|
|
btScalar dirB_dot_trans = btDot(dirB, translation);
|
|
|
|
btScalar denom = 1.0f - dirA_dot_dirB * dirA_dot_dirB;
|
|
|
|
if (denom == 0.0f)
|
|
{
|
|
tA = 0.0f;
|
|
}
|
|
else
|
|
{
|
|
tA = (dirA_dot_trans - dirB_dot_trans * dirA_dot_dirB) / denom;
|
|
if (tA < -hlenA)
|
|
tA = -hlenA;
|
|
else if (tA > hlenA)
|
|
tA = hlenA;
|
|
}
|
|
|
|
tB = tA * dirA_dot_dirB - dirB_dot_trans;
|
|
|
|
if (tB < -hlenB)
|
|
{
|
|
tB = -hlenB;
|
|
tA = tB * dirA_dot_dirB + dirA_dot_trans;
|
|
|
|
if (tA < -hlenA)
|
|
tA = -hlenA;
|
|
else if (tA > hlenA)
|
|
tA = hlenA;
|
|
}
|
|
else if (tB > hlenB)
|
|
{
|
|
tB = hlenB;
|
|
tA = tB * dirA_dot_dirB + dirA_dot_trans;
|
|
|
|
if (tA < -hlenA)
|
|
tA = -hlenA;
|
|
else if (tA > hlenA)
|
|
tA = hlenA;
|
|
}
|
|
|
|
// compute the closest points relative to segment centers.
|
|
|
|
offsetA = dirA * tA;
|
|
offsetB = dirB * tB;
|
|
|
|
ptsVector = translation - offsetA + offsetB;
|
|
}
|
|
|
|
static SIMD_FORCE_INLINE btScalar capsuleCapsuleDistance(
|
|
btVector3& normalOnB,
|
|
btVector3& pointOnB,
|
|
btScalar capsuleLengthA,
|
|
btScalar capsuleRadiusA,
|
|
btScalar capsuleLengthB,
|
|
btScalar capsuleRadiusB,
|
|
int capsuleAxisA,
|
|
int capsuleAxisB,
|
|
const btTransform& transformA,
|
|
const btTransform& transformB,
|
|
btScalar distanceThreshold)
|
|
{
|
|
btVector3 directionA = transformA.getBasis().getColumn(capsuleAxisA);
|
|
btVector3 translationA = transformA.getOrigin();
|
|
btVector3 directionB = transformB.getBasis().getColumn(capsuleAxisB);
|
|
btVector3 translationB = transformB.getOrigin();
|
|
|
|
// translation between centers
|
|
|
|
btVector3 translation = translationB - translationA;
|
|
|
|
// compute the closest points of the capsule line segments
|
|
|
|
btVector3 ptsVector; // the vector between the closest points
|
|
|
|
btVector3 offsetA, offsetB; // offsets from segment centers to their closest points
|
|
btScalar tA, tB; // parameters on line segment
|
|
|
|
segmentsClosestPoints(ptsVector, offsetA, offsetB, tA, tB, translation,
|
|
directionA, capsuleLengthA, directionB, capsuleLengthB);
|
|
|
|
btScalar distance = ptsVector.length() - capsuleRadiusA - capsuleRadiusB;
|
|
|
|
if (distance > distanceThreshold)
|
|
return distance;
|
|
|
|
btScalar lenSqr = ptsVector.length2();
|
|
if (lenSqr <= (SIMD_EPSILON * SIMD_EPSILON))
|
|
{
|
|
//degenerate case where 2 capsules are likely at the same location: take a vector tangential to 'directionA'
|
|
btVector3 q;
|
|
btPlaneSpace1(directionA, normalOnB, q);
|
|
}
|
|
else
|
|
{
|
|
// compute the contact normal
|
|
normalOnB = ptsVector * -btRecipSqrt(lenSqr);
|
|
}
|
|
pointOnB = transformB.getOrigin() + offsetB + normalOnB * capsuleRadiusB;
|
|
|
|
return distance;
|
|
}
|
|
|
|
//////////
|
|
|
|
btConvexConvexAlgorithm::CreateFunc::CreateFunc(btConvexPenetrationDepthSolver* pdSolver)
|
|
{
|
|
m_numPerturbationIterations = 0;
|
|
m_minimumPointsPerturbationThreshold = 3;
|
|
m_pdSolver = pdSolver;
|
|
}
|
|
|
|
btConvexConvexAlgorithm::CreateFunc::~CreateFunc()
|
|
{
|
|
}
|
|
|
|
btConvexConvexAlgorithm::btConvexConvexAlgorithm(btPersistentManifold* mf, const btCollisionAlgorithmConstructionInfo& ci, const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, btConvexPenetrationDepthSolver* pdSolver, int numPerturbationIterations, int minimumPointsPerturbationThreshold)
