a7f49ac9a1
Happy new year to the wonderful Godot community! We're starting a new decade with a well-established, non-profit, free and open source game engine, and tons of further improvements in the pipeline from hundreds of contributors. Godot will keep getting better, and we're looking forward to all the games that the community will keep developing and releasing with it.
814 lines
21 KiB
C++
814 lines
21 KiB
C++
/*************************************************************************/
|
|
/* body_sw.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "body_sw.h"
|
|
#include "area_sw.h"
|
|
#include "space_sw.h"
|
|
|
|
void BodySW::_update_inertia() {
|
|
|
|
if (get_space() && !inertia_update_list.in_list())
|
|
get_space()->body_add_to_inertia_update_list(&inertia_update_list);
|
|
}
|
|
|
|
void BodySW::_update_transform_dependant() {
|
|
|
|
center_of_mass = get_transform().basis.xform(center_of_mass_local);
|
|
principal_inertia_axes = get_transform().basis * principal_inertia_axes_local;
|
|
|
|
// update inertia tensor
|
|
Basis tb = principal_inertia_axes;
|
|
Basis tbt = tb.transposed();
|
|
Basis diag;
|
|
diag.scale(_inv_inertia);
|
|
_inv_inertia_tensor = tb * diag * tbt;
|
|
}
|
|
|
|
void BodySW::update_inertias() {
|
|
|
|
//update shapes and motions
|
|
|
|
switch (mode) {
|
|
|
|
case PhysicsServer::BODY_MODE_RIGID: {
|
|
|
|
//update tensor for all shapes, not the best way but should be somehow OK. (inspired from bullet)
|
|
real_t total_area = 0;
|
|
|
|
for (int i = 0; i < get_shape_count(); i++) {
|
|
|
|
total_area += get_shape_area(i);
|
|
}
|
|
|
|
// We have to recompute the center of mass
|
|
center_of_mass_local.zero();
|
|
|
|
for (int i = 0; i < get_shape_count(); i++) {
|
|
real_t area = get_shape_area(i);
|
|
|
|
real_t mass = area * this->mass / total_area;
|
|
|
|
// NOTE: we assume that the shape origin is also its center of mass
|
|
center_of_mass_local += mass * get_shape_transform(i).origin;
|
|
}
|
|
|
|
center_of_mass_local /= mass;
|
|
|
|
// Recompute the inertia tensor
|
|
Basis inertia_tensor;
|
|
inertia_tensor.set_zero();
|
|
|
|
for (int i = 0; i < get_shape_count(); i++) {
|
|
|
|
if (is_shape_disabled(i)) {
|
|
continue;
|
|
}
|
|
|
|
const ShapeSW *shape = get_shape(i);
|
|
|
|
real_t area = get_shape_area(i);
|
|
|
|
real_t mass = area * this->mass / total_area;
|
|
|
|
Basis shape_inertia_tensor = shape->get_moment_of_inertia(mass).to_diagonal_matrix();
|
|
Transform shape_transform = get_shape_transform(i);
|
|
Basis shape_basis = shape_transform.basis.orthonormalized();
|
|
|
|
// NOTE: we don't take the scale of collision shapes into account when computing the inertia tensor!
