virtualx-engine/drivers/vulkan/rendering_device_driver_vulkan.cpp

4949 lines
227 KiB
C++

/**************************************************************************/
/* rendering_device_driver_vulkan.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "rendering_device_driver_vulkan.h"
#include "core/config/project_settings.h"
#include "core/io/marshalls.h"
#include "thirdparty/misc/smolv.h"
#include "vulkan_hooks.h"
#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
#define PRINT_NATIVE_COMMANDS 0
/*****************/
/**** GENERIC ****/
/*****************/
static const VkFormat RD_TO_VK_FORMAT[RDD::DATA_FORMAT_MAX] = {
VK_FORMAT_R4G4_UNORM_PACK8,
VK_FORMAT_R4G4B4A4_UNORM_PACK16,
VK_FORMAT_B4G4R4A4_UNORM_PACK16,
VK_FORMAT_R5G6B5_UNORM_PACK16,
VK_FORMAT_B5G6R5_UNORM_PACK16,
VK_FORMAT_R5G5B5A1_UNORM_PACK16,
VK_FORMAT_B5G5R5A1_UNORM_PACK16,
VK_FORMAT_A1R5G5B5_UNORM_PACK16,
VK_FORMAT_R8_UNORM,
VK_FORMAT_R8_SNORM,
VK_FORMAT_R8_USCALED,
VK_FORMAT_R8_SSCALED,
VK_FORMAT_R8_UINT,
VK_FORMAT_R8_SINT,
VK_FORMAT_R8_SRGB,
VK_FORMAT_R8G8_UNORM,
VK_FORMAT_R8G8_SNORM,
VK_FORMAT_R8G8_USCALED,
VK_FORMAT_R8G8_SSCALED,
VK_FORMAT_R8G8_UINT,
VK_FORMAT_R8G8_SINT,
VK_FORMAT_R8G8_SRGB,
VK_FORMAT_R8G8B8_UNORM,
VK_FORMAT_R8G8B8_SNORM,
VK_FORMAT_R8G8B8_USCALED,
VK_FORMAT_R8G8B8_SSCALED,
VK_FORMAT_R8G8B8_UINT,
VK_FORMAT_R8G8B8_SINT,
VK_FORMAT_R8G8B8_SRGB,
VK_FORMAT_B8G8R8_UNORM,
VK_FORMAT_B8G8R8_SNORM,
VK_FORMAT_B8G8R8_USCALED,
VK_FORMAT_B8G8R8_SSCALED,
VK_FORMAT_B8G8R8_UINT,
VK_FORMAT_B8G8R8_SINT,
VK_FORMAT_B8G8R8_SRGB,
VK_FORMAT_R8G8B8A8_UNORM,
VK_FORMAT_R8G8B8A8_SNORM,
VK_FORMAT_R8G8B8A8_USCALED,
VK_FORMAT_R8G8B8A8_SSCALED,
VK_FORMAT_R8G8B8A8_UINT,
VK_FORMAT_R8G8B8A8_SINT,
VK_FORMAT_R8G8B8A8_SRGB,
VK_FORMAT_B8G8R8A8_UNORM,
VK_FORMAT_B8G8R8A8_SNORM,
VK_FORMAT_B8G8R8A8_USCALED,
VK_FORMAT_B8G8R8A8_SSCALED,
VK_FORMAT_B8G8R8A8_UINT,
VK_FORMAT_B8G8R8A8_SINT,
VK_FORMAT_B8G8R8A8_SRGB,
VK_FORMAT_A8B8G8R8_UNORM_PACK32,
VK_FORMAT_A8B8G8R8_SNORM_PACK32,
VK_FORMAT_A8B8G8R8_USCALED_PACK32,
VK_FORMAT_A8B8G8R8_SSCALED_PACK32,
VK_FORMAT_A8B8G8R8_UINT_PACK32,
VK_FORMAT_A8B8G8R8_SINT_PACK32,
VK_FORMAT_A8B8G8R8_SRGB_PACK32,
VK_FORMAT_A2R10G10B10_UNORM_PACK32,
VK_FORMAT_A2R10G10B10_SNORM_PACK32,
VK_FORMAT_A2R10G10B10_USCALED_PACK32,
VK_FORMAT_A2R10G10B10_SSCALED_PACK32,
VK_FORMAT_A2R10G10B10_UINT_PACK32,
VK_FORMAT_A2R10G10B10_SINT_PACK32,
VK_FORMAT_A2B10G10R10_UNORM_PACK32,
VK_FORMAT_A2B10G10R10_SNORM_PACK32,
VK_FORMAT_A2B10G10R10_USCALED_PACK32,
VK_FORMAT_A2B10G10R10_SSCALED_PACK32,
VK_FORMAT_A2B10G10R10_UINT_PACK32,
VK_FORMAT_A2B10G10R10_SINT_PACK32,
VK_FORMAT_R16_UNORM,
VK_FORMAT_R16_SNORM,
VK_FORMAT_R16_USCALED,
VK_FORMAT_R16_SSCALED,
VK_FORMAT_R16_UINT,
VK_FORMAT_R16_SINT,
VK_FORMAT_R16_SFLOAT,
VK_FORMAT_R16G16_UNORM,
VK_FORMAT_R16G16_SNORM,
VK_FORMAT_R16G16_USCALED,
VK_FORMAT_R16G16_SSCALED,
VK_FORMAT_R16G16_UINT,
VK_FORMAT_R16G16_SINT,
VK_FORMAT_R16G16_SFLOAT,
VK_FORMAT_R16G16B16_UNORM,
VK_FORMAT_R16G16B16_SNORM,
VK_FORMAT_R16G16B16_USCALED,
VK_FORMAT_R16G16B16_SSCALED,
VK_FORMAT_R16G16B16_UINT,
VK_FORMAT_R16G16B16_SINT,
VK_FORMAT_R16G16B16_SFLOAT,
VK_FORMAT_R16G16B16A16_UNORM,
VK_FORMAT_R16G16B16A16_SNORM,
VK_FORMAT_R16G16B16A16_USCALED,
VK_FORMAT_R16G16B16A16_SSCALED,
VK_FORMAT_R16G16B16A16_UINT,
VK_FORMAT_R16G16B16A16_SINT,
VK_FORMAT_R16G16B16A16_SFLOAT,
VK_FORMAT_R32_UINT,
VK_FORMAT_R32_SINT,
VK_FORMAT_R32_SFLOAT,
VK_FORMAT_R32G32_UINT,
VK_FORMAT_R32G32_SINT,
VK_FORMAT_R32G32_SFLOAT,
VK_FORMAT_R32G32B32_UINT,
VK_FORMAT_R32G32B32_SINT,
VK_FORMAT_R32G32B32_SFLOAT,
VK_FORMAT_R32G32B32A32_UINT,
VK_FORMAT_R32G32B32A32_SINT,
VK_FORMAT_R32G32B32A32_SFLOAT,
VK_FORMAT_R64_UINT,
VK_FORMAT_R64_SINT,
VK_FORMAT_R64_SFLOAT,
VK_FORMAT_R64G64_UINT,
VK_FORMAT_R64G64_SINT,
VK_FORMAT_R64G64_SFLOAT,
VK_FORMAT_R64G64B64_UINT,
VK_FORMAT_R64G64B64_SINT,
VK_FORMAT_R64G64B64_SFLOAT,
VK_FORMAT_R64G64B64A64_UINT,
VK_FORMAT_R64G64B64A64_SINT,
VK_FORMAT_R64G64B64A64_SFLOAT,
VK_FORMAT_B10G11R11_UFLOAT_PACK32,
VK_FORMAT_E5B9G9R9_UFLOAT_PACK32,
VK_FORMAT_D16_UNORM,
VK_FORMAT_X8_D24_UNORM_PACK32,
VK_FORMAT_D32_SFLOAT,
VK_FORMAT_S8_UINT,
VK_FORMAT_D16_UNORM_S8_UINT,
VK_FORMAT_D24_UNORM_S8_UINT,
VK_FORMAT_D32_SFLOAT_S8_UINT,
VK_FORMAT_BC1_RGB_UNORM_BLOCK,
VK_FORMAT_BC1_RGB_SRGB_BLOCK,
VK_FORMAT_BC1_RGBA_UNORM_BLOCK,
VK_FORMAT_BC1_RGBA_SRGB_BLOCK,
VK_FORMAT_BC2_UNORM_BLOCK,
VK_FORMAT_BC2_SRGB_BLOCK,
VK_FORMAT_BC3_UNORM_BLOCK,
VK_FORMAT_BC3_SRGB_BLOCK,
VK_FORMAT_BC4_UNORM_BLOCK,
VK_FORMAT_BC4_SNORM_BLOCK,
VK_FORMAT_BC5_UNORM_BLOCK,
VK_FORMAT_BC5_SNORM_BLOCK,
VK_FORMAT_BC6H_UFLOAT_BLOCK,
VK_FORMAT_BC6H_SFLOAT_BLOCK,
VK_FORMAT_BC7_UNORM_BLOCK,
VK_FORMAT_BC7_SRGB_BLOCK,
VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK,
VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK,
VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK,
VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK,
VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK,
VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK,
VK_FORMAT_EAC_R11_UNORM_BLOCK,
VK_FORMAT_EAC_R11_SNORM_BLOCK,
VK_FORMAT_EAC_R11G11_UNORM_BLOCK,
VK_FORMAT_EAC_R11G11_SNORM_BLOCK,
VK_FORMAT_ASTC_4x4_UNORM_BLOCK,
VK_FORMAT_ASTC_4x4_SRGB_BLOCK,
VK_FORMAT_ASTC_5x4_UNORM_BLOCK,
VK_FORMAT_ASTC_5x4_SRGB_BLOCK,
VK_FORMAT_ASTC_5x5_UNORM_BLOCK,
VK_FORMAT_ASTC_5x5_SRGB_BLOCK,
VK_FORMAT_ASTC_6x5_UNORM_BLOCK,
VK_FORMAT_ASTC_6x5_SRGB_BLOCK,
VK_FORMAT_ASTC_6x6_UNORM_BLOCK,
VK_FORMAT_ASTC_6x6_SRGB_BLOCK,
VK_FORMAT_ASTC_8x5_UNORM_BLOCK,
VK_FORMAT_ASTC_8x5_SRGB_BLOCK,
VK_FORMAT_ASTC_8x6_UNORM_BLOCK,
VK_FORMAT_ASTC_8x6_SRGB_BLOCK,
VK_FORMAT_ASTC_8x8_UNORM_BLOCK,
VK_FORMAT_ASTC_8x8_SRGB_BLOCK,
VK_FORMAT_ASTC_10x5_UNORM_BLOCK,
VK_FORMAT_ASTC_10x5_SRGB_BLOCK,
VK_FORMAT_ASTC_10x6_UNORM_BLOCK,
VK_FORMAT_ASTC_10x6_SRGB_BLOCK,
VK_FORMAT_ASTC_10x8_UNORM_BLOCK,
VK_FORMAT_ASTC_10x8_SRGB_BLOCK,
VK_FORMAT_ASTC_10x10_UNORM_BLOCK,
VK_FORMAT_ASTC_10x10_SRGB_BLOCK,
VK_FORMAT_ASTC_12x10_UNORM_BLOCK,
VK_FORMAT_ASTC_12x10_SRGB_BLOCK,
VK_FORMAT_ASTC_12x12_UNORM_BLOCK,
VK_FORMAT_ASTC_12x12_SRGB_BLOCK,
VK_FORMAT_G8B8G8R8_422_UNORM,
VK_FORMAT_B8G8R8G8_422_UNORM,
VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM,
VK_FORMAT_G8_B8R8_2PLANE_420_UNORM,
VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM,
VK_FORMAT_G8_B8R8_2PLANE_422_UNORM,
VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM,
VK_FORMAT_R10X6_UNORM_PACK16,
VK_FORMAT_R10X6G10X6_UNORM_2PACK16,
VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16,
VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16,
VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16,
VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16,
VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16,
VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16,
VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16,
VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16,
VK_FORMAT_R12X4_UNORM_PACK16,
VK_FORMAT_R12X4G12X4_UNORM_2PACK16,
VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16,
VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16,
VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16,
VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16,
VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16,
VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16,
VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16,
VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16,
VK_FORMAT_G16B16G16R16_422_UNORM,
VK_FORMAT_B16G16R16G16_422_UNORM,
VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM,
VK_FORMAT_G16_B16R16_2PLANE_420_UNORM,
VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM,
VK_FORMAT_G16_B16R16_2PLANE_422_UNORM,
VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM,
};
// RDD::CompareOperator == VkCompareOp.
static_assert(ENUM_MEMBERS_EQUAL(RDD::COMPARE_OP_NEVER, VK_COMPARE_OP_NEVER));
static_assert(ENUM_MEMBERS_EQUAL(RDD::COMPARE_OP_LESS, VK_COMPARE_OP_LESS));
static_assert(ENUM_MEMBERS_EQUAL(RDD::COMPARE_OP_EQUAL, VK_COMPARE_OP_EQUAL));
static_assert(ENUM_MEMBERS_EQUAL(RDD::COMPARE_OP_LESS_OR_EQUAL, VK_COMPARE_OP_LESS_OR_EQUAL));
static_assert(ENUM_MEMBERS_EQUAL(RDD::COMPARE_OP_GREATER, VK_COMPARE_OP_GREATER));
static_assert(ENUM_MEMBERS_EQUAL(RDD::COMPARE_OP_NOT_EQUAL, VK_COMPARE_OP_NOT_EQUAL));
static_assert(ENUM_MEMBERS_EQUAL(RDD::COMPARE_OP_GREATER_OR_EQUAL, VK_COMPARE_OP_GREATER_OR_EQUAL));
static_assert(ENUM_MEMBERS_EQUAL(RDD::COMPARE_OP_ALWAYS, VK_COMPARE_OP_ALWAYS));
static_assert(ARRAYS_COMPATIBLE_FIELDWISE(Rect2i, VkRect2D));
uint32_t RenderingDeviceDriverVulkan::SubgroupCapabilities::supported_stages_flags_rd() const {
uint32_t flags = 0;
if (supported_stages & VK_SHADER_STAGE_VERTEX_BIT) {
flags += SHADER_STAGE_VERTEX_BIT;
}
if (supported_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) {
flags += SHADER_STAGE_TESSELATION_CONTROL_BIT;
}
if (supported_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) {
flags += SHADER_STAGE_TESSELATION_EVALUATION_BIT;
}
if (supported_stages & VK_SHADER_STAGE_GEOMETRY_BIT) {
// FIXME: Add shader stage geometry bit.