|
|
: btActivatingCollisionAlgorithm(ci, body0Wrap, body1Wrap),
|
|
m_pdSolver(pdSolver),
|
|
m_ownManifold(false),
|
|
m_manifoldPtr(mf),
|
|
m_lowLevelOfDetail(false),
|
|
#ifdef USE_SEPDISTANCE_UTIL2
|
|
m_sepDistance((static_cast<btConvexShape*>(body0->getCollisionShape()))->getAngularMotionDisc(),
|
|
(static_cast<btConvexShape*>(body1->getCollisionShape()))->getAngularMotionDisc()),
|
|
#endif
|
|
m_numPerturbationIterations(numPerturbationIterations),
|
|
m_minimumPointsPerturbationThreshold(minimumPointsPerturbationThreshold)
|
|
{
|
|
(void)body0Wrap;
|
|
(void)body1Wrap;
|
|
}
|
|
|
|
btConvexConvexAlgorithm::~btConvexConvexAlgorithm()
|
|
{
|
|
if (m_ownManifold)
|
|
{
|
|
if (m_manifoldPtr)
|
|
m_dispatcher->releaseManifold(m_manifoldPtr);
|
|
}
|
|
}
|
|
|
|
void btConvexConvexAlgorithm ::setLowLevelOfDetail(bool useLowLevel)
|
|
{
|
|
m_lowLevelOfDetail = useLowLevel;
|
|
}
|
|
|
|
struct btPerturbedContactResult : public btManifoldResult
|
|
{
|
|
btManifoldResult* m_originalManifoldResult;
|
|
btTransform m_transformA;
|
|
btTransform m_transformB;
|
|
btTransform m_unPerturbedTransform;
|
|
bool m_perturbA;
|
|
btIDebugDraw* m_debugDrawer;
|
|
|
|
btPerturbedContactResult(btManifoldResult* originalResult, const btTransform& transformA, const btTransform& transformB, const btTransform& unPerturbedTransform, bool perturbA, btIDebugDraw* debugDrawer)
|
|
: m_originalManifoldResult(originalResult),
|
|
m_transformA(transformA),
|
|
m_transformB(transformB),
|
|
m_unPerturbedTransform(unPerturbedTransform),
|
|
m_perturbA(perturbA),
|
|
m_debugDrawer(debugDrawer)
|
|
{
|
|
}
|
|
virtual ~btPerturbedContactResult()
|
|
{
|
|
}
|
|
|
|
virtual void addContactPoint(const btVector3& normalOnBInWorld, const btVector3& pointInWorld, btScalar orgDepth)
|
|
{
|
|
btVector3 endPt, startPt;
|
|
btScalar newDepth;
|
|
btVector3 newNormal;
|
|
|
|
if (m_perturbA)
|
|
{
|
|
btVector3 endPtOrg = pointInWorld + normalOnBInWorld * orgDepth;
|
|
endPt = (m_unPerturbedTransform * m_transformA.inverse())(endPtOrg);
|
|
newDepth = (endPt - pointInWorld).dot(normalOnBInWorld);
|
|
startPt = endPt - normalOnBInWorld * newDepth;
|
|
}
|
|
else
|
|
{
|
|
endPt = pointInWorld + normalOnBInWorld * orgDepth;
|
|
startPt = (m_unPerturbedTransform * m_transformB.inverse())(pointInWorld);
|
|
newDepth = (endPt - startPt).dot(normalOnBInWorld);
|
|
}
|
|
|
|
//#define DEBUG_CONTACTS 1
|
|
#ifdef DEBUG_CONTACTS
|
|
m_debugDrawer->drawLine(startPt, endPt, btVector3(1, 0, 0));
|
|
m_debugDrawer->drawSphere(startPt, 0.05, btVector3(0, 1, 0));
|
|
m_debugDrawer->drawSphere(endPt, 0.05, btVector3(0, 0, 1));
|
|
#endif //DEBUG_CONTACTS
|
|
|
|
m_originalManifoldResult->addContactPoint(normalOnBInWorld, startPt, newDepth);
|
|
}
|
|
};
|
|
|
|
extern btScalar gContactBreakingThreshold;
|
|
|
|
//
|
|
// Convex-Convex collision algorithm
|
|
//
|
|
void btConvexConvexAlgorithm ::processCollision(const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, const btDispatcherInfo& dispatchInfo, btManifoldResult* resultOut)
|
|
{
|
|
if (!m_manifoldPtr)
|
|
{
|
|
//swapped?