|
|
shape_inertia_tensor = shape_basis * shape_inertia_tensor * shape_basis.transposed();
|
|
|
|
Vector3 shape_origin = shape_transform.origin - center_of_mass_local;
|
|
inertia_tensor += shape_inertia_tensor + (Basis() * shape_origin.dot(shape_origin) - shape_origin.outer(shape_origin)) * mass;
|
|
}
|
|
|
|
// Compute the principal axes of inertia
|
|
principal_inertia_axes_local = inertia_tensor.diagonalize().transposed();
|
|
_inv_inertia = inertia_tensor.get_main_diagonal().inverse();
|
|
|
|
if (mass)
|
|
_inv_mass = 1.0 / mass;
|
|
else
|
|
_inv_mass = 0;
|
|
|
|
} break;
|
|
|
|
case PhysicsServer::BODY_MODE_KINEMATIC:
|
|
case PhysicsServer::BODY_MODE_STATIC: {
|
|
|
|
_inv_inertia_tensor.set_zero();
|
|
_inv_mass = 0;
|
|
} break;
|
|
case PhysicsServer::BODY_MODE_CHARACTER: {
|
|
|
|
_inv_inertia_tensor.set_zero();
|
|
_inv_mass = 1.0 / mass;
|
|
|
|
} break;
|
|
}
|
|
|
|
//_update_shapes();
|
|
|
|
_update_transform_dependant();
|
|
}
|
|
|
|
void BodySW::set_active(bool p_active) {
|
|
|
|
if (active == p_active)
|
|
return;
|
|
|
|
active = p_active;
|
|
if (!p_active) {
|
|
if (get_space())
|
|
get_space()->body_remove_from_active_list(&active_list);
|
|
} else {
|
|
if (mode == PhysicsServer::BODY_MODE_STATIC)
|
|
return; //static bodies can't become active
|
|
if (get_space())
|
|
get_space()->body_add_to_active_list(&active_list);
|
|
|
|
//still_time=0;
|
|
}
|
|
/*
|
|
if (!space)
|
|
return;
|
|
|
|
for(int i=0;i<get_shape_count();i++) {
|
|
Shape &s=shapes[i];
|
|
if (s.bpid>0) {
|
|
get_space()->get_broadphase()->set_active(s.bpid,active);
|
|
}
|
|
}
|
|
*/
|
|
}
|
|
|
|
void BodySW::set_param(PhysicsServer::BodyParameter p_param, real_t p_value) {
|
|
|
|
switch (p_param) {
|
|
case PhysicsServer::BODY_PARAM_BOUNCE: {
|
|
|
|
bounce = p_value;
|
|
} break;
|
|
case PhysicsServer::BODY_PARAM_FRICTION: {
|
|
|
|
friction = p_value;
|
|
} break;
|
|
case PhysicsServer::BODY_PARAM_MASS: {
|
|
ERR_FAIL_COND(p_value <= 0);
|
|
mass = p_value;
|
|
_update_inertia();
|
|
|
|
} break;
|
|
case PhysicsServer::BODY_PARAM_GRAVITY_SCALE: {
|
|
gravity_scale = p_value;
|
|
} break;
|
|
case PhysicsServer::BODY_PARAM_LINEAR_DAMP: {
|
|
|
|
linear_damp = p_value;
|
|
} break;
|
|
case PhysicsServer::BODY_PARAM_ANGULAR_DAMP: {
|
|
|
|
angular_damp = p_value;
|
|
} break;
|
|
default: {
|
|
}
|
|
}
|
|
}
|
|
|
|
real_t BodySW::get_param(PhysicsServer::BodyParameter p_param) const {
|
|
|
|
switch (p_param) {
|
|
case PhysicsServer::BODY_PARAM_BOUNCE: {
|
|
|
|
return bounce;
|
|
} break;
|
|
case PhysicsServer::BODY_PARAM_FRICTION: {
|
|
|
|
return friction;
|
|
} break;
|
|
case PhysicsServer::BODY_PARAM_MASS: {
|
|
return mass;
|
|
} break;
|
|
case PhysicsServer::BODY_PARAM_GRAVITY_SCALE: {
|
|
return gravity_scale;
|
|
} break;
|
|
case PhysicsServer::BODY_PARAM_LINEAR_DAMP: {
|
|
|
|
return linear_damp;
|
|
} break;
|
|
case PhysicsServer::BODY_PARAM_ANGULAR_DAMP: {
|
|
|
|
return angular_damp;
|
|
} break;
|
|
|
|
default: {
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void BodySW::set_mode(PhysicsServer::BodyMode p_mode) {
|
|
|
|
PhysicsServer::BodyMode prev = mode;
|
|
mode = p_mode;
|
|
|
|
switch (p_mode) {
|
|
//CLEAR UP EVERYTHING IN CASE IT NOT WORKS!
