virtualx-engine/thirdparty/mbedtls/library/constant_time_impl.h
Lyuma 40fa684c18 mbedTLS: Update to new LTS v3.6.0
Keep module compatibility with mbedtls 2.x (old LTS branch).

A patch has been added to allow compiling after removing all the `psa_*`
files from the library folder (will look into upstreaming it).

Note: mbedTLS 3.6 finally enabled TLSv1.3 by default, but it requires
some module changes, and to enable PSA crypto (new "standard" API
specification), so it might be best done in a separate commit/PR.
2024-04-10 21:19:22 +02:00

556 lines
21 KiB
C++

/**
* Constant-time functions
*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
*/
#ifndef MBEDTLS_CONSTANT_TIME_IMPL_H
#define MBEDTLS_CONSTANT_TIME_IMPL_H
#include <stddef.h>
#include "common.h"
#if defined(MBEDTLS_BIGNUM_C)
#include "mbedtls/bignum.h"
#endif
/*
* To improve readability of constant_time_internal.h, the static inline
* definitions are here, and constant_time_internal.h has only the declarations.
*
* This results in duplicate declarations of the form:
* static inline void f(); // from constant_time_internal.h
* static inline void f() { ... } // from constant_time_impl.h
* when constant_time_internal.h is included.
*
* This appears to behave as if the declaration-without-definition was not present
* (except for warnings if gcc -Wredundant-decls or similar is used).
*
* Disable -Wredundant-decls so that gcc does not warn about this. This is re-enabled
* at the bottom of this file.
*/
#if defined(MBEDTLS_COMPILER_IS_GCC) && (__GNUC__ > 4)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wredundant-decls"
#endif
/* Disable asm under Memsan because it confuses Memsan and generates false errors.
*
* We also disable under Valgrind by default, because it's more useful
* for Valgrind to test the plain C implementation. MBEDTLS_TEST_CONSTANT_FLOW_ASM //no-check-names
* may be set to permit building asm under Valgrind.
*/
#if defined(MBEDTLS_TEST_CONSTANT_FLOW_MEMSAN) || \
(defined(MBEDTLS_TEST_CONSTANT_FLOW_VALGRIND) && !defined(MBEDTLS_TEST_CONSTANT_FLOW_ASM)) //no-check-names
#define MBEDTLS_CT_NO_ASM
#elif defined(__has_feature)
#if __has_feature(memory_sanitizer)
#define MBEDTLS_CT_NO_ASM
#endif
#endif
/* armcc5 --gnu defines __GNUC__ but doesn't support GNU's extended asm */
#if defined(MBEDTLS_HAVE_ASM) && defined(__GNUC__) && (!defined(__ARMCC_VERSION) || \
__ARMCC_VERSION >= 6000000) && !defined(MBEDTLS_CT_NO_ASM)
#define MBEDTLS_CT_ASM
#if (defined(__arm__) || defined(__thumb__) || defined(__thumb2__))
#define MBEDTLS_CT_ARM_ASM
#elif defined(__aarch64__)
#define MBEDTLS_CT_AARCH64_ASM
#elif defined(__amd64__) || defined(__x86_64__)
#define MBEDTLS_CT_X86_64_ASM
#elif defined(__i386__)
#define MBEDTLS_CT_X86_ASM
#endif
#endif
#define MBEDTLS_CT_SIZE (sizeof(mbedtls_ct_uint_t) * 8)
/* ============================================================================
* Core const-time primitives
*/
/* Ensure that the compiler cannot know the value of x (i.e., cannot optimise
* based on its value) after this function is called.
*
* If we are not using assembly, this will be fairly inefficient, so its use
* should be minimised.
*/
#if !defined(MBEDTLS_CT_ASM)
extern volatile mbedtls_ct_uint_t mbedtls_ct_zero;
#endif
/**
* \brief Ensure that a value cannot be known at compile time.
*
* \param x The value to hide from the compiler.
* \return The same value that was passed in, such that the compiler
* cannot prove its value (even for calls of the form
* x = mbedtls_ct_compiler_opaque(1), x will be unknown).
*
* \note This is mainly used in constructing mbedtls_ct_condition_t
* values and performing operations over them, to ensure that
* there is no way for the compiler to ever know anything about
* the value of an mbedtls_ct_condition_t.