|
|
m_manifoldPtr = m_dispatcher->getNewManifold(body0Wrap->getCollisionObject(), body1Wrap->getCollisionObject());
|
|
m_ownManifold = true;
|
|
}
|
|
resultOut->setPersistentManifold(m_manifoldPtr);
|
|
|
|
//comment-out next line to test multi-contact generation
|
|
//resultOut->getPersistentManifold()->clearManifold();
|
|
|
|
const btConvexShape* min0 = static_cast<const btConvexShape*>(body0Wrap->getCollisionShape());
|
|
const btConvexShape* min1 = static_cast<const btConvexShape*>(body1Wrap->getCollisionShape());
|
|
|
|
btVector3 normalOnB;
|
|
btVector3 pointOnBWorld;
|
|
#ifndef BT_DISABLE_CAPSULE_CAPSULE_COLLIDER
|
|
if ((min0->getShapeType() == CAPSULE_SHAPE_PROXYTYPE) && (min1->getShapeType() == CAPSULE_SHAPE_PROXYTYPE))
|
|
{
|
|
//m_manifoldPtr->clearManifold();
|
|
|
|
btCapsuleShape* capsuleA = (btCapsuleShape*)min0;
|
|
btCapsuleShape* capsuleB = (btCapsuleShape*)min1;
|
|
|
|
btScalar threshold = m_manifoldPtr->getContactBreakingThreshold()+ resultOut->m_closestPointDistanceThreshold;
|
|
|
|
btScalar dist = capsuleCapsuleDistance(normalOnB, pointOnBWorld, capsuleA->getHalfHeight(), capsuleA->getRadius(),
|
|
capsuleB->getHalfHeight(), capsuleB->getRadius(), capsuleA->getUpAxis(), capsuleB->getUpAxis(),
|
|
body0Wrap->getWorldTransform(), body1Wrap->getWorldTransform(), threshold);
|
|
|
|
if (dist < threshold)
|
|
{
|
|
btAssert(normalOnB.length2() >= (SIMD_EPSILON * SIMD_EPSILON));
|
|
resultOut->addContactPoint(normalOnB, pointOnBWorld, dist);
|
|
}
|
|
resultOut->refreshContactPoints();
|
|
return;
|
|
}
|
|
|
|
if ((min0->getShapeType() == CAPSULE_SHAPE_PROXYTYPE) && (min1->getShapeType() == SPHERE_SHAPE_PROXYTYPE))
|
|
{
|
|
//m_manifoldPtr->clearManifold();
|
|
|
|
btCapsuleShape* capsuleA = (btCapsuleShape*)min0;
|
|
btSphereShape* capsuleB = (btSphereShape*)min1;
|
|
|
|
btScalar threshold = m_manifoldPtr->getContactBreakingThreshold()+ resultOut->m_closestPointDistanceThreshold;
|
|
|
|
btScalar dist = capsuleCapsuleDistance(normalOnB, pointOnBWorld, capsuleA->getHalfHeight(), capsuleA->getRadius(),
|
|
0., capsuleB->getRadius(), capsuleA->getUpAxis(), 1,
|
|
body0Wrap->getWorldTransform(), body1Wrap->getWorldTransform(), threshold);
|
|
|
|
if (dist < threshold)
|
|
{
|
|
btAssert(normalOnB.length2() >= (SIMD_EPSILON * SIMD_EPSILON));
|
|
resultOut->addContactPoint(normalOnB, pointOnBWorld, dist);
|
|
}
|
|
resultOut->refreshContactPoints();
|
|
return;
|
|
}
|
|
|
|
if ((min0->getShapeType() == SPHERE_SHAPE_PROXYTYPE) && (min1->getShapeType() == CAPSULE_SHAPE_PROXYTYPE))
|
|
{
|
|
//m_manifoldPtr->clearManifold();
|
|
|
|
btSphereShape* capsuleA = (btSphereShape*)min0;
|
|
btCapsuleShape* capsuleB = (btCapsuleShape*)min1;
|
|
|
|
btScalar threshold = m_manifoldPtr->getContactBreakingThreshold()+ resultOut->m_closestPointDistanceThreshold;
|
|
|
|
btScalar dist = capsuleCapsuleDistance(normalOnB, pointOnBWorld, 0., capsuleA->getRadius(),
|
|
capsuleB->getHalfHeight(), capsuleB->getRadius(), 1, capsuleB->getUpAxis(),
|
|
body0Wrap->getWorldTransform(), body1Wrap->getWorldTransform(), threshold);
|
|
|
|
if (dist < threshold)
|
|
{
|
|
btAssert(normalOnB.length2() >= (SIMD_EPSILON * SIMD_EPSILON));
|
|
resultOut->addContactPoint(normalOnB, pointOnBWorld, dist);
|
|
}
|
|
resultOut->refreshContactPoints();
|
|
return;
|
|
}
|
|
#endif //BT_DISABLE_CAPSULE_CAPSULE_COLLIDER
|
|
|
|
#ifdef USE_SEPDISTANCE_UTIL2
|
|
if (dispatchInfo.m_useConvexConservativeDistanceUtil)
|
|
{
|
|
m_sepDistance.updateSeparatingDistance(body0->getWorldTransform(), body1->getWorldTransform());
|
|
}
|
|
|
|
if (!dispatchInfo.m_useConvexConservativeDistanceUtil || m_sepDistance.getConservativeSeparatingDistance() <= 0.f)