}
if (supported_stages & VK_SHADER_STAGE_FRAGMENT_BIT) {
flags += SHADER_STAGE_FRAGMENT_BIT;
}
if (supported_stages & VK_SHADER_STAGE_COMPUTE_BIT) {
flags += SHADER_STAGE_COMPUTE_BIT;
}
return flags;
}
String RenderingDeviceDriverVulkan::SubgroupCapabilities::supported_stages_desc() const {
String res;
if (supported_stages & VK_SHADER_STAGE_VERTEX_BIT) {
res += ", STAGE_VERTEX";
}
if (supported_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) {
res += ", STAGE_TESSELLATION_CONTROL";
}
if (supported_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) {
res += ", STAGE_TESSELLATION_EVALUATION";
}
if (supported_stages & VK_SHADER_STAGE_GEOMETRY_BIT) {
res += ", STAGE_GEOMETRY";
}
if (supported_stages & VK_SHADER_STAGE_FRAGMENT_BIT) {
res += ", STAGE_FRAGMENT";
}
if (supported_stages & VK_SHADER_STAGE_COMPUTE_BIT) {
res += ", STAGE_COMPUTE";
}
// These are not defined on Android GRMBL.
if (supported_stages & 0x00000100 /* VK_SHADER_STAGE_RAYGEN_BIT_KHR */) {
res += ", STAGE_RAYGEN_KHR";
}
if (supported_stages & 0x00000200 /* VK_SHADER_STAGE_ANY_HIT_BIT_KHR */) {
res += ", STAGE_ANY_HIT_KHR";
}
if (supported_stages & 0x00000400 /* VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR */) {
res += ", STAGE_CLOSEST_HIT_KHR";
}
if (supported_stages & 0x00000800 /* VK_SHADER_STAGE_MISS_BIT_KHR */) {
res += ", STAGE_MISS_KHR";
}
if (supported_stages & 0x00001000 /* VK_SHADER_STAGE_INTERSECTION_BIT_KHR */) {
res += ", STAGE_INTERSECTION_KHR";
}
if (supported_stages & 0x00002000 /* VK_SHADER_STAGE_CALLABLE_BIT_KHR */) {
res += ", STAGE_CALLABLE_KHR";
}
if (supported_stages & 0x00000040 /* VK_SHADER_STAGE_TASK_BIT_NV */) {
res += ", STAGE_TASK_NV";
}
if (supported_stages & 0x00000080 /* VK_SHADER_STAGE_MESH_BIT_NV */) {
res += ", STAGE_MESH_NV";
}
return res.substr(2); // Remove first ", ".
}
uint32_t RenderingDeviceDriverVulkan::SubgroupCapabilities::supported_operations_flags_rd() const {
uint32_t flags = 0;
if (supported_operations & VK_SUBGROUP_FEATURE_BASIC_BIT) {
flags += SUBGROUP_BASIC_BIT;
}
if (supported_operations & VK_SUBGROUP_FEATURE_VOTE_BIT) {
flags += SUBGROUP_VOTE_BIT;
}
if (supported_operations & VK_SUBGROUP_FEATURE_ARITHMETIC_BIT) {
flags += SUBGROUP_ARITHMETIC_BIT;
}
if (supported_operations & VK_SUBGROUP_FEATURE_BALLOT_BIT) {
flags += SUBGROUP_BALLOT_BIT;
}
if (supported_operations & VK_SUBGROUP_FEATURE_SHUFFLE_BIT) {
flags += SUBGROUP_SHUFFLE_BIT;
}
if (supported_operations & VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT) {
flags += SUBGROUP_SHUFFLE_RELATIVE_BIT;
}
if (supported_operations & VK_SUBGROUP_FEATURE_CLUSTERED_BIT) {
flags += SUBGROUP_CLUSTERED_BIT;
}
if (supported_operations & VK_SUBGROUP_FEATURE_QUAD_BIT) {
flags += SUBGROUP_QUAD_BIT;
}
return flags;
}
String RenderingDeviceDriverVulkan::SubgroupCapabilities::supported_operations_desc() const {
String res;
if (supported_operations & VK_SUBGROUP_FEATURE_BASIC_BIT) {
res += ", FEATURE_BASIC";
}
if (supported_operations & VK_SUBGROUP_FEATURE_VOTE_BIT) {
res += ", FEATURE_VOTE";
}
if (supported_operations & VK_SUBGROUP_FEATURE_ARITHMETIC_BIT) {
res += ", FEATURE_ARITHMETIC";
}
if (supported_operations & VK_SUBGROUP_FEATURE_BALLOT_BIT) {
res += ", FEATURE_BALLOT";
}
if (supported_operations & VK_SUBGROUP_FEATURE_SHUFFLE_BIT) {
res += ", FEATURE_SHUFFLE";
}
if (supported_operations & VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT) {
res += ", FEATURE_SHUFFLE_RELATIVE";
}
if (supported_operations & VK_SUBGROUP_FEATURE_CLUSTERED_BIT) {
res += ", FEATURE_CLUSTERED";
}
if (supported_operations & VK_SUBGROUP_FEATURE_QUAD_BIT) {
res += ", FEATURE_QUAD";
}
if (supported_operations & VK_SUBGROUP_FEATURE_PARTITIONED_BIT_NV) {
res += ", FEATURE_PARTITIONED_NV";
}
return res.substr(2); // Remove first ", ".
}
/*****************/
/**** GENERIC ****/
/*****************/
void RenderingDeviceDriverVulkan::_register_requested_device_extension(const CharString &p_extension_name, bool p_required) {
ERR_FAIL_COND(requested_device_extensions.has(p_extension_name));
requested_device_extensions[p_extension_name] = p_required;
}
Error RenderingDeviceDriverVulkan::_initialize_device_extensions() {
enabled_device_extension_names.clear();
_register_requested_device_extension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, true);
_register_requested_device_extension(VK_KHR_MULTIVIEW_EXTENSION_NAME, false);
_register_requested_device_extension(VK_KHR_FRAGMENT_SHADING_RATE_EXTENSION_NAME, false);
_register_requested_device_extension(VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME, false);
_register_requested_device_extension(VK_KHR_SHADER_FLOAT16_INT8_EXTENSION_NAME, false);
_register_requested_device_extension(VK_KHR_STORAGE_BUFFER_STORAGE_CLASS_EXTENSION_NAME, false);
_register_requested_device_extension(VK_KHR_16BIT_STORAGE_EXTENSION_NAME, false);
_register_requested_device_extension(VK_KHR_IMAGE_FORMAT_LIST_EXTENSION_NAME, false);
_register_requested_device_extension(VK_KHR_MAINTENANCE_2_EXTENSION_NAME, false);
_register_requested_device_extension(VK_EXT_PIPELINE_CREATION_CACHE_CONTROL_EXTENSION_NAME, false);
_register_requested_device_extension(VK_EXT_SUBGROUP_SIZE_CONTROL_EXTENSION_NAME, false);
if (Engine::get_singleton()->is_generate_spirv_debug_info_enabled()) {
_register_requested_device_extension(VK_KHR_SHADER_NON_SEMANTIC_INFO_EXTENSION_NAME, true);
}
uint32_t device_extension_count = 0;
VkResult err = vkEnumerateDeviceExtensionProperties(physical_device, nullptr, &device_extension_count, nullptr);
ERR_FAIL_COND_V(err != VK_SUCCESS, ERR_CANT_CREATE);
ERR_FAIL_COND_V_MSG(device_extension_count == 0, ERR_CANT_CREATE, "vkEnumerateDeviceExtensionProperties failed to find any extensions\n\nDo you have a compatible Vulkan installable client driver (ICD) installed?");
TightLocalVector<VkExtensionProperties> device_extensions;
device_extensions.resize(device_extension_count);
err = vkEnumerateDeviceExtensionProperties(physical_device, nullptr, &device_extension_count, device_extensions.ptr());
ERR_FAIL_COND_V(err != VK_SUCCESS, ERR_CANT_CREATE);
#ifdef DEV_ENABLED
for (uint32_t i = 0; i < device_extension_count; i++) {
print_verbose(String("VULKAN: Found device extension ") + String::utf8(device_extensions[i].extensionName));
}
#endif
// Enable all extensions that are supported and requested.
for (uint32_t i = 0; i < device_extension_count; i++) {
CharString extension_name(device_extensions[i].extensionName);
if (requested_device_extensions.has(extension_name)) {
enabled_device_extension_names.insert(extension_name);
}
}
// Now check our requested extensions.
for (KeyValue<CharString, bool> &requested_extension : requested_device_extensions) {
if (!enabled_device_extension_names.has(requested_extension.key)) {
if (requested_extension.value) {
ERR_FAIL_V_MSG(ERR_BUG, String("Required extension ") + String::utf8(requested_extension.key) + String(" not found."));
} else {
print_verbose(String("Optional extension ") + String::utf8(requested_extension.key) + String(" not found"));
}
}
}
return OK;
}
Error RenderingDeviceDriverVulkan::_check_device_features() {
vkGetPhysicalDeviceFeatures(physical_device, &physical_device_features);
// Check for required features.
if (!physical_device_features.imageCubeArray || !physical_device_features.independentBlend) {
String error_string = vformat("Your GPU (%s) does not support the following features which are required to use Vulkan-based renderers in Godot:\n\n", context_device.name);
if (!physical_device_features.imageCubeArray) {
error_string += "- No support for image cube arrays.\n";
}
if (!physical_device_features.independentBlend) {
error_string += "- No support for independentBlend.\n";
}
error_string += "\nThis is usually a hardware limitation, so updating graphics drivers won't help in most cases.";
#if defined(ANDROID_ENABLED) || defined(IOS_ENABLED)
// Android/iOS platform ports currently don't exit themselves when this method returns `ERR_CANT_CREATE`.
OS::get_singleton()->alert(error_string + "\nClick OK to exit (black screen will be visible).");
#else
OS::get_singleton()->alert(error_string + "\nClick OK to exit.");
#endif
return ERR_CANT_CREATE;
}
// Opt-in to the features we actually need/use. These can be changed in the future.
// We do this for multiple reasons:
//
// 1. Certain features (like sparse* stuff) cause unnecessary internal driver allocations.
// 2. Others like shaderStorageImageMultisample are a huge red flag
// (MSAA + Storage is rarely needed).
// 3. Most features when turned off aren't actually off (we just promise the driver not to use them)
// and it is validation what will complain. This allows us to target a minimum baseline.
//
// TODO: Allow the user to override these settings (i.e. turn off more stuff) using profiles
// so they can target a broad range of HW. For example Mali HW does not have
// shaderClipDistance/shaderCullDistance; thus validation would complain if such feature is used;
// allowing them to fix the problem without even owning Mali HW to test on.
//
// The excluded features are:
// - robustBufferAccess (can hamper performance on some hardware)
// - occlusionQueryPrecise
// - pipelineStatisticsQuery
// - shaderStorageImageMultisample (unsupported by Intel Arc, prevents from using MSAA storage accidentally)
// - shaderResourceResidency
// - sparseBinding (we don't use sparse features and enabling them cause extra internal allocations inside the Vulkan driver we don't need)
// - sparseResidencyBuffer
// - sparseResidencyImage2D
// - sparseResidencyImage3D
// - sparseResidency2Samples
// - sparseResidency4Samples
// - sparseResidency8Samples
// - sparseResidency16Samples
// - sparseResidencyAliased
// - inheritedQueries
#define VK_DEVICEFEATURE_ENABLE_IF(x) \
if (physical_device_features.x) { \
requested_device_features.x = physical_device_features.x; \
} else \
((void)0)
requested_device_features = {};
VK_DEVICEFEATURE_ENABLE_IF(fullDrawIndexUint32);
VK_DEVICEFEATURE_ENABLE_IF(imageCubeArray);
VK_DEVICEFEATURE_ENABLE_IF(independentBlend);
VK_DEVICEFEATURE_ENABLE_IF(geometryShader);
VK_DEVICEFEATURE_ENABLE_IF(tessellationShader);
VK_DEVICEFEATURE_ENABLE_IF(sampleRateShading);
VK_DEVICEFEATURE_ENABLE_IF(dualSrcBlend);
VK_DEVICEFEATURE_ENABLE_IF(logicOp);
VK_DEVICEFEATURE_ENABLE_IF(multiDrawIndirect);
VK_DEVICEFEATURE_ENABLE_IF(drawIndirectFirstInstance);
VK_DEVICEFEATURE_ENABLE_IF(depthClamp);
VK_DEVICEFEATURE_ENABLE_IF(depthBiasClamp);
VK_DEVICEFEATURE_ENABLE_IF(fillModeNonSolid);
VK_DEVICEFEATURE_ENABLE_IF(depthBounds);
VK_DEVICEFEATURE_ENABLE_IF(wideLines);
VK_DEVICEFEATURE_ENABLE_IF(largePoints);
VK_DEVICEFEATURE_ENABLE_IF(alphaToOne);
VK_DEVICEFEATURE_ENABLE_IF(multiViewport);
VK_DEVICEFEATURE_ENABLE_IF(samplerAnisotropy);
VK_DEVICEFEATURE_ENABLE_IF(textureCompressionETC2);
VK_DEVICEFEATURE_ENABLE_IF(textureCompressionASTC_LDR);
VK_DEVICEFEATURE_ENABLE_IF(textureCompressionBC);
VK_DEVICEFEATURE_ENABLE_IF(vertexPipelineStoresAndAtomics);
VK_DEVICEFEATURE_ENABLE_IF(fragmentStoresAndAtomics);
VK_DEVICEFEATURE_ENABLE_IF(shaderTessellationAndGeometryPointSize);
VK_DEVICEFEATURE_ENABLE_IF(shaderImageGatherExtended);
VK_DEVICEFEATURE_ENABLE_IF(shaderStorageImageExtendedFormats);
VK_DEVICEFEATURE_ENABLE_IF(shaderStorageImageReadWithoutFormat);
VK_DEVICEFEATURE_ENABLE_IF(shaderStorageImageWriteWithoutFormat);
VK_DEVICEFEATURE_ENABLE_IF(shaderUniformBufferArrayDynamicIndexing);
VK_DEVICEFEATURE_ENABLE_IF(shaderSampledImageArrayDynamicIndexing);
VK_DEVICEFEATURE_ENABLE_IF(shaderStorageBufferArrayDynamicIndexing);
VK_DEVICEFEATURE_ENABLE_IF(shaderStorageImageArrayDynamicIndexing);
VK_DEVICEFEATURE_ENABLE_IF(shaderClipDistance);
VK_DEVICEFEATURE_ENABLE_IF(shaderCullDistance);
VK_DEVICEFEATURE_ENABLE_IF(shaderFloat64);
VK_DEVICEFEATURE_ENABLE_IF(shaderInt64);
VK_DEVICEFEATURE_ENABLE_IF(shaderInt16);
VK_DEVICEFEATURE_ENABLE_IF(shaderResourceMinLod);
VK_DEVICEFEATURE_ENABLE_IF(variableMultisampleRate);
return OK;
}
Error RenderingDeviceDriverVulkan::_check_device_capabilities() {
// Fill device family and version.
device_capabilities.device_family = DEVICE_VULKAN;
device_capabilities.version_major = VK_API_VERSION_MAJOR(physical_device_properties.apiVersion);
device_capabilities.version_minor = VK_API_VERSION_MINOR(physical_device_properties.apiVersion);
// References:
// https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_KHR_multiview.html
// https://www.khronos.org/blog/vulkan-subgroup-tutorial
const RenderingContextDriverVulkan::Functions &functions = context_driver->functions_get();
if (functions.GetPhysicalDeviceFeatures2 != nullptr) {
// We must check that the corresponding extension is present before assuming a feature as enabled.
