virtualx-engine/servers/visual/visual_server_scene.h
lawnjelly 776623d56b Portals - Improve UI and add shortcuts
This PR makes the 'convert rooms' button permanently on the toolbar and accessible whichever node is selected, so you can convert rooms without having to select the RoomManager first.

It also adds a togglable item 'view portal culling' to the 'View' menu which is a simple way of setting the RoomManager 'active' setting without the RoomManager being the selected node.

Both of these have keyboard shortcuts, which should make it much faster to reconvert rooms and edit.

In addition there the string in the 'Perspective' Listbox is modified to show [portals active] when portal culling is operational, for visual feedback. This is updated when you change modes, and when the rooms are invalidated.
2021-08-01 19:54:16 +01:00

744 lines
27 KiB
C++

/*************************************************************************/
/* visual_server_scene.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef VISUALSERVERSCENE_H
#define VISUALSERVERSCENE_H
#include "servers/visual/rasterizer.h"
#include "core/math/bvh.h"
#include "core/math/geometry.h"
#include "core/math/octree.h"
#include "core/os/semaphore.h"
#include "core/os/thread.h"
#include "core/safe_refcount.h"
#include "core/self_list.h"
#include "portals/portal_renderer.h"
#include "servers/arvr/arvr_interface.h"
class VisualServerScene {
public:
enum {
MAX_INSTANCE_CULL = 65536,
MAX_LIGHTS_CULLED = 4096,
MAX_REFLECTION_PROBES_CULLED = 4096,
MAX_ROOM_CULL = 32,
MAX_EXTERIOR_PORTALS = 128,
};
uint64_t render_pass;
static VisualServerScene *singleton;
/* CAMERA API */
struct Camera : public RID_Data {
enum Type {
PERSPECTIVE,
ORTHOGONAL,
FRUSTUM
};
Type type;
float fov;
float znear, zfar;
float size;
Vector2 offset;
uint32_t visible_layers;
bool vaspect;
RID env;
Transform transform;
int32_t previous_room_id_hint;
Camera() {
visible_layers = 0xFFFFFFFF;
fov = 70;
type = PERSPECTIVE;
znear = 0.05;
zfar = 100;
size = 1.0;
offset = Vector2();
vaspect = false;
previous_room_id_hint = -1;
}
};
mutable RID_Owner<Camera> camera_owner;
virtual RID camera_create();
virtual void camera_set_perspective(RID p_camera, float p_fovy_degrees, float p_z_near, float p_z_far);
virtual void camera_set_orthogonal(RID p_camera, float p_size, float p_z_near, float p_z_far);
virtual void camera_set_frustum(RID p_camera, float p_size, Vector2 p_offset, float p_z_near, float p_z_far);
virtual void camera_set_transform(RID p_camera, const Transform &p_transform);
virtual void camera_set_cull_mask(RID p_camera, uint32_t p_layers);
virtual void camera_set_environment(RID p_camera, RID p_env);
virtual void camera_set_use_vertical_aspect(RID p_camera, bool p_enable);
/* SCENARIO API */
struct Instance;
// common interface for all spatial partitioning schemes
// this is a bit excessive boilerplatewise but can be removed if we decide to stick with one method
// note this is actually the BVH id +1, so that visual server can test against zero
// for validity to maintain compatibility with octree (where 0 indicates invalid)
typedef uint32_t SpatialPartitionID;
class SpatialPartitioningScene {
public:
virtual SpatialPartitionID create(Instance *p_userdata, const AABB &p_aabb = AABB(), int p_subindex = 0, bool p_pairable = false, uint32_t p_pairable_type = 0, uint32_t pairable_mask = 1) = 0;
