virtualx-engine/servers/physics_3d/body_3d_sw.cpp
PouleyKetchoupp 82ea2a7045 Proper support for custom mass properties in 2D/3D physics bodies
Changes:
-Added support for custom inertia and center of mass in 3D
-Added support for custom center of mass in 2D
-Calculated center of mass from shapes in 2D (same as in 3D)
-Fixed mass properties calculation with disabled shapes in 2D/3D
-Removed first_integration which is not used in 2D and doesn't seem to
make a lot of sense (prevents omit_force_integration to work during the
first frame)
-Support for custom inertia on different axes for RigidBody3D
2021-09-06 10:20:16 -07:00

790 lines
22 KiB
C++

/*************************************************************************/
/* body_3d_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "body_3d_sw.h"
#include "area_3d_sw.h"
#include "body_direct_state_3d_sw.h"
#include "space_3d_sw.h"
void Body3DSW::_mass_properties_changed() {
if (get_space() && !mass_properties_update_list.in_list() && (calculate_inertia || calculate_center_of_mass)) {
get_space()->body_add_to_mass_properties_update_list(&mass_properties_update_list);
}
}
void Body3DSW::_update_transform_dependant() {
center_of_mass = get_transform().basis.xform(center_of_mass_local);
principal_inertia_axes = get_transform().basis * principal_inertia_axes_local;
// Update inertia tensor.
Basis tb = principal_inertia_axes;
Basis tbt = tb.transposed();
Basis diag;
diag.scale(_inv_inertia);
_inv_inertia_tensor = tb * diag * tbt;
}
void Body3DSW::update_mass_properties() {
// Update shapes and motions.
switch (mode) {
case PhysicsServer3D::BODY_MODE_DYNAMIC: {
real_t total_area = 0;
for (int i = 0; i < get_shape_count(); i++) {
if (is_shape_disabled(i)) {
continue;
}
total_area += get_shape_area(i);
}
if (calculate_center_of_mass) {
// We have to recompute the center of mass.
center_of_mass_local.zero();
if (total_area != 0.0) {
for (int i = 0; i < get_shape_count(); i++) {
if (is_shape_disabled(i)) {
continue;
}
real_t area = get_shape_area(i);
real_t mass = area * this->mass / total_area;
// NOTE: we assume that the shape origin is also its center of mass.
center_of_mass_local += mass * get_shape_transform(i).origin;
}
center_of_mass_local /= mass;
}
}
if (calculate_inertia) {
// Recompute the inertia tensor.
Basis inertia_tensor;
inertia_tensor.set_zero();
bool inertia_set = false;
for (int i = 0; i < get_shape_count(); i++) {
if (is_shape_disabled(i)) {
continue;
}
real_t area = get_shape_area(i);
if (area == 0.0) {
continue;
}
inertia_set = true;
const Shape3DSW *shape = get_shape(i);
real_t mass = area * this->mass / total_area;
Basis shape_inertia_tensor = shape->get_moment_of_inertia(mass).to_diagonal_matrix();
Transform3D shape_transform = get_shape_transform(i);
Basis shape_basis = shape_transform.basis.orthonormalized();
// NOTE: we don't take the scale of collision shapes into account when computing the inertia tensor!
shape_inertia_tensor = shape_basis * shape_inertia_tensor * shape_basis.transposed();
Vector3 shape_origin = shape_transform.origin - center_of_mass_local;
inertia_tensor += shape_inertia_tensor + (Basis() * shape_origin.dot(shape_origin) - shape_origin.outer(shape_origin)) * mass;
}
// Set the inertia to a valid value when there are no valid shapes.
if (!inertia_set) {
inertia_tensor.set_diagonal(Vector3(1.0, 1.0, 1.0));
}
// Handle partial custom inertia.
if (inertia.x > 0.0) {
inertia_tensor[0][0] = inertia.x;
}
if (inertia.y > 0.0) {
inertia_tensor[1][1] = inertia.y;
}
if (inertia.z > 0.0) {
inertia_tensor[2][2] = inertia.z;
}
// Compute the principal axes of inertia.