// See also: https://github.com/godotengine/godot/issues/65409
void *next_features = nullptr;
VkPhysicalDeviceVulkan12Features device_features_vk_1_2 = {};
VkPhysicalDeviceShaderFloat16Int8FeaturesKHR shader_features = {};
VkPhysicalDeviceFragmentShadingRateFeaturesKHR vrs_features = {};
VkPhysicalDevice16BitStorageFeaturesKHR storage_feature = {};
VkPhysicalDeviceMultiviewFeatures multiview_features = {};
VkPhysicalDevicePipelineCreationCacheControlFeatures pipeline_cache_control_features = {};
const bool use_1_2_features = physical_device_properties.apiVersion >= VK_API_VERSION_1_2;
if (use_1_2_features) {
device_features_vk_1_2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES;
device_features_vk_1_2.pNext = next_features;
next_features = &device_features_vk_1_2;
} else if (enabled_device_extension_names.has(VK_KHR_SHADER_FLOAT16_INT8_EXTENSION_NAME)) {
shader_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT16_INT8_FEATURES_KHR;
shader_features.pNext = next_features;
next_features = &shader_features;
}
if (enabled_device_extension_names.has(VK_KHR_FRAGMENT_SHADING_RATE_EXTENSION_NAME)) {
vrs_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_FEATURES_KHR;
vrs_features.pNext = next_features;
next_features = &vrs_features;
}
if (enabled_device_extension_names.has(VK_KHR_16BIT_STORAGE_EXTENSION_NAME)) {
storage_feature.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES_KHR;
storage_feature.pNext = next_features;
next_features = &storage_feature;
}
if (enabled_device_extension_names.has(VK_KHR_MULTIVIEW_EXTENSION_NAME)) {
multiview_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES;
multiview_features.pNext = next_features;
next_features = &multiview_features;
}
if (enabled_device_extension_names.has(VK_EXT_PIPELINE_CREATION_CACHE_CONTROL_EXTENSION_NAME)) {
pipeline_cache_control_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_CREATION_CACHE_CONTROL_FEATURES;
pipeline_cache_control_features.pNext = next_features;
next_features = &pipeline_cache_control_features;
}
VkPhysicalDeviceFeatures2 device_features_2 = {};
device_features_2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
device_features_2.pNext = next_features;
functions.GetPhysicalDeviceFeatures2(physical_device, &device_features_2);
if (use_1_2_features) {
#ifdef MACOS_ENABLED
ERR_FAIL_COND_V_MSG(!device_features_vk_1_2.shaderSampledImageArrayNonUniformIndexing, ERR_CANT_CREATE, "Your GPU doesn't support shaderSampledImageArrayNonUniformIndexing which is required to use the Vulkan-based renderers in Godot.");
#endif
if (enabled_device_extension_names.has(VK_KHR_SHADER_FLOAT16_INT8_EXTENSION_NAME)) {
shader_capabilities.shader_float16_is_supported = device_features_vk_1_2.shaderFloat16;
shader_capabilities.shader_int8_is_supported = device_features_vk_1_2.shaderInt8;
}
} else {
if (enabled_device_extension_names.has(VK_KHR_SHADER_FLOAT16_INT8_EXTENSION_NAME)) {
shader_capabilities.shader_float16_is_supported = shader_features.shaderFloat16;
shader_capabilities.shader_int8_is_supported = shader_features.shaderInt8;
}
}
if (enabled_device_extension_names.has(VK_KHR_FRAGMENT_SHADING_RATE_EXTENSION_NAME)) {
vrs_capabilities.pipeline_vrs_supported = vrs_features.pipelineFragmentShadingRate;
vrs_capabilities.primitive_vrs_supported = vrs_features.primitiveFragmentShadingRate;
vrs_capabilities.attachment_vrs_supported = vrs_features.attachmentFragmentShadingRate;
}
if (enabled_device_extension_names.has(VK_KHR_MULTIVIEW_EXTENSION_NAME)) {
multiview_capabilities.is_supported = multiview_features.multiview;
multiview_capabilities.geometry_shader_is_supported = multiview_features.multiviewGeometryShader;
multiview_capabilities.tessellation_shader_is_supported = multiview_features.multiviewTessellationShader;
}
if (enabled_device_extension_names.has(VK_KHR_16BIT_STORAGE_EXTENSION_NAME)) {
storage_buffer_capabilities.storage_buffer_16_bit_access_is_supported = storage_feature.storageBuffer16BitAccess;
storage_buffer_capabilities.uniform_and_storage_buffer_16_bit_access_is_supported = storage_feature.uniformAndStorageBuffer16BitAccess;
storage_buffer_capabilities.storage_push_constant_16_is_supported = storage_feature.storagePushConstant16;
storage_buffer_capabilities.storage_input_output_16 = storage_feature.storageInputOutput16;
}
if (enabled_device_extension_names.has(VK_EXT_PIPELINE_CREATION_CACHE_CONTROL_EXTENSION_NAME)) {
pipeline_cache_control_support = pipeline_cache_control_features.pipelineCreationCacheControl;
}
}
if (functions.GetPhysicalDeviceProperties2 != nullptr) {
void *next_properties = nullptr;
VkPhysicalDeviceFragmentShadingRatePropertiesKHR vrs_properties = {};
VkPhysicalDeviceMultiviewProperties multiview_properties = {};
VkPhysicalDeviceSubgroupProperties subgroup_properties = {};
VkPhysicalDeviceSubgroupSizeControlProperties subgroup_size_control_properties = {};
VkPhysicalDeviceProperties2 physical_device_properties_2 = {};
const bool use_1_1_properties = physical_device_properties.apiVersion >= VK_API_VERSION_1_1;
if (use_1_1_properties) {
subgroup_properties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES;
subgroup_properties.pNext = next_properties;
next_properties = &subgroup_properties;
subgroup_capabilities.size_control_is_supported = enabled_device_extension_names.has(VK_EXT_SUBGROUP_SIZE_CONTROL_EXTENSION_NAME);
if (subgroup_capabilities.size_control_is_supported) {
subgroup_size_control_properties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES;
subgroup_size_control_properties.pNext = next_properties;
next_properties = &subgroup_size_control_properties;
}
}
if (multiview_capabilities.is_supported) {
multiview_properties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES;
multiview_properties.pNext = next_properties;
next_properties = &multiview_properties;
}
if (vrs_capabilities.attachment_vrs_supported) {
vrs_properties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_PROPERTIES_KHR;
vrs_properties.pNext = next_properties;
next_properties = &vrs_properties;
}
physical_device_properties_2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
physical_device_properties_2.pNext = next_properties;
functions.GetPhysicalDeviceProperties2(physical_device, &physical_device_properties_2);
subgroup_capabilities.size = subgroup_properties.subgroupSize;
subgroup_capabilities.min_size = subgroup_properties.subgroupSize;
subgroup_capabilities.max_size = subgroup_properties.subgroupSize;
subgroup_capabilities.supported_stages = subgroup_properties.supportedStages;
subgroup_capabilities.supported_operations = subgroup_properties.supportedOperations;
// Note: quadOperationsInAllStages will be true if:
// - supportedStages has VK_SHADER_STAGE_ALL_GRAPHICS + VK_SHADER_STAGE_COMPUTE_BIT.
// - supportedOperations has VK_SUBGROUP_FEATURE_QUAD_BIT.
subgroup_capabilities.quad_operations_in_all_stages = subgroup_properties.quadOperationsInAllStages;
if (subgroup_capabilities.size_control_is_supported && (subgroup_size_control_properties.requiredSubgroupSizeStages & VK_SHADER_STAGE_COMPUTE_BIT)) {
subgroup_capabilities.min_size = subgroup_size_control_properties.minSubgroupSize;
subgroup_capabilities.max_size = subgroup_size_control_properties.maxSubgroupSize;
}
if (vrs_capabilities.pipeline_vrs_supported || vrs_capabilities.primitive_vrs_supported || vrs_capabilities.attachment_vrs_supported) {
print_verbose("- Vulkan Variable Rate Shading supported:");
if (vrs_capabilities.pipeline_vrs_supported) {
print_verbose(" Pipeline fragment shading rate");
}
if (vrs_capabilities.primitive_vrs_supported) {
print_verbose(" Primitive fragment shading rate");
}
if (vrs_capabilities.attachment_vrs_supported) {
// TODO: Expose these somehow to the end user.
vrs_capabilities.min_texel_size.x = vrs_properties.minFragmentShadingRateAttachmentTexelSize.width;
vrs_capabilities.min_texel_size.y = vrs_properties.minFragmentShadingRateAttachmentTexelSize.height;
vrs_capabilities.max_texel_size.x = vrs_properties.maxFragmentShadingRateAttachmentTexelSize.width;
vrs_capabilities.max_texel_size.y = vrs_properties.maxFragmentShadingRateAttachmentTexelSize.height;
// We'll attempt to default to a texel size of 16x16.
vrs_capabilities.texel_size.x = CLAMP(16, vrs_capabilities.min_texel_size.x, vrs_capabilities.max_texel_size.x);
vrs_capabilities.texel_size.y = CLAMP(16, vrs_capabilities.min_texel_size.y, vrs_capabilities.max_texel_size.y);
print_verbose(String(" Attachment fragment shading rate") + String(", min texel size: (") + itos(vrs_capabilities.min_texel_size.x) + String(", ") + itos(vrs_capabilities.min_texel_size.y) + String(")") + String(", max texel size: (") + itos(vrs_capabilities.max_texel_size.x) + String(", ") + itos(vrs_capabilities.max_texel_size.y) + String(")"));
}
} else {
print_verbose("- Vulkan Variable Rate Shading not supported");
}
if (multiview_capabilities.is_supported) {
multiview_capabilities.max_view_count = multiview_properties.maxMultiviewViewCount;
multiview_capabilities.max_instance_count = multiview_properties.maxMultiviewInstanceIndex;
print_verbose("- Vulkan multiview supported:");
print_verbose(" max view count: " + itos(multiview_capabilities.max_view_count));
print_verbose(" max instances: " + itos(multiview_capabilities.max_instance_count));
} else {
print_verbose("- Vulkan multiview not supported");
}
print_verbose("- Vulkan subgroup:");
print_verbose(" size: " + itos(subgroup_capabilities.size));
print_verbose(" min size: " + itos(subgroup_capabilities.min_size));
print_verbose(" max size: " + itos(subgroup_capabilities.max_size));
print_verbose(" stages: " + subgroup_capabilities.supported_stages_desc());
print_verbose(" supported ops: " + subgroup_capabilities.supported_operations_desc());
if (subgroup_capabilities.quad_operations_in_all_stages) {
print_verbose(" quad operations in all stages");
}
}
return OK;
}
Error RenderingDeviceDriverVulkan::_add_queue_create_info(LocalVector<VkDeviceQueueCreateInfo> &r_queue_create_info) {
uint32_t queue_family_count = queue_family_properties.size();
queue_families.resize(queue_family_count);
VkQueueFlags queue_flags_mask = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT;
const uint32_t max_queue_count_per_family = 1;
static const float queue_priorities[max_queue_count_per_family] = {};
for (uint32_t i = 0; i < queue_family_count; i++) {
if ((queue_family_properties[i].queueFlags & queue_flags_mask) == 0) {
// We ignore creating queues in families that don't support any of the operations we require.
continue;
}
VkDeviceQueueCreateInfo create_info = {};
create_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
create_info.queueFamilyIndex = i;
create_info.queueCount = MIN(queue_family_properties[i].queueCount, max_queue_count_per_family);
create_info.pQueuePriorities = queue_priorities;
r_queue_create_info.push_back(create_info);
// Prepare the vectors where the queues will be filled out.
queue_families[i].resize(create_info.queueCount);
}
return OK;
}
Error RenderingDeviceDriverVulkan::_initialize_device(const LocalVector<VkDeviceQueueCreateInfo> &p_queue_create_info) {
TightLocalVector<const char *> enabled_extension_names;
enabled_extension_names.reserve(enabled_device_extension_names.size());
for (const CharString &extension_name : enabled_device_extension_names) {
enabled_extension_names.push_back(extension_name.ptr());
}
void *create_info_next = nullptr;
VkPhysicalDeviceShaderFloat16Int8FeaturesKHR shader_features = {};
shader_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT16_INT8_FEATURES_KHR;
shader_features.pNext = create_info_next;
shader_features.shaderFloat16 = shader_capabilities.shader_float16_is_supported;
shader_features.shaderInt8 = shader_capabilities.shader_int8_is_supported;
create_info_next = &shader_features;
VkPhysicalDeviceFragmentShadingRateFeaturesKHR vrs_features = {};
if (vrs_capabilities.pipeline_vrs_supported || vrs_capabilities.primitive_vrs_supported || vrs_capabilities.attachment_vrs_supported) {
vrs_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_FEATURES_KHR;
vrs_features.pNext = create_info_next;
vrs_features.pipelineFragmentShadingRate = vrs_capabilities.pipeline_vrs_supported;
vrs_features.primitiveFragmentShadingRate = vrs_capabilities.primitive_vrs_supported;
vrs_features.attachmentFragmentShadingRate = vrs_capabilities.attachment_vrs_supported;
create_info_next = &vrs_features;
}
VkPhysicalDevicePipelineCreationCacheControlFeatures pipeline_cache_control_features = {};
if (pipeline_cache_control_support) {
pipeline_cache_control_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_CREATION_CACHE_CONTROL_FEATURES;
pipeline_cache_control_features.pNext = create_info_next;
pipeline_cache_control_features.pipelineCreationCacheControl = pipeline_cache_control_support;
create_info_next = &pipeline_cache_control_features;
}
VkPhysicalDeviceVulkan11Features vulkan_1_1_features = {};
VkPhysicalDevice16BitStorageFeaturesKHR storage_features = {};
VkPhysicalDeviceMultiviewFeatures multiview_features = {};
const bool enable_1_2_features = physical_device_properties.apiVersion >= VK_API_VERSION_1_2;
if (enable_1_2_features) {
// In Vulkan 1.2 and newer we use a newer struct to enable various features.
vulkan_1_1_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES;
vulkan_1_1_features.pNext = create_info_next;
vulkan_1_1_features.storageBuffer16BitAccess = storage_buffer_capabilities.storage_buffer_16_bit_access_is_supported;
vulkan_1_1_features.uniformAndStorageBuffer16BitAccess = storage_buffer_capabilities.uniform_and_storage_buffer_16_bit_access_is_supported;
vulkan_1_1_features.storagePushConstant16 = storage_buffer_capabilities.storage_push_constant_16_is_supported;
vulkan_1_1_features.storageInputOutput16 = storage_buffer_capabilities.storage_input_output_16;
vulkan_1_1_features.multiview = multiview_capabilities.is_supported;
vulkan_1_1_features.multiviewGeometryShader = multiview_capabilities.geometry_shader_is_supported;
vulkan_1_1_features.multiviewTessellationShader = multiview_capabilities.tessellation_shader_is_supported;
vulkan_1_1_features.variablePointersStorageBuffer = 0;
vulkan_1_1_features.variablePointers = 0;
vulkan_1_1_features.protectedMemory = 0;
vulkan_1_1_features.samplerYcbcrConversion = 0;
vulkan_1_1_features.shaderDrawParameters = 0;
create_info_next = &vulkan_1_1_features;
} else {
// On Vulkan 1.0 and 1.1 we use our older structs to initialize these features.
