virtualx-engine/core/math/vector3.cpp
2014-02-09 22:10:30 -03:00

201 lines
5.4 KiB
C++

/*************************************************************************/
/* vector3.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "vector3.h"
void Vector3::rotate(const Vector3& p_axis,float p_phi) {
Vector3 axis1 = cross(p_axis);
float l = axis1.length();
if (l==0)
return;
axis1/=l;
Vector3 axis2 = axis1.cross(p_axis).normalized();
float _x = axis1.dot(*this);
float _y = axis2.dot(*this);
float ang = Math::atan2(_x,_y);
ang+=p_phi;
*this=((axis1 * Math::cos(ang)) + (axis2 * Math::sin(ang))) * length();
}
Vector3 Vector3::rotated(const Vector3& p_axis,float p_phi) const {
Vector3 r = *this;
r.rotate(p_axis,p_phi);
return r;
}
void Vector3::set_axis(int p_axis,real_t p_value) {
ERR_FAIL_INDEX(p_axis,3);
coord[p_axis]=p_value;
}
real_t Vector3::get_axis(int p_axis) const {
ERR_FAIL_INDEX_V(p_axis,3,0);
return operator[](p_axis);
}
int Vector3::min_axis() const {
return x < y ? (x < z ? 0 : 2) : (y < z ? 1 : 2);
}
int Vector3::max_axis() const {
return x < y ? (y < z ? 2 : 1) : (x < z ? 2 : 0);
}
void Vector3::snap(float p_val) {
x+=p_val/2.0;
x-=Math::fmod(x,p_val);
y+=p_val/2.0;
y-=Math::fmod(y,p_val);
z+=p_val/2.0;
z-=Math::fmod(z,p_val);
}
Vector3 Vector3::snapped(float p_val) const {
Vector3 v=*this;
v.snap(p_val);
return v;
}
Vector3 Vector3::cubic_interpolaten(const Vector3& p_b,const Vector3& p_pre_a, const Vector3& p_post_b,float p_t) const {
Vector3 p0=p_pre_a;
Vector3 p1=*this;
Vector3 p2=p_b;
Vector3 p3=p_post_b;
{
//normalize
float ab = p0.distance_to(p1);
float bc = p1.distance_to(p2);
float cd = p2.distance_to(p3);
if (ab>0)
p0 = p1+(p0-p1)*(bc/ab);
if (cd>0)
p3 = p2+(p3-p2)*(bc/cd);
}
float t = p_t;
float t2 = t * t;
float t3 = t2 * t;
Vector3 out;
out = 0.5f * ( ( p1 * 2.0f) +
( -p0 + p2 ) * t +
( 2.0f * p0 - 5.0f * p1 + 4 * p2 - p3 ) * t2 +
( -p0 + 3.0f * p1 - 3.0f * p2 + p3 ) * t3 );
return out;
}
Vector3 Vector3::cubic_interpolate(const Vector3& p_b,const Vector3& p_pre_a, const Vector3& p_post_b,float p_t) const {
Vector3 p0=p_pre_a;
Vector3 p1=*this;
Vector3 p2=p_b;
Vector3 p3=p_post_b;
float t = p_t;
float t2 = t * t;
float t3 = t2 * t;
Vector3 out;
out = 0.5f * ( ( p1 * 2.0f) +
( -p0 + p2 ) * t +
( 2.0f * p0 - 5.0f * p1 + 4 * p2 - p3 ) * t2 +
( -p0 + 3.0f * p1 - 3.0f * p2 + p3 ) * t3 );
return out;
}
#if 0
Vector3 Vector3::cubic_interpolate(const Vector3& p_b,const Vector3& p_pre_a, const Vector3& p_post_b,float p_t) const {
Vector3 p0=p_pre_a;
Vector3 p1=*this;
Vector3 p2=p_b;
Vector3 p3=p_post_b;
if (true) {
float ab = p0.distance_to(p1);
float bc = p1.distance_to(p2);
float cd = p2.distance_to(p3);
//if (ab>bc) {
if (ab>0)
p0 = p1+(p0-p1)*(bc/ab);
//}
//if (cd>bc) {
if (cd>0)
p3 = p2+(p3-p2)*(bc/cd);
//}
}
float t = p_t;
float t2 = t * t;
float t3 = t2 * t;
Vector3 out;
out.x = 0.5f * ( ( 2.0f * p1.x ) +
( -p0.x + p2.x ) * t +
( 2.0f * p0.x - 5.0f * p1.x + 4 * p2.x - p3.x ) * t2 +
( -p0.x + 3.0f * p1.x - 3.0f * p2.x + p3.x ) * t3 );
out.y = 0.5f * ( ( 2.0f * p1.y ) +
( -p0.y + p2.y ) * t +
( 2.0f * p0.y - 5.0f * p1.y + 4 * p2.y - p3.y ) * t2 +
( -p0.y + 3.0f * p1.y - 3.0f * p2.y + p3.y ) * t3 );
out.z = 0.5f * ( ( 2.0f * p1.z ) +
( -p0.z + p2.z ) * t +
( 2.0f * p0.z - 5.0f * p1.z + 4 * p2.z - p3.z ) * t2 +
( -p0.z + 3.0f * p1.z - 3.0f * p2.z + p3.z ) * t3 );
return out;
}
# endif
Vector3::operator String() const {
return (rtos(x)+", "+rtos(y)+", "+rtos(z));
}