virtualx-engine/servers/visual/rasterizer_rd/rasterizer_scene_rd.cpp
2020-02-11 12:04:56 +01:00

2539 lines
88 KiB
C++

#include "rasterizer_scene_rd.h"
#include "core/os/os.h"
#include "core/project_settings.h"
void RasterizerSceneRD::_clear_reflection_data(ReflectionData &rd) {
rd.layers.clear();
rd.radiance_base_cubemap = RID();
}
void RasterizerSceneRD::_update_reflection_data(ReflectionData &rd, int p_size, int p_mipmaps, bool p_use_array, RID p_base_cube, int p_base_layer) {
//recreate radiance and all data
int mipmaps = p_mipmaps;
uint32_t w = p_size, h = p_size;
if (p_use_array) {
for (int i = 0; i < roughness_layers; i++) {
ReflectionData::Layer layer;
uint32_t mmw = w;
uint32_t mmh = h;
layer.mipmaps.resize(mipmaps);
for (int j = 0; j < mipmaps; j++) {
ReflectionData::Layer::Mipmap &mm = layer.mipmaps.write[j];
mm.size.width = mmw;
mm.size.height = mmh;
for (int k = 0; k < 6; k++) {
mm.views[k] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + i * 6 + k, j);
Vector<RID> fbtex;
fbtex.push_back(mm.views[k]);
mm.framebuffers[k] = RD::get_singleton()->framebuffer_create(fbtex);
}
mmw = MAX(1, mmw >> 1);
mmh = MAX(1, mmh >> 1);
}
rd.layers.push_back(layer);
}
} else {
//regular cubemap, lower quality (aliasing, less memory)
ReflectionData::Layer layer;
uint32_t mmw = w;
uint32_t mmh = h;
layer.mipmaps.resize(roughness_layers);
for (int j = 0; j < roughness_layers; j++) {
ReflectionData::Layer::Mipmap &mm = layer.mipmaps.write[j];
mm.size.width = mmw;
mm.size.height = mmh;
for (int k = 0; k < 6; k++) {
mm.views[k] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + k, j);
Vector<RID> fbtex;
fbtex.push_back(mm.views[k]);
mm.framebuffers[k] = RD::get_singleton()->framebuffer_create(fbtex);
}
mmw = MAX(1, mmw >> 1);
mmh = MAX(1, mmh >> 1);
}
rd.layers.push_back(layer);
}
rd.radiance_base_cubemap = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer, 0, RD::TEXTURE_SLICE_CUBEMAP);
}
void RasterizerSceneRD::_create_reflection_from_panorama(ReflectionData &rd, RID p_panorama, bool p_quality) {
#ifndef _MSC_VER
#warning TODO, should probably use this algorithm instead. Volunteers? - https://www.ppsloan.org/publications/ggx_filtering.pdf / https://github.com/dariomanesku/cmft
#endif
if (sky_use_cubemap_array) {
if (p_quality) {
//render directly to the layers
for (int i = 0; i < rd.layers.size(); i++) {
for (int j = 0; j < 6; j++) {
storage->get_effects()->cubemap_roughness(p_panorama, true, rd.layers[i].mipmaps[0].framebuffers[j], j, sky_ggx_samples_quality, float(i) / (rd.layers.size() - 1.0));
}
}
} else {
//render to first mipmap
for (int j = 0; j < 6; j++) {
storage->get_effects()->cubemap_roughness(p_panorama, true, rd.layers[0].mipmaps[0].framebuffers[j], j, sky_ggx_samples_realtime, 0.0);
}
//do the rest in other mipmaps and use cubemap itself as source
for (int i = 1; i < roughness_layers; i++) {
//render using a smaller mipmap, then copy to main layer
for (int j = 0; j < 6; j++) {
//storage->get_effects()->cubemap_roughness(rd.radiance_base_cubemap, false, rd.layers[0].mipmaps[i].framebuffers[0], j, sky_ggx_samples_realtime, float(i) / (rd.layers.size() - 1.0));
storage->get_effects()->cubemap_roughness(p_panorama, true, rd.layers[0].mipmaps[i].framebuffers[0], j, sky_ggx_samples_realtime, float(i) / (rd.layers.size() - 1.0));
storage->get_effects()->region_copy(rd.layers[0].mipmaps[i].views[0], rd.layers[i].mipmaps[0].framebuffers[j], Rect2());
}
}
}
} else {
if (p_quality) {
//render directly to the layers
for (int i = 0; i < rd.layers[0].mipmaps.size(); i++) {
for (int j = 0; j < 6; j++) {
storage->get_effects()->cubemap_roughness(p_panorama, true, rd.layers[0].mipmaps[i].framebuffers[j], j, sky_ggx_samples_quality, float(i) / (rd.layers[0].mipmaps.size() - 1.0));
}
}
} else {
for (int j = 0; j < 6; j++) {
storage->get_effects()->cubemap_roughness(p_panorama, true, rd.layers[0].mipmaps[0].framebuffers[j], j, sky_ggx_samples_realtime, 0);
}
for (int i = 1; i < rd.layers[0].mipmaps.size(); i++) {
for (int j = 0; j < 6; j++) {
storage->get_effects()->cubemap_roughness(rd.radiance_base_cubemap, false, rd.layers[0].mipmaps[i].framebuffers[j], j, sky_ggx_samples_realtime, float(i) / (rd.layers[0].mipmaps.size() - 1.0));
}
}
}
}
}
void RasterizerSceneRD::_create_reflection_from_base_mipmap(ReflectionData &rd, bool p_use_arrays, bool p_quality, int p_cube_side) {
if (p_use_arrays) {
if (p_quality) {
//render directly to the layers
for (int i = 1; i < rd.layers.size(); i++) {
storage->get_effects()->cubemap_roughness(rd.radiance_base_cubemap, false, rd.layers[i].mipmaps[0].framebuffers[p_cube_side], p_cube_side, sky_ggx_samples_quality, float(i) / (rd.layers.size() - 1.0));
}
} else {
//do the rest in other mipmaps and use cubemap itself as source
for (int i = 1; i < roughness_layers; i++) {
//render using a smaller mipmap, then copy to main layer
storage->get_effects()->cubemap_roughness(rd.radiance_base_cubemap, false, rd.layers[0].mipmaps[i].framebuffers[0], p_cube_side, sky_ggx_samples_realtime, float(i) / (rd.layers.size() - 1.0));
storage->get_effects()->region_copy(rd.layers[0].mipmaps[i].views[0], rd.layers[i].mipmaps[0].framebuffers[p_cube_side], Rect2());
}
}
} else {
if (p_quality) {
//render directly to the layers
for (int i = 1; i < rd.layers[0].mipmaps.size(); i++) {
storage->get_effects()->cubemap_roughness(rd.radiance_base_cubemap, false, rd.layers[0].mipmaps[i].framebuffers[p_cube_side], p_cube_side, sky_ggx_samples_quality, float(i) / (rd.layers[0].mipmaps.size() - 1.0));
}
} else {
for (int i = 1; i < rd.layers[0].mipmaps.size(); i++) {
storage->get_effects()->cubemap_roughness(rd.radiance_base_cubemap, false, rd.layers[0].mipmaps[i].framebuffers[p_cube_side], p_cube_side, sky_ggx_samples_realtime, float(i) / (rd.layers[0].mipmaps.size() - 1.0));
}
}
}
}
void RasterizerSceneRD::_update_reflection_mipmaps(ReflectionData &rd, bool p_quality) {
if (sky_use_cubemap_array) {
for (int i = 0; i < rd.layers.size(); i++) {
for (int j = 0; j < rd.layers[i].mipmaps.size() - 1; j++) {
for (int k = 0; k < 6; k++) {
RID view = rd.layers[i].mipmaps[j].views[k];
RID fb = rd.layers[i].mipmaps[j + 1].framebuffers[k];
Vector2 size = rd.layers[i].mipmaps[j].size;
size = Vector2(1.0 / size.x, 1.0 / size.y);
storage->get_effects()->make_mipmap(view, fb, size);
}
}
}
}
}
RID RasterizerSceneRD::sky_create() {
return sky_owner.make_rid(Sky());
}
void RasterizerSceneRD::_sky_invalidate(Sky *p_sky) {
if (!p_sky->dirty) {
p_sky->dirty = true;
p_sky->dirty_list = dirty_sky_list;
dirty_sky_list = p_sky;
}
}
void RasterizerSceneRD::sky_set_radiance_size(RID p_sky, int p_radiance_size) {
Sky *sky = sky_owner.getornull(p_sky);
ERR_FAIL_COND(!sky);
ERR_FAIL_COND(p_radiance_size < 32 || p_radiance_size > 2048);
if (sky->radiance_size == p_radiance_size) {
return;
}
sky->radiance_size = p_radiance_size;
_sky_invalidate(sky);
if (sky->radiance.is_valid()) {
RD::get_singleton()->free(sky->radiance);
sky->radiance = RID();
}
_clear_reflection_data(sky->reflection);
}
void RasterizerSceneRD::sky_set_mode(RID p_sky, VS::SkyMode p_mode) {
Sky *sky = sky_owner.getornull(p_sky);
ERR_FAIL_COND(!sky);
if (sky->mode == p_mode) {
return;
}
sky->mode = p_mode;
_sky_invalidate(sky);
}
void RasterizerSceneRD::sky_set_texture(RID p_sky, RID p_panorama) {
Sky *sky = sky_owner.getornull(p_sky);
ERR_FAIL_COND(!sky);
if (sky->panorama.is_valid()) {
sky->panorama = RID();
if (sky->radiance.is_valid()) {
RD::get_singleton()->free(sky->radiance);
sky->radiance = RID();
}
_clear_reflection_data(sky->reflection);
}
sky->panorama = p_panorama;
if (!sky->panorama.is_valid())
return; //cleared
_sky_invalidate(sky);
}
void RasterizerSceneRD::_update_dirty_skys() {
Sky *sky = dirty_sky_list;
while (sky) {
//update sky configuration if texture is missing
if (sky->radiance.is_null()) {
int mipmaps = Image::get_image_required_mipmaps(sky->radiance_size, sky->radiance_size, Image::FORMAT_RGBAH) + 1;
if (sky->mode != VS::SKY_MODE_QUALITY) {
//use less mipmaps
mipmaps = MIN(8, mipmaps);
}
uint32_t w = sky->radiance_size, h = sky->radiance_size;
if (sky_use_cubemap_array) {
//array (higher quality, 6 times more memory)
RD::TextureFormat tf;
tf.array_layers = roughness_layers * 6;
tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
tf.type = RD::TEXTURE_TYPE_CUBE_ARRAY;
tf.mipmaps = mipmaps;
tf.width = w;
tf.height = h;
tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
sky->radiance = RD::get_singleton()->texture_create(tf, RD::TextureView());
_update_reflection_data(sky->reflection, sky->radiance_size, mipmaps, true, sky->radiance, 0);
} else {
//regular cubemap, lower quality (aliasing, less memory)
RD::TextureFormat tf;
tf.array_layers = 6;
tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
tf.type = RD::TEXTURE_TYPE_CUBE;
tf.mipmaps = roughness_layers;
tf.width = w;
tf.height = h;
tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
sky->radiance = RD::get_singleton()->texture_create(tf, RD::TextureView());
_update_reflection_data(sky->reflection, sky->radiance_size, mipmaps, false, sky->radiance, 0);
}
}
RID panorama_texture = storage->texture_get_rd_texture(sky->panorama);
if (panorama_texture.is_valid()) {
//is there a panorama texture?
