virtualx-engine/drivers/vulkan/rendering_device_vulkan.h
2023-04-24 12:24:24 +02:00

1255 lines
48 KiB
C++

/**************************************************************************/
/* rendering_device_vulkan.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef RENDERING_DEVICE_VULKAN_H
#define RENDERING_DEVICE_VULKAN_H
#include "core/os/thread_safe.h"
#include "core/templates/local_vector.h"
#include "core/templates/oa_hash_map.h"
#include "core/templates/rid_owner.h"
#include "servers/rendering/rendering_device.h"
#ifdef DEBUG_ENABLED
#ifndef _DEBUG
#define _DEBUG
#endif
#endif
#include "vk_mem_alloc.h"
#ifdef USE_VOLK
#include <volk.h>
#else
#include <vulkan/vulkan.h>
#endif
class VulkanContext;
class RenderingDeviceVulkan : public RenderingDevice {
_THREAD_SAFE_CLASS_
// Miscellaneous tables that map
// our enums to enums used
// by vulkan.
VkPhysicalDeviceLimits limits;
static const VkFormat vulkan_formats[DATA_FORMAT_MAX];
static const char *named_formats[DATA_FORMAT_MAX];
static const VkCompareOp compare_operators[COMPARE_OP_MAX];
static const VkStencilOp stencil_operations[STENCIL_OP_MAX];
static const VkSampleCountFlagBits rasterization_sample_count[TEXTURE_SAMPLES_MAX];
static const VkLogicOp logic_operations[RenderingDevice::LOGIC_OP_MAX];
static const VkBlendFactor blend_factors[RenderingDevice::BLEND_FACTOR_MAX];
static const VkBlendOp blend_operations[RenderingDevice::BLEND_OP_MAX];
static const VkSamplerAddressMode address_modes[SAMPLER_REPEAT_MODE_MAX];
static const VkBorderColor sampler_border_colors[SAMPLER_BORDER_COLOR_MAX];
static const VkImageType vulkan_image_type[TEXTURE_TYPE_MAX];
// Functions used for format
// validation, and ensures the
// user passes valid data.
static int get_format_vertex_size(DataFormat p_format);
static uint32_t get_image_format_pixel_size(DataFormat p_format);
static void get_compressed_image_format_block_dimensions(DataFormat p_format, uint32_t &r_w, uint32_t &r_h);
uint32_t get_compressed_image_format_block_byte_size(DataFormat p_format);
static uint32_t get_compressed_image_format_pixel_rshift(DataFormat p_format);
static uint32_t get_image_format_required_size(DataFormat p_format, uint32_t p_width, uint32_t p_height, uint32_t p_depth, uint32_t p_mipmaps, uint32_t *r_blockw = nullptr, uint32_t *r_blockh = nullptr, uint32_t *r_depth = nullptr);
static uint32_t get_image_required_mipmaps(uint32_t p_width, uint32_t p_height, uint32_t p_depth);
static bool format_has_stencil(DataFormat p_format);
/***************************/
/**** ID INFRASTRUCTURE ****/
/***************************/
enum IDType {
ID_TYPE_FRAMEBUFFER_FORMAT,
ID_TYPE_VERTEX_FORMAT,
ID_TYPE_DRAW_LIST,
ID_TYPE_SPLIT_DRAW_LIST,
ID_TYPE_COMPUTE_LIST,
ID_TYPE_MAX,
ID_BASE_SHIFT = 58 // 5 bits for ID types.
};
VkDevice device = VK_NULL_HANDLE;
HashMap<RID, HashSet<RID>> dependency_map; // IDs to IDs that depend on it.
HashMap<RID, HashSet<RID>> reverse_dependency_map; // Same as above, but in reverse.
void _add_dependency(RID p_id, RID p_depends_on);
void _free_dependencies(RID p_id);
/*****************/
/**** TEXTURE ****/
/*****************/
// In Vulkan, the concept of textures does not exist,
// instead there is the image (the memory pretty much,
// the view (how the memory is interpreted) and the
// sampler (how it's sampled from the shader).
//
// Texture here includes the first two stages, but
// It's possible to create textures sharing the image
// but with different views. The main use case for this
// is textures that can be read as both SRGB/Linear,
// or slices of a texture (a mipmap, a layer, a 3D slice)
// for a framebuffer to render into it.
struct Texture {
VkImage image = VK_NULL_HANDLE;
VmaAllocation allocation = nullptr;
VmaAllocationInfo allocation_info;
VkImageView view = VK_NULL_HANDLE;
TextureType type;
DataFormat format;
TextureSamples samples;
uint32_t width = 0;
uint32_t height = 0;
uint32_t depth = 0;
uint32_t layers = 0;
uint32_t mipmaps = 0;
uint32_t usage_flags = 0;
uint32_t base_mipmap = 0;
uint32_t base_layer = 0;
Vector<DataFormat> allowed_shared_formats;
VkImageLayout layout;
uint64_t used_in_frame = 0;
bool used_in_transfer = false;
bool used_in_raster = false;
bool used_in_compute = false;
bool is_resolve_buffer = false;
uint32_t read_aspect_mask = 0;
uint32_t barrier_aspect_mask = 0;
bool bound = false; // Bound to framebffer.
RID owner;
};
RID_Owner<Texture, true> texture_owner;
uint32_t texture_upload_region_size_px = 0;
Vector<uint8_t> _texture_get_data_from_image(Texture *tex, VkImage p_image, VmaAllocation p_allocation, uint32_t p_layer, bool p_2d = false);
Error _texture_update(RID p_texture, uint32_t p_layer, const Vector<uint8_t> &p_data, BitField<BarrierMask> p_post_barrier, bool p_use_setup_queue);
/*****************/
/**** SAMPLER ****/
/*****************/
RID_Owner<VkSampler> sampler_owner;
/***************************/
/**** BUFFER MANAGEMENT ****/
/***************************/
// These are temporary buffers on CPU memory that hold
// the information until the CPU fetches it and places it
// either on GPU buffers, or images (textures). It ensures
// updates are properly synchronized with whatever the
// GPU is doing.
//
// The logic here is as follows, only 3 of these
// blocks are created at the beginning (one per frame)
// they can each belong to a frame (assigned to current when
// used) and they can only be reused after the same frame is
// recycled.