|
|
case PhysicsServer::BODY_MODE_STATIC:
|
|
case PhysicsServer::BODY_MODE_KINEMATIC: {
|
|
|
|
_set_inv_transform(get_transform().affine_inverse());
|
|
_inv_mass = 0;
|
|
_set_static(p_mode == PhysicsServer::BODY_MODE_STATIC);
|
|
//set_active(p_mode==PhysicsServer::BODY_MODE_KINEMATIC);
|
|
set_active(p_mode == PhysicsServer::BODY_MODE_KINEMATIC && contacts.size());
|
|
linear_velocity = Vector3();
|
|
angular_velocity = Vector3();
|
|
if (mode == PhysicsServer::BODY_MODE_KINEMATIC && prev != mode) {
|
|
first_time_kinematic = true;
|
|
}
|
|
|
|
} break;
|
|
case PhysicsServer::BODY_MODE_RIGID: {
|
|
|
|
_inv_mass = mass > 0 ? (1.0 / mass) : 0;
|
|
_set_static(false);
|
|
set_active(true);
|
|
|
|
} break;
|
|
case PhysicsServer::BODY_MODE_CHARACTER: {
|
|
|
|
_inv_mass = mass > 0 ? (1.0 / mass) : 0;
|
|
_set_static(false);
|
|
set_active(true);
|
|
angular_velocity = Vector3();
|
|
} break;
|
|
}
|
|
|
|
_update_inertia();
|
|
/*
|
|
if (get_space())
|
|
_update_queries();
|
|
*/
|
|
}
|
|
PhysicsServer::BodyMode BodySW::get_mode() const {
|
|
|
|
return mode;
|
|
}
|
|
|
|
void BodySW::_shapes_changed() {
|
|
|
|
_update_inertia();
|
|
}
|
|
|
|
void BodySW::set_state(PhysicsServer::BodyState p_state, const Variant &p_variant) {
|
|
|
|
switch (p_state) {
|
|
case PhysicsServer::BODY_STATE_TRANSFORM: {
|
|
|
|
if (mode == PhysicsServer::BODY_MODE_KINEMATIC) {
|
|
new_transform = p_variant;
|
|
//wakeup_neighbours();
|
|
set_active(true);
|
|
if (first_time_kinematic) {
|
|
_set_transform(p_variant);
|
|
_set_inv_transform(get_transform().affine_inverse());
|
|
first_time_kinematic = false;
|
|
}
|
|
|
|
} else if (mode == PhysicsServer::BODY_MODE_STATIC) {
|
|
_set_transform(p_variant);
|
|
_set_inv_transform(get_transform().affine_inverse());
|
|
wakeup_neighbours();
|
|
} else {
|
|
Transform t = p_variant;
|
|
t.orthonormalize();
|
|
new_transform = get_transform(); //used as old to compute motion
|
|
if (new_transform == t)
|
|
break;
|
|
_set_transform(t);
|
|
_set_inv_transform(get_transform().inverse());
|
|
}
|
|
wakeup();
|
|
|
|
} break;
|
|
case PhysicsServer::BODY_STATE_LINEAR_VELOCITY: {
|
|
|
|
/*
|
|
if (mode==PhysicsServer::BODY_MODE_STATIC)
|
|
break;
|
|
*/
|
|
linear_velocity = p_variant;
|
|
wakeup();
|
|
} break;
|
|
case PhysicsServer::BODY_STATE_ANGULAR_VELOCITY: {
|
|
/*
|
|
if (mode!=PhysicsServer::BODY_MODE_RIGID)
|
|
break;
|
|
*/
|
|
angular_velocity = p_variant;
|
|
wakeup();
|
|
|
|
} break;
|
|
case PhysicsServer::BODY_STATE_SLEEPING: {
|
|
//?