_create_reflection_from_panorama(sky->reflection, panorama_texture, sky->mode == VS::SKY_MODE_QUALITY);
_update_reflection_mipmaps(sky->reflection, sky->mode == VS::SKY_MODE_QUALITY);
}
Sky *next = sky->dirty_list;
sky->dirty_list = nullptr;
sky->dirty = false;
sky = next;
}
dirty_sky_list = nullptr;
}
RID RasterizerSceneRD::sky_get_panorama_texture_rd(RID p_sky) const {
Sky *sky = sky_owner.getornull(p_sky);
ERR_FAIL_COND_V(!sky, RID());
if (sky->panorama.is_null()) {
return RID();
}
return storage->texture_get_rd_texture(sky->panorama, true);
}
RID RasterizerSceneRD::sky_get_radiance_texture_rd(RID p_sky) const {
Sky *sky = sky_owner.getornull(p_sky);
ERR_FAIL_COND_V(!sky, RID());
return sky->radiance;
}
RID RasterizerSceneRD::environment_create() {
return environment_owner.make_rid(Environent());
}
void RasterizerSceneRD::environment_set_background(RID p_env, VS::EnvironmentBG p_bg) {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND(!env);
env->background = p_bg;
}
void RasterizerSceneRD::environment_set_sky(RID p_env, RID p_sky) {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND(!env);
env->sky = p_sky;
}
void RasterizerSceneRD::environment_set_sky_custom_fov(RID p_env, float p_scale) {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND(!env);
env->sky_custom_fov = p_scale;
}
void RasterizerSceneRD::environment_set_sky_orientation(RID p_env, const Basis &p_orientation) {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND(!env);
env->sky_orientation = p_orientation;
}
void RasterizerSceneRD::environment_set_bg_color(RID p_env, const Color &p_color) {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND(!env);
env->bg_color = p_color;
}
void RasterizerSceneRD::environment_set_bg_energy(RID p_env, float p_energy) {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND(!env);
env->bg_energy = p_energy;
}
void RasterizerSceneRD::environment_set_canvas_max_layer(RID p_env, int p_max_layer) {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND(!env);
env->canvas_max_layer = p_max_layer;
}
void RasterizerSceneRD::environment_set_ambient_light(RID p_env, const Color &p_color, VS::EnvironmentAmbientSource p_ambient, float p_energy, float p_sky_contribution, VS::EnvironmentReflectionSource p_reflection_source) {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND(!env);
env->ambient_light = p_color;
env->ambient_source = p_ambient;
env->ambient_light_energy = p_energy;
env->ambient_sky_contribution = p_sky_contribution;
env->reflection_source = p_reflection_source;
}
VS::EnvironmentBG RasterizerSceneRD::environment_get_background(RID p_env) const {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND_V(!env, VS::ENV_BG_MAX);
return env->background;
}
RID RasterizerSceneRD::environment_get_sky(RID p_env) const {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND_V(!env, RID());
return env->sky;
}
float RasterizerSceneRD::environment_get_sky_custom_fov(RID p_env) const {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND_V(!env, 0);
return env->sky_custom_fov;
}
Basis RasterizerSceneRD::environment_get_sky_orientation(RID p_env) const {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND_V(!env, Basis());
return env->sky_orientation;
}
Color RasterizerSceneRD::environment_get_bg_color(RID p_env) const {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND_V(!env, Color());
return env->bg_color;
}
float RasterizerSceneRD::environment_get_bg_energy(RID p_env) const {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND_V(!env, 0);
return env->bg_energy;
}
int RasterizerSceneRD::environment_get_canvas_max_layer(RID p_env) const {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND_V(!env, 0);
return env->canvas_max_layer;
}
Color RasterizerSceneRD::environment_get_ambient_light_color(RID p_env) const {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND_V(!env, Color());
return env->ambient_light;
}
VS::EnvironmentAmbientSource RasterizerSceneRD::environment_get_ambient_light_ambient_source(RID p_env) const {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND_V(!env, VS::ENV_AMBIENT_SOURCE_BG);
return env->ambient_source;
}
float RasterizerSceneRD::environment_get_ambient_light_ambient_energy(RID p_env) const {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND_V(!env, 0);
return env->ambient_light_energy;
}
float RasterizerSceneRD::environment_get_ambient_sky_contribution(RID p_env) const {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND_V(!env, 0);
return env->ambient_sky_contribution;
}
VS::EnvironmentReflectionSource RasterizerSceneRD::environment_get_reflection_source(RID p_env) const {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND_V(!env, VS::ENV_REFLECTION_SOURCE_DISABLED);
return env->reflection_source;
}
void RasterizerSceneRD::environment_set_tonemap(RID p_env, VS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND(!env);
env->exposure = p_exposure;
env->tone_mapper = p_tone_mapper;
env->auto_exposure = p_auto_exposure;
env->white = p_white;
env->min_luminance = p_min_luminance;
env->max_luminance = p_max_luminance;
env->auto_exp_speed = p_auto_exp_speed;
env->auto_exp_scale = p_auto_exp_scale;
}
VS::EnvironmentToneMapper RasterizerSceneRD::environment_get_tonemapper(RID p_env) const {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND_V(!env, VS::ENV_TONE_MAPPER_LINEAR);
return env->tone_mapper;
}
float RasterizerSceneRD::environment_get_exposure(RID p_env) const {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND_V(!env, 0);
return env->exposure;
}
float RasterizerSceneRD::environment_get_white(RID p_env) const {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND_V(!env, 0);
return env->white;
}
bool RasterizerSceneRD::environment_get_auto_exposure(RID p_env) const {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND_V(!env, false);
return env->auto_exposure;
}
float RasterizerSceneRD::environment_get_min_luminance(RID p_env) const {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND_V(!env, 0);
return env->min_luminance;
}
float RasterizerSceneRD::environment_get_max_luminance(RID p_env) const {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND_V(!env, 0);
return env->max_luminance;
}
float RasterizerSceneRD::environment_get_auto_exposure_scale(RID p_env) const {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND_V(!env, 0);
return env->auto_exp_scale;
}
float RasterizerSceneRD::environment_get_auto_exposure_speed(RID p_env) const {
Environent *env = environment_owner.getornull(p_env);
ERR_FAIL_COND_V(!env, 0);
return env->auto_exp_speed;
}
bool RasterizerSceneRD::is_environment(RID p_env) const {
return environment_owner.owns(p_env);
}
////////////////////////////////////////////////////////////
RID RasterizerSceneRD::reflection_atlas_create() {
ReflectionAtlas ra;
ra.count = GLOBAL_GET("rendering/quality/reflection_atlas/reflection_count");
ra.size = GLOBAL_GET("rendering/quality/reflection_atlas/reflection_size");
return reflection_atlas_owner.make_rid(ra);
}
void RasterizerSceneRD::reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) {
ReflectionAtlas *ra = reflection_atlas_owner.getornull(p_ref_atlas);
ERR_FAIL_COND(!ra);
if (ra->size == p_reflection_size && ra->count == p_reflection_count) {
return; //no changes
}
if (ra->reflection.is_valid()) {
//clear and invalidate everything
RD::get_singleton()->free(ra->reflection);
ra->reflection = RID();
for (int i = 0; i < ra->reflections.size(); i++) {
if (ra->reflections[i].owner.is_null()) {
continue;
}
reflection_probe_release_atlas_index(ra->reflections[i].owner);
//rp->atlasindex clear
}
ra->reflections.clear();
}
}
////////////////////////
RID RasterizerSceneRD::reflection_probe_instance_create(RID p_probe) {
ReflectionProbeInstance rpi;
rpi.probe = p_probe;
return reflection_probe_instance_owner.make_rid(rpi);
}
void RasterizerSceneRD::reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND(!rpi);
rpi->transform = p_transform;
rpi->dirty = true;
}
void RasterizerSceneRD::reflection_probe_release_atlas_index(RID p_instance) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND(!rpi);
if (rpi->atlas.is_null()) {
return; //nothing to release
}
ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
ERR_FAIL_COND(!atlas);
ERR_FAIL_INDEX(rpi->atlas_index, atlas->reflections.size());
atlas->reflections.write[rpi->atlas_index].owner = RID();
rpi->atlas_index = -1;
rpi->atlas = RID();
}
bool RasterizerSceneRD::reflection_probe_instance_needs_redraw(RID p_instance) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND_V(!rpi, false);
if (rpi->rendering) {
return false;
}
if (rpi->dirty) {
return true;
}
if (storage->reflection_probe_get_update_mode(rpi->probe) == VS::REFLECTION_PROBE_UPDATE_ALWAYS) {
return true;
}
return rpi->atlas_index == -1;
}
bool RasterizerSceneRD::reflection_probe_instance_has_reflection(RID p_instance) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND_V(!rpi, false);
return rpi->atlas.is_valid();
}
bool RasterizerSceneRD::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) {
ReflectionAtlas *atlas = reflection_atlas_owner.getornull(p_reflection_atlas);
ERR_FAIL_COND_V(!atlas, false);
if (atlas->reflection.is_null()) {
{
//reflection atlas was unused, create:
RD::TextureFormat tf;
tf.array_layers = 6 * atlas->count;
tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
tf.type = RD::TEXTURE_TYPE_CUBE_ARRAY;
tf.mipmaps = roughness_layers;
tf.width = atlas->size;
tf.height = atlas->size;
tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
atlas->reflection = RD::get_singleton()->texture_create(tf, RD::TextureView());
}
{
RD::TextureFormat tf;
tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