|
|
#endif //USE_SEPDISTANCE_UTIL2
|
|
|
|
{
|
|
btGjkPairDetector::ClosestPointInput input;
|
|
btVoronoiSimplexSolver simplexSolver;
|
|
btGjkPairDetector gjkPairDetector(min0, min1, &simplexSolver, m_pdSolver);
|
|
//TODO: if (dispatchInfo.m_useContinuous)
|
|
gjkPairDetector.setMinkowskiA(min0);
|
|
gjkPairDetector.setMinkowskiB(min1);
|
|
|
|
#ifdef USE_SEPDISTANCE_UTIL2
|
|
if (dispatchInfo.m_useConvexConservativeDistanceUtil)
|
|
{
|
|
input.m_maximumDistanceSquared = BT_LARGE_FLOAT;
|
|
}
|
|
else
|
|
#endif //USE_SEPDISTANCE_UTIL2
|
|
{
|
|
//if (dispatchInfo.m_convexMaxDistanceUseCPT)
|
|
//{
|
|
// input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactProcessingThreshold();
|
|
//} else
|
|
//{
|
|
input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold() + resultOut->m_closestPointDistanceThreshold;
|
|
// }
|
|
|
|
input.m_maximumDistanceSquared *= input.m_maximumDistanceSquared;
|
|
}
|
|
|
|
input.m_transformA = body0Wrap->getWorldTransform();
|
|
input.m_transformB = body1Wrap->getWorldTransform();
|
|
|
|
#ifdef USE_SEPDISTANCE_UTIL2
|
|
btScalar sepDist = 0.f;
|
|
if (dispatchInfo.m_useConvexConservativeDistanceUtil)
|
|
{
|
|
sepDist = gjkPairDetector.getCachedSeparatingDistance();
|
|
if (sepDist > SIMD_EPSILON)
|
|
{
|
|
sepDist += dispatchInfo.m_convexConservativeDistanceThreshold;
|
|
//now perturbe directions to get multiple contact points
|
|
}
|
|
}
|
|
#endif //USE_SEPDISTANCE_UTIL2
|
|
|
|
if (min0->isPolyhedral() && min1->isPolyhedral())
|
|
{
|
|
struct btDummyResult : public btDiscreteCollisionDetectorInterface::Result
|
|
{
|
|
btVector3 m_normalOnBInWorld;
|
|
btVector3 m_pointInWorld;
|
|
btScalar m_depth;
|
|
bool m_hasContact;
|
|
|
|
btDummyResult()
|
|
: m_hasContact(false)
|
|
{
|
|
}
|
|
|
|
virtual void setShapeIdentifiersA(int partId0, int index0) {}
|
|
virtual void setShapeIdentifiersB(int partId1, int index1) {}
|
|
virtual void addContactPoint(const btVector3& normalOnBInWorld, const btVector3& pointInWorld, btScalar depth)
|
|
{
|
|
m_hasContact = true;
|
|
m_normalOnBInWorld = normalOnBInWorld;
|
|
m_pointInWorld = pointInWorld;
|
|
m_depth = depth;
|
|
}
|
|
};
|
|
|
|
struct btWithoutMarginResult : public btDiscreteCollisionDetectorInterface::Result
|
|
{
|
|
btDiscreteCollisionDetectorInterface::Result* m_originalResult;
|
|
btVector3 m_reportedNormalOnWorld;
|
|
btScalar m_marginOnA;
|
|
btScalar m_marginOnB;
|
|
btScalar m_reportedDistance;
|
|
|
|
bool m_foundResult;
|
|
btWithoutMarginResult(btDiscreteCollisionDetectorInterface::Result* result, btScalar marginOnA, btScalar marginOnB)
|
|
: m_originalResult(result),
|
|
m_marginOnA(marginOnA),
|
|
m_marginOnB(marginOnB),
|
|
m_foundResult(false)
|
|
{
|
|
}
|
|
|
|
virtual void setShapeIdentifiersA(int partId0, int index0) {}
|
|
virtual void setShapeIdentifiersB(int partId1, int index1) {}
|
|
virtual void addContactPoint(const btVector3& normalOnBInWorld, const btVector3& pointInWorldOrg, btScalar depthOrg)
|
|
{
|
|
m_reportedDistance = depthOrg;
|
|
m_reportedNormalOnWorld = normalOnBInWorld;
|
|
|
|
btVector3 adjustedPointB = pointInWorldOrg - normalOnBInWorld * m_marginOnB;
|
|
m_reportedDistance = depthOrg + (m_marginOnA + m_marginOnB);
|
|
if (m_reportedDistance < 0.f)
|
|
{
|
|
m_foundResult = true;
|
|
}
|
|
m_originalResult->addContactPoint(normalOnBInWorld, adjustedPointB, m_reportedDistance);
|
|
}
|
|
};
|
|
|
|
btDummyResult dummy;
|
|
|
|
///btBoxShape is an exception: its vertices are created WITH margin so don't subtract it
|
|
|
|
btScalar min0Margin = min0->getShapeType() == BOX_SHAPE_PROXYTYPE ? 0.f : min0->getMargin();