principal_inertia_axes_local = inertia_tensor.diagonalize().transposed();
_inv_inertia = inertia_tensor.get_main_diagonal().inverse();
}
if (mass) {
_inv_mass = 1.0 / mass;
} else {
_inv_mass = 0;
}
} break;
case PhysicsServer3D::BODY_MODE_KINEMATIC:
case PhysicsServer3D::BODY_MODE_STATIC: {
_inv_inertia = Vector3();
_inv_mass = 0;
} break;
case PhysicsServer3D::BODY_MODE_DYNAMIC_LOCKED: {
_inv_inertia_tensor.set_zero();
_inv_mass = 1.0 / mass;
} break;
}
_update_transform_dependant();
}
void Body3DSW::reset_mass_properties() {
calculate_inertia = true;
calculate_center_of_mass = true;
_mass_properties_changed();
}
void Body3DSW::set_active(bool p_active) {
if (active == p_active) {
return;
}
active = p_active;
if (active) {
if (mode == PhysicsServer3D::BODY_MODE_STATIC) {
// Static bodies can't be active.
active = false;
} else if (get_space()) {
get_space()->body_add_to_active_list(&active_list);
}
} else if (get_space()) {
get_space()->body_remove_from_active_list(&active_list);
}
}
void Body3DSW::set_param(PhysicsServer3D::BodyParameter p_param, const Variant &p_value) {
switch (p_param) {
case PhysicsServer3D::BODY_PARAM_BOUNCE: {
bounce = p_value;
} break;
case PhysicsServer3D::BODY_PARAM_FRICTION: {
friction = p_value;
} break;
case PhysicsServer3D::BODY_PARAM_MASS: {
real_t mass_value = p_value;
ERR_FAIL_COND(mass_value <= 0);
mass = mass_value;
if (mode >= PhysicsServer3D::BODY_MODE_DYNAMIC) {
_mass_properties_changed();
}
} break;
case PhysicsServer3D::BODY_PARAM_INERTIA: {
inertia = p_value;
if ((inertia.x <= 0.0) || (inertia.y <= 0.0) || (inertia.z <= 0.0)) {
calculate_inertia = true;
if (mode == PhysicsServer3D::BODY_MODE_DYNAMIC) {
_mass_properties_changed();
}
} else {
calculate_inertia = false;
if (mode == PhysicsServer3D::BODY_MODE_DYNAMIC) {
principal_inertia_axes_local.set_diagonal(Vector3(1.0, 1.0, 1.0));
_inv_inertia = inertia.inverse();
_update_transform_dependant();
}
}
} break;
case PhysicsServer3D::BODY_PARAM_CENTER_OF_MASS: {
calculate_center_of_mass = false;
center_of_mass_local = p_value;
_update_transform_dependant();
} break;
case PhysicsServer3D::BODY_PARAM_GRAVITY_SCALE: {
gravity_scale = p_value;
} break;
case PhysicsServer3D::BODY_PARAM_LINEAR_DAMP: {
linear_damp = p_value;
} break;
case PhysicsServer3D::BODY_PARAM_ANGULAR_DAMP: {
angular_damp = p_value;
} break;
default: {
}
}
}
Variant Body3DSW::get_param(PhysicsServer3D::BodyParameter p_param) const {
switch (p_param) {
case PhysicsServer3D::BODY_PARAM_BOUNCE: {
return bounce;
} break;
case PhysicsServer3D::BODY_PARAM_FRICTION: {
return friction;
} break;
case PhysicsServer3D::BODY_PARAM_MASS: {
return mass;
} break;
case PhysicsServer3D::BODY_PARAM_INERTIA: {
if (mode == PhysicsServer3D::BODY_MODE_DYNAMIC) {
return _inv_inertia.inverse();
} else {
return Vector3();
}
} break;
case PhysicsServer3D::BODY_PARAM_CENTER_OF_MASS: {
return center_of_mass;
} break;
case PhysicsServer3D::BODY_PARAM_GRAVITY_SCALE: {
return gravity_scale;
} break;
case PhysicsServer3D::BODY_PARAM_LINEAR_DAMP: {
return linear_damp;
} break;
case PhysicsServer3D::BODY_PARAM_ANGULAR_DAMP: {
return angular_damp;
} break;
default: {
}
}
return 0;
}
void Body3DSW::set_mode(PhysicsServer3D::BodyMode p_mode) {
PhysicsServer3D::BodyMode prev = mode;