tf.width = atlas->size;
tf.height = atlas->size;
tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
atlas->depth_buffer = RD::get_singleton()->texture_create(tf, RD::TextureView());
}
atlas->reflections.resize(atlas->count);
for (int i = 0; i < atlas->count; i++) {
_update_reflection_data(atlas->reflections.write[i].data, atlas->size, roughness_layers, false, atlas->reflection, i * 6);
for (int j = 0; j < 6; j++) {
Vector<RID> fb;
fb.push_back(atlas->reflections.write[i].data.layers[0].mipmaps[0].views[j]);
fb.push_back(atlas->depth_buffer);
atlas->reflections.write[i].fbs[j] = RD::get_singleton()->framebuffer_create(fb);
}
}
Vector<RID> fb;
fb.push_back(atlas->depth_buffer);
atlas->depth_fb = RD::get_singleton()->framebuffer_create(fb);
}
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND_V(!rpi, false);
if (rpi->atlas_index == -1) {
for (int i = 0; i < atlas->reflections.size(); i++) {
if (atlas->reflections[i].owner.is_null()) {
rpi->atlas_index = i;
break;
}
}
//find the one used last
if (rpi->atlas_index == -1) {
//everything is in use, find the one least used via LRU
uint64_t pass_min = 0;
for (int i = 0; i < atlas->reflections.size(); i++) {
ReflectionProbeInstance *rpi2 = reflection_probe_instance_owner.getornull(atlas->reflections[i].owner);
if (rpi2->last_pass < pass_min) {
pass_min = rpi2->last_pass;
rpi->atlas_index = i;
}
}
}
}
rpi->atlas = p_reflection_atlas;
rpi->rendering = true;
rpi->dirty = false;
rpi->processing_side = 0;
return true;
}
bool RasterizerSceneRD::reflection_probe_instance_postprocess_step(RID p_instance) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND_V(!rpi, false);
ERR_FAIL_COND_V(!rpi->rendering, false);
ERR_FAIL_COND_V(rpi->atlas.is_null(), false);
ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
if (!atlas || rpi->atlas_index == -1) {
//does not belong to an atlas anymore, cancel (was removed from atlas or atlas changed while rendering)
rpi->rendering = false;
return false;
}
_create_reflection_from_base_mipmap(atlas->reflections.write[rpi->atlas_index].data, false, storage->reflection_probe_get_update_mode(rpi->probe) == VS::REFLECTION_PROBE_UPDATE_ONCE, rpi->processing_side);
rpi->processing_side++;
if (rpi->processing_side == 6) {
rpi->rendering = false;
rpi->processing_side = 0;
return true;
} else {
return false;
}
}
uint32_t RasterizerSceneRD::reflection_probe_instance_get_resolution(RID p_instance) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND_V(!rpi, 0);
ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
ERR_FAIL_COND_V(!atlas, 0);
return atlas->size;
}
RID RasterizerSceneRD::reflection_probe_instance_get_framebuffer(RID p_instance, int p_index) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND_V(!rpi, RID());
ERR_FAIL_INDEX_V(p_index, 6, RID());
ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
ERR_FAIL_COND_V(!atlas, RID());
return atlas->reflections[rpi->atlas_index].fbs[p_index];
}
RID RasterizerSceneRD::reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND_V(!rpi, RID());
ERR_FAIL_INDEX_V(p_index, 6, RID());
ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
ERR_FAIL_COND_V(!atlas, RID());
return atlas->depth_fb;
}
///////////////////////////////////////////////////////////
RID RasterizerSceneRD::shadow_atlas_create() {
return shadow_atlas_owner.make_rid(ShadowAtlas());
}
void RasterizerSceneRD::shadow_atlas_set_size(RID p_atlas, int p_size) {
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
ERR_FAIL_COND(!shadow_atlas);
ERR_FAIL_COND(p_size < 0);
p_size = next_power_of_2(p_size);
p_size = MAX(p_size, 1 << roughness_layers);
if (p_size == shadow_atlas->size)
return;
// erasing atlas
if (shadow_atlas->depth.is_valid()) {
RD::get_singleton()->free(shadow_atlas->depth);
shadow_atlas->depth = RID();
shadow_atlas->fb = RID();
}
for (int i = 0; i < 4; i++) {
//clear subdivisions
shadow_atlas->quadrants[i].shadows.resize(0);
shadow_atlas->quadrants[i].shadows.resize(1 << shadow_atlas->quadrants[i].subdivision);
}
//erase shadow atlas reference from lights
for (Map<RID, uint32_t>::Element *E = shadow_atlas->shadow_owners.front(); E; E = E->next()) {
LightInstance *li = light_instance_owner.getornull(E->key());
ERR_CONTINUE(!li);
li->shadow_atlases.erase(p_atlas);
}
//clear owners
shadow_atlas->shadow_owners.clear();
shadow_atlas->size = p_size;
if (shadow_atlas->size) {
RD::TextureFormat tf;
tf.format = RD::DATA_FORMAT_R32_SFLOAT;
tf.width = shadow_atlas->size;
tf.height = shadow_atlas->size;
tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
shadow_atlas->depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
Vector<RID> fb;
fb.push_back(shadow_atlas->depth);
shadow_atlas->fb = RD::get_singleton()->framebuffer_create(fb);
}
}
void RasterizerSceneRD::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) {
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
ERR_FAIL_COND(!shadow_atlas);
ERR_FAIL_INDEX(p_quadrant, 4);
ERR_FAIL_INDEX(p_subdivision, 16384);
uint32_t subdiv = next_power_of_2(p_subdivision);
if (subdiv & 0xaaaaaaaa) { //sqrt(subdiv) must be integer
subdiv <<= 1;
}
subdiv = int(Math::sqrt((float)subdiv));
//obtain the number that will be x*x
if (shadow_atlas->quadrants[p_quadrant].subdivision == subdiv)
return;
//erase all data from quadrant
for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) {
if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) {
shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
LightInstance *li = light_instance_owner.getornull(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
ERR_CONTINUE(!li);
li->shadow_atlases.erase(p_atlas);
}
}
shadow_atlas->quadrants[p_quadrant].shadows.resize(0);
shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv * subdiv);
shadow_atlas->quadrants[p_quadrant].subdivision = subdiv;
//cache the smallest subdiv (for faster allocation in light update)
shadow_atlas->smallest_subdiv = 1 << 30;
for (int i = 0; i < 4; i++) {
if (shadow_atlas->quadrants[i].subdivision) {
shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision);
}
}
if (shadow_atlas->smallest_subdiv == 1 << 30) {
shadow_atlas->smallest_subdiv = 0;
}
//resort the size orders, simple bublesort for 4 elements..
int swaps = 0;
do {
swaps = 0;
for (int i = 0; i < 3; i++) {
if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) {
SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]);
swaps++;
}
}
} while (swaps > 0);
}
bool RasterizerSceneRD::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) {
for (int i = p_quadrant_count - 1; i >= 0; i--) {
int qidx = p_in_quadrants[i];
if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) {
return false;
}
//look for an empty space
int sc = shadow_atlas->quadrants[qidx].shadows.size();
ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptrw();
int found_free_idx = -1; //found a free one
int found_used_idx = -1; //found existing one, must steal it
uint64_t min_pass = 0; // pass of the existing one, try to use the least recently used one (LRU fashion)
for (int j = 0; j < sc; j++) {
if (!sarr[j].owner.is_valid()) {
found_free_idx = j;
break;
}
LightInstance *sli = light_instance_owner.getornull(sarr[j].owner);
ERR_CONTINUE(!sli);
if (sli->last_scene_pass != scene_pass) {
//was just allocated, don't kill it so soon, wait a bit..
if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec)
continue;
if (found_used_idx == -1 || sli->last_scene_pass < min_pass) {
found_used_idx = j;
min_pass = sli->last_scene_pass;
}
}
}
if (found_free_idx == -1 && found_used_idx == -1)
continue; //nothing found
if (found_free_idx == -1 && found_used_idx != -1) {
found_free_idx = found_used_idx;
}
r_quadrant = qidx;
r_shadow = found_free_idx;
return true;
}
return false;
}
bool RasterizerSceneRD::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) {
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
ERR_FAIL_COND_V(!shadow_atlas, false);
LightInstance *li = light_instance_owner.getornull(p_light_intance);
ERR_FAIL_COND_V(!li, false);
if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) {
return false;
}
uint32_t quad_size = shadow_atlas->size >> 1;
int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage));
int valid_quadrants[4];
int valid_quadrant_count = 0;
int best_size = -1; //best size found
int best_subdiv = -1; //subdiv for the best size
//find the quadrants this fits into, and the best possible size it can fit into
for (int i = 0; i < 4; i++) {
int q = shadow_atlas->size_order[i];
int sd = shadow_atlas->quadrants[q].subdivision;
if (sd == 0)
continue; //unused
int max_fit = quad_size / sd;
if (best_size != -1 && max_fit > best_size)
break; //too large
valid_quadrants[valid_quadrant_count++] = q;
best_subdiv = sd;
if (max_fit >= desired_fit) {
best_size = max_fit;
}
}
ERR_FAIL_COND_V(valid_quadrant_count == 0, false);
uint64_t tick = OS::get_singleton()->get_ticks_msec();
//see if it already exists
if (shadow_atlas->shadow_owners.has(p_light_intance)) {
//it does!
uint32_t key = shadow_atlas->shadow_owners[p_light_intance];
uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
bool should_realloc = shadow_atlas->quadrants[q].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[q].shadows[s].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec);
bool should_redraw = shadow_atlas->quadrants[q].shadows[s].version != p_light_version;
if (!should_realloc) {
shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
//already existing, see if it should redraw or it's just OK
return should_redraw;
}
int new_quadrant, new_shadow;
//find a better place
if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, shadow_atlas->quadrants[q].subdivision, tick, new_quadrant, new_shadow)) {
//found a better place!
ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
if (sh->owner.is_valid()) {
//is taken, but is invalid, erasing it
shadow_atlas->shadow_owners.erase(sh->owner);
LightInstance *sli = light_instance_owner.getornull(sh->owner);
sli->shadow_atlases.erase(p_atlas);
}
//erase previous
shadow_atlas->quadrants[q].shadows.write[s].version = 0;
shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
sh->owner = p_light_intance;
sh->alloc_tick = tick;
sh->version = p_light_version;
li->shadow_atlases.insert(p_atlas);
//make new key
key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
key |= new_shadow;
//update it in map
shadow_atlas->shadow_owners[p_light_intance] = key;
//make it dirty, as it should redraw anyway
return true;
}
//no better place for this shadow found, keep current
//already existing, see if it should redraw or it's just OK
shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
return should_redraw;
}
int new_quadrant, new_shadow;
//find a better place
if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, -1, tick, new_quadrant, new_shadow)) {
//found a better place!
ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
if (sh->owner.is_valid()) {
//is taken, but is invalid, erasing it
shadow_atlas->shadow_owners.erase(sh->owner);
LightInstance *sli = light_instance_owner.getornull(sh->owner);
sli->shadow_atlases.erase(p_atlas);
}
sh->owner = p_light_intance;
sh->alloc_tick = tick;
sh->version = p_light_version;
li->shadow_atlases.insert(p_atlas);
//make new key
uint32_t key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
key |= new_shadow;
//update it in map
shadow_atlas->shadow_owners[p_light_intance] = key;
//make it dirty, as it should redraw anyway
return true;
}
//no place to allocate this light, apologies
return false;
}
void RasterizerSceneRD::directional_shadow_atlas_set_size(int p_size) {
p_size = nearest_power_of_2_templated(p_size);
if (directional_shadow.size == p_size) {
return;
}
directional_shadow.size = p_size;
if (directional_shadow.depth.is_valid()) {
RD::get_singleton()->free(directional_shadow.depth);
directional_shadow.depth = RID();
directional_shadow.fb = RID();
}
if (p_size > 0) {
RD::TextureFormat tf;
tf.format = RD::DATA_FORMAT_R32_SFLOAT;
tf.width = p_size;
tf.height = p_size;
tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
directional_shadow.depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
Vector<RID> fb;
fb.push_back(directional_shadow.depth);
directional_shadow.fb = RD::get_singleton()->framebuffer_create(fb);
}
}
void RasterizerSceneRD::set_directional_shadow_count(int p_count) {
directional_shadow.light_count = p_count;
directional_shadow.current_light = 0;
}
static Rect2i _get_directional_shadow_rect(int p_size, int p_shadow_count, int p_shadow_index) {
int split_h = 1;
int split_v = 1;
while (split_h * split_v < p_shadow_count) {
if (split_h == split_v) {
split_h <<= 1;
} else {
split_v <<= 1;
}
}
Rect2i rect(0, 0, p_size, p_size);
rect.size.width /= split_h;
rect.size.height /= split_v;
rect.position.x = rect.size.width * (p_shadow_index % split_h);
rect.position.y = rect.size.height * (p_shadow_index / split_h);
return rect;
}
int RasterizerSceneRD::get_directional_light_shadow_size(RID p_light_intance) {
ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0);
Rect2i r = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, 0);
LightInstance *light_instance = light_instance_owner.getornull(p_light_intance);
ERR_FAIL_COND_V(!light_instance, 0);
switch (storage->light_directional_get_shadow_mode(light_instance->light)) {
case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL:
break; //none
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: r.size.height /= 2; break;
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: r.size /= 2; break;
}
return MAX(r.size.width, r.size.height);
}
//////////////////////////////////////////////////
RID RasterizerSceneRD::light_instance_create(RID p_light) {
RID li = light_instance_owner.make_rid(LightInstance());
LightInstance *light_instance = light_instance_owner.getornull(li);
light_instance->self = li;
light_instance->light = p_light;
light_instance->light_type = storage->light_get_type(p_light);
return li;
}
void RasterizerSceneRD::light_instance_set_transform(RID p_light_instance, const Transform &p_transform) {
LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
ERR_FAIL_COND(!light_instance);
light_instance->transform = p_transform;
}
void RasterizerSceneRD::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_bias_scale) {
LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
ERR_FAIL_COND(!light_instance);
if (storage->light_get_type(light_instance->light) != VS::LIGHT_DIRECTIONAL) {
p_pass = 0;
}
ERR_FAIL_INDEX(p_pass, 4);
light_instance->shadow_transform[p_pass].camera = p_projection;
light_instance->shadow_transform[p_pass].transform = p_transform;
light_instance->shadow_transform[p_pass].farplane = p_far;
light_instance->shadow_transform[p_pass].split = p_split;
light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale;
}
void RasterizerSceneRD::light_instance_mark_visible(RID p_light_instance) {
LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
ERR_FAIL_COND(!light_instance);
light_instance->last_scene_pass = scene_pass;
}
RasterizerSceneRD::ShadowCubemap *RasterizerSceneRD::_get_shadow_cubemap(int p_size) {
if (!shadow_cubemaps.has(p_size)) {
ShadowCubemap sc;
{
RD::TextureFormat tf;
tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
tf.width = p_size;
tf.height = p_size;
tf.type = RD::TEXTURE_TYPE_CUBE;
tf.array_layers = 6;
tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
sc.cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView());
}
for (int i = 0; i < 6; i++) {
RID side_texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), sc.cubemap, i, 0);
Vector<RID> fbtex;
fbtex.push_back(side_texture);
sc.side_fb[i] = RD::get_singleton()->framebuffer_create(fbtex);
}
shadow_cubemaps[p_size] = sc;
}
return &shadow_cubemaps[p_size];
}
RasterizerSceneRD::ShadowMap *RasterizerSceneRD::_get_shadow_map(const Size2i &p_size) {
if (!shadow_maps.has(p_size)) {
ShadowMap sm;
{
RD::TextureFormat tf;
tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
tf.width = p_size.width;
tf.height = p_size.height;
tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
sm.depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
}
Vector<RID> fbtex;
fbtex.push_back(sm.depth);
sm.fb = RD::get_singleton()->framebuffer_create(fbtex);
shadow_maps[p_size] = sm;
}
return &shadow_maps[p_size];
}
/////////////////////////////////
RID RasterizerSceneRD::gi_probe_instance_create(RID p_base) {
//find a free slot
int index = -1;
for (int i = 0; i < gi_probe_slots.size(); i++) {
if (gi_probe_slots[i] == RID()) {
index = i;
break;
}
}
ERR_FAIL_COND_V(index == -1, RID());
GIProbeInstance gi_probe;
gi_probe.slot = index;
gi_probe.probe = p_base;
RID rid = gi_probe_instance_owner.make_rid(gi_probe);
gi_probe_slots.write[index] = rid;
return rid;
}
void RasterizerSceneRD::gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform) {
GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe);
ERR_FAIL_COND(!gi_probe);
gi_probe->transform = p_xform;
}
bool RasterizerSceneRD::gi_probe_needs_update(RID p_probe) const {
GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe);
ERR_FAIL_COND_V(!gi_probe, false);
//return true;
return gi_probe->last_probe_version != storage->gi_probe_get_version(gi_probe->probe);
}
void RasterizerSceneRD::gi_probe_update(RID p_probe, bool p_update_light_instances, const Vector<RID> &p_light_instances, int p_dynamic_object_count, InstanceBase **p_dynamic_objects) {
GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe);
ERR_FAIL_COND(!gi_probe);
uint32_t data_version = storage->gi_probe_get_data_version(gi_probe->probe);
// (RE)CREATE IF NEEDED
if (gi_probe->last_probe_data_version != data_version) {
//need to re-create everything
if (gi_probe->texture.is_valid()) {
RD::get_singleton()->free(gi_probe->texture);
if (gi_probe_use_anisotropy) {
RD::get_singleton()->free(gi_probe->anisotropy_r16[0]);
RD::get_singleton()->free(gi_probe->anisotropy_r16[1]);
}
RD::get_singleton()->free(gi_probe->write_buffer);
gi_probe->mipmaps.clear();
}
for (int i = 0; i < gi_probe->dynamic_maps.size(); i++) {
RD::get_singleton()->free(gi_probe->dynamic_maps[i].texture);
RD::get_singleton()->free(gi_probe->dynamic_maps[i].depth);
}
gi_probe->dynamic_maps.clear();
Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe);
if (octree_size != Vector3i()) {
//can create a 3D texture
PoolVector<int> levels = storage->gi_probe_get_level_counts(gi_probe->probe);
RD::TextureFormat tf;
tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
tf.width = octree_size.x;
tf.height = octree_size.y;
tf.depth = octree_size.z;
tf.type = RD::TEXTURE_TYPE_3D;
tf.mipmaps = levels.size();
tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
gi_probe->texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
RD::get_singleton()->texture_clear(gi_probe->texture, Color(0, 0, 0, 0), 0, levels.size(), 0, 1, false);
if (gi_probe_use_anisotropy) {
tf.format = RD::DATA_FORMAT_R16_UINT;
tf.shareable_formats.push_back(RD::DATA_FORMAT_R16_UINT);
tf.shareable_formats.push_back(RD::DATA_FORMAT_R5G6B5_UNORM_PACK16);
//need to create R16 first, else driver does not like the storage bit for compute..