//
// When CPU requires to allocate more than what is available,
// more of these buffers are created. If a limit is reached,
// then a fence will ensure will wait for blocks allocated
// in previous frames are processed. If that fails, then
// another fence will ensure everything pending for the current
// frame is processed (effectively stalling).
//
// See the comments in the code to understand better how it works.
struct StagingBufferBlock {
VkBuffer buffer = VK_NULL_HANDLE;
VmaAllocation allocation = nullptr;
uint64_t frame_used = 0;
uint32_t fill_amount = 0;
};
Vector<StagingBufferBlock> staging_buffer_blocks;
int staging_buffer_current = 0;
uint32_t staging_buffer_block_size = 0;
uint64_t staging_buffer_max_size = 0;
bool staging_buffer_used = false;
Error _staging_buffer_allocate(uint32_t p_amount, uint32_t p_required_align, uint32_t &r_alloc_offset, uint32_t &r_alloc_size, bool p_can_segment = true);
Error _insert_staging_block();
struct Buffer {
uint32_t size = 0;
uint32_t usage = 0;
VkBuffer buffer = VK_NULL_HANDLE;
VmaAllocation allocation = nullptr;
VkDescriptorBufferInfo buffer_info; // Used for binding.
Buffer() {
}
};
Error _buffer_allocate(Buffer *p_buffer, uint32_t p_size, uint32_t p_usage, VmaMemoryUsage p_mem_usage, VmaAllocationCreateFlags p_mem_flags);
Error _buffer_free(Buffer *p_buffer);
Error _buffer_update(Buffer *p_buffer, size_t p_offset, const uint8_t *p_data, size_t p_data_size, bool p_use_draw_command_buffer = false, uint32_t p_required_align = 32);
void _full_barrier(bool p_sync_with_draw);
void _memory_barrier(VkPipelineStageFlags p_src_stage_mask, VkPipelineStageFlags p_dst_stage_mask, VkAccessFlags p_src_access, VkAccessFlags p_dst_access, bool p_sync_with_draw);
void _buffer_memory_barrier(VkBuffer buffer, uint64_t p_from, uint64_t p_size, VkPipelineStageFlags p_src_stage_mask, VkPipelineStageFlags p_dst_stage_mask, VkAccessFlags p_src_access, VkAccessFlags p_dst_access, bool p_sync_with_draw);
/*********************/
/**** FRAMEBUFFER ****/
/*********************/
// In Vulkan, framebuffers work similar to how they
// do in OpenGL, with the exception that
// the "format" (vkRenderPass) is not dynamic
// and must be more or less the same as the one
// used for the render pipelines.
struct FramebufferFormatKey {
Vector<AttachmentFormat> attachments;
Vector<FramebufferPass> passes;
uint32_t view_count = 1;
bool operator<(const FramebufferFormatKey &p_key) const {
if (view_count != p_key.view_count) {
return view_count < p_key.view_count;
}
uint32_t pass_size = passes.size();
uint32_t key_pass_size = p_key.passes.size();
if (pass_size != key_pass_size) {
return pass_size < key_pass_size;
}
const FramebufferPass *pass_ptr = passes.ptr();
const FramebufferPass *key_pass_ptr = p_key.passes.ptr();
for (uint32_t i = 0; i < pass_size; i++) {
{ // Compare color attachments.
uint32_t attachment_size = pass_ptr[i].color_attachments.size();
uint32_t key_attachment_size = key_pass_ptr[i].color_attachments.size();
if (attachment_size != key_attachment_size) {
return attachment_size < key_attachment_size;
}
const int32_t *pass_attachment_ptr = pass_ptr[i].color_attachments.ptr();
const int32_t *key_pass_attachment_ptr = key_pass_ptr[i].color_attachments.ptr();
for (uint32_t j = 0; j < attachment_size; j++) {
if (pass_attachment_ptr[j] != key_pass_attachment_ptr[j]) {
return pass_attachment_ptr[j] < key_pass_attachment_ptr[j];
}
}
}
{ // Compare input attachments.
uint32_t attachment_size = pass_ptr[i].input_attachments.size();
uint32_t key_attachment_size = key_pass_ptr[i].input_attachments.size();
if (attachment_size != key_attachment_size) {
return attachment_size < key_attachment_size;
}
const int32_t *pass_attachment_ptr = pass_ptr[i].input_attachments.ptr();
const int32_t *key_pass_attachment_ptr = key_pass_ptr[i].input_attachments.ptr();
for (uint32_t j = 0; j < attachment_size; j++) {
if (pass_attachment_ptr[j] != key_pass_attachment_ptr[j]) {
return pass_attachment_ptr[j] < key_pass_attachment_ptr[j];
}
}
}
{ // Compare resolve attachments.
uint32_t attachment_size = pass_ptr[i].resolve_attachments.size();
uint32_t key_attachment_size = key_pass_ptr[i].resolve_attachments.size();
if (attachment_size != key_attachment_size) {
return attachment_size < key_attachment_size;
}
const int32_t *pass_attachment_ptr = pass_ptr[i].resolve_attachments.ptr();
const int32_t *key_pass_attachment_ptr = key_pass_ptr[i].resolve_attachments.ptr();
for (uint32_t j = 0; j < attachment_size; j++) {
if (pass_attachment_ptr[j] != key_pass_attachment_ptr[j]) {
return pass_attachment_ptr[j] < key_pass_attachment_ptr[j];
}
}
}
{ // Compare preserve attachments.
uint32_t attachment_size = pass_ptr[i].preserve_attachments.size();
uint32_t key_attachment_size = key_pass_ptr[i].preserve_attachments.size();
if (attachment_size != key_attachment_size) {
return attachment_size < key_attachment_size;
}
const int32_t *pass_attachment_ptr = pass_ptr[i].preserve_attachments.ptr();
const int32_t *key_pass_attachment_ptr = key_pass_ptr[i].preserve_attachments.ptr();
for (uint32_t j = 0; j < attachment_size; j++) {
if (pass_attachment_ptr[j] != key_pass_attachment_ptr[j]) {
return pass_attachment_ptr[j] < key_pass_attachment_ptr[j];
}
}
}
if (pass_ptr[i].depth_attachment != key_pass_ptr[i].depth_attachment) {
return pass_ptr[i].depth_attachment < key_pass_ptr[i].depth_attachment;
}
}
int as = attachments.size();
int bs = p_key.attachments.size();
if (as != bs) {
return as < bs;
}
const AttachmentFormat *af_a = attachments.ptr();
const AttachmentFormat *af_b = p_key.attachments.ptr();
for (int i = 0; i < as; i++) {
const AttachmentFormat &a = af_a[i];
const AttachmentFormat &b = af_b[i];
if (a.format != b.format) {
return a.format < b.format;
}
if (a.samples != b.samples) {
return a.samples < b.samples;
}
if (a.usage_flags != b.usage_flags) {
return a.usage_flags < b.usage_flags;
}
}
return false; // Equal.