mode = p_mode;
switch (p_mode) {
case PhysicsServer3D::BODY_MODE_STATIC:
case PhysicsServer3D::BODY_MODE_KINEMATIC: {
_set_inv_transform(get_transform().affine_inverse());
_inv_mass = 0;
_inv_inertia = Vector3();
_set_static(p_mode == PhysicsServer3D::BODY_MODE_STATIC);
set_active(p_mode == PhysicsServer3D::BODY_MODE_KINEMATIC && contacts.size());
linear_velocity = Vector3();
angular_velocity = Vector3();
if (mode == PhysicsServer3D::BODY_MODE_KINEMATIC && prev != mode) {
first_time_kinematic = true;
}
_update_transform_dependant();
} break;
case PhysicsServer3D::BODY_MODE_DYNAMIC: {
_inv_mass = mass > 0 ? (1.0 / mass) : 0;
if (!calculate_inertia) {
principal_inertia_axes_local.set_diagonal(Vector3(1.0, 1.0, 1.0));
_inv_inertia = inertia.inverse();
_update_transform_dependant();
}
_mass_properties_changed();
_set_static(false);
set_active(true);
} break;
case PhysicsServer3D::BODY_MODE_DYNAMIC_LOCKED: {
_inv_mass = mass > 0 ? (1.0 / mass) : 0;
_inv_inertia = Vector3();
angular_velocity = Vector3();
_update_transform_dependant();
_set_static(false);
set_active(true);
}
}
}
PhysicsServer3D::BodyMode Body3DSW::get_mode() const {
return mode;
}
void Body3DSW::_shapes_changed() {
_mass_properties_changed();
}
void Body3DSW::set_state(PhysicsServer3D::BodyState p_state, const Variant &p_variant) {
switch (p_state) {
case PhysicsServer3D::BODY_STATE_TRANSFORM: {
if (mode == PhysicsServer3D::BODY_MODE_KINEMATIC) {
new_transform = p_variant;
//wakeup_neighbours();
set_active(true);
if (first_time_kinematic) {
_set_transform(p_variant);
_set_inv_transform(get_transform().affine_inverse());
first_time_kinematic = false;
}
} else if (mode == PhysicsServer3D::BODY_MODE_STATIC) {
_set_transform(p_variant);
_set_inv_transform(get_transform().affine_inverse());
wakeup_neighbours();
} else {
Transform3D t = p_variant;
t.orthonormalize();
new_transform = get_transform(); //used as old to compute motion
if (new_transform == t) {
break;
}
_set_transform(t);
_set_inv_transform(get_transform().inverse());
}
wakeup();
} break;
case PhysicsServer3D::BODY_STATE_LINEAR_VELOCITY: {
linear_velocity = p_variant;
constant_linear_velocity = linear_velocity;
wakeup();
} break;
case PhysicsServer3D::BODY_STATE_ANGULAR_VELOCITY: {
angular_velocity = p_variant;
constant_angular_velocity = angular_velocity;
wakeup();
} break;
case PhysicsServer3D::BODY_STATE_SLEEPING: {
if (mode == PhysicsServer3D::BODY_MODE_STATIC || mode == PhysicsServer3D::BODY_MODE_KINEMATIC) {
break;
}
bool do_sleep = p_variant;
if (do_sleep) {
linear_velocity = Vector3();
//biased_linear_velocity=Vector3();
angular_velocity = Vector3();
//biased_angular_velocity=Vector3();
set_active(false);
} else {
set_active(true);
}
} break;
case PhysicsServer3D::BODY_STATE_CAN_SLEEP: {
can_sleep = p_variant;
if (mode >= PhysicsServer3D::BODY_MODE_DYNAMIC && !active && !can_sleep) {
set_active(true);
}
} break;
}
}
Variant Body3DSW::get_state(PhysicsServer3D::BodyState p_state) const {
switch (p_state) {
case PhysicsServer3D::BODY_STATE_TRANSFORM: {
return get_transform();
} break;
case PhysicsServer3D::BODY_STATE_LINEAR_VELOCITY: {
return linear_velocity;
} break;
case PhysicsServer3D::BODY_STATE_ANGULAR_VELOCITY: {
return angular_velocity;