gi_probe->anisotropy_r16[0] = RD::get_singleton()->texture_create(tf, RD::TextureView());
gi_probe->anisotropy_r16[1] = RD::get_singleton()->texture_create(tf, RD::TextureView());
RD::TextureView tv;
tv.format_override = RD::DATA_FORMAT_R5G6B5_UNORM_PACK16;
gi_probe->anisotropy[0] = RD::get_singleton()->texture_create_shared(tv, gi_probe->anisotropy_r16[0]);
gi_probe->anisotropy[1] = RD::get_singleton()->texture_create_shared(tv, gi_probe->anisotropy_r16[1]);
RD::get_singleton()->texture_clear(gi_probe->anisotropy[0], Color(0, 0, 0, 0), 0, levels.size(), 0, 1, false);
RD::get_singleton()->texture_clear(gi_probe->anisotropy[1], Color(0, 0, 0, 0), 0, levels.size(), 0, 1, false);
}
{
int total_elements = 0;
for (int i = 0; i < levels.size(); i++) {
total_elements += levels[i];
}
if (gi_probe_use_anisotropy) {
total_elements *= 6;
}
gi_probe->write_buffer = RD::get_singleton()->storage_buffer_create(total_elements * 16);
}
for (int i = 0; i < levels.size(); i++) {
GIProbeInstance::Mipmap mipmap;
mipmap.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), gi_probe->texture, 0, i, RD::TEXTURE_SLICE_3D);
if (gi_probe_use_anisotropy) {
RD::TextureView tv;
tv.format_override = RD::DATA_FORMAT_R16_UINT;
mipmap.anisotropy[0] = RD::get_singleton()->texture_create_shared_from_slice(tv, gi_probe->anisotropy[0], 0, i, RD::TEXTURE_SLICE_3D);
mipmap.anisotropy[1] = RD::get_singleton()->texture_create_shared_from_slice(tv, gi_probe->anisotropy[1], 0, i, RD::TEXTURE_SLICE_3D);
}
mipmap.level = levels.size() - i - 1;
mipmap.cell_offset = 0;
for (uint32_t j = 0; j < mipmap.level; j++) {
mipmap.cell_offset += levels[j];
}
mipmap.cell_count = levels[mipmap.level];
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 1;
u.ids.push_back(storage->gi_probe_get_octree_buffer(gi_probe->probe));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 2;
u.ids.push_back(storage->gi_probe_get_data_buffer(gi_probe->probe));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 4;
u.ids.push_back(gi_probe->write_buffer);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 9;
u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 10;
u.ids.push_back(storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
uniforms.push_back(u);
}
{
Vector<RD::Uniform> copy_uniforms = uniforms;
if (i == 0) {
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 3;
u.ids.push_back(gi_probe_lights_uniform);
copy_uniforms.push_back(u);
}
mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_LIGHT], 0);
copy_uniforms = uniforms; //restore
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 5;
u.ids.push_back(gi_probe->texture);
copy_uniforms.push_back(u);
}
if (gi_probe_use_anisotropy) {
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 7;
u.ids.push_back(gi_probe->anisotropy[0]);
copy_uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 8;
u.ids.push_back(gi_probe->anisotropy[1]);
copy_uniforms.push_back(u);
}
}
mipmap.second_bounce_uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_SECOND_BOUNCE], 0);
} else {
mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_MIPMAP], 0);
}
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 5;
u.ids.push_back(mipmap.texture);
uniforms.push_back(u);
}
if (gi_probe_use_anisotropy) {
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 6;
u.ids.push_back(mipmap.anisotropy[0]);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 7;
u.ids.push_back(mipmap.anisotropy[1]);
uniforms.push_back(u);
}
}
mipmap.write_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_WRITE_TEXTURE], 0);
gi_probe->mipmaps.push_back(mipmap);
}
{
uint32_t dynamic_map_size = MAX(MAX(octree_size.x, octree_size.y), octree_size.z);
uint32_t oversample = nearest_power_of_2_templated(4);
int mipmap_index = 0;
while (mipmap_index < gi_probe->mipmaps.size()) {
GIProbeInstance::DynamicMap dmap;
if (oversample > 0) {
dmap.size = dynamic_map_size * (1 << oversample);
dmap.mipmap = -1;
oversample--;
} else {
dmap.size = dynamic_map_size >> mipmap_index;
dmap.mipmap = mipmap_index;
mipmap_index++;
}
RD::TextureFormat dtf;
dtf.width = dmap.size;
dtf.height = dmap.size;
dtf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
if (gi_probe->dynamic_maps.size() == 0) {
dtf.usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
}
dmap.texture = RD::get_singleton()->texture_create(dtf, RD::TextureView());
if (gi_probe->dynamic_maps.size() == 0) {
//render depth for first one
dtf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
dtf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
dmap.fb_depth = RD::get_singleton()->texture_create(dtf, RD::TextureView());
}
//just use depth as-is
dtf.format = RD::DATA_FORMAT_R32_SFLOAT;
dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
dmap.depth = RD::get_singleton()->texture_create(dtf, RD::TextureView());
if (gi_probe->dynamic_maps.size() == 0) {
dtf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
dmap.albedo = RD::get_singleton()->texture_create(dtf, RD::TextureView());
dmap.normal = RD::get_singleton()->texture_create(dtf, RD::TextureView());
dmap.orm = RD::get_singleton()->texture_create(dtf, RD::TextureView());
Vector<RID> fb;
fb.push_back(dmap.albedo);
fb.push_back(dmap.normal);
fb.push_back(dmap.orm);
fb.push_back(dmap.texture); //emission
fb.push_back(dmap.depth);
fb.push_back(dmap.fb_depth);
dmap.fb = RD::get_singleton()->framebuffer_create(fb);
{
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 3;
u.ids.push_back(gi_probe_lights_uniform);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 5;
u.ids.push_back(dmap.albedo);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 6;
u.ids.push_back(dmap.normal);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 7;
u.ids.push_back(dmap.orm);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 8;
u.ids.push_back(dmap.fb_depth);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 9;
u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 10;
u.ids.push_back(storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 11;
u.ids.push_back(dmap.texture);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 12;
u.ids.push_back(dmap.depth);
uniforms.push_back(u);
}
dmap.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING], 0);
}
} else {
bool plot = dmap.mipmap >= 0;
bool write = dmap.mipmap < (gi_probe->mipmaps.size() - 1);
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 5;
u.ids.push_back(gi_probe->dynamic_maps[gi_probe->dynamic_maps.size() - 1].texture);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 6;
u.ids.push_back(gi_probe->dynamic_maps[gi_probe->dynamic_maps.size() - 1].depth);
uniforms.push_back(u);
}
if (write) {
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 7;
u.ids.push_back(dmap.texture);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 8;
u.ids.push_back(dmap.depth);
uniforms.push_back(u);
}
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 9;
u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 10;
u.ids.push_back(storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
uniforms.push_back(u);
}
if (plot) {
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 11;
u.ids.push_back(gi_probe->mipmaps[dmap.mipmap].texture);
uniforms.push_back(u);
}
if (gi_probe_is_anisotropic()) {
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 12;
u.ids.push_back(gi_probe->mipmaps[dmap.mipmap].anisotropy[0]);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 13;
u.ids.push_back(gi_probe->mipmaps[dmap.mipmap].anisotropy[1]);
uniforms.push_back(u);
}
}
}
dmap.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[(write && plot) ? GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT : write ? GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE : GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_PLOT], 0);
}
gi_probe->dynamic_maps.push_back(dmap);
}
}
}
gi_probe->last_probe_data_version = data_version;
gi_probe_slots_dirty = true;
p_update_light_instances = true; //just in case
}
// UDPDATE TIME
if (gi_probe->has_dynamic_object_data) {
//if it has dynamic object data, it needs to be cleared
RD::get_singleton()->texture_clear(gi_probe->texture, Color(0, 0, 0, 0), 0, gi_probe->mipmaps.size(), 0, 1, true);
}
uint32_t light_count = 0;
if (p_update_light_instances || p_dynamic_object_count > 0) {
light_count = MIN(gi_probe_max_lights, (uint32_t)p_light_instances.size());
{
Transform to_cell = storage->gi_probe_get_to_cell_xform(gi_probe->probe);
Transform to_probe_xform = (gi_probe->transform * to_cell.affine_inverse()).affine_inverse();
//update lights
for (uint32_t i = 0; i < light_count; i++) {
GIProbeLight &l = gi_probe_lights[i];
RID light_instance = p_light_instances[i];
RID light = light_instance_get_base_light(light_instance);
l.type = storage->light_get_type(light);
l.attenuation = storage->light_get_param(light, VS::LIGHT_PARAM_ATTENUATION);
l.energy = storage->light_get_param(light, VS::LIGHT_PARAM_ENERGY) * storage->light_get_param(light, VS::LIGHT_PARAM_INDIRECT_ENERGY);
l.radius = to_cell.basis.xform(Vector3(storage->light_get_param(light, VS::LIGHT_PARAM_RANGE), 0, 0)).length();
Color color = storage->light_get_color(light).to_linear();
l.color[0] = color.r;
l.color[1] = color.g;
l.color[2] = color.b;
l.spot_angle_radians = Math::deg2rad(storage->light_get_param(light, VS::LIGHT_PARAM_SPOT_ANGLE));
l.spot_attenuation = storage->light_get_param(light, VS::LIGHT_PARAM_SPOT_ATTENUATION);