|
|
btScalar min1Margin = min1->getShapeType() == BOX_SHAPE_PROXYTYPE ? 0.f : min1->getMargin();
|
|
|
|
btWithoutMarginResult withoutMargin(resultOut, min0Margin, min1Margin);
|
|
|
|
btPolyhedralConvexShape* polyhedronA = (btPolyhedralConvexShape*)min0;
|
|
btPolyhedralConvexShape* polyhedronB = (btPolyhedralConvexShape*)min1;
|
|
if (polyhedronA->getConvexPolyhedron() && polyhedronB->getConvexPolyhedron())
|
|
{
|
|
btScalar threshold = m_manifoldPtr->getContactBreakingThreshold()+ resultOut->m_closestPointDistanceThreshold;
|
|
|
|
btScalar minDist = -1e30f;
|
|
btVector3 sepNormalWorldSpace;
|
|
bool foundSepAxis = true;
|
|
|
|
if (dispatchInfo.m_enableSatConvex)
|
|
{
|
|
foundSepAxis = btPolyhedralContactClipping::findSeparatingAxis(
|
|
*polyhedronA->getConvexPolyhedron(), *polyhedronB->getConvexPolyhedron(),
|
|
body0Wrap->getWorldTransform(),
|
|
body1Wrap->getWorldTransform(),
|
|
sepNormalWorldSpace, *resultOut);
|
|
}
|
|
else
|
|
{
|
|
#ifdef ZERO_MARGIN
|
|
gjkPairDetector.setIgnoreMargin(true);
|
|
gjkPairDetector.getClosestPoints(input, *resultOut, dispatchInfo.m_debugDraw);
|
|
#else
|
|
|
|
gjkPairDetector.getClosestPoints(input, withoutMargin, dispatchInfo.m_debugDraw);
|
|
//gjkPairDetector.getClosestPoints(input,dummy,dispatchInfo.m_debugDraw);
|
|
#endif //ZERO_MARGIN
|
|
//btScalar l2 = gjkPairDetector.getCachedSeparatingAxis().length2();
|
|
//if (l2>SIMD_EPSILON)
|
|
{
|
|
sepNormalWorldSpace = withoutMargin.m_reportedNormalOnWorld; //gjkPairDetector.getCachedSeparatingAxis()*(1.f/l2);
|
|
//minDist = -1e30f;//gjkPairDetector.getCachedSeparatingDistance();
|
|
minDist = withoutMargin.m_reportedDistance; //gjkPairDetector.getCachedSeparatingDistance()+min0->getMargin()+min1->getMargin();
|
|
|
|
#ifdef ZERO_MARGIN
|
|
foundSepAxis = true; //gjkPairDetector.getCachedSeparatingDistance()<0.f;
|
|
#else
|
|
foundSepAxis = withoutMargin.m_foundResult && minDist < 0; //-(min0->getMargin()+min1->getMargin());
|
|
#endif
|
|
}
|
|
}
|
|
if (foundSepAxis)
|
|
{
|
|
// printf("sepNormalWorldSpace=%f,%f,%f\n",sepNormalWorldSpace.getX(),sepNormalWorldSpace.getY(),sepNormalWorldSpace.getZ());
|
|
|
|
worldVertsB1.resize(0);
|
|
btPolyhedralContactClipping::clipHullAgainstHull(sepNormalWorldSpace, *polyhedronA->getConvexPolyhedron(), *polyhedronB->getConvexPolyhedron(),
|
|
body0Wrap->getWorldTransform(),
|
|
body1Wrap->getWorldTransform(), minDist - threshold, threshold, worldVertsB1, worldVertsB2,
|
|
*resultOut);
|
|
}
|
|
if (m_ownManifold)
|
|
{
|
|
resultOut->refreshContactPoints();
|
|
}
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
//we can also deal with convex versus triangle (without connectivity data)
|
|
if (dispatchInfo.m_enableSatConvex && polyhedronA->getConvexPolyhedron() && polyhedronB->getShapeType() == TRIANGLE_SHAPE_PROXYTYPE)
|
|
{
|
|
btVertexArray worldSpaceVertices;
|
|
btTriangleShape* tri = (btTriangleShape*)polyhedronB;
|
|
worldSpaceVertices.push_back(body1Wrap->getWorldTransform() * tri->m_vertices1[0]);
|
|
worldSpaceVertices.push_back(body1Wrap->getWorldTransform() * tri->m_vertices1[1]);
|
|
worldSpaceVertices.push_back(body1Wrap->getWorldTransform() * tri->m_vertices1[2]);
|
|
|
|
//tri->initializePolyhedralFeatures();
|
|
|
|
btScalar threshold = m_manifoldPtr->getContactBreakingThreshold()+ resultOut->m_closestPointDistanceThreshold;
|
|
|
|
btVector3 sepNormalWorldSpace;
|
|
btScalar minDist = -1e30f;
|
|
btScalar maxDist = threshold;
|
|
|
|
bool foundSepAxis = false;
|
|
bool useSatSepNormal = true;
|
|
|
|
if (useSatSepNormal)
|
|
{
|
|
#if 0
|
|
if (0)
|
|
{
|
|
