8b01b2e85c
-Add emission lighting to raytrace mode, fixes #14686
268 lines
8.1 KiB
C++
268 lines
8.1 KiB
C++
|
|
#include "thekla_atlas.h"
|
|
|
|
#include <cfloat>
|
|
|
|
#include "nvmesh/halfedge/Edge.h"
|
|
#include "nvmesh/halfedge/Face.h"
|
|
#include "nvmesh/halfedge/Mesh.h"
|
|
#include "nvmesh/halfedge/Vertex.h"
|
|
#include "nvmesh/param/Atlas.h"
|
|
|
|
#include "nvmath/Vector.inl"
|
|
#include "nvmath/ftoi.h"
|
|
|
|
#include "nvcore/Array.inl"
|
|
|
|
#include <stdio.h>
|
|
|
|
using namespace Thekla;
|
|
using namespace nv;
|
|
|
|
inline Atlas_Output_Mesh *set_error(Atlas_Error *error, Atlas_Error code) {
|
|
if (error) *error = code;
|
|
return NULL;
|
|
}
|
|
|
|
static void input_to_mesh(const Atlas_Input_Mesh *input, HalfEdge::Mesh *mesh, Atlas_Error *error) {
|
|
|
|
Array<uint> canonicalMap;
|
|
canonicalMap.reserve(input->vertex_count);
|
|
|
|
for (int i = 0; i < input->vertex_count; i++) {
|
|
const Atlas_Input_Vertex &input_vertex = input->vertex_array[i];
|
|
const float *pos = input_vertex.position;
|
|
const float *nor = input_vertex.normal;
|
|
const float *tex = input_vertex.uv;
|
|
|
|
HalfEdge::Vertex *vertex = mesh->addVertex(Vector3(pos[0], pos[1], pos[2]));
|
|
vertex->nor.set(nor[0], nor[1], nor[2]);
|
|
vertex->tex.set(tex[0], tex[1]);
|
|
|
|
canonicalMap.append(input_vertex.first_colocal);
|
|
}
|
|
|
|
mesh->linkColocalsWithCanonicalMap(canonicalMap);
|
|
|
|
const int face_count = input->face_count;
|
|
|
|
int non_manifold_faces = 0;
|
|
for (int i = 0; i < face_count; i++) {
|
|
const Atlas_Input_Face &input_face = input->face_array[i];
|
|
|
|
int v0 = input_face.vertex_index[0];
|
|
int v1 = input_face.vertex_index[1];
|
|
int v2 = input_face.vertex_index[2];
|
|
|
|
HalfEdge::Face *face = mesh->addFace(v0, v1, v2);
|
|
if (face != NULL) {
|
|
face->material = input_face.material_index;
|
|
} else {
|
|
non_manifold_faces++;
|
|
}
|
|
}
|
|
|
|
mesh->linkBoundary();
|
|
|
|
if (non_manifold_faces != 0 && error != NULL) {
|
|
*error = Atlas_Error_Invalid_Mesh_Non_Manifold;
|
|
}
|
|
}
|
|
|
|
static Atlas_Output_Mesh *mesh_atlas_to_output(const HalfEdge::Mesh *mesh, const Atlas &atlas, Atlas_Error *error) {
|
|
|
|
Atlas_Output_Mesh *output = new Atlas_Output_Mesh;
|
|
|
|
const MeshCharts *charts = atlas.meshAt(0);
|
|
|
|
// Allocate vertices.
|
|
const int vertex_count = charts->vertexCount();
|
|
output->vertex_count = vertex_count;
|
|
output->vertex_array = new Atlas_Output_Vertex[vertex_count];
|
|
|
|
int w = 0;
|
|
int h = 0;
|
|
|
|
// Output vertices.