virtual void erase(SpatialPartitionID p_handle) = 0;
virtual void move(SpatialPartitionID p_handle, const AABB &p_aabb) = 0;
virtual void activate(SpatialPartitionID p_handle, const AABB &p_aabb) {}
virtual void deactivate(SpatialPartitionID p_handle) {}
virtual void force_collision_check(SpatialPartitionID p_handle) {}
virtual void update() {}
virtual void update_collisions() {}
virtual void set_pairable(SpatialPartitionID p_handle, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask) = 0;
virtual int cull_convex(const Vector<Plane> &p_convex, Instance **p_result_array, int p_result_max, uint32_t p_mask = 0xFFFFFFFF) = 0;
virtual int cull_aabb(const AABB &p_aabb, Instance **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF) = 0;
virtual int cull_segment(const Vector3 &p_from, const Vector3 &p_to, Instance **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF) = 0;
typedef void *(*PairCallback)(void *, uint32_t, Instance *, int, uint32_t, Instance *, int);
typedef void (*UnpairCallback)(void *, uint32_t, Instance *, int, uint32_t, Instance *, int, void *);
virtual void set_pair_callback(PairCallback p_callback, void *p_userdata) = 0;
virtual void set_unpair_callback(UnpairCallback p_callback, void *p_userdata) = 0;
// bvh specific
virtual void params_set_node_expansion(real_t p_value) {}
virtual void params_set_pairing_expansion(real_t p_value) {}
// octree specific
virtual void set_balance(float p_balance) {}
virtual ~SpatialPartitioningScene() {}
};
class SpatialPartitioningScene_Octree : public SpatialPartitioningScene {
Octree_CL<Instance, true> _octree;
public:
SpatialPartitionID create(Instance *p_userdata, const AABB &p_aabb = AABB(), int p_subindex = 0, bool p_pairable = false, uint32_t p_pairable_type = 0, uint32_t pairable_mask = 1);
void erase(SpatialPartitionID p_handle);
void move(SpatialPartitionID p_handle, const AABB &p_aabb);
void set_pairable(SpatialPartitionID p_handle, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask);
int cull_convex(const Vector<Plane> &p_convex, Instance **p_result_array, int p_result_max, uint32_t p_mask = 0xFFFFFFFF);
int cull_aabb(const AABB &p_aabb, Instance **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF);
int cull_segment(const Vector3 &p_from, const Vector3 &p_to, Instance **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF);
void set_pair_callback(PairCallback p_callback, void *p_userdata);
void set_unpair_callback(UnpairCallback p_callback, void *p_userdata);
void set_balance(float p_balance);
};
class SpatialPartitioningScene_BVH : public SpatialPartitioningScene {
// Note that SpatialPartitionIDs are +1 based when stored in visual server, to enable 0 to indicate invalid ID.
BVH_Manager<Instance, true, 256> _bvh;
public:
SpatialPartitioningScene_BVH();
SpatialPartitionID create(Instance *p_userdata, const AABB &p_aabb = AABB(), int p_subindex = 0, bool p_pairable = false, uint32_t p_pairable_type = 0, uint32_t p_pairable_mask = 1);
void erase(SpatialPartitionID p_handle);
void move(SpatialPartitionID p_handle, const AABB &p_aabb);
void activate(SpatialPartitionID p_handle, const AABB &p_aabb);
void deactivate(SpatialPartitionID p_handle);
void force_collision_check(SpatialPartitionID p_handle);
void update();
void update_collisions();
void set_pairable(SpatialPartitionID p_handle, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask);