//initializePolyhedralFeatures performs a convex hull computation, not needed for a single triangle
|
|
polyhedronB->initializePolyhedralFeatures();
|
|
} else
|
|
#endif
|
|
{
|
|
btVector3 uniqueEdges[3] = {tri->m_vertices1[1] - tri->m_vertices1[0],
|
|
tri->m_vertices1[2] - tri->m_vertices1[1],
|
|
tri->m_vertices1[0] - tri->m_vertices1[2]};
|
|
|
|
uniqueEdges[0].normalize();
|
|
uniqueEdges[1].normalize();
|
|
uniqueEdges[2].normalize();
|
|
|
|
btConvexPolyhedron polyhedron;
|
|
polyhedron.m_vertices.push_back(tri->m_vertices1[2]);
|
|
polyhedron.m_vertices.push_back(tri->m_vertices1[0]);
|
|
polyhedron.m_vertices.push_back(tri->m_vertices1[1]);
|
|
|
|
{
|
|
btFace combinedFaceA;
|
|
combinedFaceA.m_indices.push_back(0);
|
|
combinedFaceA.m_indices.push_back(1);
|
|
combinedFaceA.m_indices.push_back(2);
|
|
btVector3 faceNormal = uniqueEdges[0].cross(uniqueEdges[1]);
|
|
faceNormal.normalize();
|
|
btScalar planeEq = 1e30f;
|
|
for (int v = 0; v < combinedFaceA.m_indices.size(); v++)
|
|
{
|
|
btScalar eq = tri->m_vertices1[combinedFaceA.m_indices[v]].dot(faceNormal);
|
|
if (planeEq > eq)
|
|
{
|
|
planeEq = eq;
|
|
}
|
|
}
|
|
combinedFaceA.m_plane[0] = faceNormal[0];
|
|
combinedFaceA.m_plane[1] = faceNormal[1];
|
|
combinedFaceA.m_plane[2] = faceNormal[2];
|
|
combinedFaceA.m_plane[3] = -planeEq;
|
|
polyhedron.m_faces.push_back(combinedFaceA);
|
|
}
|
|
{
|
|
btFace combinedFaceB;
|
|
combinedFaceB.m_indices.push_back(0);
|
|
combinedFaceB.m_indices.push_back(2);
|
|
combinedFaceB.m_indices.push_back(1);
|
|
btVector3 faceNormal = -uniqueEdges[0].cross(uniqueEdges[1]);
|
|
faceNormal.normalize();
|
|
btScalar planeEq = 1e30f;
|
|
for (int v = 0; v < combinedFaceB.m_indices.size(); v++)
|
|
{
|
|
btScalar eq = tri->m_vertices1[combinedFaceB.m_indices[v]].dot(faceNormal);
|
|
if (planeEq > eq)
|
|
{
|
|
planeEq = eq;
|
|
}
|
|
}
|
|
|
|
combinedFaceB.m_plane[0] = faceNormal[0];
|
|
combinedFaceB.m_plane[1] = faceNormal[1];
|
|
combinedFaceB.m_plane[2] = faceNormal[2];
|
|
combinedFaceB.m_plane[3] = -planeEq;
|
|
polyhedron.m_faces.push_back(combinedFaceB);
|
|
}
|
|
|
|
polyhedron.m_uniqueEdges.push_back(uniqueEdges[0]);
|
|
polyhedron.m_uniqueEdges.push_back(uniqueEdges[1]);
|
|
polyhedron.m_uniqueEdges.push_back(uniqueEdges[2]);
|
|
polyhedron.initialize2();
|
|
|
|
polyhedronB->setPolyhedralFeatures(polyhedron);
|
|
}
|
|
|
|
foundSepAxis = btPolyhedralContactClipping::findSeparatingAxis(
|
|
*polyhedronA->getConvexPolyhedron(), *polyhedronB->getConvexPolyhedron(),
|
|
body0Wrap->getWorldTransform(),
|
|
body1Wrap->getWorldTransform(),
|
|
sepNormalWorldSpace, *resultOut);
|
|
// printf("sepNormalWorldSpace=%f,%f,%f\n",sepNormalWorldSpace.getX(),sepNormalWorldSpace.getY(),sepNormalWorldSpace.getZ());
|
|
}
|
|
else
|
|
{
|
|
#ifdef ZERO_MARGIN
|
|
gjkPairDetector.setIgnoreMargin(true);
|
|
gjkPairDetector.getClosestPoints(input, *resultOut, dispatchInfo.m_debugDraw);
|
|
#else
|
|
gjkPairDetector.getClosestPoints(input, dummy, dispatchInfo.m_debugDraw);
|
|
#endif //ZERO_MARGIN
|
|
|
|
if (dummy.m_hasContact && dummy.m_depth < 0)
|
|
{
|
|
if (foundSepAxis)
|
|
{
|
|
if (dummy.m_normalOnBInWorld.dot(sepNormalWorldSpace) < 0.99)
|
|
{
|
|
printf("?\n");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
printf("!\n");
|
|
}
|
|
sepNormalWorldSpace.setValue(0, 0, 1); // = dummy.m_normalOnBInWorld;
|
|
//minDist = dummy.m_depth;
|
|
foundSepAxis = true;
|
|
}
|
|
#if 0
|
|
btScalar l2 = gjkPairDetector.getCachedSeparatingAxis().length2();
|
|
if (l2>SIMD_EPSILON)
|
|
{
|
|
sepNormalWorldSpace = gjkPairDetector.getCachedSeparatingAxis()*(1.f/l2);
|
|
//minDist = gjkPairDetector.getCachedSeparatingDistance();
|
|