|
|
if (mode == PhysicsServer::BODY_MODE_STATIC || mode == PhysicsServer::BODY_MODE_KINEMATIC)
|
|
break;
|
|
bool do_sleep = p_variant;
|
|
if (do_sleep) {
|
|
linear_velocity = Vector3();
|
|
//biased_linear_velocity=Vector3();
|
|
angular_velocity = Vector3();
|
|
//biased_angular_velocity=Vector3();
|
|
set_active(false);
|
|
} else {
|
|
set_active(true);
|
|
}
|
|
} break;
|
|
case PhysicsServer::BODY_STATE_CAN_SLEEP: {
|
|
can_sleep = p_variant;
|
|
if (mode == PhysicsServer::BODY_MODE_RIGID && !active && !can_sleep)
|
|
set_active(true);
|
|
|
|
} break;
|
|
}
|
|
}
|
|
Variant BodySW::get_state(PhysicsServer::BodyState p_state) const {
|
|
|
|
switch (p_state) {
|
|
case PhysicsServer::BODY_STATE_TRANSFORM: {
|
|
return get_transform();
|
|
} break;
|
|
case PhysicsServer::BODY_STATE_LINEAR_VELOCITY: {
|
|
return linear_velocity;
|
|
} break;
|
|
case PhysicsServer::BODY_STATE_ANGULAR_VELOCITY: {
|
|
return angular_velocity;
|
|
} break;
|
|
case PhysicsServer::BODY_STATE_SLEEPING: {
|
|
return !is_active();
|
|
} break;
|
|
case PhysicsServer::BODY_STATE_CAN_SLEEP: {
|
|
return can_sleep;
|
|
} break;
|
|
}
|
|
|
|
return Variant();
|
|
}
|
|
|
|
void BodySW::set_space(SpaceSW *p_space) {
|
|
|
|
if (get_space()) {
|
|
|
|
if (inertia_update_list.in_list())
|
|
get_space()->body_remove_from_inertia_update_list(&inertia_update_list);
|
|
if (active_list.in_list())
|
|
get_space()->body_remove_from_active_list(&active_list);
|
|
if (direct_state_query_list.in_list())
|
|
get_space()->body_remove_from_state_query_list(&direct_state_query_list);
|
|
}
|
|
|
|
_set_space(p_space);
|
|
|
|
if (get_space()) {
|
|
|
|
_update_inertia();
|
|
if (active)
|
|
get_space()->body_add_to_active_list(&active_list);
|
|
/*
|
|
_update_queries();
|
|
if (is_active()) {
|
|
active=false;
|
|
set_active(true);
|
|
}
|
|
*/
|
|
}
|
|
|
|
first_integration = true;
|
|
}
|
|
|
|
void BodySW::_compute_area_gravity_and_dampenings(const AreaSW *p_area) {
|
|
|
|
if (p_area->is_gravity_point()) {
|
|
if (p_area->get_gravity_distance_scale() > 0) {
|
|
Vector3 v = p_area->get_transform().xform(p_area->get_gravity_vector()) - get_transform().get_origin();
|
|
gravity += v.normalized() * (p_area->get_gravity() / Math::pow(v.length() * p_area->get_gravity_distance_scale() + 1, 2));
|
|
} else {
|
|
gravity += (p_area->get_transform().xform(p_area->get_gravity_vector()) - get_transform().get_origin()).normalized() * p_area->get_gravity();
|
|
}
|
|
} else {
|
|
gravity += p_area->get_gravity_vector() * p_area->get_gravity();
|
|
}
|
|
|
|
area_linear_damp += p_area->get_linear_damp();
|
|
area_angular_damp += p_area->get_angular_damp();
|
|
}
|
|
|
|
void BodySW::set_axis_lock(PhysicsServer::BodyAxis p_axis, bool lock) {
|
|
if (lock) {
|
|
locked_axis |= p_axis;
|
|
} else {
|
|
locked_axis &= ~p_axis;
|
|
}
|
|
}
|
|
|
|
bool BodySW::is_axis_locked(PhysicsServer::BodyAxis p_axis) const {
|
|
return locked_axis & p_axis;
|
|
}
|
|
|
|
void BodySW::integrate_forces(real_t p_step) {
|
|
|
|
if (mode == PhysicsServer::BODY_MODE_STATIC)
|
|
return;
|
|
|
|
AreaSW *def_area = get_space()->get_default_area();
|
|
// AreaSW *damp_area = def_area;
|
|
|
|
ERR_FAIL_COND(!def_area);
|
|
|
|
int ac = areas.size();
|
|
bool stopped = false;
|
|
gravity = Vector3(0, 0, 0);
|
|
area_linear_damp = 0;
