virtualx-engine/modules/gltf/skin_tool.cpp
Lyuma 652ef966f9 Add new scene import option to import as Skeleton
Adds a bool import option `nodes/import_as_skeleton_bones`.
This is supported in all FBX or GLTF document based formats.
It is especially useful for retargeting and importing animations.
2024-02-26 03:06:07 -08:00

811 lines
26 KiB
C++

/**************************************************************************/
/* skin_tool.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "skin_tool.h"
SkinNodeIndex SkinTool::_find_highest_node(Vector<Ref<GLTFNode>> &r_nodes, const Vector<GLTFNodeIndex> &p_subset) {
int highest = -1;
SkinNodeIndex best_node = -1;
for (int i = 0; i < p_subset.size(); ++i) {
const SkinNodeIndex node_i = p_subset[i];
const Ref<GLTFNode> node = r_nodes[node_i];
if (highest == -1 || node->height < highest) {
highest = node->height;
best_node = node_i;
}
}
return best_node;
}
bool SkinTool::_capture_nodes_in_skin(const Vector<Ref<GLTFNode>> &nodes, Ref<GLTFSkin> p_skin, const SkinNodeIndex p_node_index) {
bool found_joint = false;
Ref<GLTFNode> current_node = nodes[p_node_index];
for (int i = 0; i < current_node->children.size(); ++i) {
found_joint |= _capture_nodes_in_skin(nodes, p_skin, current_node->children[i]);
}
if (found_joint) {
// Mark it if we happen to find another skins joint...
if (current_node->joint && p_skin->joints.find(p_node_index) < 0) {
p_skin->joints.push_back(p_node_index);
} else if (p_skin->non_joints.find(p_node_index) < 0) {
p_skin->non_joints.push_back(p_node_index);
}
}
if (p_skin->joints.find(p_node_index) > 0) {
return true;
}
return false;
}
void SkinTool::_capture_nodes_for_multirooted_skin(Vector<Ref<GLTFNode>> &r_nodes, Ref<GLTFSkin> p_skin) {
DisjointSet<SkinNodeIndex> disjoint_set;
for (int i = 0; i < p_skin->joints.size(); ++i) {
const SkinNodeIndex node_index = p_skin->joints[i];
const SkinNodeIndex parent = r_nodes[node_index]->parent;
disjoint_set.insert(node_index);
if (p_skin->joints.find(parent) >= 0) {
disjoint_set.create_union(parent, node_index);
}
}
Vector<SkinNodeIndex> roots;
disjoint_set.get_representatives(roots);
if (roots.size() <= 1) {
return;
}
int maxHeight = -1;
// Determine the max height rooted tree
for (int i = 0; i < roots.size(); ++i) {
const SkinNodeIndex root = roots[i];
if (maxHeight == -1 || r_nodes[root]->height < maxHeight) {
maxHeight = r_nodes[root]->height;
}
}
// Go up the tree till all of the multiple roots of the skin are at the same hierarchy level.
// This sucks, but 99% of all game engines (not just Godot) would have this same issue.