} break;
case PhysicsServer3D::BODY_STATE_SLEEPING: {
return !is_active();
} break;
case PhysicsServer3D::BODY_STATE_CAN_SLEEP: {
return can_sleep;
} break;
}
return Variant();
}
void Body3DSW::set_space(Space3DSW *p_space) {
if (get_space()) {
if (mass_properties_update_list.in_list()) {
get_space()->body_remove_from_mass_properties_update_list(&mass_properties_update_list);
}
if (active_list.in_list()) {
get_space()->body_remove_from_active_list(&active_list);
}
if (direct_state_query_list.in_list()) {
get_space()->body_remove_from_state_query_list(&direct_state_query_list);
}
}
_set_space(p_space);
if (get_space()) {
_mass_properties_changed();
if (active) {
get_space()->body_add_to_active_list(&active_list);
}
}
}
void Body3DSW::_compute_area_gravity_and_damping(const Area3DSW *p_area) {
Vector3 area_gravity;
p_area->compute_gravity(get_transform().get_origin(), area_gravity);
gravity += area_gravity;
area_linear_damp += p_area->get_linear_damp();
area_angular_damp += p_area->get_angular_damp();
}
void Body3DSW::set_axis_lock(PhysicsServer3D::BodyAxis p_axis, bool lock) {
if (lock) {
locked_axis |= p_axis;
} else {
locked_axis &= ~p_axis;
}
}
bool Body3DSW::is_axis_locked(PhysicsServer3D::BodyAxis p_axis) const {
return locked_axis & p_axis;
}
void Body3DSW::integrate_forces(real_t p_step) {
if (mode == PhysicsServer3D::BODY_MODE_STATIC) {
return;
}
Area3DSW *def_area = get_space()->get_default_area();
// AreaSW *damp_area = def_area;
ERR_FAIL_COND(!def_area);
int ac = areas.size();
bool stopped = false;
gravity = Vector3(0, 0, 0);
area_linear_damp = 0;
area_angular_damp = 0;
if (ac) {
areas.sort();
const AreaCMP *aa = &areas[0];
// damp_area = aa[ac-1].area;
for (int i = ac - 1; i >= 0 && !stopped; i--) {
PhysicsServer3D::AreaSpaceOverrideMode mode = aa[i].area->get_space_override_mode();
switch (mode) {
case PhysicsServer3D::AREA_SPACE_OVERRIDE_COMBINE:
case PhysicsServer3D::AREA_SPACE_OVERRIDE_COMBINE_REPLACE: {
_compute_area_gravity_and_damping(aa[i].area);
stopped = mode == PhysicsServer3D::AREA_SPACE_OVERRIDE_COMBINE_REPLACE;
} break;
case PhysicsServer3D::AREA_SPACE_OVERRIDE_REPLACE:
case PhysicsServer3D::AREA_SPACE_OVERRIDE_REPLACE_COMBINE: {
gravity = Vector3(0, 0, 0);
area_angular_damp = 0;
area_linear_damp = 0;
_compute_area_gravity_and_damping(aa[i].area);
stopped = mode == PhysicsServer3D::AREA_SPACE_OVERRIDE_REPLACE;
} break;
default: {
}
}
}
}
if (!stopped) {
_compute_area_gravity_and_damping(def_area);
}
gravity *= gravity_scale;
// If less than 0, override dampenings with that of the Body
if (angular_damp >= 0) {
area_angular_damp = angular_damp;
}
/*
else
area_angular_damp=damp_area->get_angular_damp();
*/
if (linear_damp >= 0) {
area_linear_damp = linear_damp;
}
/*
else
area_linear_damp=damp_area->get_linear_damp();
*/
Vector3 motion;
bool do_motion = false;
if (mode == PhysicsServer3D::BODY_MODE_KINEMATIC) {
//compute motion, angular and etc. velocities from prev transform
motion = new_transform.origin - get_transform().origin;
do_motion = true;
linear_velocity = constant_linear_velocity + motion / p_step;
//compute a FAKE angular velocity, not so easy
Basis rot = new_transform.basis.orthonormalized() * get_transform().basis.orthonormalized().transposed();
