virtualx-engine/modules/lightmapper_rd/lightmapper_rd.h
Dario 47214ea9f5 Optimize lightmapper using triangle clusters on the acceleration structure.
Add an additional layer of indirection to the grid used by the lightmapper to store fixed-size triangle clusters. Greatly speeds up baking times on scenes with high triangle density, as the clusters will help to avoid unnecessary checks when the triangle density is high on the scene.
2023-10-13 17:57:25 -03:00

301 lines
12 KiB
C++

/**************************************************************************/
/* lightmapper_rd.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef LIGHTMAPPER_RD_H
#define LIGHTMAPPER_RD_H
#include "core/templates/local_vector.h"
#include "scene/3d/lightmapper.h"
#include "scene/resources/mesh.h"
#include "servers/rendering/rendering_device.h"
class RDShaderFile;
class LightmapperRD : public Lightmapper {
GDCLASS(LightmapperRD, Lightmapper)
struct BakeParameters {
float world_size[3] = {};
float bias = 0.0;
float to_cell_offset[3] = {};
int32_t grid_size = 0;
float to_cell_size[3] = {};
uint32_t light_count = 0;
float env_transform[12] = {};
int32_t atlas_size[2] = {};
float exposure_normalization = 0.0f;
uint32_t bounces = 0;
float bounce_indirect_energy = 0.0f;
uint32_t pad[3] = {};
};
struct MeshInstance {
MeshData data;
int slice = 0;
Vector2i offset;
};
struct Light {
float position[3] = {};
uint32_t type = LIGHT_TYPE_DIRECTIONAL;
float direction[3] = {};
float energy = 0.0;
float color[3] = {};
float size = 0.0;
float range = 0.0;
float attenuation = 0.0;
float cos_spot_angle = 0.0;
float inv_spot_attenuation = 0.0;
float indirect_energy = 0.0;
float shadow_blur = 0.0;
uint32_t static_bake = 0;
uint32_t pad = 0;
bool operator<(const Light &p_light) const {
return type < p_light.type;
}
};
struct Vertex {
float position[3] = {};
float normal_z = 0.0;
float uv[2] = {};
float normal_xy[2] = {};
bool operator==(const Vertex &p_vtx) const {
return (position[0] == p_vtx.position[0]) &&
(position[1] == p_vtx.position[1]) &&
(position[2] == p_vtx.position[2]) &&
(uv[0] == p_vtx.uv[0]) &&
(uv[1] == p_vtx.uv[1]) &&
(normal_xy[0] == p_vtx.normal_xy[0]) &&
(normal_xy[1] == p_vtx.normal_xy[1]) &&
(normal_z == p_vtx.normal_z);
}
};
struct Edge {
Vector3 a;
Vector3 b;
Vector3 na;
Vector3 nb;
bool operator==(const Edge &p_seam) const {
return a == p_seam.a && b == p_seam.b && na == p_seam.na && nb == p_seam.nb;
}
Edge() {
}
Edge(const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_na, const Vector3 &p_nb) {
a = p_a;
b = p_b;
na = p_na;
nb = p_nb;
}
};
struct Probe {
float position[4] = {};
};
Vector<Probe> probe_positions;
struct EdgeHash {
_FORCE_INLINE_ static uint32_t hash(const Edge &p_edge) {
uint32_t h = hash_murmur3_one_float(p_edge.a.x);
h = hash_murmur3_one_float(p_edge.a.y, h);
h = hash_murmur3_one_float(p_edge.a.z, h);
h = hash_murmur3_one_float(p_edge.b.x, h);
h = hash_murmur3_one_float(p_edge.b.y, h);
h = hash_murmur3_one_float(p_edge.b.z, h);
return h;
}
};
struct EdgeUV2 {
Vector2 a;
Vector2 b;
Vector2i indices;
bool operator==(const EdgeUV2 &p_uv2) const {
return a == p_uv2.a && b == p_uv2.b;
}
bool seam_found = false;
EdgeUV2(Vector2 p_a, Vector2 p_b, Vector2i p_indices) {
a = p_a;
b = p_b;
indices = p_indices;
}
EdgeUV2() {}
};