int cull_convex(const Vector<Plane> &p_convex, Instance **p_result_array, int p_result_max, uint32_t p_mask = 0xFFFFFFFF);
int cull_aabb(const AABB &p_aabb, Instance **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF);
int cull_segment(const Vector3 &p_from, const Vector3 &p_to, Instance **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF);
void set_pair_callback(PairCallback p_callback, void *p_userdata);
void set_unpair_callback(UnpairCallback p_callback, void *p_userdata);
void params_set_node_expansion(real_t p_value) { _bvh.params_set_node_expansion(p_value); }
void params_set_pairing_expansion(real_t p_value) { _bvh.params_set_pairing_expansion(p_value); }
};
struct Scenario : RID_Data {
VS::ScenarioDebugMode debug;
RID self;
SpatialPartitioningScene *sps;
PortalRenderer _portal_renderer;
List<Instance *> directional_lights;
RID environment;
RID fallback_environment;
RID reflection_probe_shadow_atlas;
RID reflection_atlas;
SelfList<Instance>::List instances;
Scenario();
~Scenario() { memdelete(sps); }
};
mutable RID_Owner<Scenario> scenario_owner;
static void *_instance_pair(void *p_self, SpatialPartitionID, Instance *p_A, int, SpatialPartitionID, Instance *p_B, int);
static void _instance_unpair(void *p_self, SpatialPartitionID, Instance *p_A, int, SpatialPartitionID, Instance *p_B, int, void *);
virtual RID scenario_create();
virtual void scenario_set_debug(RID p_scenario, VS::ScenarioDebugMode p_debug_mode);
virtual void scenario_set_environment(RID p_scenario, RID p_environment);
virtual void scenario_set_fallback_environment(RID p_scenario, RID p_environment);
virtual void scenario_set_reflection_atlas_size(RID p_scenario, int p_size, int p_subdiv);
/* INSTANCING API */
struct InstanceBaseData {
virtual ~InstanceBaseData() {}
};
struct Instance : RasterizerScene::InstanceBase {
RID self;
//scenario stuff
SpatialPartitionID spatial_partition_id;
// rooms & portals
OcclusionHandle occlusion_handle; // handle of instance in occlusion system (or 0)
VisualServer::InstancePortalMode portal_mode;
Scenario *scenario;
SelfList<Instance> scenario_item;
//aabb stuff
bool update_aabb;
bool update_materials;
SelfList<Instance> update_item;
AABB aabb;
AABB transformed_aabb;
AABB *custom_aabb; // <Zylann> would using aabb directly with a bool be better?
float extra_margin;
uint32_t object_id;
float lod_begin;
float lod_end;
float lod_begin_hysteresis;
float lod_end_hysteresis;
RID lod_instance;
uint64_t last_render_pass;
uint64_t last_frame_pass;
uint64_t version; // changes to this, and changes to base increase version
InstanceBaseData *base_data;
virtual void base_removed() {
singleton->instance_set_base(self, RID());
}
virtual void base_changed(bool p_aabb, bool p_materials) {
singleton->_instance_queue_update(this, p_aabb, p_materials);
}
Instance() :
scenario_item(this),
update_item(this) {
spatial_partition_id = 0;
scenario = nullptr;
update_aabb = false;
update_materials = false;
extra_margin = 0;
object_id = 0;
visible = true;
occlusion_handle = 0;
portal_mode = VisualServer::InstancePortalMode::INSTANCE_PORTAL_MODE_STATIC;
lod_begin = 0;
lod_end = 0;
lod_begin_hysteresis = 0;
lod_end_hysteresis = 0;
last_render_pass = 0;
last_frame_pass = 0;
version = 1;
base_data = nullptr;
custom_aabb = nullptr;
}
~Instance() {
if (base_data) {
memdelete(base_data);
}
if (custom_aabb) {
memdelete(custom_aabb);
}
}
};