Vector3 axis;
real_t angle;
rot.get_axis_angle(axis, angle);
axis.normalize();
angular_velocity = constant_angular_velocity + axis * (angle / p_step);
} else {
if (!omit_force_integration) {
//overridden by direct state query
Vector3 force = gravity * mass;
force += applied_force;
Vector3 torque = applied_torque;
real_t damp = 1.0 - p_step * area_linear_damp;
if (damp < 0) { // reached zero in the given time
damp = 0;
}
real_t angular_damp = 1.0 - p_step * area_angular_damp;
if (angular_damp < 0) { // reached zero in the given time
angular_damp = 0;
}
linear_velocity *= damp;
angular_velocity *= angular_damp;
linear_velocity += _inv_mass * force * p_step;
angular_velocity += _inv_inertia_tensor.xform(torque) * p_step;
}
if (continuous_cd) {
motion = linear_velocity * p_step;
do_motion = true;
}
}
applied_force = Vector3();
applied_torque = Vector3();
//motion=linear_velocity*p_step;
biased_angular_velocity = Vector3();
biased_linear_velocity = Vector3();
if (do_motion) { //shapes temporarily extend for raycast
_update_shapes_with_motion(motion);
}
def_area = nullptr; // clear the area, so it is set in the next frame
contact_count = 0;
}
void Body3DSW::integrate_velocities(real_t p_step) {
if (mode == PhysicsServer3D::BODY_MODE_STATIC) {
return;
}
if (fi_callback_data || body_state_callback) {
get_space()->body_add_to_state_query_list(&direct_state_query_list);
}
//apply axis lock linear
for (int i = 0; i < 3; i++) {
if (is_axis_locked((PhysicsServer3D::BodyAxis)(1 << i))) {
linear_velocity[i] = 0;
biased_linear_velocity[i] = 0;
new_transform.origin[i] = get_transform().origin[i];
}
}
//apply axis lock angular
for (int i = 0; i < 3; i++) {
if (is_axis_locked((PhysicsServer3D::BodyAxis)(1 << (i + 3)))) {
angular_velocity[i] = 0;
biased_angular_velocity[i] = 0;
}
}
if (mode == PhysicsServer3D::BODY_MODE_KINEMATIC) {
_set_transform(new_transform, false);
_set_inv_transform(new_transform.affine_inverse());
if (contacts.size() == 0 && linear_velocity == Vector3() && angular_velocity == Vector3()) {
set_active(false); //stopped moving, deactivate
}
return;
}
Vector3 total_angular_velocity = angular_velocity + biased_angular_velocity;
real_t ang_vel = total_angular_velocity.length();
Transform3D transform = get_transform();
if (!Math::is_zero_approx(ang_vel)) {
Vector3 ang_vel_axis = total_angular_velocity / ang_vel;
Basis rot(ang_vel_axis, ang_vel * p_step);
Basis identity3(1, 0, 0, 0, 1, 0, 0, 0, 1);
transform.origin += ((identity3 - rot) * transform.basis).xform(center_of_mass_local);
transform.basis = rot * transform.basis;
transform.orthonormalize();
}
Vector3 total_linear_velocity = linear_velocity + biased_linear_velocity;
/*for(int i=0;i<3;i++) {
if (axis_lock&(1<<i)) {
transform.origin[i]=0.0;
}
}*/
transform.origin += total_linear_velocity * p_step;
_set_transform(transform);
_set_inv_transform(get_transform().inverse());
_update_transform_dependant();
}
/*
void BodySW::simulate_motion(const Transform3D& p_xform,real_t p_step) {
Transform3D inv_xform = p_xform.affine_inverse();
if (!get_space()) {
_set_transform(p_xform);
_set_inv_transform(inv_xform);
return;
}
//compute a FAKE linear velocity - this is easy
linear_velocity=(p_xform.origin - get_transform().origin)/p_step;