storage_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES_KHR;
storage_features.pNext = create_info_next;
storage_features.storageBuffer16BitAccess = storage_buffer_capabilities.storage_buffer_16_bit_access_is_supported;
storage_features.uniformAndStorageBuffer16BitAccess = storage_buffer_capabilities.uniform_and_storage_buffer_16_bit_access_is_supported;
storage_features.storagePushConstant16 = storage_buffer_capabilities.storage_push_constant_16_is_supported;
storage_features.storageInputOutput16 = storage_buffer_capabilities.storage_input_output_16;
create_info_next = &storage_features;
const bool enable_1_1_features = physical_device_properties.apiVersion >= VK_API_VERSION_1_1;
if (enable_1_1_features) {
multiview_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES;
multiview_features.pNext = create_info_next;
multiview_features.multiview = multiview_capabilities.is_supported;
multiview_features.multiviewGeometryShader = multiview_capabilities.geometry_shader_is_supported;
multiview_features.multiviewTessellationShader = multiview_capabilities.tessellation_shader_is_supported;
create_info_next = &multiview_features;
}
}
VkDeviceCreateInfo create_info = {};
create_info.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
create_info.pNext = create_info_next;
create_info.queueCreateInfoCount = p_queue_create_info.size();
create_info.pQueueCreateInfos = p_queue_create_info.ptr();
create_info.enabledExtensionCount = enabled_extension_names.size();
create_info.ppEnabledExtensionNames = enabled_extension_names.ptr();
create_info.pEnabledFeatures = &requested_device_features;
if (VulkanHooks::get_singleton() != nullptr) {
bool device_created = VulkanHooks::get_singleton()->create_vulkan_device(&create_info, &vk_device);
ERR_FAIL_COND_V(!device_created, ERR_CANT_CREATE);
} else {
VkResult err = vkCreateDevice(physical_device, &create_info, nullptr, &vk_device);
ERR_FAIL_COND_V(err != VK_SUCCESS, ERR_CANT_CREATE);
}
for (uint32_t i = 0; i < queue_families.size(); i++) {
for (uint32_t j = 0; j < queue_families[i].size(); j++) {
vkGetDeviceQueue(vk_device, i, j, &queue_families[i][j].queue);
}
}
const RenderingContextDriverVulkan::Functions &functions = context_driver->functions_get();
if (functions.GetDeviceProcAddr != nullptr) {
device_functions.CreateSwapchainKHR = PFN_vkCreateSwapchainKHR(functions.GetDeviceProcAddr(vk_device, "vkCreateSwapchainKHR"));
device_functions.DestroySwapchainKHR = PFN_vkDestroySwapchainKHR(functions.GetDeviceProcAddr(vk_device, "vkDestroySwapchainKHR"));
device_functions.GetSwapchainImagesKHR = PFN_vkGetSwapchainImagesKHR(functions.GetDeviceProcAddr(vk_device, "vkGetSwapchainImagesKHR"));
device_functions.AcquireNextImageKHR = PFN_vkAcquireNextImageKHR(functions.GetDeviceProcAddr(vk_device, "vkAcquireNextImageKHR"));
device_functions.QueuePresentKHR = PFN_vkQueuePresentKHR(functions.GetDeviceProcAddr(vk_device, "vkQueuePresentKHR"));
if (enabled_device_extension_names.has(VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME)) {
device_functions.CreateRenderPass2KHR = PFN_vkCreateRenderPass2KHR(functions.GetDeviceProcAddr(vk_device, "vkCreateRenderPass2KHR"));
}
}
return OK;
}
Error RenderingDeviceDriverVulkan::_initialize_allocator() {
VmaAllocatorCreateInfo allocator_info = {};
allocator_info.physicalDevice = physical_device;
allocator_info.device = vk_device;
allocator_info.instance = context_driver->instance_get();
VkResult err = vmaCreateAllocator(&allocator_info, &allocator);
ERR_FAIL_COND_V_MSG(err, ERR_CANT_CREATE, "vmaCreateAllocator failed with error " + itos(err) + ".");
return OK;
}
Error RenderingDeviceDriverVulkan::_initialize_pipeline_cache() {
pipelines_cache.buffer.resize(sizeof(PipelineCacheHeader));
PipelineCacheHeader *header = (PipelineCacheHeader *)(pipelines_cache.buffer.ptrw());
*header = {};
header->magic = 868 + VK_PIPELINE_CACHE_HEADER_VERSION_ONE;
header->device_id = physical_device_properties.deviceID;
header->vendor_id = physical_device_properties.vendorID;
header->driver_version = physical_device_properties.driverVersion;
memcpy(header->uuid, physical_device_properties.pipelineCacheUUID, VK_UUID_SIZE);
header->driver_abi = sizeof(void *);
pipeline_cache_id = String::hex_encode_buffer(physical_device_properties.pipelineCacheUUID, VK_UUID_SIZE);
pipeline_cache_id += "-driver-" + itos(physical_device_properties.driverVersion);
return OK;
}
static void _convert_subpass_attachments(const VkAttachmentReference2 *p_attachment_references_2, uint32_t p_attachment_references_count, TightLocalVector<VkAttachmentReference> &r_attachment_references) {
r_attachment_references.resize(p_attachment_references_count);
for (uint32_t i = 0; i < p_attachment_references_count; i++) {
// Ignore sType, pNext and aspectMask (which is currently unused).
r_attachment_references[i].attachment = p_attachment_references_2[i].attachment;
r_attachment_references[i].layout = p_attachment_references_2[i].layout;
}
}
VkResult RenderingDeviceDriverVulkan::_create_render_pass(VkDevice p_device, const VkRenderPassCreateInfo2 *p_create_info, const VkAllocationCallbacks *p_allocator, VkRenderPass *p_render_pass) {
if (device_functions.CreateRenderPass2KHR != nullptr) {
return device_functions.CreateRenderPass2KHR(p_device, p_create_info, p_allocator, p_render_pass);
} else {
// Compatibility fallback with regular create render pass but by converting the inputs from the newer version to the older one.
TightLocalVector<VkAttachmentDescription> attachments;
attachments.resize(p_create_info->attachmentCount);
for (uint32_t i = 0; i < p_create_info->attachmentCount; i++) {
// Ignores sType and pNext from the attachment.
const VkAttachmentDescription2 &src = p_create_info->pAttachments[i];
VkAttachmentDescription &dst = attachments[i];
dst.flags = src.flags;
dst.format = src.format;
dst.samples = src.samples;
dst.loadOp = src.loadOp;
dst.storeOp = src.storeOp;
dst.stencilLoadOp = src.stencilLoadOp;
dst.stencilStoreOp = src.stencilStoreOp;
dst.initialLayout = src.initialLayout;
dst.finalLayout = src.finalLayout;
}
const uint32_t attachment_vectors_per_subpass = 4;
TightLocalVector<TightLocalVector<VkAttachmentReference>> subpasses_attachments;
TightLocalVector<VkSubpassDescription> subpasses;
subpasses_attachments.resize(p_create_info->subpassCount * attachment_vectors_per_subpass);
subpasses.resize(p_create_info->subpassCount);
for (uint32_t i = 0; i < p_create_info->subpassCount; i++) {
const uint32_t vector_base_index = i * attachment_vectors_per_subpass;
const uint32_t input_attachments_index = vector_base_index + 0;
const uint32_t color_attachments_index = vector_base_index + 1;
const uint32_t resolve_attachments_index = vector_base_index + 2;
const uint32_t depth_attachment_index = vector_base_index + 3;
_convert_subpass_attachments(p_create_info->pSubpasses[i].pInputAttachments, p_create_info->pSubpasses[i].inputAttachmentCount, subpasses_attachments[input_attachments_index]);
_convert_subpass_attachments(p_create_info->pSubpasses[i].pColorAttachments, p_create_info->pSubpasses[i].colorAttachmentCount, subpasses_attachments[color_attachments_index]);
_convert_subpass_attachments(p_create_info->pSubpasses[i].pResolveAttachments, p_create_info->pSubpasses[i].colorAttachmentCount, subpasses_attachments[resolve_attachments_index]);
_convert_subpass_attachments(p_create_info->pSubpasses[i].pDepthStencilAttachment, (p_create_info->pSubpasses[i].pDepthStencilAttachment != nullptr) ? 1 : 0, subpasses_attachments[depth_attachment_index]);
// Ignores sType and pNext from the subpass.
const VkSubpassDescription2 &src_subpass = p_create_info->pSubpasses[i];
VkSubpassDescription &dst_subpass = subpasses[i];
dst_subpass.flags = src_subpass.flags;
dst_subpass.pipelineBindPoint = src_subpass.pipelineBindPoint;
dst_subpass.inputAttachmentCount = src_subpass.inputAttachmentCount;
dst_subpass.pInputAttachments = subpasses_attachments[input_attachments_index].ptr();
dst_subpass.colorAttachmentCount = src_subpass.colorAttachmentCount;
dst_subpass.pColorAttachments = subpasses_attachments[color_attachments_index].ptr();
dst_subpass.pResolveAttachments = subpasses_attachments[resolve_attachments_index].ptr();
dst_subpass.pDepthStencilAttachment = subpasses_attachments[depth_attachment_index].ptr();
dst_subpass.preserveAttachmentCount = src_subpass.preserveAttachmentCount;
dst_subpass.pPreserveAttachments = src_subpass.pPreserveAttachments;
}
TightLocalVector<VkSubpassDependency> dependencies;
dependencies.resize(p_create_info->dependencyCount);
for (uint32_t i = 0; i < p_create_info->dependencyCount; i++) {
// Ignores sType and pNext from the dependency, and viewMask which is currently unused.
const VkSubpassDependency2 &src_dependency = p_create_info->pDependencies[i];
VkSubpassDependency &dst_dependency = dependencies[i];
dst_dependency.srcSubpass = src_dependency.srcSubpass;
dst_dependency.dstSubpass = src_dependency.dstSubpass;
dst_dependency.srcStageMask = src_dependency.srcStageMask;
dst_dependency.dstStageMask = src_dependency.dstStageMask;
dst_dependency.srcAccessMask = src_dependency.srcAccessMask;
dst_dependency.dstAccessMask = src_dependency.dstAccessMask;
dst_dependency.dependencyFlags = src_dependency.dependencyFlags;
}
VkRenderPassCreateInfo create_info = {};
create_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
create_info.pNext = p_create_info->pNext;
create_info.flags = p_create_info->flags;
create_info.attachmentCount = attachments.size();
create_info.pAttachments = attachments.ptr();
create_info.subpassCount = subpasses.size();
create_info.pSubpasses = subpasses.ptr();
create_info.dependencyCount = dependencies.size();
create_info.pDependencies = dependencies.ptr();
return vkCreateRenderPass(vk_device, &create_info, p_allocator, p_render_pass);
}
}
bool RenderingDeviceDriverVulkan::_release_image_semaphore(CommandQueue *p_command_queue, uint32_t p_semaphore_index, bool p_release_on_swap_chain) {
SwapChain *swap_chain = p_command_queue->image_semaphores_swap_chains[p_semaphore_index];
if (swap_chain != nullptr) {
// Clear the swap chain from the command queue's vector.
p_command_queue->image_semaphores_swap_chains[p_semaphore_index] = nullptr;
if (p_release_on_swap_chain) {
// Remove the acquired semaphore from the swap chain's vectors.
for (uint32_t i = 0; i < swap_chain->command_queues_acquired.size(); i++) {
if (swap_chain->command_queues_acquired[i] == p_command_queue && swap_chain->command_queues_acquired_semaphores[i] == p_semaphore_index) {
swap_chain->command_queues_acquired.remove_at(i);
swap_chain->command_queues_acquired_semaphores.remove_at(i);
break;
}
}
}
return true;
}
return false;
}
bool RenderingDeviceDriverVulkan::_recreate_image_semaphore(CommandQueue *p_command_queue, uint32_t p_semaphore_index, bool p_release_on_swap_chain) {
_release_image_semaphore(p_command_queue, p_semaphore_index, p_release_on_swap_chain);
VkSemaphore semaphore;
VkSemaphoreCreateInfo create_info = {};
create_info.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
VkResult err = vkCreateSemaphore(vk_device, &create_info, nullptr, &semaphore);
ERR_FAIL_COND_V(err != VK_SUCCESS, false);
// Indicate the semaphore is free again and destroy the previous one before storing the new one.
vkDestroySemaphore(vk_device, p_command_queue->image_semaphores[p_semaphore_index], nullptr);
p_command_queue->image_semaphores[p_semaphore_index] = semaphore;
p_command_queue->free_image_semaphores.push_back(p_semaphore_index);
return true;
}
void RenderingDeviceDriverVulkan::_set_object_name(VkObjectType p_object_type, uint64_t p_object_handle, String p_object_name) {
const RenderingContextDriverVulkan::Functions &functions = context_driver->functions_get();
if (functions.SetDebugUtilsObjectNameEXT != nullptr) {
CharString obj_data = p_object_name.utf8();
VkDebugUtilsObjectNameInfoEXT name_info;
name_info.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_NAME_INFO_EXT;
name_info.pNext = nullptr;
name_info.objectType = p_object_type;
name_info.objectHandle = p_object_handle;
name_info.pObjectName = obj_data.get_data();
functions.SetDebugUtilsObjectNameEXT(vk_device, &name_info);
}
}
Error RenderingDeviceDriverVulkan::initialize(uint32_t p_device_index, uint32_t p_frame_count) {
// Frame count is not required for the Vulkan driver, so we just ignore it.
context_device = context_driver->device_get(p_device_index);
physical_device = context_driver->physical_device_get(p_device_index);
vkGetPhysicalDeviceProperties(physical_device, &physical_device_properties);
// Copy the queue family properties the context already retrieved.
uint32_t queue_family_count = context_driver->queue_family_get_count(p_device_index);
queue_family_properties.resize(queue_family_count);
for (uint32_t i = 0; i < queue_family_count; i++) {
queue_family_properties[i] = context_driver->queue_family_get(p_device_index, i);
}
Error err = _initialize_device_extensions();
ERR_FAIL_COND_V(err != OK, err);
err = _check_device_features();
ERR_FAIL_COND_V(err != OK, err);
err = _check_device_capabilities();
ERR_FAIL_COND_V(err != OK, err);
LocalVector<VkDeviceQueueCreateInfo> queue_create_info;
err = _add_queue_create_info(queue_create_info);
ERR_FAIL_COND_V(err != OK, err);
err = _initialize_device(queue_create_info);
ERR_FAIL_COND_V(err != OK, err);
err = _initialize_allocator();
ERR_FAIL_COND_V(err != OK, err);
err = _initialize_pipeline_cache();
ERR_FAIL_COND_V(err != OK, err);
max_descriptor_sets_per_pool = GLOBAL_GET("rendering/rendering_device/vulkan/max_descriptors_per_pool");
return OK;
}
/****************/
/**** MEMORY ****/
/****************/
static const uint32_t SMALL_ALLOCATION_MAX_SIZE = 4096;
VmaPool RenderingDeviceDriverVulkan::_find_or_create_small_allocs_pool(uint32_t p_mem_type_index) {
if (small_allocs_pools.has(p_mem_type_index)) {
return small_allocs_pools[p_mem_type_index];
}
print_verbose("Creating VMA small objects pool for memory type index " + itos(p_mem_type_index));
VmaPoolCreateInfo pci = {};
pci.memoryTypeIndex = p_mem_type_index;
pci.flags = 0;
pci.blockSize = 0;
pci.minBlockCount = 0;
pci.maxBlockCount = SIZE_MAX;
pci.priority = 0.5f;
pci.minAllocationAlignment = 0;
pci.pMemoryAllocateNext = nullptr;
VmaPool pool = VK_NULL_HANDLE;
VkResult res = vmaCreatePool(allocator, &pci, &pool);
small_allocs_pools[p_mem_type_index] = pool; // Don't try to create it again if failed the first time.