|
|
area_angular_damp = 0;
|
|
if (ac) {
|
|
areas.sort();
|
|
const AreaCMP *aa = &areas[0];
|
|
// damp_area = aa[ac-1].area;
|
|
for (int i = ac - 1; i >= 0 && !stopped; i--) {
|
|
PhysicsServer::AreaSpaceOverrideMode mode = aa[i].area->get_space_override_mode();
|
|
switch (mode) {
|
|
case PhysicsServer::AREA_SPACE_OVERRIDE_COMBINE:
|
|
case PhysicsServer::AREA_SPACE_OVERRIDE_COMBINE_REPLACE: {
|
|
_compute_area_gravity_and_dampenings(aa[i].area);
|
|
stopped = mode == PhysicsServer::AREA_SPACE_OVERRIDE_COMBINE_REPLACE;
|
|
} break;
|
|
case PhysicsServer::AREA_SPACE_OVERRIDE_REPLACE:
|
|
case PhysicsServer::AREA_SPACE_OVERRIDE_REPLACE_COMBINE: {
|
|
gravity = Vector3(0, 0, 0);
|
|
area_angular_damp = 0;
|
|
area_linear_damp = 0;
|
|
_compute_area_gravity_and_dampenings(aa[i].area);
|
|
stopped = mode == PhysicsServer::AREA_SPACE_OVERRIDE_REPLACE;
|
|
} break;
|
|
default: {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!stopped) {
|
|
_compute_area_gravity_and_dampenings(def_area);
|
|
}
|
|
|
|
gravity *= gravity_scale;
|
|
|
|
// If less than 0, override dampenings with that of the Body
|
|
if (angular_damp >= 0)
|
|
area_angular_damp = angular_damp;
|
|
/*
|
|
else
|
|
area_angular_damp=damp_area->get_angular_damp();
|
|
*/
|
|
|
|
if (linear_damp >= 0)
|
|
area_linear_damp = linear_damp;
|
|
/*
|
|
else
|
|
area_linear_damp=damp_area->get_linear_damp();
|
|
*/
|
|
|
|
Vector3 motion;
|
|
bool do_motion = false;
|
|
|
|
if (mode == PhysicsServer::BODY_MODE_KINEMATIC) {
|
|
|
|
//compute motion, angular and etc. velocities from prev transform
|
|
linear_velocity = (new_transform.origin - get_transform().origin) / p_step;
|
|
|
|
//compute a FAKE angular velocity, not so easy
|
|
Basis rot = new_transform.basis.orthonormalized().transposed() * get_transform().basis.orthonormalized();
|
|
Vector3 axis;
|
|
real_t angle;
|
|
|
|
rot.get_axis_angle(axis, angle);
|
|
axis.normalize();
|
|
angular_velocity = axis.normalized() * (angle / p_step);
|
|
|
|
motion = new_transform.origin - get_transform().origin;
|
|
do_motion = true;
|
|
|
|
} else {
|
|
if (!omit_force_integration && !first_integration) {
|
|
//overridden by direct state query
|
|
|
|
Vector3 force = gravity * mass;
|
|
force += applied_force;
|
|
Vector3 torque = applied_torque;
|
|
|
|
real_t damp = 1.0 - p_step * area_linear_damp;
|
|
|
|
if (damp < 0) // reached zero in the given time
|
|
damp = 0;
|
|
|
|
real_t angular_damp = 1.0 - p_step * area_angular_damp;
|
|
|
|
if (angular_damp < 0) // reached zero in the given time
|
|
angular_damp = 0;
|
|
|
|
linear_velocity *= damp;
|
|
angular_velocity *= angular_damp;
|
|
|
|
linear_velocity += _inv_mass * force * p_step;
|
|
angular_velocity += _inv_inertia_tensor.xform(torque) * p_step;
|
|
}
|
|
|
|
if (continuous_cd) {
|
|
motion = linear_velocity * p_step;
|
|
do_motion = true;
|
|
}
|
|
}
|
|
|
|
applied_force = Vector3();
|
|
applied_torque = Vector3();
|
|
first_integration = false;
|
|
|
|
//motion=linear_velocity*p_step;
|
|
|
|
biased_angular_velocity = Vector3();
|
|
biased_linear_velocity = Vector3();
|
|
|
|
if (do_motion) { //shapes temporarily extend for raycast
|
|
_update_shapes_with_motion(motion);
|
|
}
|
|
|
|
def_area = NULL; // clear the area, so it is set in the next frame
|
|
contact_count = 0;
|
|
}
|
|
|
|