*/
static inline mbedtls_ct_uint_t mbedtls_ct_compiler_opaque(mbedtls_ct_uint_t x)
{
#if defined(MBEDTLS_CT_ASM)
asm volatile ("" : [x] "+r" (x) :);
return x;
#else
return x ^ mbedtls_ct_zero;
#endif
}
/*
* Selecting unified syntax is needed for gcc, and harmless on clang.
*
* This is needed because on Thumb 1, condition flags are always set, so
* e.g. "negs" is supported but "neg" is not (on Thumb 2, both exist).
*
* Under Thumb 1 unified syntax, only the "negs" form is accepted, and
* under divided syntax, only the "neg" form is accepted. clang only
* supports unified syntax.
*
* On Thumb 2 and Arm, both compilers are happy with the "s" suffix,
* although we don't actually care about setting the flags.
*
* For old versions of gcc (see #8516 for details), restore divided
* syntax afterwards - otherwise old versions of gcc seem to apply
* unified syntax globally, which breaks other asm code.
*/
#if defined(MBEDTLS_COMPILER_IS_GCC) && defined(__thumb__) && !defined(__thumb2__) && \
(__GNUC__ < 11) && !defined(__ARM_ARCH_2__)
#define RESTORE_ASM_SYNTAX ".syntax divided \n\t"
#else
#define RESTORE_ASM_SYNTAX
#endif
/* Convert a number into a condition in constant time. */
static inline mbedtls_ct_condition_t mbedtls_ct_bool(mbedtls_ct_uint_t x)
{
/*
* Define mask-generation code that, as far as possible, will not use branches or conditional instructions.
*
* For some platforms / type sizes, we define assembly to assure this.
*
* Otherwise, we define a plain C fallback which (in May 2023) does not get optimised into
* conditional instructions or branches by trunk clang, gcc, or MSVC v19.
*/
#if defined(MBEDTLS_CT_AARCH64_ASM) && (defined(MBEDTLS_CT_SIZE_32) || defined(MBEDTLS_CT_SIZE_64))
mbedtls_ct_uint_t s;
asm volatile ("neg %x[s], %x[x] \n\t"
"orr %x[x], %x[s], %x[x] \n\t"
"asr %x[x], %x[x], 63 \n\t"
:
[s] "=&r" (s),
[x] "+&r" (x)
:
:
);
return (mbedtls_ct_condition_t) x;
#elif defined(MBEDTLS_CT_ARM_ASM) && defined(MBEDTLS_CT_SIZE_32)
uint32_t s;
asm volatile (".syntax unified \n\t"
"negs %[s], %[x] \n\t"
"orrs %[x], %[x], %[s] \n\t"
"asrs %[x], %[x], #31 \n\t"
RESTORE_ASM_SYNTAX
:
[s] "=&l" (s),
[x] "+&l" (x)
:
:
"cc" /* clobbers flag bits */
);
return (mbedtls_ct_condition_t) x;
#elif defined(MBEDTLS_CT_X86_64_ASM) && (defined(MBEDTLS_CT_SIZE_32) || defined(MBEDTLS_CT_SIZE_64))
uint64_t s;
asm volatile ("mov %[x], %[s] \n\t"
"neg %[s] \n\t"
"or %[x], %[s] \n\t"
"sar $63, %[s] \n\t"
:
[s] "=&a" (s)
:
[x] "D" (x)
:
);
return (mbedtls_ct_condition_t) s;
#elif defined(MBEDTLS_CT_X86_ASM) && defined(MBEDTLS_CT_SIZE_32)
uint32_t s;
asm volatile ("mov %[x], %[s] \n\t"
"neg %[s] \n\t"
"or %[s], %[x] \n\t"
"sar $31, %[x] \n\t"
:
[s] "=&c" (s),
[x] "+&a" (x)
:
:
);
return (mbedtls_ct_condition_t) x;
#else
const mbedtls_ct_uint_t xo = mbedtls_ct_compiler_opaque(x);
#if defined(_MSC_VER)
/* MSVC has a warning about unary minus on unsigned, but this is
* well-defined and precisely what we want to do here */
#pragma warning( push )
#pragma warning( disable : 4146 )
#endif
// y is negative (i.e., top bit set) iff x is non-zero
mbedtls_ct_int_t y = (-xo) | -(xo >> 1);