//maxDist = threshold;
|
|
minDist = gjkPairDetector.getCachedSeparatingDistance()-min0->getMargin()-min1->getMargin();
|
|
foundSepAxis = true;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
if (foundSepAxis)
|
|
{
|
|
worldVertsB2.resize(0);
|
|
btPolyhedralContactClipping::clipFaceAgainstHull(sepNormalWorldSpace, *polyhedronA->getConvexPolyhedron(),
|
|
body0Wrap->getWorldTransform(), worldSpaceVertices, worldVertsB2, minDist - threshold, maxDist, *resultOut);
|
|
}
|
|
|
|
if (m_ownManifold)
|
|
{
|
|
resultOut->refreshContactPoints();
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
gjkPairDetector.getClosestPoints(input, *resultOut, dispatchInfo.m_debugDraw);
|
|
|
|
//now perform 'm_numPerturbationIterations' collision queries with the perturbated collision objects
|
|
|
|
//perform perturbation when more then 'm_minimumPointsPerturbationThreshold' points
|
|
if (m_numPerturbationIterations && resultOut->getPersistentManifold()->getNumContacts() < m_minimumPointsPerturbationThreshold)
|
|
{
|
|
int i;
|
|
btVector3 v0, v1;
|
|
btVector3 sepNormalWorldSpace;
|
|
btScalar l2 = gjkPairDetector.getCachedSeparatingAxis().length2();
|
|
|
|
if (l2 > SIMD_EPSILON)
|
|
{
|
|
sepNormalWorldSpace = gjkPairDetector.getCachedSeparatingAxis() * (1.f / l2);
|
|
|
|
btPlaneSpace1(sepNormalWorldSpace, v0, v1);
|
|
|
|
bool perturbeA = true;
|
|
const btScalar angleLimit = 0.125f * SIMD_PI;
|
|
btScalar perturbeAngle;
|
|
btScalar radiusA = min0->getAngularMotionDisc();
|
|
btScalar radiusB = min1->getAngularMotionDisc();
|
|
if (radiusA < radiusB)
|
|
{
|
|
perturbeAngle = gContactBreakingThreshold / radiusA;
|
|
perturbeA = true;
|
|
}
|
|
else
|
|
{
|
|
perturbeAngle = gContactBreakingThreshold / radiusB;
|
|
perturbeA = false;
|
|
}
|
|
if (perturbeAngle > angleLimit)
|
|
perturbeAngle = angleLimit;
|
|
|
|
btTransform unPerturbedTransform;
|
|
if (perturbeA)
|
|
{
|
|
unPerturbedTransform = input.m_transformA;
|
|
}
|
|
else
|
|
{
|
|
unPerturbedTransform = input.m_transformB;
|
|
}
|
|
|
|
for (i = 0; i < m_numPerturbationIterations; i++)
|
|
{
|
|
if (v0.length2() > SIMD_EPSILON)
|
|
{
|
|
btQuaternion perturbeRot(v0, perturbeAngle);
|
|
btScalar iterationAngle = i * (SIMD_2_PI / btScalar(m_numPerturbationIterations));
|
|
btQuaternion rotq(sepNormalWorldSpace, iterationAngle);
|
|
|
|
if (perturbeA)
|
|
{
|
|
input.m_transformA.setBasis(btMatrix3x3(rotq.inverse() * perturbeRot * rotq) * body0Wrap->getWorldTransform().getBasis());
|
|
input.m_transformB = body1Wrap->getWorldTransform();
|
|
#ifdef DEBUG_CONTACTS
|
|
dispatchInfo.m_debugDraw->drawTransform(input.m_transformA, 10.0);
|
|
#endif //DEBUG_CONTACTS
|
|
}
|
|
else
|
|
{
|
|
input.m_transformA = body0Wrap->getWorldTransform();
|
|
input.m_transformB.setBasis(btMatrix3x3(rotq.inverse() * perturbeRot * rotq) * body1Wrap->getWorldTransform().getBasis());
|
|
#ifdef DEBUG_CONTACTS
|
|
dispatchInfo.m_debugDraw->drawTransform(input.m_transformB, 10.0);
|
|
#endif
|
|
}
|
|
|
|
btPerturbedContactResult perturbedResultOut(resultOut, input.m_transformA, input.m_transformB, unPerturbedTransform, perturbeA, dispatchInfo.m_debugDraw);
|
|
gjkPairDetector.getClosestPoints(input, perturbedResultOut, dispatchInfo.m_debugDraw);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef USE_SEPDISTANCE_UTIL2
|
|
if (dispatchInfo.m_useConvexConservativeDistanceUtil && (sepDist > SIMD_EPSILON))
|
|
{
|
|
m_sepDistance.initSeparatingDistance(gjkPairDetector.getCachedSeparatingAxis(), sepDist, body0->getWorldTransform(), body1->getWorldTransform());
|
|
}
|
|
#endif //USE_SEPDISTANCE_UTIL2
|
|
}
|
|
|
|
if (m_ownManifold)
|
|
{
|
|