}
};
VkRenderPass _render_pass_create(const Vector<AttachmentFormat> &p_attachments, const Vector<FramebufferPass> &p_passes, InitialAction p_initial_action, FinalAction p_final_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, uint32_t p_view_count = 1, Vector<TextureSamples> *r_samples = nullptr);
// This is a cache and it's never freed, it ensures
// IDs for a given format are always unique.
RBMap<FramebufferFormatKey, FramebufferFormatID> framebuffer_format_cache;
struct FramebufferFormat {
const RBMap<FramebufferFormatKey, FramebufferFormatID>::Element *E;
VkRenderPass render_pass = VK_NULL_HANDLE; // Here for constructing shaders, never used, see section (7.2. Render Pass Compatibility from Vulkan spec).
Vector<TextureSamples> pass_samples;
uint32_t view_count = 1; // Number of views.
};
HashMap<FramebufferFormatID, FramebufferFormat> framebuffer_formats;
struct Framebuffer {
FramebufferFormatID format_id = 0;
struct VersionKey {
InitialAction initial_color_action;
FinalAction final_color_action;
InitialAction initial_depth_action;
FinalAction final_depth_action;
uint32_t view_count;
bool operator<(const VersionKey &p_key) const {
if (initial_color_action == p_key.initial_color_action) {
if (final_color_action == p_key.final_color_action) {
if (initial_depth_action == p_key.initial_depth_action) {
if (final_depth_action == p_key.final_depth_action) {
return view_count < p_key.view_count;
} else {
return final_depth_action < p_key.final_depth_action;
}
} else {
return initial_depth_action < p_key.initial_depth_action;
}
} else {
return final_color_action < p_key.final_color_action;
}
} else {
return initial_color_action < p_key.initial_color_action;
}
}
};
uint32_t storage_mask = 0;
Vector<RID> texture_ids;
InvalidationCallback invalidated_callback = nullptr;
void *invalidated_callback_userdata = nullptr;
struct Version {
VkFramebuffer framebuffer = VK_NULL_HANDLE;
VkRenderPass render_pass = VK_NULL_HANDLE; // This one is owned.
uint32_t subpass_count = 1;
};
RBMap<VersionKey, Version> framebuffers;
Size2 size;
uint32_t view_count;
};
RID_Owner<Framebuffer, true> framebuffer_owner;
/***********************/
/**** VERTEX BUFFER ****/
/***********************/
// Vertex buffers in Vulkan are similar to how
// they work in OpenGL, except that instead of
// an attribute index, there is a buffer binding
// index (for binding the buffers in real-time)
// and a location index (what is used in the shader).
//
// This mapping is done here internally, and it's not
// exposed.
RID_Owner<Buffer, true> vertex_buffer_owner;
struct VertexDescriptionKey {
Vector<VertexAttribute> vertex_formats;
bool operator==(const VertexDescriptionKey &p_key) const {
int vdc = vertex_formats.size();
int vdck = p_key.vertex_formats.size();
if (vdc != vdck) {
return false;
} else {
const VertexAttribute *a_ptr = vertex_formats.ptr();
const VertexAttribute *b_ptr = p_key.vertex_formats.ptr();
for (int i = 0; i < vdc; i++) {
const VertexAttribute &a = a_ptr[i];
const VertexAttribute &b = b_ptr[i];
if (a.location != b.location) {
return false;
}
if (a.offset != b.offset) {
return false;
}
if (a.format != b.format) {
return false;
}
if (a.stride != b.stride) {
return false;
}
if (a.frequency != b.frequency) {
return false;
}
}
return true; // They are equal.
}
}
uint32_t hash() const {
int vdc = vertex_formats.size();
uint32_t h = hash_murmur3_one_32(vdc);
const VertexAttribute *ptr = vertex_formats.ptr();
for (int i = 0; i < vdc; i++) {
const VertexAttribute &vd = ptr[i];
h = hash_murmur3_one_32(vd.location, h);
h = hash_murmur3_one_32(vd.offset, h);
h = hash_murmur3_one_32(vd.format, h);
h = hash_murmur3_one_32(vd.stride, h);
h = hash_murmur3_one_32(vd.frequency, h);
}
return hash_fmix32(h);
}
};
struct VertexDescriptionHash {
static _FORCE_INLINE_ uint32_t hash(const VertexDescriptionKey &p_key) {
return p_key.hash();
}
};
// This is a cache and it's never freed, it ensures that
// ID used for a specific format always remain the same.
HashMap<VertexDescriptionKey, VertexFormatID, VertexDescriptionHash> vertex_format_cache;
struct VertexDescriptionCache {
Vector<VertexAttribute> vertex_formats;
VkVertexInputBindingDescription *bindings = nullptr;
VkVertexInputAttributeDescription *attributes = nullptr;
VkPipelineVertexInputStateCreateInfo create_info;
};
HashMap<VertexFormatID, VertexDescriptionCache> vertex_formats;
struct VertexArray {
RID buffer;
VertexFormatID description = 0;
int vertex_count = 0;
uint32_t max_instances_allowed = 0;
Vector<VkBuffer> buffers; // Not owned, just referenced.
Vector<VkDeviceSize> offsets;
};
RID_Owner<VertexArray, true> vertex_array_owner;
struct IndexBuffer : public Buffer {
uint32_t max_index = 0; // Used for validation.
uint32_t index_count = 0;
VkIndexType index_type = VK_INDEX_TYPE_NONE_NV;
bool supports_restart_indices = false;
};
RID_Owner<IndexBuffer, true> index_buffer_owner;
struct IndexArray {
uint32_t max_index = 0; // Remember the maximum index here too, for validation.