for (int i = 0; i < roots.size(); ++i) {
SkinNodeIndex current_node = roots[i];
while (r_nodes[current_node]->height > maxHeight) {
SkinNodeIndex parent = r_nodes[current_node]->parent;
if (r_nodes[parent]->joint && p_skin->joints.find(parent) < 0) {
p_skin->joints.push_back(parent);
} else if (p_skin->non_joints.find(parent) < 0) {
p_skin->non_joints.push_back(parent);
}
current_node = parent;
}
// replace the roots
roots.write[i] = current_node;
}
// Climb up the tree until they all have the same parent
bool all_same;
do {
all_same = true;
const SkinNodeIndex first_parent = r_nodes[roots[0]]->parent;
for (int i = 1; i < roots.size(); ++i) {
all_same &= (first_parent == r_nodes[roots[i]]->parent);
}
if (!all_same) {
for (int i = 0; i < roots.size(); ++i) {
const SkinNodeIndex current_node = roots[i];
const SkinNodeIndex parent = r_nodes[current_node]->parent;
if (r_nodes[parent]->joint && p_skin->joints.find(parent) < 0) {
p_skin->joints.push_back(parent);
} else if (p_skin->non_joints.find(parent) < 0) {
p_skin->non_joints.push_back(parent);
}
roots.write[i] = parent;
}
}
} while (!all_same);
}
Error SkinTool::_expand_skin(Vector<Ref<GLTFNode>> &r_nodes, Ref<GLTFSkin> p_skin) {
_capture_nodes_for_multirooted_skin(r_nodes, p_skin);
// Grab all nodes that lay in between skin joints/nodes
DisjointSet<GLTFNodeIndex> disjoint_set;
Vector<SkinNodeIndex> all_skin_nodes;
all_skin_nodes.append_array(p_skin->joints);
all_skin_nodes.append_array(p_skin->non_joints);
for (int i = 0; i < all_skin_nodes.size(); ++i) {
const SkinNodeIndex node_index = all_skin_nodes[i];
const SkinNodeIndex parent = r_nodes[node_index]->parent;
disjoint_set.insert(node_index);
if (all_skin_nodes.find(parent) >= 0) {
disjoint_set.create_union(parent, node_index);
}
}
Vector<SkinNodeIndex> out_owners;
disjoint_set.get_representatives(out_owners);
Vector<SkinNodeIndex> out_roots;
for (int i = 0; i < out_owners.size(); ++i) {
Vector<SkinNodeIndex> set;
disjoint_set.get_members(set, out_owners[i]);
const SkinNodeIndex root = _find_highest_node(r_nodes, set);
ERR_FAIL_COND_V(root < 0, FAILED);
out_roots.push_back(root);
}
out_roots.sort();
for (int i = 0; i < out_roots.size(); ++i) {
_capture_nodes_in_skin(r_nodes, p_skin, out_roots[i]);
}
p_skin->roots = out_roots;
return OK;
}
Error SkinTool::_verify_skin(Vector<Ref<GLTFNode>> &r_nodes, Ref<GLTFSkin> p_skin) {
// This may seem duplicated from expand_skins, but this is really a sanity check! (so it kinda is)
// In case additional interpolating logic is added to the skins, this will help ensure that you
// do not cause it to self implode into a fiery blaze
// We are going to re-calculate the root nodes and compare them to the ones saved in the skin,
// then ensure the multiple trees (if they exist) are on the same sublevel
// Grab all nodes that lay in between skin joints/nodes
DisjointSet<GLTFNodeIndex> disjoint_set;
Vector<SkinNodeIndex> all_skin_nodes;
all_skin_nodes.append_array(p_skin->joints);
all_skin_nodes.append_array(p_skin->non_joints);
for (int i = 0; i < all_skin_nodes.size(); ++i) {
const SkinNodeIndex node_index = all_skin_nodes[i];
const SkinNodeIndex parent = r_nodes[node_index]->parent;
disjoint_set.insert(node_index);
if (all_skin_nodes.find(parent) >= 0) {
disjoint_set.create_union(parent, node_index);
}
}
Vector<SkinNodeIndex> out_owners;
disjoint_set.get_representatives(out_owners);
Vector<SkinNodeIndex> out_roots;
for (int i = 0; i < out_owners.size(); ++i) {
Vector<SkinNodeIndex> set;
disjoint_set.get_members(set, out_owners[i]);
const SkinNodeIndex root = _find_highest_node(r_nodes, set);
ERR_FAIL_COND_V(root < 0, FAILED);
out_roots.push_back(root);
}
out_roots.sort();
ERR_FAIL_COND_V(out_roots.is_empty(), FAILED);
// Make sure the roots are the exact same (they better be)
ERR_FAIL_COND_V(out_roots.size() != p_skin->roots.size(), FAILED);
for (int i = 0; i < out_roots.size(); ++i) {
ERR_FAIL_COND_V(out_roots[i] != p_skin->roots[i], FAILED);
}
// Single rooted skin? Perfectly ok!