struct Seam {
Vector2i a;
Vector2i b;
uint32_t slice;
bool operator<(const Seam &p_seam) const {
return slice < p_seam.slice;
}
};
struct VertexHash {
_FORCE_INLINE_ static uint32_t hash(const Vertex &p_vtx) {
uint32_t h = hash_murmur3_one_float(p_vtx.position[0]);
h = hash_murmur3_one_float(p_vtx.position[1], h);
h = hash_murmur3_one_float(p_vtx.position[2], h);
h = hash_murmur3_one_float(p_vtx.uv[0], h);
h = hash_murmur3_one_float(p_vtx.uv[1], h);
h = hash_murmur3_one_float(p_vtx.normal_xy[0], h);
h = hash_murmur3_one_float(p_vtx.normal_xy[1], h);
h = hash_murmur3_one_float(p_vtx.normal_z, h);
return hash_fmix32(h);
}
};
struct Triangle {
uint32_t indices[3] = {};
uint32_t slice = 0;
float min_bounds[3] = {};
float pad0 = 0.0;
float max_bounds[3] = {};
float pad1 = 0.0;
bool operator<(const Triangle &p_triangle) const {
return slice < p_triangle.slice;
}
};
struct ClusterAABB {
float min_bounds[3];
float pad0 = 0.0f;
float max_bounds[3];
float pad1 = 0.0f;
};
Vector<MeshInstance> mesh_instances;
Vector<Light> lights;
struct TriangleSort {
uint32_t cell_index = 0;
uint32_t triangle_index = 0;
AABB triangle_aabb;
bool operator<(const TriangleSort &p_triangle_sort) const {
return cell_index < p_triangle_sort.cell_index; //sorting by triangle index in this case makes no sense
}
};
template <int T>
struct TriangleSortAxis {
bool operator()(const TriangleSort &p_a, const TriangleSort &p_b) const {
return p_a.triangle_aabb.get_center()[T] < p_b.triangle_aabb.get_center()[T];
}
};
void _plot_triangle_into_triangle_index_list(int p_size, const Vector3i &p_ofs, const AABB &p_bounds, const Vector3 p_points[3], uint32_t p_triangle_index, LocalVector<TriangleSort> &triangles, uint32_t p_grid_size);
void _sort_triangle_clusters(uint32_t p_cluster_size, uint32_t p_cluster_index, uint32_t p_index_start, uint32_t p_count, LocalVector<TriangleSort> &p_triangle_sort, LocalVector<ClusterAABB> &p_cluster_aabb);
struct RasterPushConstant {
float atlas_size[2] = {};
float uv_offset[2] = {};
float to_cell_size[3] = {};
uint32_t base_triangle = 0;
float to_cell_offset[3] = {};
float bias = 0.0;
int32_t grid_size[3] = {};
uint32_t pad2 = 0;
};
struct RasterSeamsPushConstant {
uint32_t base_index = 0;
uint32_t slice = 0;
float uv_offset[2] = {};
uint32_t debug = 0;
float blend = 0.0;
uint32_t pad[2] = {};
};
struct PushConstant {
uint32_t atlas_slice = 0;
uint32_t ray_count = 0;
uint32_t ray_from = 0;
uint32_t ray_to = 0;
uint32_t region_ofs[2] = {};
uint32_t probe_count = 0;
uint32_t pad = 0;
};
Vector<Ref<Image>> bake_textures;
Vector<Color> probe_values;
struct DenoiseParams {
float spatial_bandwidth;
float light_bandwidth;
float albedo_bandwidth;
float normal_bandwidth;
float filter_strength;
float pad[3];
};
BakeError _blit_meshes_into_atlas(int p_max_texture_size, Vector<Ref<Image>> &albedo_images, Vector<Ref<Image>> &emission_images, AABB &bounds, Size2i &atlas_size, int &atlas_slices, BakeStepFunc p_step_function, void *p_bake_userdata);
void _create_acceleration_structures(RenderingDevice *rd, Size2i atlas_size, int atlas_slices, AABB &bounds, int grid_size, uint32_t p_cluster_size, Vector<Probe> &probe_positions, GenerateProbes p_generate_probes, Vector<int> &slice_triangle_count, Vector<int> &slice_seam_count, RID &vertex_buffer, RID &triangle_buffer, RID &lights_buffer, RID &r_triangle_indices_buffer, RID &r_cluster_indices_buffer, RID &r_cluster_aabbs_buffer, RID &probe_positions_buffer, RID &grid_texture, RID &seams_buffer, BakeStepFunc p_step_function, void *p_bake_userdata);