Transform xform = light_instance_get_base_transform(light_instance);
Vector3 pos = to_probe_xform.xform(xform.origin);
Vector3 dir = to_probe_xform.basis.xform(-xform.basis.get_axis(2)).normalized();
l.position[0] = pos.x;
l.position[1] = pos.y;
l.position[2] = pos.z;
l.direction[0] = dir.x;
l.direction[1] = dir.y;
l.direction[2] = dir.z;
l.has_shadow = storage->light_has_shadow(light);
}
RD::get_singleton()->buffer_update(gi_probe_lights_uniform, 0, sizeof(GIProbeLight) * light_count, gi_probe_lights, true);
}
}
if (gi_probe->has_dynamic_object_data || p_update_light_instances || p_dynamic_object_count) {
// PROCESS MIPMAPS
if (gi_probe->mipmaps.size()) {
//can update mipmaps
Vector3i probe_size = storage->gi_probe_get_octree_size(gi_probe->probe);
GIProbePushConstant push_constant;
push_constant.limits[0] = probe_size.x;
push_constant.limits[1] = probe_size.y;
push_constant.limits[2] = probe_size.z;
push_constant.stack_size = gi_probe->mipmaps.size();
push_constant.emission_scale = 1.0;
push_constant.propagation = storage->gi_probe_get_propagation(gi_probe->probe);
push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe);
push_constant.light_count = light_count;
push_constant.aniso_strength = storage->gi_probe_get_anisotropy_strength(gi_probe->probe);
/* print_line("probe update to version " + itos(gi_probe->last_probe_version));
print_line("propagation " + rtos(push_constant.propagation));
print_line("dynrange " + rtos(push_constant.dynamic_range));
*/
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
int passes;
if (p_update_light_instances) {
passes = storage->gi_probe_is_using_two_bounces(gi_probe->probe) ? 2 : 1;
} else {
passes = 1; //only re-blitting is necessary
}
int wg_size = 64;
int wg_limit_x = RD::get_singleton()->limit_get(RD::LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_X);
for (int pass = 0; pass < passes; pass++) {
if (p_update_light_instances) {
for (int i = 0; i < gi_probe->mipmaps.size(); i++) {
if (i == 0) {
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[pass == 0 ? GI_PROBE_SHADER_VERSION_COMPUTE_LIGHT : GI_PROBE_SHADER_VERSION_COMPUTE_SECOND_BOUNCE]);
} else if (i == 1) {
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_COMPUTE_MIPMAP]);
}
if (pass == 1 || i > 0) {
RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done
}
if (pass == 0 || i > 0) {
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].uniform_set, 0);
} else {
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].second_bounce_uniform_set, 0);
}
push_constant.cell_offset = gi_probe->mipmaps[i].cell_offset;
push_constant.cell_count = gi_probe->mipmaps[i].cell_count;
int wg_todo = (gi_probe->mipmaps[i].cell_count - 1) / wg_size + 1;
while (wg_todo) {
int wg_count = MIN(wg_todo, wg_limit_x);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbePushConstant));
RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1);
wg_todo -= wg_count;
push_constant.cell_offset += wg_count * wg_size;
}
}
RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done
}
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_WRITE_TEXTURE]);
for (int i = 0; i < gi_probe->mipmaps.size(); i++) {
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].write_uniform_set, 0);
push_constant.cell_offset = gi_probe->mipmaps[i].cell_offset;
push_constant.cell_count = gi_probe->mipmaps[i].cell_count;
int wg_todo = (gi_probe->mipmaps[i].cell_count - 1) / wg_size + 1;
while (wg_todo) {
int wg_count = MIN(wg_todo, wg_limit_x);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbePushConstant));
RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1);
wg_todo -= wg_count;
push_constant.cell_offset += wg_count * wg_size;
}
}
}
RD::get_singleton()->compute_list_end();
}
}
gi_probe->has_dynamic_object_data = false; //clear until dynamic object data is used again
if (p_dynamic_object_count && gi_probe->dynamic_maps.size()) {
Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe);
int multiplier = gi_probe->dynamic_maps[0].size / MAX(MAX(octree_size.x, octree_size.y), octree_size.z);
Transform oversample_scale;
oversample_scale.basis.scale(Vector3(multiplier, multiplier, multiplier));
Transform to_cell = oversample_scale * storage->gi_probe_get_to_cell_xform(gi_probe->probe);
Transform to_world_xform = gi_probe->transform * to_cell.affine_inverse();
Transform to_probe_xform = to_world_xform.affine_inverse();
AABB probe_aabb(Vector3(), octree_size);
//this could probably be better parallelized in compute..
for (int i = 0; i < p_dynamic_object_count; i++) {
InstanceBase *instance = p_dynamic_objects[i];
//not used, so clear
instance->depth_layer = 0;
instance->depth = 0;
//transform aabb to giprobe
AABB aabb = (to_probe_xform * instance->transform).xform(instance->aabb);
//this needs to wrap to grid resolution to avoid jitter
//also extend margin a bit just in case
Vector3i begin = aabb.position - Vector3i(1, 1, 1);
Vector3i end = aabb.position + aabb.size + Vector3i(1, 1, 1);
for (int j = 0; j < 3; j++) {
if ((end[j] - begin[j]) & 1) {
end[j]++; //for half extents split, it needs to be even
}
begin[j] = MAX(begin[j], 0);
end[j] = MIN(end[j], octree_size[j] * multiplier);
}
//aabb = aabb.intersection(probe_aabb); //intersect
aabb.position = begin;
aabb.size = end - begin;
//print_line("aabb: " + aabb);
for (int j = 0; j < 6; j++) {
//if (j != 0 && j != 3) {
// continue;
//}
static const Vector3 render_z[6] = {
Vector3(1, 0, 0),
Vector3(0, 1, 0),
Vector3(0, 0, 1),
Vector3(-1, 0, 0),
Vector3(0, -1, 0),
Vector3(0, 0, -1),
};
static const Vector3 render_up[6] = {
Vector3(0, 1, 0),
Vector3(0, 0, 1),
Vector3(0, 1, 0),
Vector3(0, 1, 0),
Vector3(0, 0, 1),
Vector3(0, 1, 0),
};
Vector3 render_dir = render_z[j];
Vector3 up_dir = render_up[j];
Vector3 center = aabb.position + aabb.size * 0.5;
Transform xform;
xform.set_look_at(center - aabb.size * 0.5 * render_dir, center, up_dir);
Vector3 x_dir = xform.basis.get_axis(0).abs();
int x_axis = int(Vector3(0, 1, 2).dot(x_dir));
Vector3 y_dir = xform.basis.get_axis(1).abs();
int y_axis = int(Vector3(0, 1, 2).dot(y_dir));
Vector3 z_dir = -xform.basis.get_axis(2);
int z_axis = int(Vector3(0, 1, 2).dot(z_dir.abs()));
Rect2i rect(aabb.position[x_axis], aabb.position[y_axis], aabb.size[x_axis], aabb.size[y_axis]);
bool x_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(0)) < 0);
bool y_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(1)) < 0);
bool z_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(2)) > 0);
CameraMatrix cm;
cm.set_orthogonal(-rect.size.width / 2, rect.size.width / 2, -rect.size.height / 2, rect.size.height / 2, 0.0001, aabb.size[z_axis]);
_render_material(to_world_xform * xform, cm, true, &instance, 1, gi_probe->dynamic_maps[0].fb, Rect2i(Vector2i(), rect.size));
GIProbeDynamicPushConstant push_constant;
zeromem(&push_constant, sizeof(GIProbeDynamicPushConstant));
push_constant.limits[0] = octree_size.x;
push_constant.limits[1] = octree_size.y;
push_constant.limits[2] = octree_size.z;
push_constant.light_count = p_light_instances.size();
push_constant.x_dir[0] = x_dir[0];
push_constant.x_dir[1] = x_dir[1];
push_constant.x_dir[2] = x_dir[2];
push_constant.y_dir[0] = y_dir[0];
push_constant.y_dir[1] = y_dir[1];
push_constant.y_dir[2] = y_dir[2];
push_constant.z_dir[0] = z_dir[0];
push_constant.z_dir[1] = z_dir[1];
push_constant.z_dir[2] = z_dir[2];
push_constant.z_base = xform.origin[z_axis];
push_constant.z_sign = (z_flip ? -1.0 : 1.0);
push_constant.pos_multiplier = float(1.0) / multiplier;
push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe);
push_constant.flip_x = x_flip;
push_constant.flip_y = y_flip;
push_constant.rect_pos[0] = rect.position[0];
push_constant.rect_pos[1] = rect.position[1];
push_constant.rect_size[0] = rect.size[0];
push_constant.rect_size[1] = rect.size[1];
push_constant.prev_rect_ofs[0] = 0;
push_constant.prev_rect_ofs[1] = 0;
push_constant.prev_rect_size[0] = 0;
push_constant.prev_rect_size[1] = 0;
push_constant.keep_downsample_color = true;
//process lighting
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->dynamic_maps[0].uniform_set, 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbeDynamicPushConstant));
RD::get_singleton()->compute_list_dispatch(compute_list, (rect.size.x - 1) / 8 + 1, (rect.size.y - 1) / 8 + 1, 1);
//print_line("rect: " + itos(i) + ": " + rect);
for (int k = 1; k < gi_probe->dynamic_maps.size(); k++) {
// enlarge the rect if needed so all pixels fit when downscaled,
// this ensures downsampling is smooth and optimal because no pixels are left behind
//x
if (rect.position.x & 1) {
rect.size.x++;
push_constant.prev_rect_ofs[0] = 1; //this is used to ensure reading is also optimal
} else {
push_constant.prev_rect_ofs[0] = 0;
}
if (rect.size.x & 1) {
rect.size.x++;
}
rect.position.x >>= 1;
rect.size.x = MAX(1, rect.size.x >> 1);
//y
if (rect.position.y & 1) {
rect.size.y++;
push_constant.prev_rect_ofs[1] = 1;
} else {
push_constant.prev_rect_ofs[1] = 0;
}
if (rect.size.y & 1) {
rect.size.y++;
}
rect.position.y >>= 1;
rect.size.y = MAX(1, rect.size.y >> 1);
//shrink limits to ensure plot does not go outside map
if (gi_probe->dynamic_maps[k].mipmap > 0) {
for (int l = 0; l < 3; l++) {
push_constant.limits[l] = MAX(1, push_constant.limits[l] >> 1);
}
}
//print_line("rect: " + itos(i) + ": " + rect);
push_constant.rect_pos[0] = rect.position[0];
push_constant.rect_pos[1] = rect.position[1];