VkBuffer buffer; // Not owned, inherited from index buffer.
uint32_t offset = 0;
uint32_t indices = 0;
VkIndexType index_type = VK_INDEX_TYPE_NONE_NV;
bool supports_restart_indices = false;
};
RID_Owner<IndexArray, true> index_array_owner;
/****************/
/**** SHADER ****/
/****************/
// Vulkan specifies a really complex behavior for the application
// in order to tell when descriptor sets need to be re-bound (or not).
// "When binding a descriptor set (see Descriptor Set Binding) to set
// number N, if the previously bound descriptor sets for sets zero
// through N-1 were all bound using compatible pipeline layouts,
// then performing this binding does not disturb any of the lower numbered sets.
// If, additionally, the previous bound descriptor set for set N was
// bound using a pipeline layout compatible for set N, then the bindings
// in sets numbered greater than N are also not disturbed."
// As a result, we need to figure out quickly when something is no longer "compatible".
// in order to avoid costly rebinds.
struct UniformInfo {
UniformType type = UniformType::UNIFORM_TYPE_MAX;
bool writable = false;
int binding = 0;
uint32_t stages = 0;
int length = 0; // Size of arrays (in total elements), or ubos (in bytes * total elements).
bool operator!=(const UniformInfo &p_info) const {
return (binding != p_info.binding || type != p_info.type || writable != p_info.writable || stages != p_info.stages || length != p_info.length);
}
bool operator<(const UniformInfo &p_info) const {
if (binding != p_info.binding) {
return binding < p_info.binding;
}
if (type != p_info.type) {
return type < p_info.type;
}
if (writable != p_info.writable) {
return writable < p_info.writable;
}
if (stages != p_info.stages) {
return stages < p_info.stages;
}
return length < p_info.length;
}
};
struct UniformSetFormat {
Vector<UniformInfo> uniform_info;
bool operator<(const UniformSetFormat &p_format) const {
uint32_t size = uniform_info.size();
uint32_t psize = p_format.uniform_info.size();
if (size != psize) {
return size < psize;
}
const UniformInfo *infoptr = uniform_info.ptr();
const UniformInfo *pinfoptr = p_format.uniform_info.ptr();
for (uint32_t i = 0; i < size; i++) {
if (infoptr[i] != pinfoptr[i]) {
return infoptr[i] < pinfoptr[i];
}
}
return false;
}
};
// Always grows, never shrinks, ensuring unique IDs, but we assume
// the amount of formats will never be a problem, as the amount of shaders
// in a game is limited.
RBMap<UniformSetFormat, uint32_t> uniform_set_format_cache;
// Shaders in Vulkan are just pretty much
// precompiled blocks of SPIR-V bytecode. They
// are most likely not really compiled to host
// assembly until a pipeline is created.
//
// When supplying the shaders, this implementation
// will use the reflection abilities of glslang to
// understand and cache everything required to
// create and use the descriptor sets (Vulkan's
// biggest pain).
//
// Additionally, hashes are created for every set
// to do quick validation and ensuring the user
// does not submit something invalid.
struct Shader {
struct Set {
Vector<UniformInfo> uniform_info;
VkDescriptorSetLayout descriptor_set_layout = VK_NULL_HANDLE;
};
uint32_t vertex_input_mask = 0; // Inputs used, this is mostly for validation.
uint32_t fragment_output_mask = 0;
struct PushConstant {
uint32_t size = 0;
uint32_t vk_stages_mask = 0;
};
PushConstant push_constant;
uint32_t compute_local_size[3] = { 0, 0, 0 };
struct SpecializationConstant {
PipelineSpecializationConstant constant;
uint32_t stage_flags = 0;
};
bool is_compute = false;
Vector<Set> sets;
Vector<uint32_t> set_formats;
Vector<VkPipelineShaderStageCreateInfo> pipeline_stages;
Vector<SpecializationConstant> specialization_constants;
VkPipelineLayout pipeline_layout = VK_NULL_HANDLE;
String name; // Used for debug.
};
String _shader_uniform_debug(RID p_shader, int p_set = -1);
RID_Owner<Shader, true> shader_owner;
/******************/
/**** UNIFORMS ****/
/******************/
// Descriptor sets require allocation from a pool.
// The documentation on how to use pools properly
// is scarce, and the documentation is strange.
//
// Basically, you can mix and match pools as you
// like, but you'll run into fragmentation issues.
// Because of this, the recommended approach is to
// create a pool for every descriptor set type, as
// this prevents fragmentation.
//
// This is implemented here as a having a list of
// pools (each can contain up to 64 sets) for each
// set layout. The amount of sets for each type
// is used as the key.
enum {
MAX_DESCRIPTOR_POOL_ELEMENT = 65535
};
struct DescriptorPoolKey {
union {
struct {
uint16_t uniform_type[UNIFORM_TYPE_MAX]; // Using 16 bits because, for sending arrays, each element is a pool set.
};
struct {
uint64_t key1;
uint64_t key2;
uint64_t key3;
};
};
bool operator<(const DescriptorPoolKey &p_key) const {
if (key1 != p_key.key1) {
return key1 < p_key.key1;
}
if (key2 != p_key.key2) {
return key2 < p_key.key2;
}
return key3 < p_key.key3;
}
DescriptorPoolKey() {
key1 = 0;
key2 = 0;
key3 = 0;
}
};
struct DescriptorPool {
VkDescriptorPool pool;
uint32_t usage;
};
RBMap<DescriptorPoolKey, HashSet<DescriptorPool *>> descriptor_pools;
uint32_t max_descriptors_per_pool = 0;
DescriptorPool *_descriptor_pool_allocate(const DescriptorPoolKey &p_key);
void _descriptor_pool_free(const DescriptorPoolKey &p_key, DescriptorPool *p_pool);
RID_Owner<Buffer, true> uniform_buffer_owner;
RID_Owner<Buffer, true> storage_buffer_owner;
// Texture buffer needs a view.
struct TextureBuffer {
Buffer buffer;
VkBufferView view = VK_NULL_HANDLE;
};
RID_Owner<TextureBuffer, true> texture_buffer_owner;
// This structure contains the descriptor set. They _need_ to be allocated
// for a shader (and will be erased when this shader is erased), but should
// work for other shaders as long as the hash matches. This covers using
// them in shader variants.