if (out_roots.size() == 1) {
return OK;
}
// Make sure all parents of a multi-rooted skin are the SAME
const SkinNodeIndex parent = r_nodes[out_roots[0]]->parent;
for (int i = 1; i < out_roots.size(); ++i) {
if (r_nodes[out_roots[i]]->parent != parent) {
return FAILED;
}
}
return OK;
}
void SkinTool::_recurse_children(
Vector<Ref<GLTFNode>> &nodes,
const SkinNodeIndex p_node_index,
RBSet<GLTFNodeIndex> &p_all_skin_nodes,
HashSet<GLTFNodeIndex> &p_child_visited_set) {
if (p_child_visited_set.has(p_node_index)) {
return;
}
p_child_visited_set.insert(p_node_index);
Ref<GLTFNode> current_node = nodes[p_node_index];
for (int i = 0; i < current_node->children.size(); ++i) {
_recurse_children(nodes, current_node->children[i], p_all_skin_nodes, p_child_visited_set);
}
// Continue to use 'current_node' for clarity and direct access.
if (current_node->skin < 0 || current_node->mesh < 0 || !current_node->children.is_empty()) {
p_all_skin_nodes.insert(p_node_index);
}
}
Error SkinTool::_determine_skeletons(
Vector<Ref<GLTFSkin>> &skins,
Vector<Ref<GLTFNode>> &nodes,
Vector<Ref<GLTFSkeleton>> &skeletons,
const Vector<GLTFNodeIndex> &p_single_skeleton_roots) {
if (!p_single_skeleton_roots.is_empty()) {
Ref<GLTFSkin> skin;
skin.instantiate();
skin->set_name("godot_single_skeleton_root");
for (GLTFNodeIndex i = 0; i < p_single_skeleton_roots.size(); i++) {
skin->joints.push_back(p_single_skeleton_roots[i]);
}
skins.push_back(skin);
}
// Using a disjoint set, we are going to potentially combine all skins that are actually branches
// of a main skeleton, or treat skins defining the same set of nodes as ONE skeleton.
// This is another unclear issue caused by the current glTF specification.
DisjointSet<GLTFNodeIndex> skeleton_sets;
for (GLTFSkinIndex skin_i = 0; skin_i < skins.size(); ++skin_i) {
const Ref<GLTFSkin> skin = skins[skin_i];
ERR_CONTINUE(skin.is_null());
HashSet<GLTFNodeIndex> child_visited_set;
RBSet<GLTFNodeIndex> all_skin_nodes;
for (int i = 0; i < skin->joints.size(); ++i) {
all_skin_nodes.insert(skin->joints[i]);
SkinTool::_recurse_children(nodes, skin->joints[i], all_skin_nodes, child_visited_set);
}
for (int i = 0; i < skin->non_joints.size(); ++i) {
all_skin_nodes.insert(skin->non_joints[i]);
SkinTool::_recurse_children(nodes, skin->non_joints[i], all_skin_nodes, child_visited_set);
}
for (GLTFNodeIndex node_index : all_skin_nodes) {
const GLTFNodeIndex parent = nodes[node_index]->parent;
skeleton_sets.insert(node_index);
if (all_skin_nodes.has(parent)) {
skeleton_sets.create_union(parent, node_index);
}
}
// We are going to connect the separate skin subtrees in each skin together
// so that the final roots are entire sets of valid skin trees
for (int i = 1; i < skin->roots.size(); ++i) {
skeleton_sets.create_union(skin->roots[0], skin->roots[i]);
}
}
{ // attempt to joint all touching subsets (siblings/parent are part of another skin)
Vector<SkinNodeIndex> groups_representatives;
skeleton_sets.get_representatives(groups_representatives);
Vector<SkinNodeIndex> highest_group_members;
Vector<Vector<SkinNodeIndex>> groups;
for (int i = 0; i < groups_representatives.size(); ++i) {
Vector<SkinNodeIndex> group;
skeleton_sets.get_members(group, groups_representatives[i]);