void BodySW::integrate_velocities(real_t p_step) {
|
|
|
|
if (mode == PhysicsServer::BODY_MODE_STATIC)
|
|
return;
|
|
|
|
if (fi_callback)
|
|
get_space()->body_add_to_state_query_list(&direct_state_query_list);
|
|
|
|
//apply axis lock linear
|
|
for (int i = 0; i < 3; i++) {
|
|
if (is_axis_locked((PhysicsServer::BodyAxis)(1 << i))) {
|
|
linear_velocity[i] = 0;
|
|
biased_linear_velocity[i] = 0;
|
|
new_transform.origin[i] = get_transform().origin[i];
|
|
}
|
|
}
|
|
//apply axis lock angular
|
|
for (int i = 0; i < 3; i++) {
|
|
if (is_axis_locked((PhysicsServer::BodyAxis)(1 << (i + 3)))) {
|
|
angular_velocity[i] = 0;
|
|
biased_angular_velocity[i] = 0;
|
|
}
|
|
}
|
|
|
|
if (mode == PhysicsServer::BODY_MODE_KINEMATIC) {
|
|
|
|
_set_transform(new_transform, false);
|
|
_set_inv_transform(new_transform.affine_inverse());
|
|
if (contacts.size() == 0 && linear_velocity == Vector3() && angular_velocity == Vector3())
|
|
set_active(false); //stopped moving, deactivate
|
|
|
|
return;
|
|
}
|
|
|
|
Vector3 total_angular_velocity = angular_velocity + biased_angular_velocity;
|
|
|
|
real_t ang_vel = total_angular_velocity.length();
|
|
Transform transform = get_transform();
|
|
|
|
if (ang_vel != 0.0) {
|
|
Vector3 ang_vel_axis = total_angular_velocity / ang_vel;
|
|
Basis rot(ang_vel_axis, ang_vel * p_step);
|
|
Basis identity3(1, 0, 0, 0, 1, 0, 0, 0, 1);
|
|
transform.origin += ((identity3 - rot) * transform.basis).xform(center_of_mass_local);
|
|
transform.basis = rot * transform.basis;
|
|
transform.orthonormalize();
|
|
}
|
|
|
|
Vector3 total_linear_velocity = linear_velocity + biased_linear_velocity;
|
|
/*for(int i=0;i<3;i++) {
|
|
if (axis_lock&(1<<i)) {
|
|
transform.origin[i]=0.0;
|
|
}
|
|
}*/
|
|
|
|
transform.origin += total_linear_velocity * p_step;
|
|
|
|
_set_transform(transform);
|
|
_set_inv_transform(get_transform().inverse());
|
|
|
|
_update_transform_dependant();
|
|
|
|
/*
|
|
if (fi_callback) {
|
|
get_space()->body_add_to_state_query_list(&direct_state_query_list);
|
|
*/
|
|
}
|
|
|
|
/*
|
|
void BodySW::simulate_motion(const Transform& p_xform,real_t p_step) {
|
|
|
|
Transform inv_xform = p_xform.affine_inverse();
|
|
if (!get_space()) {
|
|
_set_transform(p_xform);
|
|
_set_inv_transform(inv_xform);
|
|
|
|
return;
|
|
}
|
|
|
|
//compute a FAKE linear velocity - this is easy
|
|
|
|
linear_velocity=(p_xform.origin - get_transform().origin)/p_step;
|
|
|
|
//compute a FAKE angular velocity, not so easy
|
|
Basis rot=get_transform().basis.orthonormalized().transposed() * p_xform.basis.orthonormalized();
|
|
Vector3 axis;
|
|
real_t angle;
|
|
|
|
rot.get_axis_angle(axis,angle);
|
|
axis.normalize();
|
|
angular_velocity=axis.normalized() * (angle/p_step);
|
|
linear_velocity = (p_xform.origin - get_transform().origin)/p_step;
|
|
|
|
if (!direct_state_query_list.in_list())// - callalways, so lv and av are cleared && (state_query || direct_state_query))
|
|
get_space()->body_add_to_state_query_list(&direct_state_query_list);
|
|
simulated_motion=true;
|
|
_set_transform(p_xform);
|
|
|
|
|
|
}
|
|
*/
|
|
|
|
void BodySW::wakeup_neighbours() {
|
|
|
|
for (Map<ConstraintSW *, int>::Element *E = constraint_map.front(); E; E = E->next()) {
|
|
|
|
const ConstraintSW *c = E->key();
|
|
BodySW **n = c->get_body_ptr();
|
|
int bc = c->get_body_count();