//
// Keep also in mind that you can share buffers between descriptor sets, so
// the above restriction is not too serious.
struct UniformSet {
uint32_t format = 0;
RID shader_id;
uint32_t shader_set = 0;
DescriptorPool *pool = nullptr;
DescriptorPoolKey pool_key;
VkDescriptorSet descriptor_set = VK_NULL_HANDLE;
//VkPipelineLayout pipeline_layout; // Not owned, inherited from shader.
struct AttachableTexture {
uint32_t bind;
RID texture;
};
LocalVector<AttachableTexture> attachable_textures; // Used for validation.
Vector<Texture *> mutable_sampled_textures; // Used for layout change.
Vector<Texture *> mutable_storage_textures; // Used for layout change.
InvalidationCallback invalidated_callback = nullptr;
void *invalidated_callback_userdata = nullptr;
};
RID_Owner<UniformSet, true> uniform_set_owner;
/*******************/
/**** PIPELINES ****/
/*******************/
// Render pipeline contains ALL the
// information required for drawing.
// This includes all the rasterizer state
// as well as shader used, framebuffer format,
// etc.
// While the pipeline is just a single object
// (VkPipeline) a lot of values are also saved
// here to do validation (vulkan does none by
// default) and warn the user if something
// was not supplied as intended.
struct RenderPipeline {
// Cached values for validation.
#ifdef DEBUG_ENABLED
struct Validation {
FramebufferFormatID framebuffer_format = 0;
uint32_t render_pass = 0;
uint32_t dynamic_state = 0;
VertexFormatID vertex_format = 0;
bool uses_restart_indices = false;
uint32_t primitive_minimum = 0;
uint32_t primitive_divisor = 0;
} validation;
#endif
// Actual pipeline.
RID shader;
Vector<uint32_t> set_formats;
VkPipelineLayout pipeline_layout = VK_NULL_HANDLE; // Not owned, needed for push constants.
VkPipeline pipeline = VK_NULL_HANDLE;
uint32_t push_constant_size = 0;
uint32_t push_constant_stages_mask = 0;
};
RID_Owner<RenderPipeline, true> render_pipeline_owner;
struct ComputePipeline {
RID shader;
Vector<uint32_t> set_formats;
VkPipelineLayout pipeline_layout = VK_NULL_HANDLE; // Not owned, needed for push constants.
VkPipeline pipeline = VK_NULL_HANDLE;
uint32_t push_constant_size = 0;
uint32_t push_constant_stages_mask = 0;
uint32_t local_group_size[3] = { 0, 0, 0 };
};
RID_Owner<ComputePipeline, true> compute_pipeline_owner;
/*******************/
/**** DRAW LIST ****/
/*******************/
// Draw list contains both the command buffer
// used for drawing as well as a LOT of
// information used for validation. This
// validation is cheap so most of it can
// also run in release builds.
// When using split command lists, this is
// implemented internally using secondary command
// buffers. As they can be created in threads,
// each needs its own command pool.
struct SplitDrawListAllocator {
VkCommandPool command_pool = VK_NULL_HANDLE;
Vector<VkCommandBuffer> command_buffers; // One for each frame.
};
Vector<SplitDrawListAllocator> split_draw_list_allocators;
struct DrawList {
VkCommandBuffer command_buffer = VK_NULL_HANDLE; // If persistent, this is owned, otherwise it's shared with the ringbuffer.
Rect2i viewport;
bool viewport_set = false;
struct SetState {
uint32_t pipeline_expected_format = 0;
uint32_t uniform_set_format = 0;
VkDescriptorSet descriptor_set = VK_NULL_HANDLE;
RID uniform_set;
bool bound = false;
};
struct State {
SetState sets[MAX_UNIFORM_SETS];
uint32_t set_count = 0;
RID pipeline;
RID pipeline_shader;
VkPipelineLayout pipeline_layout = VK_NULL_HANDLE;
RID vertex_array;
RID index_array;
uint32_t pipeline_push_constant_stages = 0;
} state;
#ifdef DEBUG_ENABLED
struct Validation {
bool active = true; // Means command buffer was not closed, so you can keep adding things.
// Actual render pass values.
uint32_t dynamic_state = 0;
VertexFormatID vertex_format = INVALID_ID;
uint32_t vertex_array_size = 0;
uint32_t vertex_max_instances_allowed = 0xFFFFFFFF;
bool index_buffer_uses_restart_indices = false;
uint32_t index_array_size = 0;
uint32_t index_array_max_index = 0;
uint32_t index_array_offset = 0;
Vector<uint32_t> set_formats;
Vector<bool> set_bound;
Vector<RID> set_rids;
// Last pipeline set values.
bool pipeline_active = false;
uint32_t pipeline_dynamic_state = 0;
VertexFormatID pipeline_vertex_format = INVALID_ID;
RID pipeline_shader;
bool pipeline_uses_restart_indices = false;
uint32_t pipeline_primitive_divisor = 0;
uint32_t pipeline_primitive_minimum = 0;
uint32_t pipeline_push_constant_size = 0;
bool pipeline_push_constant_supplied = false;
} validation;
#else
struct Validation {
uint32_t vertex_array_size = 0;
uint32_t index_array_size = 0;
uint32_t index_array_offset;
} validation;
#endif
};
DrawList *draw_list = nullptr; // One for regular draw lists, multiple for split.