highest_group_members.push_back(SkinTool::_find_highest_node(nodes, group));
groups.push_back(group);
}
for (int i = 0; i < highest_group_members.size(); ++i) {
const SkinNodeIndex node_i = highest_group_members[i];
// Attach any siblings together (this needs to be done n^2/2 times)
for (int j = i + 1; j < highest_group_members.size(); ++j) {
const SkinNodeIndex node_j = highest_group_members[j];
// Even if they are siblings under the root! :)
if (nodes[node_i]->parent == nodes[node_j]->parent) {
skeleton_sets.create_union(node_i, node_j);
}
}
// Attach any parenting going on together (we need to do this n^2 times)
const SkinNodeIndex node_i_parent = nodes[node_i]->parent;
if (node_i_parent >= 0) {
for (int j = 0; j < groups.size() && i != j; ++j) {
const Vector<SkinNodeIndex> &group = groups[j];
if (group.find(node_i_parent) >= 0) {
const SkinNodeIndex node_j = highest_group_members[j];
skeleton_sets.create_union(node_i, node_j);
}
}
}
}
}
// At this point, the skeleton groups should be finalized
Vector<SkinNodeIndex> skeleton_owners;
skeleton_sets.get_representatives(skeleton_owners);
// Mark all the skins actual skeletons, after we have merged them
for (SkinSkeletonIndex skel_i = 0; skel_i < skeleton_owners.size(); ++skel_i) {
const SkinNodeIndex skeleton_owner = skeleton_owners[skel_i];
Ref<GLTFSkeleton> skeleton;
skeleton.instantiate();
Vector<SkinNodeIndex> skeleton_nodes;
skeleton_sets.get_members(skeleton_nodes, skeleton_owner);
for (GLTFSkinIndex skin_i = 0; skin_i < skins.size(); ++skin_i) {
Ref<GLTFSkin> skin = skins.write[skin_i];
// If any of the the skeletons nodes exist in a skin, that skin now maps to the skeleton
for (int i = 0; i < skeleton_nodes.size(); ++i) {
SkinNodeIndex skel_node_i = skeleton_nodes[i];
if (skin->joints.find(skel_node_i) >= 0 || skin->non_joints.find(skel_node_i) >= 0) {
skin->skeleton = skel_i;
continue;
}
}
}
Vector<SkinNodeIndex> non_joints;
for (int i = 0; i < skeleton_nodes.size(); ++i) {
const SkinNodeIndex node_i = skeleton_nodes[i];
if (nodes[node_i]->joint) {
skeleton->joints.push_back(node_i);
} else {
non_joints.push_back(node_i);
}
}
skeletons.push_back(skeleton);
SkinTool::_reparent_non_joint_skeleton_subtrees(nodes, skeletons.write[skel_i], non_joints);
}
for (SkinSkeletonIndex skel_i = 0; skel_i < skeletons.size(); ++skel_i) {
Ref<GLTFSkeleton> skeleton = skeletons.write[skel_i];
for (int i = 0; i < skeleton->joints.size(); ++i) {
const SkinNodeIndex node_i = skeleton->joints[i];
Ref<GLTFNode> node = nodes[node_i];
ERR_FAIL_COND_V(!node->joint, ERR_PARSE_ERROR);
ERR_FAIL_COND_V(node->skeleton >= 0, ERR_PARSE_ERROR);
node->skeleton = skel_i;
}
ERR_FAIL_COND_V(SkinTool::_determine_skeleton_roots(nodes, skeletons, skel_i), ERR_PARSE_ERROR);
}
return OK;
}
Error SkinTool::_reparent_non_joint_skeleton_subtrees(
Vector<Ref<GLTFNode>> &nodes,
Ref<GLTFSkeleton> p_skeleton,
const Vector<SkinNodeIndex> &p_non_joints) {
DisjointSet<GLTFNodeIndex> subtree_set;
// Populate the disjoint set with ONLY non joints that are in the skeleton hierarchy (non_joints vector)
// This way we can find any joints that lie in between joints, as the current glTF specification
// mentions nothing about non-joints being in between joints of the same skin. Hopefully one day we
// can remove this code.