ERR_FAIL_COND_V_MSG(res, pool, "vmaCreatePool failed with error " + itos(res) + ".");
return pool;
}
/*****************/
/**** BUFFERS ****/
/*****************/
// RDD::BufferUsageBits == VkBufferUsageFlagBits.
static_assert(ENUM_MEMBERS_EQUAL(RDD::BUFFER_USAGE_TRANSFER_FROM_BIT, VK_BUFFER_USAGE_TRANSFER_SRC_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BUFFER_USAGE_TRANSFER_TO_BIT, VK_BUFFER_USAGE_TRANSFER_DST_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BUFFER_USAGE_TEXEL_BIT, VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BUFFER_USAGE_UNIFORM_BIT, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BUFFER_USAGE_STORAGE_BIT, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BUFFER_USAGE_INDEX_BIT, VK_BUFFER_USAGE_INDEX_BUFFER_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BUFFER_USAGE_VERTEX_BIT, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BUFFER_USAGE_INDIRECT_BIT, VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT));
RDD::BufferID RenderingDeviceDriverVulkan::buffer_create(uint64_t p_size, BitField<BufferUsageBits> p_usage, MemoryAllocationType p_allocation_type) {
VkBufferCreateInfo create_info = {};
create_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
create_info.size = p_size;
create_info.usage = p_usage;
create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VmaAllocationCreateInfo alloc_create_info = {};
switch (p_allocation_type) {
case MEMORY_ALLOCATION_TYPE_CPU: {
bool is_src = p_usage.has_flag(BUFFER_USAGE_TRANSFER_FROM_BIT);
bool is_dst = p_usage.has_flag(BUFFER_USAGE_TRANSFER_TO_BIT);
if (is_src && !is_dst) {
// Looks like a staging buffer: CPU maps, writes sequentially, then GPU copies to VRAM.
alloc_create_info.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT;
}
if (is_dst && !is_src) {
// Looks like a readback buffer: GPU copies from VRAM, then CPU maps and reads.
alloc_create_info.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT;
}
alloc_create_info.usage = VMA_MEMORY_USAGE_AUTO_PREFER_HOST;
alloc_create_info.requiredFlags = (VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
} break;
case MEMORY_ALLOCATION_TYPE_GPU: {
alloc_create_info.usage = VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE;
if (p_size <= SMALL_ALLOCATION_MAX_SIZE) {
uint32_t mem_type_index = 0;
vmaFindMemoryTypeIndexForBufferInfo(allocator, &create_info, &alloc_create_info, &mem_type_index);
alloc_create_info.pool = _find_or_create_small_allocs_pool(mem_type_index);
}
} break;
}
VkBuffer vk_buffer = VK_NULL_HANDLE;
VmaAllocation allocation = nullptr;
VmaAllocationInfo alloc_info = {};
VkResult err = vmaCreateBuffer(allocator, &create_info, &alloc_create_info, &vk_buffer, &allocation, &alloc_info);
ERR_FAIL_COND_V_MSG(err, BufferID(), "Can't create buffer of size: " + itos(p_size) + ", error " + itos(err) + ".");
// Bookkeep.
BufferInfo *buf_info = VersatileResource::allocate<BufferInfo>(resources_allocator);
buf_info->vk_buffer = vk_buffer;
buf_info->allocation.handle = allocation;
buf_info->allocation.size = alloc_info.size;
buf_info->size = p_size;
return BufferID(buf_info);
}
bool RenderingDeviceDriverVulkan::buffer_set_texel_format(BufferID p_buffer, DataFormat p_format) {
BufferInfo *buf_info = (BufferInfo *)p_buffer.id;
DEV_ASSERT(!buf_info->vk_view);
VkBufferViewCreateInfo view_create_info = {};
view_create_info.sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO;
view_create_info.buffer = buf_info->vk_buffer;
view_create_info.format = RD_TO_VK_FORMAT[p_format];
view_create_info.range = buf_info->allocation.size;
VkResult res = vkCreateBufferView(vk_device, &view_create_info, nullptr, &buf_info->vk_view);
ERR_FAIL_COND_V_MSG(res, false, "Unable to create buffer view, error " + itos(res) + ".");
return true;
}
void RenderingDeviceDriverVulkan::buffer_free(BufferID p_buffer) {
BufferInfo *buf_info = (BufferInfo *)p_buffer.id;
if (buf_info->vk_view) {
vkDestroyBufferView(vk_device, buf_info->vk_view, nullptr);
}
vmaDestroyBuffer(allocator, buf_info->vk_buffer, buf_info->allocation.handle);
VersatileResource::free(resources_allocator, buf_info);
}
uint64_t RenderingDeviceDriverVulkan::buffer_get_allocation_size(BufferID p_buffer) {
const BufferInfo *buf_info = (const BufferInfo *)p_buffer.id;
return buf_info->allocation.size;
}
uint8_t *RenderingDeviceDriverVulkan::buffer_map(BufferID p_buffer) {
const BufferInfo *buf_info = (const BufferInfo *)p_buffer.id;
void *data_ptr = nullptr;
VkResult err = vmaMapMemory(allocator, buf_info->allocation.handle, &data_ptr);
ERR_FAIL_COND_V_MSG(err, nullptr, "vmaMapMemory failed with error " + itos(err) + ".");
return (uint8_t *)data_ptr;
}
void RenderingDeviceDriverVulkan::buffer_unmap(BufferID p_buffer) {
const BufferInfo *buf_info = (const BufferInfo *)p_buffer.id;
vmaUnmapMemory(allocator, buf_info->allocation.handle);
}
/*****************/
/**** TEXTURE ****/
/*****************/
static const VkImageType RD_TEX_TYPE_TO_VK_IMG_TYPE[RDD::TEXTURE_TYPE_MAX] = {
VK_IMAGE_TYPE_1D,
VK_IMAGE_TYPE_2D,
VK_IMAGE_TYPE_3D,
VK_IMAGE_TYPE_2D,
VK_IMAGE_TYPE_1D,
VK_IMAGE_TYPE_2D,
VK_IMAGE_TYPE_2D,
};
static const VkSampleCountFlagBits RD_TO_VK_SAMPLE_COUNT[RDD::TEXTURE_SAMPLES_MAX] = {
VK_SAMPLE_COUNT_1_BIT,
VK_SAMPLE_COUNT_2_BIT,
VK_SAMPLE_COUNT_4_BIT,
VK_SAMPLE_COUNT_8_BIT,
VK_SAMPLE_COUNT_16_BIT,
VK_SAMPLE_COUNT_32_BIT,
VK_SAMPLE_COUNT_64_BIT,
};
// RDD::TextureType == VkImageViewType.
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_TYPE_1D, VK_IMAGE_VIEW_TYPE_1D));
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_TYPE_2D, VK_IMAGE_VIEW_TYPE_2D));
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_TYPE_3D, VK_IMAGE_VIEW_TYPE_3D));
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_CUBE));
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE_1D_ARRAY));
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_TYPE_2D_ARRAY, VK_IMAGE_VIEW_TYPE_2D_ARRAY));
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_TYPE_CUBE_ARRAY, VK_IMAGE_VIEW_TYPE_CUBE_ARRAY));
// RDD::TextureSwizzle == VkComponentSwizzle.
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY));
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_SWIZZLE_ZERO, VK_COMPONENT_SWIZZLE_ZERO));
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_SWIZZLE_ONE, VK_COMPONENT_SWIZZLE_ONE));
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_SWIZZLE_R, VK_COMPONENT_SWIZZLE_R));
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_SWIZZLE_G, VK_COMPONENT_SWIZZLE_G));
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_SWIZZLE_B, VK_COMPONENT_SWIZZLE_B));
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_SWIZZLE_A, VK_COMPONENT_SWIZZLE_A));
// RDD::TextureLayout == VkImageLayout.
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_UNDEFINED));
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_GENERAL));
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL));
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL));
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL));
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL));
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL));
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL));
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_LAYOUT_PREINITIALIZED, VK_IMAGE_LAYOUT_PREINITIALIZED));
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_LAYOUT_VRS_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_FRAGMENT_SHADING_RATE_ATTACHMENT_OPTIMAL_KHR));
// RDD::TextureAspectBits == VkImageAspectFlagBits.
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_ASPECT_COLOR_BIT, VK_IMAGE_ASPECT_COLOR_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_ASPECT_DEPTH_BIT, VK_IMAGE_ASPECT_DEPTH_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_ASPECT_STENCIL_BIT, VK_IMAGE_ASPECT_STENCIL_BIT));
VkSampleCountFlagBits RenderingDeviceDriverVulkan::_ensure_supported_sample_count(TextureSamples p_requested_sample_count) {
VkSampleCountFlags sample_count_flags = (physical_device_properties.limits.framebufferColorSampleCounts & physical_device_properties.limits.framebufferDepthSampleCounts);
if ((sample_count_flags & RD_TO_VK_SAMPLE_COUNT[p_requested_sample_count])) {
// The requested sample count is supported.
return RD_TO_VK_SAMPLE_COUNT[p_requested_sample_count];
} else {
// Find the closest lower supported sample count.
VkSampleCountFlagBits sample_count = RD_TO_VK_SAMPLE_COUNT[p_requested_sample_count];
while (sample_count > VK_SAMPLE_COUNT_1_BIT) {
if (sample_count_flags & sample_count) {
return sample_count;
}
sample_count = (VkSampleCountFlagBits)(sample_count >> 1);
}
}
return VK_SAMPLE_COUNT_1_BIT;
}
RDD::TextureID RenderingDeviceDriverVulkan::texture_create(const TextureFormat &p_format, const TextureView &p_view) {
VkImageCreateInfo create_info = {};
create_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
if (p_format.shareable_formats.size()) {
create_info.flags |= VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;
if (enabled_device_extension_names.has(VK_KHR_IMAGE_FORMAT_LIST_EXTENSION_NAME)) {
VkFormat *vk_allowed_formats = ALLOCA_ARRAY(VkFormat, p_format.shareable_formats.size());
for (int i = 0; i < p_format.shareable_formats.size(); i++) {
vk_allowed_formats[i] = RD_TO_VK_FORMAT[p_format.shareable_formats[i]];
}
VkImageFormatListCreateInfoKHR *format_list_create_info = ALLOCA_SINGLE(VkImageFormatListCreateInfoKHR);
*format_list_create_info = {};
format_list_create_info->sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO_KHR;
format_list_create_info->viewFormatCount = p_format.shareable_formats.size();
format_list_create_info->pViewFormats = vk_allowed_formats;
create_info.pNext = format_list_create_info;
}
}
if (p_format.texture_type == TEXTURE_TYPE_CUBE || p_format.texture_type == TEXTURE_TYPE_CUBE_ARRAY) {
create_info.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
}
/*if (p_format.texture_type == TEXTURE_TYPE_2D || p_format.texture_type == TEXTURE_TYPE_2D_ARRAY) {
create_info.flags |= VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT;
}*/
create_info.imageType = RD_TEX_TYPE_TO_VK_IMG_TYPE[p_format.texture_type];
create_info.format = RD_TO_VK_FORMAT[p_format.format];
create_info.extent.width = p_format.width;
create_info.extent.height = p_format.height;
create_info.extent.depth = p_format.depth;
create_info.mipLevels = p_format.mipmaps;
create_info.arrayLayers = p_format.array_layers;
create_info.samples = _ensure_supported_sample_count(p_format.samples);
create_info.tiling = (p_format.usage_bits & TEXTURE_USAGE_CPU_READ_BIT) ? VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL;
// Usage.
if ((p_format.usage_bits & TEXTURE_USAGE_SAMPLING_BIT)) {
create_info.usage |= VK_IMAGE_USAGE_SAMPLED_BIT;
}
if ((p_format.usage_bits & TEXTURE_USAGE_STORAGE_BIT)) {
create_info.usage |= VK_IMAGE_USAGE_STORAGE_BIT;
}
if ((p_format.usage_bits & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) {
create_info.usage |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
}
if ((p_format.usage_bits & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
create_info.usage |= VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
}
if ((p_format.usage_bits & TEXTURE_USAGE_INPUT_ATTACHMENT_BIT)) {
create_info.usage |= VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT;
}
if ((p_format.usage_bits & TEXTURE_USAGE_VRS_ATTACHMENT_BIT)) {
create_info.usage |= VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR;
}
if ((p_format.usage_bits & TEXTURE_USAGE_CAN_UPDATE_BIT)) {
create_info.usage |= VK_IMAGE_USAGE_TRANSFER_DST_BIT;
}
if ((p_format.usage_bits & TEXTURE_USAGE_CAN_COPY_FROM_BIT)) {
create_info.usage |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
}
if ((p_format.usage_bits & TEXTURE_USAGE_CAN_COPY_TO_BIT)) {
create_info.usage |= VK_IMAGE_USAGE_TRANSFER_DST_BIT;
}
create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
create_info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
// Allocate memory.
uint32_t width = 0, height = 0;
uint32_t image_size = get_image_format_required_size(p_format.format, p_format.width, p_format.height, p_format.depth, p_format.mipmaps, &width, &height);
VmaAllocationCreateInfo alloc_create_info = {};
alloc_create_info.flags = (p_format.usage_bits & TEXTURE_USAGE_CPU_READ_BIT) ? VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT : 0;
alloc_create_info.usage = VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE;
if (image_size <= SMALL_ALLOCATION_MAX_SIZE) {
uint32_t mem_type_index = 0;
vmaFindMemoryTypeIndexForImageInfo(allocator, &create_info, &alloc_create_info, &mem_type_index);
alloc_create_info.pool = _find_or_create_small_allocs_pool(mem_type_index);
}
// Create.
VkImage vk_image = VK_NULL_HANDLE;
VmaAllocation allocation = nullptr;
VmaAllocationInfo alloc_info = {};
VkResult err = vmaCreateImage(allocator, &create_info, &alloc_create_info, &vk_image, &allocation, &alloc_info);
ERR_FAIL_COND_V_MSG(err, TextureID(), "vmaCreateImage failed with error " + itos(err) + ".");
// Create view.
VkImageViewCreateInfo image_view_create_info = {};
image_view_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
image_view_create_info.image = vk_image;
image_view_create_info.viewType = (VkImageViewType)p_format.texture_type;
image_view_create_info.format = RD_TO_VK_FORMAT[p_view.format];
image_view_create_info.components.r = (VkComponentSwizzle)p_view.swizzle_r;
image_view_create_info.components.g = (VkComponentSwizzle)p_view.swizzle_g;
image_view_create_info.components.b = (VkComponentSwizzle)p_view.swizzle_b;
image_view_create_info.components.a = (VkComponentSwizzle)p_view.swizzle_a;
image_view_create_info.subresourceRange.levelCount = create_info.mipLevels;
image_view_create_info.subresourceRange.layerCount = create_info.arrayLayers;
if ((p_format.usage_bits & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
image_view_create_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
} else {
image_view_create_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
}
VkImageView vk_image_view = VK_NULL_HANDLE;
err = vkCreateImageView(vk_device, &image_view_create_info, nullptr, &vk_image_view);
if (err) {
vmaDestroyImage(allocator, vk_image, allocation);
ERR_FAIL_COND_V_MSG(err, TextureID(), "vkCreateImageView failed with error " + itos(err) + ".");
}
// Bookkeep.