void _raster_geometry(RenderingDevice *rd, Size2i atlas_size, int atlas_slices, int grid_size, AABB bounds, float p_bias, Vector<int> slice_triangle_count, RID position_tex, RID unocclude_tex, RID normal_tex, RID raster_depth_buffer, RID rasterize_shader, RID raster_base_uniform);
BakeError _dilate(RenderingDevice *rd, Ref<RDShaderFile> &compute_shader, RID &compute_base_uniform_set, PushConstant &push_constant, RID &source_light_tex, RID &dest_light_tex, const Size2i &atlas_size, int atlas_slices);
BakeError _denoise(RenderingDevice *p_rd, Ref<RDShaderFile> &p_compute_shader, const RID &p_compute_base_uniform_set, PushConstant &p_push_constant, RID p_source_light_tex, RID p_source_normal_tex, RID p_dest_light_tex, float p_denoiser_strength, const Size2i &p_atlas_size, int p_atlas_slices, bool p_bake_sh, BakeStepFunc p_step_function);
Error _store_pfm(RenderingDevice *p_rd, RID p_atlas_tex, int p_index, const Size2i &p_atlas_size, const String &p_name);
Ref<Image> _read_pfm(const String &p_name);
BakeError _denoise_oidn(RenderingDevice *p_rd, RID p_source_light_tex, RID p_source_normal_tex, RID p_dest_light_tex, const Size2i &p_atlas_size, int p_atlas_slices, bool p_bake_sh, const String &p_exe);
public:
virtual void add_mesh(const MeshData &p_mesh) override;
virtual void add_directional_light(bool p_static, const Vector3 &p_direction, const Color &p_color, float p_energy, float p_indirect_energy, float p_angular_distance, float p_shadow_blur) override;
virtual void add_omni_light(bool p_static, const Vector3 &p_position, const Color &p_color, float p_energy, float p_indirect_energy, float p_range, float p_attenuation, float p_size, float p_shadow_blur) override;
virtual void add_spot_light(bool p_static, const Vector3 &p_position, const Vector3 p_direction, const Color &p_color, float p_energy, float p_indirect_energy, float p_range, float p_attenuation, float p_spot_angle, float p_spot_attenuation, float p_size, float p_shadow_blur) override;
virtual void add_probe(const Vector3 &p_position) override;
virtual BakeError bake(BakeQuality p_quality, bool p_use_denoiser, float p_denoiser_strength, int p_bounces, float p_bounce_indirect_energy, float p_bias, int p_max_texture_size, bool p_bake_sh, bool p_texture_for_bounces, GenerateProbes p_generate_probes, const Ref<Image> &p_environment_panorama, const Basis &p_environment_transform, BakeStepFunc p_step_function = nullptr, void *p_bake_userdata = nullptr, float p_exposure_normalization = 1.0) override;
int get_bake_texture_count() const override;
Ref<Image> get_bake_texture(int p_index) const override;
int get_bake_mesh_count() const override;
Variant get_bake_mesh_userdata(int p_index) const override;
Rect2 get_bake_mesh_uv_scale(int p_index) const override;
int get_bake_mesh_texture_slice(int p_index) const override;
int get_bake_probe_count() const override;
Vector3 get_bake_probe_point(int p_probe) const override;
Vector<Color> get_bake_probe_sh(int p_probe) const override;
LightmapperRD();
};
#endif // LIGHTMAPPER_RD_H