uint32_t draw_list_subpass_count = 0;
uint32_t draw_list_count = 0;
VkRenderPass draw_list_render_pass = VK_NULL_HANDLE;
VkFramebuffer draw_list_vkframebuffer = VK_NULL_HANDLE;
#ifdef DEBUG_ENABLED
FramebufferFormatID draw_list_framebuffer_format = INVALID_ID;
#endif
uint32_t draw_list_current_subpass = 0;
bool draw_list_split = false;
Vector<RID> draw_list_bound_textures;
Vector<RID> draw_list_storage_textures;
bool draw_list_unbind_color_textures = false;
bool draw_list_unbind_depth_textures = false;
void _draw_list_insert_clear_region(DrawList *p_draw_list, Framebuffer *p_framebuffer, Point2i p_viewport_offset, Point2i p_viewport_size, bool p_clear_color, const Vector<Color> &p_clear_colors, bool p_clear_depth, float p_depth, uint32_t p_stencil);
Error _draw_list_setup_framebuffer(Framebuffer *p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, VkFramebuffer *r_framebuffer, VkRenderPass *r_render_pass, uint32_t *r_subpass_count);
Error _draw_list_render_pass_begin(Framebuffer *framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_colors, float p_clear_depth, uint32_t p_clear_stencil, Point2i viewport_offset, Point2i viewport_size, VkFramebuffer vkframebuffer, VkRenderPass render_pass, VkCommandBuffer command_buffer, VkSubpassContents subpass_contents, const Vector<RID> &p_storage_textures);
_FORCE_INLINE_ DrawList *_get_draw_list_ptr(DrawListID p_id);
Buffer *_get_buffer_from_owner(RID p_buffer, VkPipelineStageFlags &dst_stage_mask, VkAccessFlags &dst_access, BitField<BarrierMask> p_post_barrier);
Error _draw_list_allocate(const Rect2i &p_viewport, uint32_t p_splits, uint32_t p_subpass);
void _draw_list_free(Rect2i *r_last_viewport = nullptr);
/**********************/
/**** COMPUTE LIST ****/
/**********************/
struct ComputeList {
VkCommandBuffer command_buffer = VK_NULL_HANDLE; // If persistent, this is owned, otherwise it's shared with the ringbuffer.
struct SetState {
uint32_t pipeline_expected_format = 0;
uint32_t uniform_set_format = 0;
VkDescriptorSet descriptor_set = VK_NULL_HANDLE;
RID uniform_set;
bool bound = false;
};
struct State {
HashSet<Texture *> textures_to_sampled_layout;
SetState sets[MAX_UNIFORM_SETS];
uint32_t set_count = 0;
RID pipeline;
RID pipeline_shader;
uint32_t local_group_size[3] = { 0, 0, 0 };
VkPipelineLayout pipeline_layout = VK_NULL_HANDLE;
uint32_t pipeline_push_constant_stages = 0;
bool allow_draw_overlap;
} state;
#ifdef DEBUG_ENABLED
struct Validation {
bool active = true; // Means command buffer was not closed, so you can keep adding things.
Vector<uint32_t> set_formats;
Vector<bool> set_bound;
Vector<RID> set_rids;
// Last pipeline set values.
bool pipeline_active = false;
RID pipeline_shader;
uint32_t invalid_set_from = 0;
uint32_t pipeline_push_constant_size = 0;
bool pipeline_push_constant_supplied = false;
} validation;
#endif
};
ComputeList *compute_list = nullptr;
void _compute_list_add_barrier(BitField<BarrierMask> p_post_barrier, uint32_t p_barrier_flags, uint32_t p_access_flags);
/**************************/
/**** FRAME MANAGEMENT ****/
/**************************/
// This is the frame structure. There are normally
// 3 of these (used for triple buffering), or 2
// (double buffering). They are cycled constantly.
//
// It contains two command buffers, one that is
// used internally for setting up (creating stuff)
// and another used mostly for drawing.
//
// They also contains a list of things that need
// to be disposed of when deleted, which can't
// happen immediately due to the asynchronous
// nature of the GPU. They will get deleted
// when the frame is cycled.
struct Frame {
// List in usage order, from last to free to first to free.
List<Buffer> buffers_to_dispose_of;
List<Texture> textures_to_dispose_of;
List<Framebuffer> framebuffers_to_dispose_of;
List<VkSampler> samplers_to_dispose_of;
List<Shader> shaders_to_dispose_of;
List<VkBufferView> buffer_views_to_dispose_of;
List<UniformSet> uniform_sets_to_dispose_of;
List<RenderPipeline> render_pipelines_to_dispose_of;
List<ComputePipeline> compute_pipelines_to_dispose_of;
VkCommandPool command_pool = VK_NULL_HANDLE;
VkCommandBuffer setup_command_buffer = VK_NULL_HANDLE; // Used at the beginning of every frame for set-up.
VkCommandBuffer draw_command_buffer = VK_NULL_HANDLE; // Used at the beginning of every frame for set-up.
struct Timestamp {
String description;
uint64_t value = 0;
};
VkQueryPool timestamp_pool;
TightLocalVector<String> timestamp_names;
TightLocalVector<uint64_t> timestamp_cpu_values;
uint32_t timestamp_count = 0;
TightLocalVector<String> timestamp_result_names;
TightLocalVector<uint64_t> timestamp_cpu_result_values;
TightLocalVector<uint64_t> timestamp_result_values;
uint32_t timestamp_result_count = 0;
uint64_t index = 0;
};
uint32_t max_timestamp_query_elements = 0;
TightLocalVector<Frame> frames; // Frames available, for main device they are cycled (usually 3), for local devices only 1.
int frame = 0; // Current frame.
int frame_count = 0; // Total amount of frames.