TextureInfo *tex_info = VersatileResource::allocate<TextureInfo>(resources_allocator);
tex_info->vk_view = vk_image_view;
tex_info->rd_format = p_format.format;
tex_info->vk_create_info = create_info;
tex_info->vk_view_create_info = image_view_create_info;
tex_info->allocation.handle = allocation;
vmaGetAllocationInfo(allocator, tex_info->allocation.handle, &tex_info->allocation.info);
#if PRINT_NATIVE_COMMANDS
print_line(vformat("vkCreateImageView: 0x%uX for 0x%uX", uint64_t(vk_image_view), uint64_t(vk_image)));
#endif
return TextureID(tex_info);
}
RDD::TextureID RenderingDeviceDriverVulkan::texture_create_from_extension(uint64_t p_native_texture, TextureType p_type, DataFormat p_format, uint32_t p_array_layers, bool p_depth_stencil) {
VkImage vk_image = (VkImage)p_native_texture;
// We only need to create a view into the already existing natively-provided texture.
VkImageViewCreateInfo image_view_create_info = {};
image_view_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
image_view_create_info.image = vk_image;
image_view_create_info.viewType = (VkImageViewType)p_type;
image_view_create_info.format = RD_TO_VK_FORMAT[p_format];
image_view_create_info.components.r = VK_COMPONENT_SWIZZLE_R;
image_view_create_info.components.g = VK_COMPONENT_SWIZZLE_G;
image_view_create_info.components.b = VK_COMPONENT_SWIZZLE_B;
image_view_create_info.components.a = VK_COMPONENT_SWIZZLE_A;
image_view_create_info.subresourceRange.levelCount = 1;
image_view_create_info.subresourceRange.layerCount = p_array_layers;
image_view_create_info.subresourceRange.aspectMask = p_depth_stencil ? VK_IMAGE_ASPECT_DEPTH_BIT : VK_IMAGE_ASPECT_COLOR_BIT;
VkImageView vk_image_view = VK_NULL_HANDLE;
VkResult err = vkCreateImageView(vk_device, &image_view_create_info, nullptr, &vk_image_view);
if (err) {
ERR_FAIL_COND_V_MSG(err, TextureID(), "vkCreateImageView failed with error " + itos(err) + ".");
}
// Bookkeep.
TextureInfo *tex_info = VersatileResource::allocate<TextureInfo>(resources_allocator);
tex_info->vk_view = vk_image_view;
tex_info->rd_format = p_format;
tex_info->vk_view_create_info = image_view_create_info;
return TextureID(tex_info);
}
RDD::TextureID RenderingDeviceDriverVulkan::texture_create_shared(TextureID p_original_texture, const TextureView &p_view) {
const TextureInfo *owner_tex_info = (const TextureInfo *)p_original_texture.id;
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_V(!owner_tex_info->allocation.handle, TextureID());
#endif
VkImageViewCreateInfo image_view_create_info = owner_tex_info->vk_view_create_info;
image_view_create_info.format = RD_TO_VK_FORMAT[p_view.format];
image_view_create_info.components.r = (VkComponentSwizzle)p_view.swizzle_r;
image_view_create_info.components.g = (VkComponentSwizzle)p_view.swizzle_g;
image_view_create_info.components.b = (VkComponentSwizzle)p_view.swizzle_b;
image_view_create_info.components.a = (VkComponentSwizzle)p_view.swizzle_a;
if (enabled_device_extension_names.has(VK_KHR_MAINTENANCE_2_EXTENSION_NAME)) {
// May need to make VK_KHR_maintenance2 mandatory and thus has Vulkan 1.1 be our minimum supported version
// if we require setting this information. Vulkan 1.0 may simply not care.
if (image_view_create_info.format != owner_tex_info->vk_view_create_info.format) {
VkImageViewUsageCreateInfo *usage_info = ALLOCA_SINGLE(VkImageViewUsageCreateInfo);
*usage_info = {};
usage_info->sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO;
usage_info->usage = owner_tex_info->vk_create_info.usage;
// Certain features may not be available for the format of the view.
{
VkFormatProperties properties = {};
vkGetPhysicalDeviceFormatProperties(physical_device, RD_TO_VK_FORMAT[p_view.format], &properties);
const VkFormatFeatureFlags &supported_flags = owner_tex_info->vk_create_info.tiling == VK_IMAGE_TILING_LINEAR ? properties.linearTilingFeatures : properties.optimalTilingFeatures;
if ((usage_info->usage & VK_IMAGE_USAGE_STORAGE_BIT) && !(supported_flags & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT)) {
usage_info->usage &= ~VK_IMAGE_USAGE_STORAGE_BIT;
}
if ((usage_info->usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) && !(supported_flags & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT)) {
usage_info->usage &= ~VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
}
}
image_view_create_info.pNext = usage_info;
}
}
VkImageView new_vk_image_view = VK_NULL_HANDLE;
VkResult err = vkCreateImageView(vk_device, &image_view_create_info, nullptr, &new_vk_image_view);
ERR_FAIL_COND_V_MSG(err, TextureID(), "vkCreateImageView failed with error " + itos(err) + ".");
// Bookkeep.
TextureInfo *tex_info = VersatileResource::allocate<TextureInfo>(resources_allocator);
*tex_info = *owner_tex_info;
tex_info->vk_view = new_vk_image_view;
tex_info->vk_view_create_info = image_view_create_info;
tex_info->allocation = {};
#if PRINT_NATIVE_COMMANDS
print_line(vformat("vkCreateImageView: 0x%uX for 0x%uX", uint64_t(new_vk_image_view), uint64_t(owner_tex_info->vk_view_create_info.image)));
#endif
return TextureID(tex_info);
}
RDD::TextureID RenderingDeviceDriverVulkan::texture_create_shared_from_slice(TextureID p_original_texture, const TextureView &p_view, TextureSliceType p_slice_type, uint32_t p_layer, uint32_t p_layers, uint32_t p_mipmap, uint32_t p_mipmaps) {
const TextureInfo *owner_tex_info = (const TextureInfo *)p_original_texture.id;
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_V(!owner_tex_info->allocation.handle, TextureID());
#endif
VkImageViewCreateInfo image_view_create_info = owner_tex_info->vk_view_create_info;
switch (p_slice_type) {
case TEXTURE_SLICE_2D: {
image_view_create_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
} break;
case TEXTURE_SLICE_3D: {
image_view_create_info.viewType = VK_IMAGE_VIEW_TYPE_3D;
} break;
case TEXTURE_SLICE_CUBEMAP: {
image_view_create_info.viewType = VK_IMAGE_VIEW_TYPE_CUBE;
} break;
case TEXTURE_SLICE_2D_ARRAY: {
image_view_create_info.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
} break;
default: {
return TextureID(nullptr);
}
}
image_view_create_info.format = RD_TO_VK_FORMAT[p_view.format];
image_view_create_info.components.r = (VkComponentSwizzle)p_view.swizzle_r;
image_view_create_info.components.g = (VkComponentSwizzle)p_view.swizzle_g;
image_view_create_info.components.b = (VkComponentSwizzle)p_view.swizzle_b;
image_view_create_info.components.a = (VkComponentSwizzle)p_view.swizzle_a;
image_view_create_info.subresourceRange.baseMipLevel = p_mipmap;
image_view_create_info.subresourceRange.levelCount = p_mipmaps;
image_view_create_info.subresourceRange.baseArrayLayer = p_layer;
image_view_create_info.subresourceRange.layerCount = p_layers;
VkImageView new_vk_image_view = VK_NULL_HANDLE;
VkResult err = vkCreateImageView(vk_device, &image_view_create_info, nullptr, &new_vk_image_view);
ERR_FAIL_COND_V_MSG(err, TextureID(), "vkCreateImageView failed with error " + itos(err) + ".");
// Bookkeep.
TextureInfo *tex_info = VersatileResource::allocate<TextureInfo>(resources_allocator);
*tex_info = *owner_tex_info;
tex_info->vk_view = new_vk_image_view;
tex_info->vk_view_create_info = image_view_create_info;
tex_info->allocation = {};
#if PRINT_NATIVE_COMMANDS
print_line(vformat("vkCreateImageView: 0x%uX for 0x%uX (%d %d %d %d)", uint64_t(new_vk_image_view), uint64_t(owner_tex_info->vk_view_create_info.image), p_mipmap, p_mipmaps, p_layer, p_layers));
#endif
return TextureID(tex_info);
}
void RenderingDeviceDriverVulkan::texture_free(TextureID p_texture) {
TextureInfo *tex_info = (TextureInfo *)p_texture.id;
vkDestroyImageView(vk_device, tex_info->vk_view, nullptr);
if (tex_info->allocation.handle) {
vmaDestroyImage(allocator, tex_info->vk_view_create_info.image, tex_info->allocation.handle);
}
VersatileResource::free(resources_allocator, tex_info);
}
uint64_t RenderingDeviceDriverVulkan::texture_get_allocation_size(TextureID p_texture) {
const TextureInfo *tex_info = (const TextureInfo *)p_texture.id;
return tex_info->allocation.info.size;
}
void RenderingDeviceDriverVulkan::texture_get_copyable_layout(TextureID p_texture, const TextureSubresource &p_subresource, TextureCopyableLayout *r_layout) {
const TextureInfo *tex_info = (const TextureInfo *)p_texture.id;
*r_layout = {};
if (tex_info->vk_create_info.tiling == VK_IMAGE_TILING_LINEAR) {
VkImageSubresource vk_subres = {};
vk_subres.aspectMask = (VkImageAspectFlags)(1 << p_subresource.aspect);
vk_subres.arrayLayer = p_subresource.layer;
vk_subres.mipLevel = p_subresource.mipmap;
VkSubresourceLayout vk_layout = {};
vkGetImageSubresourceLayout(vk_device, tex_info->vk_view_create_info.image, &vk_subres, &vk_layout);
r_layout->offset = vk_layout.offset;
r_layout->size = vk_layout.size;
r_layout->row_pitch = vk_layout.rowPitch;
r_layout->depth_pitch = vk_layout.depthPitch;
r_layout->layer_pitch = vk_layout.arrayPitch;
} else {
// Tight.
uint32_t w = tex_info->vk_create_info.extent.width;
uint32_t h = tex_info->vk_create_info.extent.height;
uint32_t d = tex_info->vk_create_info.extent.depth;
if (p_subresource.mipmap > 0) {
r_layout->offset = get_image_format_required_size(tex_info->rd_format, w, h, d, p_subresource.mipmap);
}
for (uint32_t i = 0; i < p_subresource.mipmap; i++) {
w = MAX(1u, w >> 1);
h = MAX(1u, h >> 1);
d = MAX(1u, d >> 1);
}
uint32_t bw = 0, bh = 0;
get_compressed_image_format_block_dimensions(tex_info->rd_format, bw, bh);
uint32_t sbw = 0, sbh = 0;
r_layout->size = get_image_format_required_size(tex_info->rd_format, w, h, d, 1, &sbw, &sbh);
r_layout->row_pitch = r_layout->size / ((sbh / bh) * d);
r_layout->depth_pitch = r_layout->size / d;
r_layout->layer_pitch = r_layout->size / tex_info->vk_create_info.arrayLayers;
}
}
uint8_t *RenderingDeviceDriverVulkan::texture_map(TextureID p_texture, const TextureSubresource &p_subresource) {
const TextureInfo *tex_info = (const TextureInfo *)p_texture.id;
VkImageSubresource vk_subres = {};
vk_subres.aspectMask = (VkImageAspectFlags)(1 << p_subresource.aspect);
vk_subres.arrayLayer = p_subresource.layer;
vk_subres.mipLevel = p_subresource.mipmap;
VkSubresourceLayout vk_layout = {};
vkGetImageSubresourceLayout(vk_device, tex_info->vk_view_create_info.image, &vk_subres, &vk_layout);
void *data_ptr = nullptr;
VkResult err = vkMapMemory(
vk_device,
tex_info->allocation.info.deviceMemory,
tex_info->allocation.info.offset + vk_layout.offset,
vk_layout.size,
0,
&data_ptr);
vmaMapMemory(allocator, tex_info->allocation.handle, &data_ptr);
ERR_FAIL_COND_V_MSG(err, nullptr, "vkMapMemory failed with error " + itos(err) + ".");
return (uint8_t *)data_ptr;
}
void RenderingDeviceDriverVulkan::texture_unmap(TextureID p_texture) {
const TextureInfo *tex_info = (const TextureInfo *)p_texture.id;
vkUnmapMemory(vk_device, tex_info->allocation.info.deviceMemory);
}
BitField<RDD::TextureUsageBits> RenderingDeviceDriverVulkan::texture_get_usages_supported_by_format(DataFormat p_format, bool p_cpu_readable) {
VkFormatProperties properties = {};
vkGetPhysicalDeviceFormatProperties(physical_device, RD_TO_VK_FORMAT[p_format], &properties);
const VkFormatFeatureFlags &flags = p_cpu_readable ? properties.linearTilingFeatures : properties.optimalTilingFeatures;
// Everything supported by default makes an all-or-nothing check easier for the caller.
BitField<RDD::TextureUsageBits> supported = INT64_MAX;
if (!(flags & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT)) {
supported.clear_flag(TEXTURE_USAGE_SAMPLING_BIT);
}
if (!(flags & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT)) {
supported.clear_flag(TEXTURE_USAGE_COLOR_ATTACHMENT_BIT);
}
if (!(flags & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
supported.clear_flag(TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT);
}
if (!(flags & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT)) {
supported.clear_flag(TEXTURE_USAGE_STORAGE_BIT);
}
if (!(flags & VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT)) {
supported.clear_flag(TEXTURE_USAGE_STORAGE_ATOMIC_BIT);
}
// Validation via VK_FORMAT_FEATURE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR fails if VRS attachment is not supported.
if (p_format != DATA_FORMAT_R8_UINT) {
supported.clear_flag(TEXTURE_USAGE_VRS_ATTACHMENT_BIT);
}
return supported;
}
/*****************/
/**** SAMPLER ****/
/*****************/
// RDD::SamplerRepeatMode == VkSamplerAddressMode.
static_assert(ENUM_MEMBERS_EQUAL(RDD::SAMPLER_REPEAT_MODE_REPEAT, VK_SAMPLER_ADDRESS_MODE_REPEAT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::SAMPLER_REPEAT_MODE_MIRRORED_REPEAT, VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::SAMPLER_REPEAT_MODE_CLAMP_TO_EDGE, VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE));
static_assert(ENUM_MEMBERS_EQUAL(RDD::SAMPLER_REPEAT_MODE_CLAMP_TO_BORDER, VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER));
static_assert(ENUM_MEMBERS_EQUAL(RDD::SAMPLER_REPEAT_MODE_MIRROR_CLAMP_TO_EDGE, VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE));
// RDD::SamplerBorderColor == VkBorderColor.