SelfList<Instance>::List _instance_update_list;
void _instance_queue_update(Instance *p_instance, bool p_update_aabb, bool p_update_materials = false);
struct InstanceGeometryData : public InstanceBaseData {
List<Instance *> lighting;
bool lighting_dirty;
bool can_cast_shadows;
bool material_is_animated;
List<Instance *> reflection_probes;
bool reflection_dirty;
List<Instance *> gi_probes;
bool gi_probes_dirty;
List<Instance *> lightmap_captures;
InstanceGeometryData() {
lighting_dirty = false;
reflection_dirty = true;
can_cast_shadows = true;
material_is_animated = true;
gi_probes_dirty = true;
}
};
struct InstanceReflectionProbeData : public InstanceBaseData {
Instance *owner;
struct PairInfo {
List<Instance *>::Element *L; //reflection iterator in geometry
Instance *geometry;
};
List<PairInfo> geometries;
RID instance;
bool reflection_dirty;
SelfList<InstanceReflectionProbeData> update_list;
int render_step;
int32_t previous_room_id_hint;
InstanceReflectionProbeData() :
update_list(this) {
reflection_dirty = true;
render_step = -1;
previous_room_id_hint = -1;
}
};
SelfList<InstanceReflectionProbeData>::List reflection_probe_render_list;
struct InstanceLightData : public InstanceBaseData {
struct PairInfo {
List<Instance *>::Element *L; //light iterator in geometry
Instance *geometry;
};
RID instance;
uint64_t last_version;
List<Instance *>::Element *D; // directional light in scenario
bool shadow_dirty;
List<PairInfo> geometries;
Instance *baked_light;
int32_t previous_room_id_hint;
InstanceLightData() {
shadow_dirty = true;
D = nullptr;
last_version = 0;
baked_light = nullptr;
previous_room_id_hint = -1;
}
};
struct InstanceGIProbeData : public InstanceBaseData {
Instance *owner;
struct PairInfo {
List<Instance *>::Element *L; //gi probe iterator in geometry
Instance *geometry;
};
List<PairInfo> geometries;
Set<Instance *> lights;
struct LightCache {
VS::LightType type;
Transform transform;
Color color;
float energy;
float radius;
float attenuation;
float spot_angle;
float spot_attenuation;
bool visible;
bool operator==(const LightCache &p_cache) {
return (type == p_cache.type &&
transform == p_cache.transform &&
color == p_cache.color &&
energy == p_cache.energy &&
radius == p_cache.radius &&
attenuation == p_cache.attenuation &&
spot_angle == p_cache.spot_angle &&
spot_attenuation == p_cache.spot_attenuation &&
visible == p_cache.visible);
}
bool operator!=(const LightCache &p_cache) {
return !operator==(p_cache);
}
LightCache() {
type = VS::LIGHT_DIRECTIONAL;
energy = 1.0;
radius = 1.0;
attenuation = 1.0;
spot_angle = 1.0;
spot_attenuation = 1.0;
visible = true;
}
};
struct LocalData {
uint16_t pos[3];
uint16_t energy[3]; //using 0..1024 for float range 0..1. integer is needed for deterministic add/remove of lights
};
struct CompBlockS3TC {
uint32_t offset; //offset in mipmap
uint32_t source_count; //sources
uint32_t sources[16]; //id for each source
uint8_t alpha[8]; //alpha block is pre-computed
};
struct Dynamic {
Map<RID, LightCache> light_cache;
Map<RID, LightCache> light_cache_changes;
PoolVector<int> light_data;
PoolVector<LocalData> local_data;
Vector<Vector<uint32_t>> level_cell_lists;
RID probe_data;
bool enabled;
int bake_dynamic_range;
RasterizerStorage::GIProbeCompression compression;
Vector<PoolVector<uint8_t>> mipmaps_3d;
Vector<PoolVector<CompBlockS3TC>> mipmaps_s3tc; //for s3tc
int updating_stage;
float propagate;