// skinD depicted here explains this issue:
// https://github.com/KhronosGroup/glTF-Asset-Generator/blob/master/Output/Positive/Animation_Skin
for (int i = 0; i < p_non_joints.size(); ++i) {
const SkinNodeIndex node_i = p_non_joints[i];
subtree_set.insert(node_i);
const SkinNodeIndex parent_i = nodes[node_i]->parent;
if (parent_i >= 0 && p_non_joints.find(parent_i) >= 0 && !nodes[parent_i]->joint) {
subtree_set.create_union(parent_i, node_i);
}
}
// Find all the non joint subtrees and re-parent them to a new "fake" joint
Vector<SkinNodeIndex> non_joint_subtree_roots;
subtree_set.get_representatives(non_joint_subtree_roots);
for (int root_i = 0; root_i < non_joint_subtree_roots.size(); ++root_i) {
const SkinNodeIndex subtree_root = non_joint_subtree_roots[root_i];
Vector<SkinNodeIndex> subtree_nodes;
subtree_set.get_members(subtree_nodes, subtree_root);
for (int subtree_i = 0; subtree_i < subtree_nodes.size(); ++subtree_i) {
Ref<GLTFNode> node = nodes[subtree_nodes[subtree_i]];
node->joint = true;
// Add the joint to the skeletons joints
p_skeleton->joints.push_back(subtree_nodes[subtree_i]);
}
}
return OK;
}
Error SkinTool::_determine_skeleton_roots(
Vector<Ref<GLTFNode>> &nodes,
Vector<Ref<GLTFSkeleton>> &skeletons,
const SkinSkeletonIndex p_skel_i) {
DisjointSet<GLTFNodeIndex> disjoint_set;
for (SkinNodeIndex i = 0; i < nodes.size(); ++i) {
const Ref<GLTFNode> node = nodes[i];
if (node->skeleton != p_skel_i) {
continue;
}
disjoint_set.insert(i);
if (node->parent >= 0 && nodes[node->parent]->skeleton == p_skel_i) {
disjoint_set.create_union(node->parent, i);
}
}
Ref<GLTFSkeleton> skeleton = skeletons.write[p_skel_i];
Vector<SkinNodeIndex> representatives;
disjoint_set.get_representatives(representatives);
Vector<SkinNodeIndex> roots;
for (int i = 0; i < representatives.size(); ++i) {
Vector<SkinNodeIndex> set;
disjoint_set.get_members(set, representatives[i]);
const SkinNodeIndex root = _find_highest_node(nodes, set);
ERR_FAIL_COND_V(root < 0, FAILED);
roots.push_back(root);
}
roots.sort();
skeleton->roots = roots;
if (roots.size() == 0) {
return FAILED;
} else if (roots.size() == 1) {
return OK;
}
// Check that the subtrees have the same parent root
const SkinNodeIndex parent = nodes[roots[0]]->parent;
for (int i = 1; i < roots.size(); ++i) {
if (nodes[roots[i]]->parent != parent) {
return FAILED;
}
}
return OK;
}
Error SkinTool::_create_skeletons(
HashSet<String> &unique_names,
Vector<Ref<GLTFSkin>> &skins,
Vector<Ref<GLTFNode>> &nodes,
HashMap<ObjectID, GLTFSkeletonIndex> &skeleton3d_to_gltf_skeleton,
Vector<Ref<GLTFSkeleton>> &skeletons,
HashMap<GLTFNodeIndex, Node *> &scene_nodes) {
for (SkinSkeletonIndex skel_i = 0; skel_i < skeletons.size(); ++skel_i) {
Ref<GLTFSkeleton> gltf_skeleton = skeletons.write[skel_i];
Skeleton3D *skeleton = memnew(Skeleton3D);
gltf_skeleton->godot_skeleton = skeleton;
skeleton3d_to_gltf_skeleton[skeleton->get_instance_id()] = skel_i;
// Make a unique name, no gltf node represents this skeleton
skeleton->set_name("Skeleton3D");
List<GLTFNodeIndex> bones;
for (int i = 0; i < gltf_skeleton->roots.size(); ++i) {
bones.push_back(gltf_skeleton->roots[i]);
}
// Make the skeleton creation deterministic by going through the roots in
// a sorted order, and DEPTH FIRST
bones.sort();
while (!bones.is_empty()) {