|
|
const int chart_count = charts->chartCount();
|
|
for (int i = 0; i < chart_count; i++) {
|
|
const Chart *chart = charts->chartAt(i);
|
|
uint vertexOffset = charts->vertexCountBeforeChartAt(i);
|
|
|
|
const uint chart_vertex_count = chart->vertexCount();
|
|
for (uint v = 0; v < chart_vertex_count; v++) {
|
|
Atlas_Output_Vertex &output_vertex = output->vertex_array[vertexOffset + v];
|
|
|
|
uint original_vertex = chart->mapChartVertexToOriginalVertex(v);
|
|
output_vertex.xref = original_vertex;
|
|
|
|
Vector2 uv = chart->chartMesh()->vertexAt(v)->tex;
|
|
output_vertex.uv[0] = uv.x;
|
|
output_vertex.uv[1] = uv.y;
|
|
w = max(w, ftoi_ceil(uv.x));
|
|
h = max(h, ftoi_ceil(uv.y));
|
|
}
|
|
}
|
|
|
|
const int face_count = mesh->faceCount();
|
|
output->index_count = face_count * 3;
|
|
output->index_array = new int[face_count * 3];
|
|
|
|
int face_ofs = 0;
|
|
// Set face indices.
|
|
for (int f = 0; f < face_count; f++) {
|
|
uint c = charts->faceChartAt(f);
|
|
uint i = charts->faceIndexWithinChartAt(f);
|
|
uint vertexOffset = charts->vertexCountBeforeChartAt(c);
|
|
|
|
const Chart *chart = charts->chartAt(c);
|
|
nvDebugCheck(chart->faceAt(i) == f);
|
|
|
|
if (i >= chart->chartMesh()->faceCount()) {
|
|
printf("WARNING: Faces may be missing in the final vertex, which could not be packed\n");
|
|
|
|
continue;
|
|
}
|
|
const HalfEdge::Face *face = chart->chartMesh()->faceAt(i);
|
|
const HalfEdge::Edge *edge = face->edge;
|
|
|
|
output->index_array[3 * face_ofs + 0] = vertexOffset + edge->vertex->id;
|
|
output->index_array[3 * face_ofs + 1] = vertexOffset + edge->next->vertex->id;
|
|
output->index_array[3 * face_ofs + 2] = vertexOffset + edge->next->next->vertex->id;
|
|
face_ofs++;
|
|
}
|
|
|
|
output->index_count = face_ofs * 3;
|
|
|
|
*error = Atlas_Error_Success;
|
|
output->atlas_width = w;
|
|
output->atlas_height = h;
|
|
|
|
return output;
|
|
}
|
|
|
|
void Thekla::atlas_set_default_options(Atlas_Options *options) {
|
|
if (options != NULL) {
|
|
// These are the default values we use on The Witness.
|
|
|
|
options->charter = Atlas_Charter_Default;
|
|
options->charter_options.witness.proxy_fit_metric_weight = 2.0f;
|
|
options->charter_options.witness.roundness_metric_weight = 0.01f;
|
|
options->charter_options.witness.straightness_metric_weight = 6.0f;
|
|
options->charter_options.witness.normal_seam_metric_weight = 4.0f;
|
|
options->charter_options.witness.texture_seam_metric_weight = 0.5f;
|
|
options->charter_options.witness.max_chart_area = FLT_MAX;
|
|
options->charter_options.witness.max_boundary_length = FLT_MAX;
|
|
|
|
options->mapper = Atlas_Mapper_Default;
|
|
|
|
options->packer = Atlas_Packer_Default;
|
|
options->packer_options.witness.packing_quality = 0;
|
|
options->packer_options.witness.texel_area = 8;
|
|
options->packer_options.witness.block_align = true;
|
|
options->packer_options.witness.conservative = false;
|
|
}
|
|
}
|
|
|
|
Atlas_Output_Mesh *Thekla::atlas_generate(const Atlas_Input_Mesh *input, const Atlas_Options *options, Atlas_Error *error) {
|
|
// Validate args.
|
|
if (input == NULL || options == NULL || error == NULL) return set_error(error, Atlas_Error_Invalid_Args);
|
|
|
|
// Validate options.
|
|
if (options->charter != Atlas_Charter_Witness) {
|
|
return set_error(error, Atlas_Error_Invalid_Options);
|
|
}
|
|
if (options->charter == Atlas_Charter_Witness) {
|
|
// @@ Validate input options!