int grid_size[3];
Transform light_to_cell_xform;
} dynamic;
RID probe_instance;
bool invalid;
uint32_t base_version;
SelfList<InstanceGIProbeData> update_element;
InstanceGIProbeData() :
update_element(this) {
invalid = true;
base_version = 0;
dynamic.updating_stage = GI_UPDATE_STAGE_CHECK;
}
};
SelfList<InstanceGIProbeData>::List gi_probe_update_list;
struct InstanceLightmapCaptureData : public InstanceBaseData {
struct PairInfo {
List<Instance *>::Element *L; //iterator in geometry
Instance *geometry;
};
List<PairInfo> geometries;
Set<Instance *> users;
InstanceLightmapCaptureData() {
}
};
int instance_cull_count;
Instance *instance_cull_result[MAX_INSTANCE_CULL];
Instance *instance_shadow_cull_result[MAX_INSTANCE_CULL]; //used for generating shadowmaps
Instance *light_cull_result[MAX_LIGHTS_CULLED];
RID light_instance_cull_result[MAX_LIGHTS_CULLED];
int light_cull_count;
int directional_light_count;
RID reflection_probe_instance_cull_result[MAX_REFLECTION_PROBES_CULLED];
int reflection_probe_cull_count;
RID_Owner<Instance> instance_owner;
virtual RID instance_create();
virtual void instance_set_base(RID p_instance, RID p_base);
virtual void instance_set_scenario(RID p_instance, RID p_scenario);
virtual void instance_set_layer_mask(RID p_instance, uint32_t p_mask);
virtual void instance_set_transform(RID p_instance, const Transform &p_transform);
virtual void instance_attach_object_instance_id(RID p_instance, ObjectID p_id);
virtual void instance_set_blend_shape_weight(RID p_instance, int p_shape, float p_weight);
virtual void instance_set_surface_material(RID p_instance, int p_surface, RID p_material);
virtual void instance_set_visible(RID p_instance, bool p_visible);
virtual void instance_set_use_lightmap(RID p_instance, RID p_lightmap_instance, RID p_lightmap, int p_lightmap_slice, const Rect2 &p_lightmap_uv_rect);
virtual void instance_set_custom_aabb(RID p_instance, AABB p_aabb);
virtual void instance_attach_skeleton(RID p_instance, RID p_skeleton);
virtual void instance_set_exterior(RID p_instance, bool p_enabled);
virtual void instance_set_extra_visibility_margin(RID p_instance, real_t p_margin);
// Portals
virtual void instance_set_portal_mode(RID p_instance, VisualServer::InstancePortalMode p_mode);
bool _instance_get_transformed_aabb(RID p_instance, AABB &r_aabb);
void *_instance_get_from_rid(RID p_instance);
bool _instance_cull_check(VSInstance *p_instance, uint32_t p_cull_mask) const {
uint32_t pairable_type = 1 << ((Instance *)p_instance)->base_type;
return pairable_type & p_cull_mask;
}
ObjectID _instance_get_object_ID(VSInstance *p_instance) const {
if (p_instance) {
return ((Instance *)p_instance)->object_id;
}
return 0;
}
private:
void _instance_create_occlusion_rep(Instance *p_instance);
void _instance_destroy_occlusion_rep(Instance *p_instance);
public:
struct Ghost : RID_Data {
// all interations with actual ghosts are indirect, as the ghost is part of the scenario
Scenario *scenario = nullptr;
uint32_t object_id = 0;
RGhostHandle rghost_handle = 0; // handle in occlusion system (or 0)
AABB aabb;
virtual ~Ghost() {
if (scenario) {
if (rghost_handle) {
scenario->_portal_renderer.rghost_destroy(rghost_handle);
rghost_handle = 0;
}
scenario = nullptr;
}
}
};
RID_Owner<Ghost> ghost_owner;
virtual RID ghost_create();
virtual void ghost_set_scenario(RID p_ghost, RID p_scenario, ObjectID p_id, const AABB &p_aabb);