uint64_t frames_drawn = 0;
RID local_device;
bool local_device_processing = false;
void _free_pending_resources(int p_frame);
VmaAllocator allocator = nullptr;
HashMap<uint32_t, VmaPool> small_allocs_pools;
VmaPool _find_or_create_small_allocs_pool(uint32_t p_mem_type_index);
VulkanContext *context = nullptr;
uint64_t image_memory = 0;
uint64_t buffer_memory = 0;
void _free_internal(RID p_id);
void _flush(bool p_current_frame);
bool screen_prepared = false;
template <class T>
void _free_rids(T &p_owner, const char *p_type);
void _finalize_command_bufers();
void _begin_frame();
#ifdef DEV_ENABLED
HashMap<RID, String> resource_names;
#endif
VkSampleCountFlagBits _ensure_supported_sample_count(TextureSamples p_requested_sample_count) const;
public:
virtual RID texture_create(const TextureFormat &p_format, const TextureView &p_view, const Vector<Vector<uint8_t>> &p_data = Vector<Vector<uint8_t>>());
virtual RID texture_create_shared(const TextureView &p_view, RID p_with_texture);
virtual RID texture_create_from_extension(TextureType p_type, DataFormat p_format, TextureSamples p_samples, uint64_t p_flags, uint64_t p_image, uint64_t p_width, uint64_t p_height, uint64_t p_depth, uint64_t p_layers);
virtual RID texture_create_shared_from_slice(const TextureView &p_view, RID p_with_texture, uint32_t p_layer, uint32_t p_mipmap, uint32_t p_mipmaps = 1, TextureSliceType p_slice_type = TEXTURE_SLICE_2D, uint32_t p_layers = 0);
virtual Error texture_update(RID p_texture, uint32_t p_layer, const Vector<uint8_t> &p_data, BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS);
virtual Vector<uint8_t> texture_get_data(RID p_texture, uint32_t p_layer);
virtual bool texture_is_format_supported_for_usage(DataFormat p_format, BitField<RenderingDevice::TextureUsageBits> p_usage) const;
virtual bool texture_is_shared(RID p_texture);
virtual bool texture_is_valid(RID p_texture);
virtual Size2i texture_size(RID p_texture);
virtual Error texture_copy(RID p_from_texture, RID p_to_texture, const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_size, uint32_t p_src_mipmap, uint32_t p_dst_mipmap, uint32_t p_src_layer, uint32_t p_dst_layer, BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS);
virtual Error texture_clear(RID p_texture, const Color &p_color, uint32_t p_base_mipmap, uint32_t p_mipmaps, uint32_t p_base_layer, uint32_t p_layers, BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS);
virtual Error texture_resolve_multisample(RID p_from_texture, RID p_to_texture, BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS);
/*********************/
/**** FRAMEBUFFER ****/
/*********************/
virtual FramebufferFormatID framebuffer_format_create(const Vector<AttachmentFormat> &p_format, uint32_t p_view_count = 1);
virtual FramebufferFormatID framebuffer_format_create_multipass(const Vector<AttachmentFormat> &p_attachments, const Vector<FramebufferPass> &p_passes, uint32_t p_view_count = 1);
virtual FramebufferFormatID framebuffer_format_create_empty(TextureSamples p_samples = TEXTURE_SAMPLES_1);
virtual TextureSamples framebuffer_format_get_texture_samples(FramebufferFormatID p_format, uint32_t p_pass = 0);
virtual RID framebuffer_create(const Vector<RID> &p_texture_attachments, FramebufferFormatID p_format_check = INVALID_ID, uint32_t p_view_count = 1);
virtual RID framebuffer_create_multipass(const Vector<RID> &p_texture_attachments, const Vector<FramebufferPass> &p_passes, FramebufferFormatID p_format_check = INVALID_ID, uint32_t p_view_count = 1);
virtual RID framebuffer_create_empty(const Size2i &p_size, TextureSamples p_samples = TEXTURE_SAMPLES_1, FramebufferFormatID p_format_check = INVALID_ID);
virtual bool framebuffer_is_valid(RID p_framebuffer) const;
virtual void framebuffer_set_invalidation_callback(RID p_framebuffer, InvalidationCallback p_callback, void *p_userdata);
virtual FramebufferFormatID framebuffer_get_format(RID p_framebuffer);
/*****************/
/**** SAMPLER ****/
/*****************/
virtual RID sampler_create(const SamplerState &p_state);
/**********************/
/**** VERTEX ARRAY ****/
/**********************/
virtual RID vertex_buffer_create(uint32_t p_size_bytes, const Vector<uint8_t> &p_data = Vector<uint8_t>(), bool p_use_as_storage = false);
// Internally reference counted, this ID is warranted to be unique for the same description, but needs to be freed as many times as it was allocated.
virtual VertexFormatID vertex_format_create(const Vector<VertexAttribute> &p_vertex_formats);
virtual RID vertex_array_create(uint32_t p_vertex_count, VertexFormatID p_vertex_format, const Vector<RID> &p_src_buffers, const Vector<uint64_t> &p_offsets = Vector<uint64_t>());
virtual RID index_buffer_create(uint32_t p_size_indices, IndexBufferFormat p_format, const Vector<uint8_t> &p_data = Vector<uint8_t>(), bool p_use_restart_indices = false);
virtual RID index_array_create(RID p_index_buffer, uint32_t p_index_offset, uint32_t p_index_count);
/****************/
/**** SHADER ****/
/****************/
virtual String shader_get_binary_cache_key() const;
virtual Vector<uint8_t> shader_compile_binary_from_spirv(const Vector<ShaderStageSPIRVData> &p_spirv, const String &p_shader_name = "");
virtual RID shader_create_from_bytecode(const Vector<uint8_t> &p_shader_binary);
virtual uint32_t shader_get_vertex_input_attribute_mask(RID p_shader);
/*****************/
/**** UNIFORM ****/
/*****************/
virtual RID uniform_buffer_create(uint32_t p_size_bytes, const Vector<uint8_t> &p_data = Vector<uint8_t>());
virtual RID storage_buffer_create(uint32_t p_size_bytes, const Vector<uint8_t> &p_data = Vector<uint8_t>(), BitField<StorageBufferUsage> p_usage = 0);
virtual RID texture_buffer_create(uint32_t p_size_elements, DataFormat p_format, const Vector<uint8_t> &p_data = Vector<uint8_t>());
virtual RID uniform_set_create(const Vector<Uniform> &p_uniforms, RID p_shader, uint32_t p_shader_set);
virtual bool uniform_set_is_valid(RID p_uniform_set);
virtual void uniform_set_set_invalidation_callback(RID p_uniform_set, InvalidationCallback p_callback, void *p_userdata);
virtual Error buffer_update(RID p_buffer, uint32_t p_offset, uint32_t p_size, const void *p_data, BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS); // Works for any buffer.