const SkinNodeIndex node_i = bones.front()->get();
bones.pop_front();
Ref<GLTFNode> node = nodes[node_i];
ERR_FAIL_COND_V(node->skeleton != skel_i, FAILED);
{ // Add all child nodes to the stack (deterministically)
Vector<SkinNodeIndex> child_nodes;
for (int i = 0; i < node->children.size(); ++i) {
const SkinNodeIndex child_i = node->children[i];
if (nodes[child_i]->skeleton == skel_i) {
child_nodes.push_back(child_i);
}
}
// Depth first insertion
child_nodes.sort();
for (int i = child_nodes.size() - 1; i >= 0; --i) {
bones.push_front(child_nodes[i]);
}
}
const int bone_index = skeleton->get_bone_count();
if (node->get_name().is_empty()) {
node->set_name("bone");
}
node->set_name(_gen_unique_bone_name(unique_names, node->get_name()));
skeleton->add_bone(node->get_name());
Transform3D rest_transform = node->get_additional_data("GODOT_rest_transform");
skeleton->set_bone_rest(bone_index, rest_transform);
skeleton->set_bone_pose_position(bone_index, node->transform.origin);
skeleton->set_bone_pose_rotation(bone_index, node->transform.basis.get_rotation_quaternion());
skeleton->set_bone_pose_scale(bone_index, node->transform.basis.get_scale());
if (node->parent >= 0 && nodes[node->parent]->skeleton == skel_i) {
const int bone_parent = skeleton->find_bone(nodes[node->parent]->get_name());
ERR_FAIL_COND_V(bone_parent < 0, FAILED);
skeleton->set_bone_parent(bone_index, skeleton->find_bone(nodes[node->parent]->get_name()));
}
scene_nodes.insert(node_i, skeleton);
}
}
ERR_FAIL_COND_V(_map_skin_joints_indices_to_skeleton_bone_indices(skins, skeletons, nodes), ERR_PARSE_ERROR);
return OK;
}
Error SkinTool::_map_skin_joints_indices_to_skeleton_bone_indices(
Vector<Ref<GLTFSkin>> &skins,
Vector<Ref<GLTFSkeleton>> &skeletons,
Vector<Ref<GLTFNode>> &nodes) {
for (GLTFSkinIndex skin_i = 0; skin_i < skins.size(); ++skin_i) {
Ref<GLTFSkin> skin = skins.write[skin_i];
ERR_CONTINUE(skin.is_null());
Ref<GLTFSkeleton> skeleton = skeletons[skin->skeleton];
for (int joint_index = 0; joint_index < skin->joints_original.size(); ++joint_index) {
const SkinNodeIndex node_i = skin->joints_original[joint_index];
const Ref<GLTFNode> node = nodes[node_i];
const int bone_index = skeleton->godot_skeleton->find_bone(node->get_name());
ERR_FAIL_COND_V(bone_index < 0, FAILED);
skin->joint_i_to_bone_i.insert(joint_index, bone_index);
}
}
return OK;
}
Error SkinTool::_create_skins(Vector<Ref<GLTFSkin>> &skins, Vector<Ref<GLTFNode>> &nodes, bool use_named_skin_binds, HashSet<String> &unique_names) {
for (GLTFSkinIndex skin_i = 0; skin_i < skins.size(); ++skin_i) {
Ref<GLTFSkin> gltf_skin = skins.write[skin_i];
ERR_CONTINUE(gltf_skin.is_null());
Ref<Skin> skin;
skin.instantiate();
// Some skins don't have IBM's! What absolute monsters!
const bool has_ibms = !gltf_skin->inverse_binds.is_empty();
for (int joint_i = 0; joint_i < gltf_skin->joints_original.size(); ++joint_i) {
SkinNodeIndex node = gltf_skin->joints_original[joint_i];
String bone_name = nodes[node]->get_name();
Transform3D xform;
if (has_ibms) {
xform = gltf_skin->inverse_binds[joint_i];
}
if (use_named_skin_binds) {
skin->add_named_bind(bone_name, xform);
} else {
int32_t bone_i = gltf_skin->joint_i_to_bone_i[joint_i];
skin->add_bind(bone_i, xform);
}
}
gltf_skin->godot_skin = skin;
}
// Purge the duplicates!