// extract only the sign bit of y so that y == 1 (if x is non-zero) or 0 (if x is zero)
y = (((mbedtls_ct_uint_t) y) >> (MBEDTLS_CT_SIZE - 1));
// -y has all bits set (if x is non-zero), or all bits clear (if x is zero)
return (mbedtls_ct_condition_t) (-y);
#if defined(_MSC_VER)
#pragma warning( pop )
#endif
#endif
}
static inline mbedtls_ct_uint_t mbedtls_ct_if(mbedtls_ct_condition_t condition,
mbedtls_ct_uint_t if1,
mbedtls_ct_uint_t if0)
{
#if defined(MBEDTLS_CT_AARCH64_ASM) && (defined(MBEDTLS_CT_SIZE_32) || defined(MBEDTLS_CT_SIZE_64))
asm volatile ("and %x[if1], %x[if1], %x[condition] \n\t"
"mvn %x[condition], %x[condition] \n\t"
"and %x[condition], %x[condition], %x[if0] \n\t"
"orr %x[condition], %x[if1], %x[condition]"
:
[condition] "+&r" (condition),
[if1] "+&r" (if1)
:
[if0] "r" (if0)
:
);
return (mbedtls_ct_uint_t) condition;
#elif defined(MBEDTLS_CT_ARM_ASM) && defined(MBEDTLS_CT_SIZE_32)
asm volatile (".syntax unified \n\t"
"ands %[if1], %[if1], %[condition] \n\t"
"mvns %[condition], %[condition] \n\t"
"ands %[condition], %[condition], %[if0] \n\t"
"orrs %[condition], %[if1], %[condition] \n\t"
RESTORE_ASM_SYNTAX
:
[condition] "+&l" (condition),
[if1] "+&l" (if1)
:
[if0] "l" (if0)
:
"cc"
);
return (mbedtls_ct_uint_t) condition;
#elif defined(MBEDTLS_CT_X86_64_ASM) && (defined(MBEDTLS_CT_SIZE_32) || defined(MBEDTLS_CT_SIZE_64))
asm volatile ("and %[condition], %[if1] \n\t"
"not %[condition] \n\t"
"and %[condition], %[if0] \n\t"
"or %[if1], %[if0] \n\t"
:
[condition] "+&D" (condition),
[if1] "+&S" (if1),
[if0] "+&a" (if0)
:
:
);
return if0;
#elif defined(MBEDTLS_CT_X86_ASM) && defined(MBEDTLS_CT_SIZE_32)
asm volatile ("and %[condition], %[if1] \n\t"
"not %[condition] \n\t"
"and %[if0], %[condition] \n\t"
"or %[condition], %[if1] \n\t"
:
[condition] "+&c" (condition),
[if1] "+&a" (if1)
:
[if0] "b" (if0)
:
);
return if1;
#else
mbedtls_ct_condition_t not_cond =
(mbedtls_ct_condition_t) (~mbedtls_ct_compiler_opaque(condition));
return (mbedtls_ct_uint_t) ((condition & if1) | (not_cond & if0));
#endif
}
static inline mbedtls_ct_condition_t mbedtls_ct_uint_lt(mbedtls_ct_uint_t x, mbedtls_ct_uint_t y)
{
#if defined(MBEDTLS_CT_AARCH64_ASM) && (defined(MBEDTLS_CT_SIZE_32) || defined(MBEDTLS_CT_SIZE_64))
uint64_t s1;
asm volatile ("eor %x[s1], %x[y], %x[x] \n\t"
"sub %x[x], %x[x], %x[y] \n\t"
"bic %x[x], %x[x], %x[s1] \n\t"
"and %x[s1], %x[s1], %x[y] \n\t"
"orr %x[s1], %x[x], %x[s1] \n\t"
"asr %x[x], %x[s1], 63"
:
[s1] "=&r" (s1),
[x] "+&r" (x)
:
[y] "r" (y)
:
);
return (mbedtls_ct_condition_t) x;
#elif defined(MBEDTLS_CT_ARM_ASM) && defined(MBEDTLS_CT_SIZE_32)
uint32_t s1;
asm volatile (
".syntax unified \n\t"
#if defined(__thumb__) && !defined(__thumb2__)
"movs %[s1], %[x] \n\t"
"eors %[s1], %[s1], %[y] \n\t"
#else
"eors %[s1], %[x], %[y] \n\t"
#endif
"subs %[x], %[x], %[y] \n\t"
"bics %[x], %[x], %[s1] \n\t"
"ands %[y], %[s1], %[y] \n\t"
"orrs %[x], %[x], %[y] \n\t"
"asrs %[x], %[x], #31 \n\t"
RESTORE_ASM_SYNTAX
:
[s1] "=&l" (s1),
[x] "+&l" (x),
[y] "+&l" (y)
:
:
"cc"
);
return (mbedtls_ct_condition_t) x;