virtual void ghost_update(RID p_ghost, const AABB &p_aabb);
private:
void _ghost_create_occlusion_rep(Ghost *p_ghost);
void _ghost_destroy_occlusion_rep(Ghost *p_ghost);
public:
struct Portal : RID_Data {
// all interations with actual portals are indirect, as the portal is part of the scenario
uint32_t scenario_portal_id = 0;
Scenario *scenario = nullptr;
virtual ~Portal() {
if (scenario) {
scenario->_portal_renderer.portal_destroy(scenario_portal_id);
scenario = nullptr;
scenario_portal_id = 0;
}
}
};
RID_Owner<Portal> portal_owner;
virtual RID portal_create();
virtual void portal_set_scenario(RID p_portal, RID p_scenario);
virtual void portal_set_geometry(RID p_portal, const Vector<Vector3> &p_points, real_t p_margin);
virtual void portal_link(RID p_portal, RID p_room_from, RID p_room_to, bool p_two_way);
virtual void portal_set_active(RID p_portal, bool p_active);
// RoomGroups
struct RoomGroup : RID_Data {
// all interations with actual roomgroups are indirect, as the roomgroup is part of the scenario
uint32_t scenario_roomgroup_id = 0;
Scenario *scenario = nullptr;
virtual ~RoomGroup() {
if (scenario) {
scenario->_portal_renderer.roomgroup_destroy(scenario_roomgroup_id);
scenario = nullptr;
scenario_roomgroup_id = 0;
}
}
};
RID_Owner<RoomGroup> roomgroup_owner;
virtual RID roomgroup_create();
virtual void roomgroup_prepare(RID p_roomgroup, ObjectID p_roomgroup_object_id);
virtual void roomgroup_set_scenario(RID p_roomgroup, RID p_scenario);
virtual void roomgroup_add_room(RID p_roomgroup, RID p_room);
// Rooms
struct Room : RID_Data {
// all interations with actual rooms are indirect, as the room is part of the scenario
uint32_t scenario_room_id = 0;
Scenario *scenario = nullptr;
virtual ~Room() {
if (scenario) {
scenario->_portal_renderer.room_destroy(scenario_room_id);
scenario = nullptr;
scenario_room_id = 0;
}
}
};
RID_Owner<Room> room_owner;
virtual RID room_create();
virtual void room_set_scenario(RID p_room, RID p_scenario);
virtual void room_add_instance(RID p_room, RID p_instance, const AABB &p_aabb, const Vector<Vector3> &p_object_pts);
virtual void room_add_ghost(RID p_room, ObjectID p_object_id, const AABB &p_aabb);
virtual void room_set_bound(RID p_room, ObjectID p_room_object_id, const Vector<Plane> &p_convex, const AABB &p_aabb, const Vector<Vector3> &p_verts);
virtual void room_prepare(RID p_room, int32_t p_priority);
virtual void rooms_and_portals_clear(RID p_scenario);
virtual void rooms_unload(RID p_scenario);
virtual void rooms_finalize(RID p_scenario, bool p_generate_pvs, bool p_cull_using_pvs, bool p_use_secondary_pvs, bool p_use_signals, String p_pvs_filename);
virtual void rooms_override_camera(RID p_scenario, bool p_override, const Vector3 &p_point, const Vector<Plane> *p_convex);
virtual void rooms_set_active(RID p_scenario, bool p_active);
virtual void rooms_set_params(RID p_scenario, int p_portal_depth_limit);
virtual void rooms_set_debug_feature(RID p_scenario, VisualServer::RoomsDebugFeature p_feature, bool p_active);
virtual void rooms_update_gameplay_monitor(RID p_scenario, const Vector<Vector3> &p_camera_positions);
// don't use this in a game
virtual bool rooms_is_loaded(RID p_scenario) const;
virtual void callbacks_register(VisualServerCallbacks *p_callbacks);
VisualServerCallbacks *get_callbacks() const { return _visual_server_callbacks; }
// don't use these in a game!