resultOut->refreshContactPoints();
|
|
}
|
|
}
|
|
|
|
bool disableCcd = false;
|
|
btScalar btConvexConvexAlgorithm::calculateTimeOfImpact(btCollisionObject* col0, btCollisionObject* col1, const btDispatcherInfo& dispatchInfo, btManifoldResult* resultOut)
|
|
{
|
|
(void)resultOut;
|
|
(void)dispatchInfo;
|
|
///Rather then checking ALL pairs, only calculate TOI when motion exceeds threshold
|
|
|
|
///Linear motion for one of objects needs to exceed m_ccdSquareMotionThreshold
|
|
///col0->m_worldTransform,
|
|
btScalar resultFraction = btScalar(1.);
|
|
|
|
btScalar squareMot0 = (col0->getInterpolationWorldTransform().getOrigin() - col0->getWorldTransform().getOrigin()).length2();
|
|
btScalar squareMot1 = (col1->getInterpolationWorldTransform().getOrigin() - col1->getWorldTransform().getOrigin()).length2();
|
|
|
|
if (squareMot0 < col0->getCcdSquareMotionThreshold() &&
|
|
squareMot1 < col1->getCcdSquareMotionThreshold())
|
|
return resultFraction;
|
|
|
|
if (disableCcd)
|
|
return btScalar(1.);
|
|
|
|
//An adhoc way of testing the Continuous Collision Detection algorithms
|
|
//One object is approximated as a sphere, to simplify things
|
|
//Starting in penetration should report no time of impact
|
|
//For proper CCD, better accuracy and handling of 'allowed' penetration should be added
|
|
//also the mainloop of the physics should have a kind of toi queue (something like Brian Mirtich's application of Timewarp for Rigidbodies)
|
|
|
|
/// Convex0 against sphere for Convex1
|
|
{
|
|
btConvexShape* convex0 = static_cast<btConvexShape*>(col0->getCollisionShape());
|
|
|
|
btSphereShape sphere1(col1->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
|
|
btConvexCast::CastResult result;
|
|
btVoronoiSimplexSolver voronoiSimplex;
|
|
//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
|
|
///Simplification, one object is simplified as a sphere
|
|
btGjkConvexCast ccd1(convex0, &sphere1, &voronoiSimplex);
|
|
//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
|
|
if (ccd1.calcTimeOfImpact(col0->getWorldTransform(), col0->getInterpolationWorldTransform(),
|
|
col1->getWorldTransform(), col1->getInterpolationWorldTransform(), result))
|
|
{
|
|
//store result.m_fraction in both bodies
|
|
|
|
if (col0->getHitFraction() > result.m_fraction)
|
|
col0->setHitFraction(result.m_fraction);
|
|
|
|
if (col1->getHitFraction() > result.m_fraction)
|
|
col1->setHitFraction(result.m_fraction);
|
|
|
|
if (resultFraction > result.m_fraction)
|
|
resultFraction = result.m_fraction;
|
|
}
|
|
}
|
|
|
|
/// Sphere (for convex0) against Convex1
|
|
{
|
|
btConvexShape* convex1 = static_cast<btConvexShape*>(col1->getCollisionShape());
|
|
|
|
btSphereShape sphere0(col0->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
|
|
btConvexCast::CastResult result;
|
|
btVoronoiSimplexSolver voronoiSimplex;
|
|
//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
|
|
///Simplification, one object is simplified as a sphere
|
|
btGjkConvexCast ccd1(&sphere0, convex1, &voronoiSimplex);
|
|
//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
|
|
if (ccd1.calcTimeOfImpact(col0->getWorldTransform(), col0->getInterpolationWorldTransform(),
|
|
col1->getWorldTransform(), col1->getInterpolationWorldTransform(), result))
|
|
{
|
|
//store result.m_fraction in both bodies
|
|
|
|
if (col0->getHitFraction() > result.m_fraction)
|
|
col0->setHitFraction(result.m_fraction);
|
|
|
|
if (col1->getHitFraction() > result.m_fraction)
|
|
col1->setHitFraction(result.m_fraction);
|
|
|
|
if (resultFraction > result.m_fraction)
|
|
resultFraction = result.m_fraction;
|
|
}
|
|
}
|
|
|
|
return resultFraction;
|
|
}
|