|
|
|
|
for (int i = 0; i < bc; i++) {
|
|
|
|
if (i == E->get())
|
|
continue;
|
|
BodySW *b = n[i];
|
|
if (b->mode != PhysicsServer::BODY_MODE_RIGID)
|
|
continue;
|
|
|
|
if (!b->is_active())
|
|
b->set_active(true);
|
|
}
|
|
}
|
|
}
|
|
|
|
void BodySW::call_queries() {
|
|
|
|
if (fi_callback) {
|
|
|
|
PhysicsDirectBodyStateSW *dbs = PhysicsDirectBodyStateSW::singleton;
|
|
dbs->body = this;
|
|
|
|
Variant v = dbs;
|
|
|
|
Object *obj = ObjectDB::get_instance(fi_callback->id);
|
|
if (!obj) {
|
|
|
|
set_force_integration_callback(0, StringName());
|
|
} else {
|
|
const Variant *vp[2] = { &v, &fi_callback->udata };
|
|
|
|
Variant::CallError ce;
|
|
int argc = (fi_callback->udata.get_type() == Variant::NIL) ? 1 : 2;
|
|
obj->call(fi_callback->method, vp, argc, ce);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool BodySW::sleep_test(real_t p_step) {
|
|
|
|
if (mode == PhysicsServer::BODY_MODE_STATIC || mode == PhysicsServer::BODY_MODE_KINEMATIC)
|
|
return true; //
|
|
else if (mode == PhysicsServer::BODY_MODE_CHARACTER)
|
|
return !active; // characters don't sleep unless asked to sleep
|
|
else if (!can_sleep)
|
|
return false;
|
|
|
|
if (Math::abs(angular_velocity.length()) < get_space()->get_body_angular_velocity_sleep_threshold() && Math::abs(linear_velocity.length_squared()) < get_space()->get_body_linear_velocity_sleep_threshold() * get_space()->get_body_linear_velocity_sleep_threshold()) {
|
|
|
|
still_time += p_step;
|
|
|
|
return still_time > get_space()->get_body_time_to_sleep();
|
|
} else {
|
|
|
|
still_time = 0; //maybe this should be set to 0 on set_active?
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void BodySW::set_force_integration_callback(ObjectID p_id, const StringName &p_method, const Variant &p_udata) {
|
|
|
|
if (fi_callback) {
|
|
|
|
memdelete(fi_callback);
|
|
fi_callback = NULL;
|
|
}
|
|
|
|
if (p_id != 0) {
|
|
|
|
fi_callback = memnew(ForceIntegrationCallback);
|
|
fi_callback->id = p_id;
|
|
fi_callback->method = p_method;
|
|
fi_callback->udata = p_udata;
|
|
}
|
|
}
|
|
|
|
void BodySW::set_kinematic_margin(real_t p_margin) {
|
|
kinematic_safe_margin = p_margin;
|
|
}
|
|
|
|
BodySW::BodySW() :
|
|
CollisionObjectSW(TYPE_BODY),
|
|
locked_axis(0),
|
|
active_list(this),
|
|
inertia_update_list(this),
|
|
direct_state_query_list(this) {
|
|
|
|
mode = PhysicsServer::BODY_MODE_RIGID;
|
|
active = true;
|
|
|
|
mass = 1;
|
|
kinematic_safe_margin = 0.01;
|
|
//_inv_inertia=Transform();
|
|
_inv_mass = 1;
|
|
bounce = 0;
|
|
friction = 1;
|
|
omit_force_integration = false;
|
|
//applied_torque=0;
|
|
island_step = 0;
|
|
island_next = NULL;
|
|
island_list_next = NULL;
|
|
first_time_kinematic = false;
|
|
first_integration = false;
|
|
_set_static(false);
|
|
|
|
contact_count = 0;
|
|
gravity_scale = 1.0;
|
|
linear_damp = -1;
|
|
angular_damp = -1;
|
|
area_angular_damp = 0;
|
|
area_linear_damp = 0;
|
|
|
|
still_time = 0;
|
|
continuous_cd = false;
|
|
can_sleep = true;
|
|
fi_callback = NULL;
|
|
}
|
|
|
|
BodySW::~BodySW() {
|
|
|
|
if (fi_callback)
|
|
memdelete(fi_callback);
|
|
}
|
|
|
|
PhysicsDirectBodyStateSW *PhysicsDirectBodyStateSW::singleton = NULL;
|
|
|
|
PhysicsDirectSpaceState *PhysicsDirectBodyStateSW::get_space_state() {
|
|
|
|
return body->get_space()->get_direct_state();
|
|
}
|