virtual Error buffer_clear(RID p_buffer, uint32_t p_offset, uint32_t p_size, BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS);
virtual Vector<uint8_t> buffer_get_data(RID p_buffer, uint32_t p_offset = 0, uint32_t p_size = 0);
/*************************/
/**** RENDER PIPELINE ****/
/*************************/
virtual RID render_pipeline_create(RID p_shader, FramebufferFormatID p_framebuffer_format, VertexFormatID p_vertex_format, RenderPrimitive p_render_primitive, const PipelineRasterizationState &p_rasterization_state, const PipelineMultisampleState &p_multisample_state, const PipelineDepthStencilState &p_depth_stencil_state, const PipelineColorBlendState &p_blend_state, BitField<PipelineDynamicStateFlags> p_dynamic_state_flags = 0, uint32_t p_for_render_pass = 0, const Vector<PipelineSpecializationConstant> &p_specialization_constants = Vector<PipelineSpecializationConstant>());
virtual bool render_pipeline_is_valid(RID p_pipeline);
/**************************/
/**** COMPUTE PIPELINE ****/
/**************************/
virtual RID compute_pipeline_create(RID p_shader, const Vector<PipelineSpecializationConstant> &p_specialization_constants = Vector<PipelineSpecializationConstant>());
virtual bool compute_pipeline_is_valid(RID p_pipeline);
/****************/
/**** SCREEN ****/
/****************/
virtual int screen_get_width(DisplayServer::WindowID p_screen = 0) const;
virtual int screen_get_height(DisplayServer::WindowID p_screen = 0) const;
virtual FramebufferFormatID screen_get_framebuffer_format() const;
/********************/
/**** DRAW LISTS ****/
/********************/
virtual DrawListID draw_list_begin_for_screen(DisplayServer::WindowID p_screen = 0, const Color &p_clear_color = Color());
virtual DrawListID draw_list_begin(RID p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values = Vector<Color>(), float p_clear_depth = 1.0, uint32_t p_clear_stencil = 0, const Rect2 &p_region = Rect2(), const Vector<RID> &p_storage_textures = Vector<RID>());
virtual Error draw_list_begin_split(RID p_framebuffer, uint32_t p_splits, DrawListID *r_split_ids, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values = Vector<Color>(), float p_clear_depth = 1.0, uint32_t p_clear_stencil = 0, const Rect2 &p_region = Rect2(), const Vector<RID> &p_storage_textures = Vector<RID>());
virtual void draw_list_set_blend_constants(DrawListID p_list, const Color &p_color);
virtual void draw_list_bind_render_pipeline(DrawListID p_list, RID p_render_pipeline);
virtual void draw_list_bind_uniform_set(DrawListID p_list, RID p_uniform_set, uint32_t p_index);
virtual void draw_list_bind_vertex_array(DrawListID p_list, RID p_vertex_array);
virtual void draw_list_bind_index_array(DrawListID p_list, RID p_index_array);
virtual void draw_list_set_line_width(DrawListID p_list, float p_width);
virtual void draw_list_set_push_constant(DrawListID p_list, const void *p_data, uint32_t p_data_size);
virtual void draw_list_draw(DrawListID p_list, bool p_use_indices, uint32_t p_instances = 1, uint32_t p_procedural_vertices = 0);
virtual void draw_list_enable_scissor(DrawListID p_list, const Rect2 &p_rect);
virtual void draw_list_disable_scissor(DrawListID p_list);
virtual uint32_t draw_list_get_current_pass();
virtual DrawListID draw_list_switch_to_next_pass();
virtual Error draw_list_switch_to_next_pass_split(uint32_t p_splits, DrawListID *r_split_ids);
virtual void draw_list_end(BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS);
/***********************/
/**** COMPUTE LISTS ****/
/***********************/
virtual ComputeListID compute_list_begin(bool p_allow_draw_overlap = false);
virtual void compute_list_bind_compute_pipeline(ComputeListID p_list, RID p_compute_pipeline);
virtual void compute_list_bind_uniform_set(ComputeListID p_list, RID p_uniform_set, uint32_t p_index);
virtual void compute_list_set_push_constant(ComputeListID p_list, const void *p_data, uint32_t p_data_size);
virtual void compute_list_add_barrier(ComputeListID p_list);
virtual void compute_list_dispatch(ComputeListID p_list, uint32_t p_x_groups, uint32_t p_y_groups, uint32_t p_z_groups);
virtual void compute_list_dispatch_threads(ComputeListID p_list, uint32_t p_x_threads, uint32_t p_y_threads, uint32_t p_z_threads);
virtual void compute_list_dispatch_indirect(ComputeListID p_list, RID p_buffer, uint32_t p_offset);
virtual void compute_list_end(BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS);
virtual void barrier(BitField<BarrierMask> p_from = BARRIER_MASK_ALL_BARRIERS, BitField<BarrierMask> p_to = BARRIER_MASK_ALL_BARRIERS);
virtual void full_barrier();
/**************/
/**** FREE ****/
/**************/
virtual void free(RID p_id);
/****************/
/**** Timing ****/
/****************/
virtual void capture_timestamp(const String &p_name);
virtual uint32_t get_captured_timestamps_count() const;
virtual uint64_t get_captured_timestamps_frame() const;
virtual uint64_t get_captured_timestamp_gpu_time(uint32_t p_index) const;
virtual uint64_t get_captured_timestamp_cpu_time(uint32_t p_index) const;
virtual String get_captured_timestamp_name(uint32_t p_index) const;
/****************/
/**** Limits ****/
/****************/
virtual uint64_t limit_get(Limit p_limit) const;
virtual void prepare_screen_for_drawing();
void initialize(VulkanContext *p_context, bool p_local_device = false);
void finalize();
virtual void swap_buffers(); // For main device.
virtual void submit(); // For local device.
virtual void sync(); // For local device.
virtual uint32_t get_frame_delay() const;
virtual RenderingDevice *create_local_device();
virtual uint64_t get_memory_usage(MemoryType p_type) const;
virtual void set_resource_name(RID p_id, const String p_name);
virtual void draw_command_begin_label(String p_label_name, const Color p_color = Color(1, 1, 1, 1));
virtual void draw_command_insert_label(String p_label_name, const Color p_color = Color(1, 1, 1, 1));
virtual void draw_command_end_label();
virtual String get_device_vendor_name() const;
virtual String get_device_name() const;
virtual RenderingDevice::DeviceType get_device_type() const;
virtual String get_device_api_version() const;
virtual String get_device_pipeline_cache_uuid() const;
virtual uint64_t get_driver_resource(DriverResource p_resource, RID p_rid = RID(), uint64_t p_index = 0);
virtual bool has_feature(const Features p_feature) const;
RenderingDeviceVulkan();
~RenderingDeviceVulkan();
};
#endif // RENDERING_DEVICE_VULKAN_H