#elif defined(MBEDTLS_CT_X86_64_ASM) && (defined(MBEDTLS_CT_SIZE_32) || defined(MBEDTLS_CT_SIZE_64))
uint64_t s;
asm volatile ("mov %[x], %[s] \n\t"
"xor %[y], %[s] \n\t"
"sub %[y], %[x] \n\t"
"and %[s], %[y] \n\t"
"not %[s] \n\t"
"and %[s], %[x] \n\t"
"or %[y], %[x] \n\t"
"sar $63, %[x] \n\t"
:
[s] "=&a" (s),
[x] "+&D" (x),
[y] "+&S" (y)
:
:
);
return (mbedtls_ct_condition_t) x;
#elif defined(MBEDTLS_CT_X86_ASM) && defined(MBEDTLS_CT_SIZE_32)
uint32_t s;
asm volatile ("mov %[x], %[s] \n\t"
"xor %[y], %[s] \n\t"
"sub %[y], %[x] \n\t"
"and %[s], %[y] \n\t"
"not %[s] \n\t"
"and %[s], %[x] \n\t"
"or %[y], %[x] \n\t"
"sar $31, %[x] \n\t"
:
[s] "=&b" (s),
[x] "+&a" (x),
[y] "+&c" (y)
:
:
);
return (mbedtls_ct_condition_t) x;
#else
/* Ensure that the compiler cannot optimise the following operations over x and y,
* even if it knows the value of x and y.
*/
const mbedtls_ct_uint_t xo = mbedtls_ct_compiler_opaque(x);
const mbedtls_ct_uint_t yo = mbedtls_ct_compiler_opaque(y);
/*
* Check if the most significant bits (MSB) of the operands are different.
* cond is true iff the MSBs differ.
*/
mbedtls_ct_condition_t cond = mbedtls_ct_bool((xo ^ yo) >> (MBEDTLS_CT_SIZE - 1));
/*
* If the MSB are the same then the difference x-y will be negative (and
* have its MSB set to 1 during conversion to unsigned) if and only if x<y.
*
* If the MSB are different, then the operand with the MSB of 1 is the
* bigger. (That is if y has MSB of 1, then x<y is true and it is false if
* the MSB of y is 0.)
*/
// Select either y, or x - y
mbedtls_ct_uint_t ret = mbedtls_ct_if(cond, yo, (mbedtls_ct_uint_t) (xo - yo));
// Extract only the MSB of ret
ret = ret >> (MBEDTLS_CT_SIZE - 1);
// Convert to a condition (i.e., all bits set iff non-zero)
return mbedtls_ct_bool(ret);
#endif
}
static inline mbedtls_ct_condition_t mbedtls_ct_uint_ne(mbedtls_ct_uint_t x, mbedtls_ct_uint_t y)
{
/* diff = 0 if x == y, non-zero otherwise */
const mbedtls_ct_uint_t diff = mbedtls_ct_compiler_opaque(x) ^ mbedtls_ct_compiler_opaque(y);
/* all ones if x != y, 0 otherwise */
return mbedtls_ct_bool(diff);
}
static inline unsigned char mbedtls_ct_uchar_in_range_if(unsigned char low,
unsigned char high,
unsigned char c,
unsigned char t)
{
const unsigned char co = (unsigned char) mbedtls_ct_compiler_opaque(c);
const unsigned char to = (unsigned char) mbedtls_ct_compiler_opaque(t);
/* low_mask is: 0 if low <= c, 0x...ff if low > c */
unsigned low_mask = ((unsigned) co - low) >> 8;
/* high_mask is: 0 if c <= high, 0x...ff if c > high */
unsigned high_mask = ((unsigned) high - co) >> 8;
return (unsigned char) (~(low_mask | high_mask)) & to;
}
/* ============================================================================
* Everything below here is trivial wrapper functions
*/
static inline size_t mbedtls_ct_size_if(mbedtls_ct_condition_t condition,
size_t if1,
size_t if0)
{
return (size_t) mbedtls_ct_if(condition, (mbedtls_ct_uint_t) if1, (mbedtls_ct_uint_t) if0);
}
static inline unsigned mbedtls_ct_uint_if(mbedtls_ct_condition_t condition,
unsigned if1,
unsigned if0)
{
return (unsigned) mbedtls_ct_if(condition, (mbedtls_ct_uint_t) if1, (mbedtls_ct_uint_t) if0);