_remove_duplicate_skins(skins);
// Create unique names now, after removing duplicates
for (GLTFSkinIndex skin_i = 0; skin_i < skins.size(); ++skin_i) {
ERR_CONTINUE(skins.get(skin_i).is_null());
Ref<Skin> skin = skins.write[skin_i]->godot_skin;
ERR_CONTINUE(skin.is_null());
if (skin->get_name().is_empty()) {
// Make a unique name, no node represents this skin
skin->set_name(_gen_unique_name(unique_names, "Skin"));
}
}
return OK;
}
// FIXME: Duplicated from FBXDocument, very similar code in GLTFDocument too,
// and even below in this class for bone names.
String SkinTool::_gen_unique_name(HashSet<String> &unique_names, const String &p_name) {
const String s_name = p_name.validate_node_name();
String u_name;
int index = 1;
while (true) {
u_name = s_name;
if (index > 1) {
u_name += itos(index);
}
if (!unique_names.has(u_name)) {
break;
}
index++;
}
unique_names.insert(u_name);
return u_name;
}
bool SkinTool::_skins_are_same(const Ref<Skin> p_skin_a, const Ref<Skin> p_skin_b) {
if (p_skin_a->get_bind_count() != p_skin_b->get_bind_count()) {
return false;
}
for (int i = 0; i < p_skin_a->get_bind_count(); ++i) {
if (p_skin_a->get_bind_bone(i) != p_skin_b->get_bind_bone(i)) {
return false;
}
if (p_skin_a->get_bind_name(i) != p_skin_b->get_bind_name(i)) {
return false;
}
Transform3D a_xform = p_skin_a->get_bind_pose(i);
Transform3D b_xform = p_skin_b->get_bind_pose(i);
if (a_xform != b_xform) {
return false;
}
}
return true;
}
void SkinTool::_remove_duplicate_skins(Vector<Ref<GLTFSkin>> &r_skins) {
for (int i = 0; i < r_skins.size(); ++i) {
for (int j = i + 1; j < r_skins.size(); ++j) {
const Ref<Skin> skin_i = r_skins[i]->godot_skin;
const Ref<Skin> skin_j = r_skins[j]->godot_skin;
if (_skins_are_same(skin_i, skin_j)) {
// replace it and delete the old
r_skins.write[j]->godot_skin = skin_i;
}
}
}
}
String SkinTool::_gen_unique_bone_name(HashSet<String> &r_unique_names, const String &p_name) {
String s_name = _sanitize_bone_name(p_name);
if (s_name.is_empty()) {
s_name = "bone";
}
String u_name;
int index = 1;
while (true) {
u_name = s_name;
if (index > 1) {
u_name += "_" + itos(index);
}
if (!r_unique_names.has(u_name)) {
break;
}
index++;
}
r_unique_names.insert(u_name);
return u_name;
}
Error SkinTool::_asset_parse_skins(
const Vector<SkinNodeIndex> &input_skin_indices,
const Vector<Ref<GLTFSkin>> &input_skins,
const Vector<Ref<GLTFNode>> &input_nodes,
Vector<SkinNodeIndex> &output_skin_indices,
Vector<Ref<GLTFSkin>> &output_skins,
HashMap<GLTFNodeIndex, bool> &joint_mapping) {
output_skin_indices.clear();
output_skins.clear();
joint_mapping.clear();
for (int i = 0; i < input_skin_indices.size(); ++i) {
SkinNodeIndex skin_index = input_skin_indices[i];
if (skin_index >= 0 && skin_index < input_skins.size()) {
output_skin_indices.push_back(skin_index);
output_skins.push_back(input_skins[skin_index]);
Ref<GLTFSkin> skin = input_skins[skin_index];
Vector<SkinNodeIndex> skin_joints = skin->get_joints();
for (int j = 0; j < skin_joints.size(); ++j) {
SkinNodeIndex joint_index = skin_joints[j];
joint_mapping[joint_index] = true;
}
}
}
return OK;
}
String SkinTool::_sanitize_bone_name(const String &p_name) {
String bone_name = p_name;
bone_name = bone_name.replace(":", "_");
bone_name = bone_name.replace("/", "_");
return bone_name;
}