//compute a FAKE angular velocity, not so easy
Basis rot=get_transform().basis.orthonormalized().transposed() * p_xform.basis.orthonormalized();
Vector3 axis;
real_t angle;
rot.get_axis_angle(axis,angle);
axis.normalize();
angular_velocity=axis.normalized() * (angle/p_step);
linear_velocity = (p_xform.origin - get_transform().origin)/p_step;
if (!direct_state_query_list.in_list())// - callalways, so lv and av are cleared && (state_query || direct_state_query))
get_space()->body_add_to_state_query_list(&direct_state_query_list);
simulated_motion=true;
_set_transform(p_xform);
}
*/
void Body3DSW::wakeup_neighbours() {
for (Map<Constraint3DSW *, int>::Element *E = constraint_map.front(); E; E = E->next()) {
const Constraint3DSW *c = E->key();
Body3DSW **n = c->get_body_ptr();
int bc = c->get_body_count();
for (int i = 0; i < bc; i++) {
if (i == E->get()) {
continue;
}
Body3DSW *b = n[i];
if (b->mode < PhysicsServer3D::BODY_MODE_DYNAMIC) {
continue;
}
if (!b->is_active()) {
b->set_active(true);
}
}
}
}
void Body3DSW::call_queries() {
if (fi_callback_data) {
if (!fi_callback_data->callable.get_object()) {
set_force_integration_callback(Callable());
} else {
Variant direct_state_variant = get_direct_state();
const Variant *vp[2] = { &direct_state_variant, &fi_callback_data->udata };
Callable::CallError ce;
int argc = (fi_callback_data->udata.get_type() == Variant::NIL) ? 1 : 2;
Variant rv;
fi_callback_data->callable.call(vp, argc, rv, ce);
}
}
if (body_state_callback_instance) {
(body_state_callback)(body_state_callback_instance, get_direct_state());
}
}
bool Body3DSW::sleep_test(real_t p_step) {
if (mode == PhysicsServer3D::BODY_MODE_STATIC || mode == PhysicsServer3D::BODY_MODE_KINEMATIC) {
return true;
} else if (!can_sleep) {
return false;
}
if (Math::abs(angular_velocity.length()) < get_space()->get_body_angular_velocity_sleep_threshold() && Math::abs(linear_velocity.length_squared()) < get_space()->get_body_linear_velocity_sleep_threshold() * get_space()->get_body_linear_velocity_sleep_threshold()) {
still_time += p_step;
return still_time > get_space()->get_body_time_to_sleep();
} else {
still_time = 0; //maybe this should be set to 0 on set_active?
return false;
}
}
void Body3DSW::set_state_sync_callback(void *p_instance, PhysicsServer3D::BodyStateCallback p_callback) {
body_state_callback_instance = p_instance;
body_state_callback = p_callback;
}
void Body3DSW::set_force_integration_callback(const Callable &p_callable, const Variant &p_udata) {
if (p_callable.get_object()) {
if (!fi_callback_data) {
fi_callback_data = memnew(ForceIntegrationCallbackData);
}
fi_callback_data->callable = p_callable;
fi_callback_data->udata = p_udata;
} else if (fi_callback_data) {
memdelete(fi_callback_data);
fi_callback_data = nullptr;
}
}
PhysicsDirectBodyState3DSW *Body3DSW::get_direct_state() {
if (!direct_state) {
direct_state = memnew(PhysicsDirectBodyState3DSW);
direct_state->body = this;
}
return direct_state;
}
Body3DSW::Body3DSW() :
CollisionObject3DSW(TYPE_BODY),
active_list(this),
mass_properties_update_list(this),
direct_state_query_list(this) {
_set_static(false);
}
Body3DSW::~Body3DSW() {
if (fi_callback_data) {
memdelete(fi_callback_data);
}
if (direct_state) {
memdelete(direct_state);
}
}