push_constant.prev_rect_size[0] = push_constant.rect_size[0];
push_constant.prev_rect_size[1] = push_constant.rect_size[1];
push_constant.rect_size[0] = rect.size[0];
push_constant.rect_size[1] = rect.size[1];
push_constant.keep_downsample_color = gi_probe->dynamic_maps[k].mipmap <= 0;
RD::get_singleton()->compute_list_add_barrier(compute_list);
if (gi_probe->dynamic_maps[k].mipmap < 0) {
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE]);
} else if (k < gi_probe->dynamic_maps.size() - 1) {
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT]);
} else {
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_PLOT]);
}
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->dynamic_maps[k].uniform_set, 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbeDynamicPushConstant));
RD::get_singleton()->compute_list_dispatch(compute_list, (rect.size.x - 1) / 8 + 1, (rect.size.y - 1) / 8 + 1, 1);
}
RD::get_singleton()->compute_list_end();
}
}
gi_probe->has_dynamic_object_data = true; //clear until dynamic object data is used again
}
gi_probe->last_probe_version = storage->gi_probe_get_version(gi_probe->probe);
}
void RasterizerSceneRD::_debug_giprobe(RID p_gi_probe, RD::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform, bool p_lighting, bool p_emission, float p_alpha) {
GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_gi_probe);
ERR_FAIL_COND(!gi_probe);
if (gi_probe->mipmaps.size() == 0) {
return;
}
CameraMatrix transform = (p_camera_with_transform * CameraMatrix(gi_probe->transform)) * CameraMatrix(storage->gi_probe_get_to_cell_xform(gi_probe->probe).affine_inverse());
int level = 0;
Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe);
GIProbeDebugPushConstant push_constant;
push_constant.alpha = p_alpha;
push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe);
push_constant.cell_offset = gi_probe->mipmaps[level].cell_offset;
push_constant.level = level;
push_constant.bounds[0] = octree_size.x >> level;
push_constant.bounds[1] = octree_size.y >> level;
push_constant.bounds[2] = octree_size.z >> level;
push_constant.pad = 0;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
push_constant.projection[i * 4 + j] = transform.matrix[i][j];
}
}
if (giprobe_debug_uniform_set.is_valid()) {
RD::get_singleton()->free(giprobe_debug_uniform_set);
}
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 1;
u.ids.push_back(storage->gi_probe_get_data_buffer(gi_probe->probe));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 2;
u.ids.push_back(gi_probe->texture);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 3;
u.ids.push_back(storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
uniforms.push_back(u);
}
if (gi_probe_use_anisotropy) {
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 4;
u.ids.push_back(gi_probe->anisotropy[0]);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 5;
u.ids.push_back(gi_probe->anisotropy[1]);
uniforms.push_back(u);
}
}
int cell_count;
if (!p_emission && p_lighting && gi_probe->has_dynamic_object_data) {
cell_count = push_constant.bounds[0] * push_constant.bounds[1] * push_constant.bounds[2];
} else {
cell_count = gi_probe->mipmaps[level].cell_count;
}
giprobe_debug_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_debug_shader_version_shaders[0], 0);
RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, giprobe_debug_shader_version_pipelines[p_emission ? GI_PROBE_DEBUG_EMISSION : p_lighting ? (gi_probe->has_dynamic_object_data ? GI_PROBE_DEBUG_LIGHT_FULL : GI_PROBE_DEBUG_LIGHT) : GI_PROBE_DEBUG_COLOR].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer)));
RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, giprobe_debug_uniform_set, 0);
RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(GIProbeDebugPushConstant));
RD::get_singleton()->draw_list_draw(p_draw_list, false, cell_count, 36);
}
const Vector<RID> &RasterizerSceneRD::gi_probe_get_slots() const {
return gi_probe_slots;
}
bool RasterizerSceneRD::gi_probe_slots_are_dirty() const {
return gi_probe_slots_dirty;
}
void RasterizerSceneRD::gi_probe_slots_make_not_dirty() {
gi_probe_slots_dirty = false;
}
RasterizerSceneRD::GIProbeQuality RasterizerSceneRD::gi_probe_get_quality() const {
return gi_probe_quality;
}
////////////////////////////////
RID RasterizerSceneRD::render_buffers_create() {
RenderBuffers rb;
rb.data = _create_render_buffer_data();
return render_buffers_owner.make_rid(rb);
}
void RasterizerSceneRD::render_buffers_configure(RID p_render_buffers, RID p_render_target, int p_width, int p_height, VS::ViewportMSAA p_msaa) {
RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
rb->width = p_width;
rb->height = p_height;
rb->render_target = p_render_target;
rb->msaa = p_msaa;
rb->data->configure(p_render_target, p_width, p_height, p_msaa);
}
int RasterizerSceneRD::get_roughness_layers() const {
return roughness_layers;
}
bool RasterizerSceneRD::is_using_radiance_cubemap_array() const {
return sky_use_cubemap_array;
}
void RasterizerSceneRD::render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) {
RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
ERR_FAIL_COND(!rb && p_render_buffers.is_valid());
_render_scene(rb ? rb->data : (RenderBufferData *)NULL, p_cam_transform, p_cam_projection, p_cam_ortogonal, p_cull_result, p_cull_count, p_light_cull_result, p_light_cull_count, p_reflection_probe_cull_result, p_reflection_probe_cull_count, p_gi_probe_cull_result, p_gi_probe_cull_count, p_environment, p_shadow_atlas, p_reflection_atlas, p_reflection_probe, p_reflection_probe_pass);
}
void RasterizerSceneRD::render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count) {
LightInstance *light_instance = light_instance_owner.getornull(p_light);
ERR_FAIL_COND(!light_instance);
Rect2i atlas_rect;
RID atlas_fb;
int atlas_fb_size;
bool using_dual_paraboloid = false;
bool using_dual_paraboloid_flip = false;
float zfar = 0;
RID render_fb;
RID render_texture;
float bias = 0;
float normal_bias = 0;
bool render_cubemap = false;
bool finalize_cubemap = false;
CameraMatrix light_projection;
Transform light_transform;
if (storage->light_get_type(light_instance->light) == VS::LIGHT_DIRECTIONAL) {
//set pssm stuff
if (light_instance->last_scene_shadow_pass != scene_pass) {
light_instance->directional_rect = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, directional_shadow.current_light);
directional_shadow.current_light++;
light_instance->last_scene_shadow_pass = scene_pass;
}
light_projection = light_instance->shadow_transform[p_pass].camera;
light_transform = light_instance->shadow_transform[p_pass].transform;
atlas_rect.position.x = light_instance->directional_rect.position.x;
atlas_rect.position.y = light_instance->directional_rect.position.y;
atlas_rect.size.width = light_instance->directional_rect.size.x;
atlas_rect.size.height = light_instance->directional_rect.size.y;
if (storage->light_directional_get_shadow_mode(light_instance->light) == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
atlas_rect.size.width /= 2;
atlas_rect.size.height /= 2;
if (p_pass == 1) {
atlas_rect.position.x += atlas_rect.size.width;
} else if (p_pass == 2) {
atlas_rect.position.y += atlas_rect.size.height;
} else if (p_pass == 3) {
atlas_rect.position.x += atlas_rect.size.width;
atlas_rect.position.y += atlas_rect.size.height;
}
} else if (storage->light_directional_get_shadow_mode(light_instance->light) == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
atlas_rect.size.height /= 2;
if (p_pass == 0) {
} else {
atlas_rect.position.y += atlas_rect.size.height;
}
}
light_instance->shadow_transform[p_pass].atlas_rect = atlas_rect;
light_instance->shadow_transform[p_pass].atlas_rect.position /= directional_shadow.size;
light_instance->shadow_transform[p_pass].atlas_rect.size /= directional_shadow.size;
float bias_mult = Math::lerp(1.0f, light_instance->shadow_transform[p_pass].bias_scale, storage->light_get_param(light_instance->light, VS::LIGHT_PARAM_SHADOW_BIAS_SPLIT_SCALE));
zfar = storage->light_get_param(light_instance->light, VS::LIGHT_PARAM_RANGE);
bias = storage->light_get_param(light_instance->light, VS::LIGHT_PARAM_SHADOW_BIAS) * bias_mult;
normal_bias = storage->light_get_param(light_instance->light, VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * bias_mult;
ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size);
render_fb = shadow_map->fb;
render_texture = shadow_map->depth;
atlas_fb = directional_shadow.fb;
atlas_fb_size = directional_shadow.size;
} else {
//set from shadow atlas
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
ERR_FAIL_COND(!shadow_atlas);
ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light));
uint32_t key = shadow_atlas->shadow_owners[p_light];
uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size());
uint32_t quadrant_size = shadow_atlas->size >> 1;
atlas_rect.position.x = (quadrant & 1) * quadrant_size;
atlas_rect.position.y = (quadrant >> 1) * quadrant_size;
uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
atlas_rect.position.x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
atlas_rect.position.y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
atlas_rect.size.width = shadow_size;
atlas_rect.size.height = shadow_size;
atlas_fb = shadow_atlas->fb;
atlas_fb_size = shadow_atlas->size;
zfar = storage->light_get_param(light_instance->light, VS::LIGHT_PARAM_RANGE);
bias = storage->light_get_param(light_instance->light, VS::LIGHT_PARAM_SHADOW_BIAS);