virtual Vector<ObjectID> instances_cull_aabb(const AABB &p_aabb, RID p_scenario = RID()) const;
virtual Vector<ObjectID> instances_cull_ray(const Vector3 &p_from, const Vector3 &p_to, RID p_scenario = RID()) const;
virtual Vector<ObjectID> instances_cull_convex(const Vector<Plane> &p_convex, RID p_scenario = RID()) const;
// internal (uses portals when available)
int _cull_convex_from_point(Scenario *p_scenario, const Vector3 &p_point, const Vector<Plane> &p_convex, Instance **p_result_array, int p_result_max, int32_t &r_previous_room_id_hint, uint32_t p_mask = 0xFFFFFFFF);
void _rooms_instance_update(Instance *p_instance, const AABB &p_aabb);
virtual void instance_geometry_set_flag(RID p_instance, VS::InstanceFlags p_flags, bool p_enabled);
virtual void instance_geometry_set_cast_shadows_setting(RID p_instance, VS::ShadowCastingSetting p_shadow_casting_setting);
virtual void instance_geometry_set_material_override(RID p_instance, RID p_material);
virtual void instance_geometry_set_draw_range(RID p_instance, float p_min, float p_max, float p_min_margin, float p_max_margin);
virtual void instance_geometry_set_as_instance_lod(RID p_instance, RID p_as_lod_of_instance);
_FORCE_INLINE_ void _update_instance(Instance *p_instance);
_FORCE_INLINE_ void _update_instance_aabb(Instance *p_instance);
_FORCE_INLINE_ void _update_dirty_instance(Instance *p_instance);
_FORCE_INLINE_ void _update_instance_lightmap_captures(Instance *p_instance);
_FORCE_INLINE_ bool _light_instance_update_shadow(Instance *p_instance, const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_shadow_atlas, Scenario *p_scenario);
void _prepare_scene(const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_force_environment, uint32_t p_visible_layers, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe, int32_t &r_previous_room_id_hint);
void _render_scene(const Transform p_cam_transform, const CameraMatrix &p_cam_projection, const int p_eye, bool p_cam_orthogonal, RID p_force_environment, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe, int p_reflection_probe_pass);
void render_empty_scene(RID p_scenario, RID p_shadow_atlas);
void render_camera(RID p_camera, RID p_scenario, Size2 p_viewport_size, RID p_shadow_atlas);
void render_camera(Ref<ARVRInterface> &p_interface, ARVRInterface::Eyes p_eye, RID p_camera, RID p_scenario, Size2 p_viewport_size, RID p_shadow_atlas);
void update_dirty_instances();
//probes
struct GIProbeDataHeader {
uint32_t version;
uint32_t cell_subdiv;
uint32_t width;
uint32_t height;
uint32_t depth;
uint32_t cell_count;
uint32_t leaf_cell_count;
};
struct GIProbeDataCell {
uint32_t children[8];
uint32_t albedo;
uint32_t emission;
uint32_t normal;
uint32_t level_alpha;
};
enum {
GI_UPDATE_STAGE_CHECK,
GI_UPDATE_STAGE_LIGHTING,
GI_UPDATE_STAGE_UPLOADING,
};
void _gi_probe_bake_thread();
static void _gi_probe_bake_threads(void *);
bool probe_bake_thread_exit;
Thread probe_bake_thread;
Semaphore probe_bake_sem;
Mutex probe_bake_mutex;
List<Instance *> probe_bake_list;
bool _render_reflection_probe_step(Instance *p_instance, int p_step);
void _gi_probe_fill_local_data(int p_idx, int p_level, int p_x, int p_y, int p_z, const GIProbeDataCell *p_cell, const GIProbeDataHeader *p_header, InstanceGIProbeData::LocalData *p_local_data, Vector<uint32_t> *prev_cell);
_FORCE_INLINE_ uint32_t _gi_bake_find_cell(const GIProbeDataCell *cells, int x, int y, int z, int p_cell_subdiv);
void _bake_gi_downscale_light(int p_idx, int p_level, const GIProbeDataCell *p_cells, const GIProbeDataHeader *p_header, InstanceGIProbeData::LocalData *p_local_data, float p_propagate);
void _bake_gi_probe_light(const GIProbeDataHeader *header, const GIProbeDataCell *cells, InstanceGIProbeData::LocalData *local_data, const uint32_t *leaves, int p_leaf_count, const InstanceGIProbeData::LightCache &light_cache, int p_sign);
void _bake_gi_probe(Instance *p_gi_probe);
bool _check_gi_probe(Instance *p_gi_probe);
void _setup_gi_probe(Instance *p_instance);
void render_probes();
bool free(RID p_rid);
private:
bool _use_bvh;
VisualServerCallbacks *_visual_server_callbacks;
public:
VisualServerScene();
virtual ~VisualServerScene();
};
#endif // VISUALSERVERSCENE_H