}
static inline mbedtls_ct_condition_t mbedtls_ct_bool_if(mbedtls_ct_condition_t condition,
mbedtls_ct_condition_t if1,
mbedtls_ct_condition_t if0)
{
return (mbedtls_ct_condition_t) mbedtls_ct_if(condition, (mbedtls_ct_uint_t) if1,
(mbedtls_ct_uint_t) if0);
}
#if defined(MBEDTLS_BIGNUM_C)
static inline mbedtls_mpi_uint mbedtls_ct_mpi_uint_if(mbedtls_ct_condition_t condition,
mbedtls_mpi_uint if1,
mbedtls_mpi_uint if0)
{
return (mbedtls_mpi_uint) mbedtls_ct_if(condition,
(mbedtls_ct_uint_t) if1,
(mbedtls_ct_uint_t) if0);
}
#endif
static inline size_t mbedtls_ct_size_if_else_0(mbedtls_ct_condition_t condition, size_t if1)
{
return (size_t) (condition & if1);
}
static inline unsigned mbedtls_ct_uint_if_else_0(mbedtls_ct_condition_t condition, unsigned if1)
{
return (unsigned) (condition & if1);
}
static inline mbedtls_ct_condition_t mbedtls_ct_bool_if_else_0(mbedtls_ct_condition_t condition,
mbedtls_ct_condition_t if1)
{
return (mbedtls_ct_condition_t) (condition & if1);
}
#if defined(MBEDTLS_BIGNUM_C)
static inline mbedtls_mpi_uint mbedtls_ct_mpi_uint_if_else_0(mbedtls_ct_condition_t condition,
mbedtls_mpi_uint if1)
{
return (mbedtls_mpi_uint) (condition & if1);
}
#endif /* MBEDTLS_BIGNUM_C */
static inline int mbedtls_ct_error_if(mbedtls_ct_condition_t condition, int if1, int if0)
{
/* Coverting int -> uint -> int here is safe, because we require if1 and if0 to be
* in the range -32767..0, and we require 32-bit int and uint types.
*
* This means that (0 <= -if0 < INT_MAX), so negating if0 is safe, and similarly for
* converting back to int.
*/
return -((int) mbedtls_ct_if(condition, (mbedtls_ct_uint_t) (-if1),
(mbedtls_ct_uint_t) (-if0)));
}
static inline int mbedtls_ct_error_if_else_0(mbedtls_ct_condition_t condition, int if1)
{
return -((int) (condition & (-if1)));
}
static inline mbedtls_ct_condition_t mbedtls_ct_uint_eq(mbedtls_ct_uint_t x,
mbedtls_ct_uint_t y)
{
return ~mbedtls_ct_uint_ne(x, y);
}
static inline mbedtls_ct_condition_t mbedtls_ct_uint_gt(mbedtls_ct_uint_t x,
mbedtls_ct_uint_t y)
{
return mbedtls_ct_uint_lt(y, x);
}
static inline mbedtls_ct_condition_t mbedtls_ct_uint_ge(mbedtls_ct_uint_t x,
mbedtls_ct_uint_t y)
{
return ~mbedtls_ct_uint_lt(x, y);
}
static inline mbedtls_ct_condition_t mbedtls_ct_uint_le(mbedtls_ct_uint_t x,
mbedtls_ct_uint_t y)
{
return ~mbedtls_ct_uint_gt(x, y);
}
static inline mbedtls_ct_condition_t mbedtls_ct_bool_ne(mbedtls_ct_condition_t x,
mbedtls_ct_condition_t y)
{
return (mbedtls_ct_condition_t) (x ^ y);
}
static inline mbedtls_ct_condition_t mbedtls_ct_bool_and(mbedtls_ct_condition_t x,
mbedtls_ct_condition_t y)
{
return (mbedtls_ct_condition_t) (x & y);
}
static inline mbedtls_ct_condition_t mbedtls_ct_bool_or(mbedtls_ct_condition_t x,
mbedtls_ct_condition_t y)
{
return (mbedtls_ct_condition_t) (x | y);
}
static inline mbedtls_ct_condition_t mbedtls_ct_bool_not(mbedtls_ct_condition_t x)
{
return (mbedtls_ct_condition_t) (~x);
}
#if defined(MBEDTLS_COMPILER_IS_GCC) && (__GNUC__ > 4)
/* Restore warnings for -Wredundant-decls on gcc */
#pragma GCC diagnostic pop
#endif
#endif /* MBEDTLS_CONSTANT_TIME_IMPL_H */