normal_bias = storage->light_get_param(light_instance->light, VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS);
if (storage->light_get_type(light_instance->light) == VS::LIGHT_OMNI) {
if (storage->light_omni_get_shadow_mode(light_instance->light) == VS::LIGHT_OMNI_SHADOW_CUBE) {
ShadowCubemap *cubemap = _get_shadow_cubemap(shadow_size / 2);
render_fb = cubemap->side_fb[p_pass];
render_texture = cubemap->cubemap;
light_projection = light_instance->shadow_transform[0].camera;
light_transform = light_instance->shadow_transform[0].transform;
render_cubemap = true;
finalize_cubemap = p_pass == 5;
} else {
light_projection = light_instance->shadow_transform[0].camera;
light_transform = light_instance->shadow_transform[0].transform;
atlas_rect.size.height /= 2;
atlas_rect.position.y += p_pass * atlas_rect.size.height;
using_dual_paraboloid = true;
using_dual_paraboloid_flip = p_pass == 1;
ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size);
render_fb = shadow_map->fb;
render_texture = shadow_map->depth;
}
} else if (storage->light_get_type(light_instance->light) == VS::LIGHT_SPOT) {
light_projection = light_instance->shadow_transform[0].camera;
light_transform = light_instance->shadow_transform[0].transform;
ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size);
render_fb = shadow_map->fb;
render_texture = shadow_map->depth;
}
}
if (render_cubemap) {
//rendering to cubemap
_render_shadow(render_fb, p_cull_result, p_cull_count, light_projection, light_transform, zfar, 0, 0, false, false);
if (finalize_cubemap) {
//reblit
atlas_rect.size.height /= 2;
storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect, light_projection.get_z_near(), light_projection.get_z_far(), bias, false);
atlas_rect.position.y += atlas_rect.size.height;
storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect, light_projection.get_z_near(), light_projection.get_z_far(), bias, true);
}
} else {
//render shadow
_render_shadow(render_fb, p_cull_result, p_cull_count, light_projection, light_transform, zfar, bias, normal_bias, using_dual_paraboloid, using_dual_paraboloid_flip);
//copy to atlas
storage->get_effects()->copy_to_rect(render_texture, atlas_fb, atlas_rect, true);
//does not work from depth to color
//RD::get_singleton()->texture_copy(render_texture, atlas_texture, Vector3(0, 0, 0), Vector3(atlas_rect.position.x, atlas_rect.position.y, 0), Vector3(atlas_rect.size.x, atlas_rect.size.y, 1), 0, 0, 0, 0, true);
}
}
void RasterizerSceneRD::render_material(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID p_framebuffer, const Rect2i &p_region) {
_render_material(p_cam_transform, p_cam_projection, p_cam_ortogonal, p_cull_result, p_cull_count, p_framebuffer, p_region);
}
bool RasterizerSceneRD::free(RID p_rid) {
if (render_buffers_owner.owns(p_rid)) {
RenderBuffers *rb = render_buffers_owner.getornull(p_rid);
memdelete(rb->data);
render_buffers_owner.free(p_rid);
} else if (environment_owner.owns(p_rid)) {
//not much to delete, just free it
environment_owner.free(p_rid);
} else if (reflection_atlas_owner.owns(p_rid)) {
reflection_atlas_set_size(p_rid, 0, 0);
reflection_atlas_owner.free(p_rid);
} else if (reflection_probe_instance_owner.owns(p_rid)) {
//not much to delete, just free it
//ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_rid);
reflection_probe_release_atlas_index(p_rid);
reflection_probe_instance_owner.free(p_rid);
} else if (gi_probe_instance_owner.owns(p_rid)) {
GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_rid);
if (gi_probe->texture.is_valid()) {
RD::get_singleton()->free(gi_probe->texture);
RD::get_singleton()->free(gi_probe->write_buffer);
}
if (gi_probe->anisotropy[0].is_valid()) {
RD::get_singleton()->free(gi_probe->anisotropy[0]);
RD::get_singleton()->free(gi_probe->anisotropy[1]);
}
for (int i = 0; i < gi_probe->dynamic_maps.size(); i++) {
RD::get_singleton()->free(gi_probe->dynamic_maps[i].texture);
RD::get_singleton()->free(gi_probe->dynamic_maps[i].depth);
}
gi_probe_slots.write[gi_probe->slot] = RID();
gi_probe_instance_owner.free(p_rid);
} else if (sky_owner.owns(p_rid)) {
_update_dirty_skys();
Sky *sky = sky_owner.getornull(p_rid);
if (sky->radiance.is_valid()) {
RD::get_singleton()->free(sky->radiance);
sky->radiance = RID();
}
_clear_reflection_data(sky->reflection);
sky_owner.free(p_rid);
} else if (light_instance_owner.owns(p_rid)) {
LightInstance *light_instance = light_instance_owner.getornull(p_rid);
//remove from shadow atlases..
for (Set<RID>::Element *E = light_instance->shadow_atlases.front(); E; E = E->next()) {
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(E->get());
ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid));
uint32_t key = shadow_atlas->shadow_owners[p_rid];
uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
shadow_atlas->shadow_owners.erase(p_rid);
}
light_instance_owner.free(p_rid);
} else if (shadow_atlas_owner.owns(p_rid)) {
shadow_atlas_set_size(p_rid, 0);
shadow_atlas_owner.free(p_rid);
} else {
return false;
}
return true;
}
void RasterizerSceneRD::update() {
_update_dirty_skys();
}
RasterizerSceneRD::RasterizerSceneRD(RasterizerStorageRD *p_storage) {
storage = p_storage;
roughness_layers = GLOBAL_GET("rendering/quality/reflections/roughness_layers");
sky_ggx_samples_quality = GLOBAL_GET("rendering/quality/reflections/ggx_samples");
sky_ggx_samples_realtime = GLOBAL_GET("rendering/quality/reflections/ggx_samples_realtime");
sky_use_cubemap_array = GLOBAL_GET("rendering/quality/reflections/texture_array_reflections");
// sky_use_cubemap_array = false;
uint32_t textures_per_stage = RD::get_singleton()->limit_get(RD::LIMIT_MAX_TEXTURES_PER_SHADER_STAGE);
{
//kinda complicated to compute the amount of slots, we try to use as many as we can
gi_probe_max_lights = 32;
gi_probe_lights = memnew_arr(GIProbeLight, gi_probe_max_lights);
gi_probe_lights_uniform = RD::get_singleton()->uniform_buffer_create(gi_probe_max_lights * sizeof(GIProbeLight));
gi_probe_use_anisotropy = GLOBAL_GET("rendering/quality/gi_probes/anisotropic");
gi_probe_quality = GIProbeQuality(CLAMP(int(GLOBAL_GET("rendering/quality/gi_probes/quality")), 0, 2));
if (textures_per_stage <= 16) {
gi_probe_slots.resize(2); //thats all you can get
gi_probe_use_anisotropy = false;
} else if (textures_per_stage <= 31) {
gi_probe_slots.resize(4); //thats all you can get, iOS
gi_probe_use_anisotropy = false;
} else if (textures_per_stage <= 128) {
gi_probe_slots.resize(32); //old intel
gi_probe_use_anisotropy = false;
} else if (textures_per_stage <= 256) {
gi_probe_slots.resize(64); //old intel too
gi_probe_use_anisotropy = false;
} else {
if (gi_probe_use_anisotropy) {
gi_probe_slots.resize(1024 / 3); //needs 3 textures
} else {
gi_probe_slots.resize(1024); //modern intel, nvidia, 8192 or greater
}
}
String defines = "\n#define MAX_LIGHTS " + itos(gi_probe_max_lights) + "\n";
if (gi_probe_use_anisotropy) {
defines += "\n#define MODE_ANISOTROPIC\n";
}
Vector<String> versions;
versions.push_back("\n#define MODE_COMPUTE_LIGHT\n");
versions.push_back("\n#define MODE_SECOND_BOUNCE\n");
versions.push_back("\n#define MODE_UPDATE_MIPMAPS\n");
versions.push_back("\n#define MODE_WRITE_TEXTURE\n");
versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_LIGHTING\n");
versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_WRITE\n");
versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n");
versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n#define MODE_DYNAMIC_SHRINK_WRITE\n");
giprobe_shader.initialize(versions, defines);
giprobe_lighting_shader_version = giprobe_shader.version_create();
for (int i = 0; i < GI_PROBE_SHADER_VERSION_MAX; i++) {
giprobe_lighting_shader_version_shaders[i] = giprobe_shader.version_get_shader(giprobe_lighting_shader_version, i);
giprobe_lighting_shader_version_pipelines[i] = RD::get_singleton()->compute_pipeline_create(giprobe_lighting_shader_version_shaders[i]);
}
}
{
String defines;
if (gi_probe_use_anisotropy) {
defines += "\n#define USE_ANISOTROPY\n";
}
Vector<String> versions;
versions.push_back("\n#define MODE_DEBUG_COLOR\n");
versions.push_back("\n#define MODE_DEBUG_LIGHT\n");
versions.push_back("\n#define MODE_DEBUG_EMISSION\n");
versions.push_back("\n#define MODE_DEBUG_LIGHT\n#define MODE_DEBUG_LIGHT_FULL\n");
giprobe_debug_shader.initialize(versions, defines);
giprobe_debug_shader_version = giprobe_debug_shader.version_create();
for (int i = 0; i < GI_PROBE_DEBUG_MAX; i++) {
giprobe_debug_shader_version_shaders[i] = giprobe_debug_shader.version_get_shader(giprobe_debug_shader_version, i);
RD::PipelineRasterizationState rs;
rs.cull_mode = RD::POLYGON_CULL_FRONT;
RD::PipelineDepthStencilState ds;
ds.enable_depth_test = true;
ds.enable_depth_write = true;
ds.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL;
giprobe_debug_shader_version_pipelines[i].setup(giprobe_debug_shader_version_shaders[i], RD::RENDER_PRIMITIVE_TRIANGLES, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0);
}
}
}
RasterizerSceneRD::~RasterizerSceneRD() {
directional_shadow_atlas_set_size(0);
for (Map<Vector2i, ShadowMap>::Element *E = shadow_maps.front(); E; E = E->next()) {
RD::get_singleton()->free(E->get().depth);
}
for (Map<int, ShadowCubemap>::Element *E = shadow_cubemaps.front(); E; E = E->next()) {
RD::get_singleton()->free(E->get().cubemap);
}
RD::get_singleton()->free(gi_probe_lights_uniform);
memdelete_arr(gi_probe_lights);
}