|
|
}
|
|
|
|
if (options->mapper != Atlas_Mapper_LSCM) {
|
|
return set_error(error, Atlas_Error_Invalid_Options);
|
|
}
|
|
if (options->mapper == Atlas_Mapper_LSCM) {
|
|
// No options.
|
|
}
|
|
|
|
if (options->packer != Atlas_Packer_Witness) {
|
|
return set_error(error, Atlas_Error_Invalid_Options);
|
|
}
|
|
if (options->packer == Atlas_Packer_Witness) {
|
|
// @@ Validate input options!
|
|
}
|
|
|
|
// Validate input mesh.
|
|
for (int i = 0; i < input->face_count; i++) {
|
|
int v0 = input->face_array[i].vertex_index[0];
|
|
int v1 = input->face_array[i].vertex_index[1];
|
|
int v2 = input->face_array[i].vertex_index[2];
|
|
|
|
if (v0 < 0 || v0 >= input->vertex_count ||
|
|
v1 < 0 || v1 >= input->vertex_count ||
|
|
v2 < 0 || v2 >= input->vertex_count) {
|
|
return set_error(error, Atlas_Error_Invalid_Mesh);
|
|
}
|
|
}
|
|
|
|
// Build half edge mesh.
|
|
AutoPtr<HalfEdge::Mesh> mesh(new HalfEdge::Mesh);
|
|
|
|
input_to_mesh(input, mesh.ptr(), error);
|
|
|
|
if (*error == Atlas_Error_Invalid_Mesh) {
|
|
return NULL;
|
|
}
|
|
|
|
Atlas atlas;
|
|
|
|
// Charter.
|
|
if (options->charter == Atlas_Charter_Extract) {
|
|
return set_error(error, Atlas_Error_Not_Implemented);
|
|
} else if (options->charter == Atlas_Charter_Witness) {
|
|
SegmentationSettings segmentation_settings;
|
|
segmentation_settings.proxyFitMetricWeight = options->charter_options.witness.proxy_fit_metric_weight;
|
|
segmentation_settings.roundnessMetricWeight = options->charter_options.witness.roundness_metric_weight;
|
|
segmentation_settings.straightnessMetricWeight = options->charter_options.witness.straightness_metric_weight;
|
|
segmentation_settings.normalSeamMetricWeight = options->charter_options.witness.normal_seam_metric_weight;
|
|
segmentation_settings.textureSeamMetricWeight = options->charter_options.witness.texture_seam_metric_weight;
|
|
segmentation_settings.maxChartArea = options->charter_options.witness.max_chart_area;
|
|
segmentation_settings.maxBoundaryLength = options->charter_options.witness.max_boundary_length;
|
|
|
|
Array<uint> uncharted_materials;
|
|
atlas.computeCharts(mesh.ptr(), segmentation_settings, uncharted_materials);
|
|
}
|
|
|
|
if (atlas.hasFailed())
|
|
return NULL;
|
|
|
|
// Mapper.
|
|
if (options->mapper == Atlas_Mapper_LSCM) {
|
|
atlas.parameterizeCharts();
|
|
}
|
|
|
|
if (atlas.hasFailed())
|
|
return NULL;
|
|
|
|
// Packer.
|
|
if (options->packer == Atlas_Packer_Witness) {
|
|
int packing_quality = options->packer_options.witness.packing_quality;
|
|
float texel_area = options->packer_options.witness.texel_area;
|
|
int block_align = options->packer_options.witness.block_align;
|
|
int conservative = options->packer_options.witness.conservative;
|
|
|
|
/*float utilization =*/atlas.packCharts(packing_quality, texel_area, block_align, conservative);
|
|
}
|
|
|
|
if (atlas.hasFailed())
|
|
return NULL;
|
|
|
|
// Build output mesh.
|
|
return mesh_atlas_to_output(mesh.ptr(), atlas, error);
|
|
}
|
|
|
|
void Thekla::atlas_free(Atlas_Output_Mesh *output) {
|
|
if (output != NULL) {
|
|
delete[] output->vertex_array;
|
|
delete[] output->index_array;
|
|
delete output;
|
|
}
|
|
}
|