static_assert(ENUM_MEMBERS_EQUAL(RDD::SAMPLER_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK, VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK));
static_assert(ENUM_MEMBERS_EQUAL(RDD::SAMPLER_BORDER_COLOR_INT_TRANSPARENT_BLACK, VK_BORDER_COLOR_INT_TRANSPARENT_BLACK));
static_assert(ENUM_MEMBERS_EQUAL(RDD::SAMPLER_BORDER_COLOR_FLOAT_OPAQUE_BLACK, VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK));
static_assert(ENUM_MEMBERS_EQUAL(RDD::SAMPLER_BORDER_COLOR_INT_OPAQUE_BLACK, VK_BORDER_COLOR_INT_OPAQUE_BLACK));
static_assert(ENUM_MEMBERS_EQUAL(RDD::SAMPLER_BORDER_COLOR_FLOAT_OPAQUE_WHITE, VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE));
static_assert(ENUM_MEMBERS_EQUAL(RDD::SAMPLER_BORDER_COLOR_INT_OPAQUE_WHITE, VK_BORDER_COLOR_INT_OPAQUE_WHITE));
RDD::SamplerID RenderingDeviceDriverVulkan::sampler_create(const SamplerState &p_state) {
VkSamplerCreateInfo sampler_create_info = {};
sampler_create_info.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
sampler_create_info.pNext = nullptr;
sampler_create_info.flags = 0;
sampler_create_info.magFilter = p_state.mag_filter == SAMPLER_FILTER_LINEAR ? VK_FILTER_LINEAR : VK_FILTER_NEAREST;
sampler_create_info.minFilter = p_state.min_filter == SAMPLER_FILTER_LINEAR ? VK_FILTER_LINEAR : VK_FILTER_NEAREST;
sampler_create_info.mipmapMode = p_state.mip_filter == SAMPLER_FILTER_LINEAR ? VK_SAMPLER_MIPMAP_MODE_LINEAR : VK_SAMPLER_MIPMAP_MODE_NEAREST;
sampler_create_info.addressModeU = (VkSamplerAddressMode)p_state.repeat_u;
sampler_create_info.addressModeV = (VkSamplerAddressMode)p_state.repeat_v;
sampler_create_info.addressModeW = (VkSamplerAddressMode)p_state.repeat_w;
sampler_create_info.mipLodBias = p_state.lod_bias;
sampler_create_info.anisotropyEnable = p_state.use_anisotropy && (physical_device_features.samplerAnisotropy == VK_TRUE);
sampler_create_info.maxAnisotropy = p_state.anisotropy_max;
sampler_create_info.compareEnable = p_state.enable_compare;
sampler_create_info.compareOp = (VkCompareOp)p_state.compare_op;
sampler_create_info.minLod = p_state.min_lod;
sampler_create_info.maxLod = p_state.max_lod;
sampler_create_info.borderColor = (VkBorderColor)p_state.border_color;
sampler_create_info.unnormalizedCoordinates = p_state.unnormalized_uvw;
VkSampler vk_sampler = VK_NULL_HANDLE;
VkResult res = vkCreateSampler(vk_device, &sampler_create_info, nullptr, &vk_sampler);
ERR_FAIL_COND_V_MSG(res, SamplerID(), "vkCreateSampler failed with error " + itos(res) + ".");
return SamplerID(vk_sampler);
}
void RenderingDeviceDriverVulkan::sampler_free(SamplerID p_sampler) {
vkDestroySampler(vk_device, (VkSampler)p_sampler.id, nullptr);
}
bool RenderingDeviceDriverVulkan::sampler_is_format_supported_for_filter(DataFormat p_format, SamplerFilter p_filter) {
switch (p_filter) {
case SAMPLER_FILTER_NEAREST: {
return true;
}
case SAMPLER_FILTER_LINEAR: {
VkFormatProperties properties = {};
vkGetPhysicalDeviceFormatProperties(physical_device, RD_TO_VK_FORMAT[p_format], &properties);
return (properties.optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT);
}
}
return false;
}
/**********************/
/**** VERTEX ARRAY ****/
/**********************/
RDD::VertexFormatID RenderingDeviceDriverVulkan::vertex_format_create(VectorView<VertexAttribute> p_vertex_attribs) {
// Pre-bookkeep.
VertexFormatInfo *vf_info = VersatileResource::allocate<VertexFormatInfo>(resources_allocator);
vf_info->vk_bindings.resize(p_vertex_attribs.size());
vf_info->vk_attributes.resize(p_vertex_attribs.size());
for (uint32_t i = 0; i < p_vertex_attribs.size(); i++) {
vf_info->vk_bindings[i] = {};
vf_info->vk_bindings[i].binding = i;
vf_info->vk_bindings[i].stride = p_vertex_attribs[i].stride;
vf_info->vk_bindings[i].inputRate = p_vertex_attribs[i].frequency == VERTEX_FREQUENCY_INSTANCE ? VK_VERTEX_INPUT_RATE_INSTANCE : VK_VERTEX_INPUT_RATE_VERTEX;
vf_info->vk_attributes[i] = {};
vf_info->vk_attributes[i].binding = i;
vf_info->vk_attributes[i].location = p_vertex_attribs[i].location;
vf_info->vk_attributes[i].format = RD_TO_VK_FORMAT[p_vertex_attribs[i].format];
vf_info->vk_attributes[i].offset = p_vertex_attribs[i].offset;
}
vf_info->vk_create_info = {};
vf_info->vk_create_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vf_info->vk_create_info.vertexBindingDescriptionCount = vf_info->vk_bindings.size();
vf_info->vk_create_info.pVertexBindingDescriptions = vf_info->vk_bindings.ptr();
vf_info->vk_create_info.vertexAttributeDescriptionCount = vf_info->vk_attributes.size();
vf_info->vk_create_info.pVertexAttributeDescriptions = vf_info->vk_attributes.ptr();
return VertexFormatID(vf_info);
}
void RenderingDeviceDriverVulkan::vertex_format_free(VertexFormatID p_vertex_format) {
VertexFormatInfo *vf_info = (VertexFormatInfo *)p_vertex_format.id;
VersatileResource::free(resources_allocator, vf_info);
}
/******************/
/**** BARRIERS ****/
/******************/
// RDD::PipelineStageBits == VkPipelineStageFlagBits.
static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_DRAW_INDIRECT_BIT, VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_VERTEX_SHADER_BIT, VK_PIPELINE_STAGE_VERTEX_SHADER_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT, VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT, VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_GEOMETRY_SHADER_BIT, VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT));
// RDD::BarrierAccessBits == VkAccessFlagBits.
static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_INDIRECT_COMMAND_READ_BIT, VK_ACCESS_INDIRECT_COMMAND_READ_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_INDEX_READ_BIT, VK_ACCESS_INDEX_READ_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_VERTEX_ATTRIBUTE_READ_BIT, VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_UNIFORM_READ_BIT, VK_ACCESS_UNIFORM_READ_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_INPUT_ATTACHMENT_READ_BIT, VK_ACCESS_INPUT_ATTACHMENT_READ_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_SHADER_READ_BIT, VK_ACCESS_SHADER_READ_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_SHADER_WRITE_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_COLOR_ATTACHMENT_READ_BIT, VK_ACCESS_COLOR_ATTACHMENT_READ_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT, VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_TRANSFER_READ_BIT, VK_ACCESS_TRANSFER_READ_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_TRANSFER_WRITE_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_HOST_READ_BIT, VK_ACCESS_HOST_READ_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_HOST_WRITE_BIT, VK_ACCESS_HOST_WRITE_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_MEMORY_READ_BIT, VK_ACCESS_MEMORY_READ_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_MEMORY_WRITE_BIT, VK_ACCESS_MEMORY_WRITE_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_FRAGMENT_SHADING_RATE_ATTACHMENT_READ_BIT, VK_ACCESS_FRAGMENT_SHADING_RATE_ATTACHMENT_READ_BIT_KHR));
void RenderingDeviceDriverVulkan::command_pipeline_barrier(
CommandBufferID p_cmd_buffer,
BitField<PipelineStageBits> p_src_stages,
BitField<PipelineStageBits> p_dst_stages,
VectorView<MemoryBarrier> p_memory_barriers,
VectorView<BufferBarrier> p_buffer_barriers,
VectorView<TextureBarrier> p_texture_barriers) {
VkMemoryBarrier *vk_memory_barriers = ALLOCA_ARRAY(VkMemoryBarrier, p_memory_barriers.size());
for (uint32_t i = 0; i < p_memory_barriers.size(); i++) {
vk_memory_barriers[i] = {};
vk_memory_barriers[i].sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER;
vk_memory_barriers[i].srcAccessMask = (VkPipelineStageFlags)p_memory_barriers[i].src_access;
vk_memory_barriers[i].dstAccessMask = (VkAccessFlags)p_memory_barriers[i].dst_access;
}
VkBufferMemoryBarrier *vk_buffer_barriers = ALLOCA_ARRAY(VkBufferMemoryBarrier, p_buffer_barriers.size());
for (uint32_t i = 0; i < p_buffer_barriers.size(); i++) {
vk_buffer_barriers[i] = {};
vk_buffer_barriers[i].sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER;
vk_buffer_barriers[i].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
vk_buffer_barriers[i].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
vk_buffer_barriers[i].srcAccessMask = (VkAccessFlags)p_buffer_barriers[i].src_access;
vk_buffer_barriers[i].dstAccessMask = (VkAccessFlags)p_buffer_barriers[i].dst_access;
vk_buffer_barriers[i].buffer = ((const BufferInfo *)p_buffer_barriers[i].buffer.id)->vk_buffer;
vk_buffer_barriers[i].offset = p_buffer_barriers[i].offset;
vk_buffer_barriers[i].size = p_buffer_barriers[i].size;
}
VkImageMemoryBarrier *vk_image_barriers = ALLOCA_ARRAY(VkImageMemoryBarrier, p_texture_barriers.size());
for (uint32_t i = 0; i < p_texture_barriers.size(); i++) {
const TextureInfo *tex_info = (const TextureInfo *)p_texture_barriers[i].texture.id;
vk_image_barriers[i] = {};
vk_image_barriers[i].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
vk_image_barriers[i].srcAccessMask = (VkAccessFlags)p_texture_barriers[i].src_access;
vk_image_barriers[i].dstAccessMask = (VkAccessFlags)p_texture_barriers[i].dst_access;
vk_image_barriers[i].oldLayout = (VkImageLayout)p_texture_barriers[i].prev_layout;
vk_image_barriers[i].newLayout = (VkImageLayout)p_texture_barriers[i].next_layout;
vk_image_barriers[i].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
vk_image_barriers[i].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
vk_image_barriers[i].image = tex_info->vk_view_create_info.image;
vk_image_barriers[i].subresourceRange.aspectMask = (VkImageAspectFlags)p_texture_barriers[i].subresources.aspect;
vk_image_barriers[i].subresourceRange.baseMipLevel = p_texture_barriers[i].subresources.base_mipmap;
vk_image_barriers[i].subresourceRange.levelCount = p_texture_barriers[i].subresources.mipmap_count;
vk_image_barriers[i].subresourceRange.baseArrayLayer = p_texture_barriers[i].subresources.base_layer;
vk_image_barriers[i].subresourceRange.layerCount = p_texture_barriers[i].subresources.layer_count;
}
#if PRINT_NATIVE_COMMANDS
print_line(vformat("vkCmdPipelineBarrier MEMORY %d BUFFER %d TEXTURE %d", p_memory_barriers.size(), p_buffer_barriers.size(), p_texture_barriers.size()));
for (uint32_t i = 0; i < p_memory_barriers.size(); i++) {
print_line(vformat(" VkMemoryBarrier #%d src 0x%uX dst 0x%uX", i, vk_memory_barriers[i].srcAccessMask, vk_memory_barriers[i].dstAccessMask));
}
for (uint32_t i = 0; i < p_buffer_barriers.size(); i++) {
print_line(vformat(" VkBufferMemoryBarrier #%d src 0x%uX dst 0x%uX buffer 0x%ux", i, vk_buffer_barriers[i].srcAccessMask, vk_buffer_barriers[i].dstAccessMask, uint64_t(vk_buffer_barriers[i].buffer)));
}
for (uint32_t i = 0; i < p_texture_barriers.size(); i++) {
print_line(vformat(" VkImageMemoryBarrier #%d src 0x%uX dst 0x%uX image 0x%ux old %d new %d (%d %d %d %d)", i, vk_image_barriers[i].srcAccessMask, vk_image_barriers[i].dstAccessMask,
uint64_t(vk_image_barriers[i].image), vk_image_barriers[i].oldLayout, vk_image_barriers[i].newLayout, vk_image_barriers[i].subresourceRange.baseMipLevel, vk_image_barriers[i].subresourceRange.levelCount,
vk_image_barriers[i].subresourceRange.baseArrayLayer, vk_image_barriers[i].subresourceRange.layerCount));
}
#endif
vkCmdPipelineBarrier(
(VkCommandBuffer)p_cmd_buffer.id,
(VkPipelineStageFlags)p_src_stages,
(VkPipelineStageFlags)p_dst_stages,
0,
p_memory_barriers.size(), vk_memory_barriers,
p_buffer_barriers.size(), vk_buffer_barriers,
p_texture_barriers.size(), vk_image_barriers);
}
/****************/
/**** FENCES ****/
/****************/
RDD::FenceID RenderingDeviceDriverVulkan::fence_create() {
VkFence vk_fence = VK_NULL_HANDLE;
VkFenceCreateInfo create_info = {};
create_info.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
VkResult err = vkCreateFence(vk_device, &create_info, nullptr, &vk_fence);
ERR_FAIL_COND_V(err != VK_SUCCESS, FenceID());
Fence *fence = memnew(Fence);
fence->vk_fence = vk_fence;
fence->queue_signaled_from = nullptr;
return FenceID(fence);
}
Error RenderingDeviceDriverVulkan::fence_wait(FenceID p_fence) {
Fence *fence = (Fence *)(p_fence.id);
VkResult err = vkWaitForFences(vk_device, 1, &fence->vk_fence, VK_TRUE, UINT64_MAX);
ERR_FAIL_COND_V(err != VK_SUCCESS, FAILED);
err = vkResetFences(vk_device, 1, &fence->vk_fence);
ERR_FAIL_COND_V(err != VK_SUCCESS, FAILED);
if (fence->queue_signaled_from != nullptr) {
// Release all semaphores that the command queue associated to the fence waited on the last time it was submitted.
LocalVector<Pair<Fence *, uint32_t>> &pairs = fence->queue_signaled_from->image_semaphores_for_fences;
uint32_t i = 0;
while (i < pairs.size()) {
if (pairs[i].first == fence) {
_release_image_semaphore(fence->queue_signaled_from, pairs[i].second, true);
fence->queue_signaled_from->free_image_semaphores.push_back(pairs[i].second);
pairs.remove_at(i);
} else {
i++;
}
}
fence->queue_signaled_from = nullptr;
}
return OK;
}
void RenderingDeviceDriverVulkan::fence_free(FenceID p_fence) {
Fence *fence = (Fence *)(p_fence.id);
vkDestroyFence(vk_device, fence->vk_fence, nullptr);
memdelete(fence);
}
/********************/
/**** SEMAPHORES ****/
/********************/
RDD::SemaphoreID RenderingDeviceDriverVulkan::semaphore_create() {
VkSemaphore semaphore = VK_NULL_HANDLE;
VkSemaphoreCreateInfo create_info = {};
create_info.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
VkResult err = vkCreateSemaphore(vk_device, &create_info, nullptr, &semaphore);
ERR_FAIL_COND_V(err != VK_SUCCESS, SemaphoreID());
return SemaphoreID(semaphore);
}
void RenderingDeviceDriverVulkan::semaphore_free(SemaphoreID p_semaphore) {
vkDestroySemaphore(vk_device, VkSemaphore(p_semaphore.id), nullptr);
}
/******************/
/**** COMMANDS ****/
/******************/
// ----- QUEUE FAMILY -----
RDD::CommandQueueFamilyID RenderingDeviceDriverVulkan::command_queue_family_get(BitField<CommandQueueFamilyBits> p_cmd_queue_family_bits, RenderingContextDriver::SurfaceID p_surface) {
// Pick the queue with the least amount of bits that can fulfill the requirements.
VkQueueFlags picked_queue_flags = VK_QUEUE_FLAG_BITS_MAX_ENUM;
uint32_t picked_family_index = UINT_MAX;
for (uint32_t i = 0; i < queue_family_properties.size(); i++) {
if (queue_families[i].is_empty()) {
// Ignore empty queue families.
continue;
}
if (p_surface != 0 && !context_driver->queue_family_supports_present(physical_device, i, p_surface)) {
// Present is not an actual bit but something that must be queried manually.
continue;
}
// Preferring a queue with less bits will get us closer to getting a queue that performs better for our requirements.
// For example, dedicated compute and transfer queues are usually indicated as such.
const VkQueueFlags option_queue_flags = queue_family_properties[i].queueFlags;
const bool includes_all_bits = (option_queue_flags & p_cmd_queue_family_bits) == p_cmd_queue_family_bits;
const bool prefer_less_bits = option_queue_flags < picked_queue_flags;
if (includes_all_bits && prefer_less_bits) {
picked_family_index = i;
picked_queue_flags = option_queue_flags;
}
}
ERR_FAIL_COND_V_MSG(picked_family_index >= queue_family_properties.size(), CommandQueueFamilyID(), "A queue family with the requested bits could not be found.");
// Since 0 is a valid index and we use 0 as the error case, we make the index start from 1 instead.
return CommandQueueFamilyID(picked_family_index + 1);
}
// ----- QUEUE -----
RDD::CommandQueueID RenderingDeviceDriverVulkan::command_queue_create(CommandQueueFamilyID p_cmd_queue_family, bool p_identify_as_main_queue) {
DEV_ASSERT(p_cmd_queue_family.id != 0);
// Make a virtual queue on top of a real queue. Use the queue from the family with the least amount of virtual queues created.
uint32_t family_index = p_cmd_queue_family.id - 1;
TightLocalVector<Queue> &queue_family = queue_families[family_index];
uint32_t picked_queue_index = UINT_MAX;
uint32_t picked_virtual_count = UINT_MAX;
for (uint32_t i = 0; i < queue_family.size(); i++) {
if (queue_family[i].virtual_count < picked_virtual_count) {
picked_queue_index = i;
picked_virtual_count = queue_family[i].virtual_count;
}
}
ERR_FAIL_COND_V_MSG(picked_queue_index >= queue_family.size(), CommandQueueID(), "A queue in the picked family could not be found.");
// Create the virtual queue.
CommandQueue *command_queue = memnew(CommandQueue);
command_queue->queue_family = family_index;
command_queue->queue_index = picked_queue_index;
queue_family[picked_queue_index].virtual_count++;
// If is was identified as the main queue and a hook is active, indicate it as such to the hook.
if (p_identify_as_main_queue && (VulkanHooks::get_singleton() != nullptr)) {
VulkanHooks::get_singleton()->set_direct_queue_family_and_index(family_index, picked_queue_index);
}
return CommandQueueID(command_queue);
}
Error RenderingDeviceDriverVulkan::command_queue_execute(CommandQueueID p_cmd_queue, VectorView<CommandBufferID> p_cmd_buffers, VectorView<SemaphoreID> p_wait_semaphores, VectorView<SemaphoreID> p_signal_semaphores, FenceID p_signal_fence) {
DEV_ASSERT(p_cmd_queue.id != 0);
CommandQueue *command_queue = (CommandQueue *)(p_cmd_queue.id);
Queue &device_queue = queue_families[command_queue->queue_family][command_queue->queue_index];
Fence *fence = (Fence *)(p_signal_fence.id);
VkFence vk_fence = (fence != nullptr) ? fence->vk_fence : VK_NULL_HANDLE;
thread_local LocalVector<VkCommandBuffer> command_buffers;
thread_local LocalVector<VkSemaphore> wait_semaphores;
thread_local LocalVector<VkSemaphore> signal_semaphores;
thread_local LocalVector<VkPipelineStageFlags> wait_semaphores_stages;
command_buffers.clear();
wait_semaphores.clear();
signal_semaphores.clear();
wait_semaphores_stages.clear();
if (!command_queue->pending_semaphores_for_execute.is_empty()) {
for (uint32_t i = 0; i < command_queue->pending_semaphores_for_execute.size(); i++) {
VkSemaphore wait_semaphore = command_queue->image_semaphores[command_queue->pending_semaphores_for_execute[i]];
wait_semaphores.push_back(wait_semaphore);
wait_semaphores_stages.push_back(VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT);
}
command_queue->pending_semaphores_for_execute.clear();
}
for (uint32_t i = 0; i < p_cmd_buffers.size(); i++) {
command_buffers.push_back(VkCommandBuffer(p_cmd_buffers[i].id));
}
for (uint32_t i = 0; i < p_wait_semaphores.size(); i++) {
// FIXME: Allow specifying the stage mask in more detail.
wait_semaphores.push_back(VkSemaphore(p_wait_semaphores[i].id));
wait_semaphores_stages.push_back(VK_PIPELINE_STAGE_ALL_COMMANDS_BIT);
}
for (uint32_t i = 0; i < p_signal_semaphores.size(); i++) {
signal_semaphores.push_back(VkSemaphore(p_signal_semaphores[i].id));
}
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.waitSemaphoreCount = wait_semaphores.size();
submit_info.pWaitSemaphores = wait_semaphores.ptr();
submit_info.pWaitDstStageMask = wait_semaphores_stages.ptr();
submit_info.commandBufferCount = command_buffers.size();
submit_info.pCommandBuffers = command_buffers.ptr();
submit_info.signalSemaphoreCount = signal_semaphores.size();
submit_info.pSignalSemaphores = signal_semaphores.ptr();
device_queue.submit_mutex.lock();
VkResult err = vkQueueSubmit(device_queue.queue, 1, &submit_info, vk_fence);
device_queue.submit_mutex.unlock();
ERR_FAIL_COND_V(err != VK_SUCCESS, FAILED);
if (fence != nullptr && !command_queue->pending_semaphores_for_fence.is_empty()) {
fence->queue_signaled_from = command_queue;
// Indicate to the fence that it should release the semaphores that were waited on this submission the next time the fence is waited on.
for (uint32_t i = 0; i < command_queue->pending_semaphores_for_fence.size(); i++) {
command_queue->image_semaphores_for_fences.push_back({ fence, command_queue->pending_semaphores_for_fence[i] });
}
command_queue->pending_semaphores_for_fence.clear();
}
return OK;
}
Error RenderingDeviceDriverVulkan::command_queue_present(CommandQueueID p_cmd_queue, VectorView<SwapChainID> p_swap_chains, VectorView<SemaphoreID> p_wait_semaphores) {
DEV_ASSERT(p_cmd_queue.id != 0);
CommandQueue *command_queue = (CommandQueue *)(p_cmd_queue.id);
Queue &device_queue = queue_families[command_queue->queue_family][command_queue->queue_index];
thread_local LocalVector<VkSwapchainKHR> swapchains;
thread_local LocalVector<uint32_t> image_indices;
thread_local LocalVector<VkSemaphore> wait_semaphores;
thread_local LocalVector<VkResult> results;
swapchains.clear();
image_indices.clear();
for (uint32_t i = 0; i < p_swap_chains.size(); i++) {
SwapChain *swap_chain = (SwapChain *)(p_swap_chains[i].id);
swapchains.push_back(swap_chain->vk_swapchain);
DEV_ASSERT(swap_chain->image_index < swap_chain->images.size());
image_indices.push_back(swap_chain->image_index);
}
wait_semaphores.clear();
for (uint32_t i = 0; i < p_wait_semaphores.size(); i++) {
wait_semaphores.push_back(VkSemaphore(p_wait_semaphores[i].id));
}
results.resize(swapchains.size());
VkPresentInfoKHR present_info = {};
present_info.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
present_info.waitSemaphoreCount = wait_semaphores.size();
present_info.pWaitSemaphores = wait_semaphores.ptr();
present_info.swapchainCount = swapchains.size();
present_info.pSwapchains = swapchains.ptr();
present_info.pImageIndices = image_indices.ptr();
present_info.pResults = results.ptr();
device_queue.submit_mutex.lock();
VkResult err = device_functions.QueuePresentKHR(device_queue.queue, &present_info);
device_queue.submit_mutex.unlock();
// Set the index to an invalid value. If any of the swap chains returned out of date, indicate it should be resized the next time it's acquired.
bool any_result_is_out_of_date = false;
for (uint32_t i = 0; i < p_swap_chains.size(); i++) {
SwapChain *swap_chain = (SwapChain *)(p_swap_chains[i].id);
swap_chain->image_index = UINT_MAX;
if (results[i] == VK_ERROR_OUT_OF_DATE_KHR) {
context_driver->surface_set_needs_resize(swap_chain->surface, true);
any_result_is_out_of_date = true;
}
}
if (any_result_is_out_of_date || err == VK_ERROR_OUT_OF_DATE_KHR) {
// It is possible for presentation to fail with out of date while acquire might've succeeded previously. This case
// will be considered a silent failure as it can be triggered easily by resizing a window in the OS natively.
return FAILED;
}
// Handling VK_SUBOPTIMAL_KHR the same as VK_SUCCESS is completely intentional.
//
// Godot does not currently support native rotation in Android when creating the swap chain. It intentionally uses
// VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR instead of the current transform bits available in the surface capabilities.
// Choosing the transform that leads to optimal presentation leads to distortion that makes the application unusable,
// as the rotation of all the content is not handled at the moment.
//
// VK_SUBOPTIMAL_KHR is accepted as a successful case even if it's not the most efficient solution to work around this
// problem. This behavior should not be changed unless the swap chain recreation uses the current transform bits, as
// it'll lead to very low performance in Android by entering an endless loop where it'll always resize the swap chain
// every frame.
ERR_FAIL_COND_V(err != VK_SUCCESS && err != VK_SUBOPTIMAL_KHR, FAILED);
return OK;
}
void RenderingDeviceDriverVulkan::command_queue_free(CommandQueueID p_cmd_queue) {
DEV_ASSERT(p_cmd_queue);
CommandQueue *command_queue = (CommandQueue *)(p_cmd_queue.id);
// Erase all the semaphores used for image acquisition.
for (VkSemaphore semaphore : command_queue->image_semaphores) {
vkDestroySemaphore(vk_device, semaphore, nullptr);
}
// Retrieve the queue family corresponding to the virtual queue.
DEV_ASSERT(command_queue->queue_family < queue_families.size());
TightLocalVector<Queue> &queue_family = queue_families[command_queue->queue_family];
// Decrease the virtual queue count.
DEV_ASSERT(command_queue->queue_index < queue_family.size());
DEV_ASSERT(queue_family[command_queue->queue_index].virtual_count > 0);
queue_family[command_queue->queue_index].virtual_count--;
// Destroy the virtual queue structure.
memdelete(command_queue);
}
// ----- POOL -----
RDD::CommandPoolID RenderingDeviceDriverVulkan::command_pool_create(CommandQueueFamilyID p_cmd_queue_family, CommandBufferType p_cmd_buffer_type) {
DEV_ASSERT(p_cmd_queue_family.id != 0);
uint32_t family_index = p_cmd_queue_family.id - 1;
VkCommandPoolCreateInfo cmd_pool_info = {};
cmd_pool_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
cmd_pool_info.queueFamilyIndex = family_index;
cmd_pool_info.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
VkCommandPool vk_command_pool = VK_NULL_HANDLE;
VkResult res = vkCreateCommandPool(vk_device, &cmd_pool_info, nullptr, &vk_command_pool);
ERR_FAIL_COND_V_MSG(res, CommandPoolID(), "vkCreateCommandPool failed with error " + itos(res) + ".");
CommandPool *command_pool = memnew(CommandPool);
command_pool->vk_command_pool = vk_command_pool;
command_pool->buffer_type = p_cmd_buffer_type;
return CommandPoolID(command_pool);
}
void RenderingDeviceDriverVulkan::command_pool_free(CommandPoolID p_cmd_pool) {
DEV_ASSERT(p_cmd_pool);
CommandPool *command_pool = (CommandPool *)(p_cmd_pool.id);
vkDestroyCommandPool(vk_device, command_pool->vk_command_pool, nullptr);
memdelete(command_pool);
}
// ----- BUFFER -----
RDD::CommandBufferID RenderingDeviceDriverVulkan::command_buffer_create(CommandPoolID p_cmd_pool) {
DEV_ASSERT(p_cmd_pool);
const CommandPool *command_pool = (const CommandPool *)(p_cmd_pool.id);
VkCommandBufferAllocateInfo cmd_buf_info = {};
cmd_buf_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
cmd_buf_info.commandPool = command_pool->vk_command_pool;
cmd_buf_info.commandBufferCount = 1;
if (command_pool->buffer_type == COMMAND_BUFFER_TYPE_SECONDARY) {
cmd_buf_info.level = VK_COMMAND_BUFFER_LEVEL_SECONDARY;
} else {
cmd_buf_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
}
VkCommandBuffer vk_cmd_buffer = VK_NULL_HANDLE;
VkResult err = vkAllocateCommandBuffers(vk_device, &cmd_buf_info, &vk_cmd_buffer);
ERR_FAIL_COND_V_MSG(err, CommandBufferID(), "vkAllocateCommandBuffers failed with error " + itos(err) + ".");
return CommandBufferID(vk_cmd_buffer);
}
bool RenderingDeviceDriverVulkan::command_buffer_begin(CommandBufferID p_cmd_buffer) {
// Reset is implicit (VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT).
VkCommandBufferBeginInfo cmd_buf_begin_info = {};
cmd_buf_begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cmd_buf_begin_info.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
VkResult err = vkBeginCommandBuffer((VkCommandBuffer)p_cmd_buffer.id, &cmd_buf_begin_info);
ERR_FAIL_COND_V_MSG(err, false, "vkBeginCommandBuffer failed with error " + itos(err) + ".");
return true;
}
bool RenderingDeviceDriverVulkan::command_buffer_begin_secondary(CommandBufferID p_cmd_buffer, RenderPassID p_render_pass, uint32_t p_subpass, FramebufferID p_framebuffer) {
// Reset is implicit (VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT).
VkCommandBufferInheritanceInfo inheritance_info = {};
inheritance_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO;
inheritance_info.renderPass = (VkRenderPass)p_render_pass.id;
inheritance_info.subpass = p_subpass;
inheritance_info.framebuffer = (VkFramebuffer)p_framebuffer.id;
VkCommandBufferBeginInfo cmd_buf_begin_info = {};
cmd_buf_begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cmd_buf_begin_info.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT | VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT;
cmd_buf_begin_info.pInheritanceInfo = &inheritance_info;
VkResult err = vkBeginCommandBuffer((VkCommandBuffer)p_cmd_buffer.id, &cmd_buf_begin_info);
ERR_FAIL_COND_V_MSG(err, false, "vkBeginCommandBuffer failed with error " + itos(err) + ".");
return true;
}
void RenderingDeviceDriverVulkan::command_buffer_end(CommandBufferID p_cmd_buffer) {
vkEndCommandBuffer((VkCommandBuffer)p_cmd_buffer.id);
}
void RenderingDeviceDriverVulkan::command_buffer_execute_secondary(CommandBufferID p_cmd_buffer, VectorView<CommandBufferID> p_secondary_cmd_buffers) {
vkCmdExecuteCommands((VkCommandBuffer)p_cmd_buffer.id, p_secondary_cmd_buffers.size(), (const VkCommandBuffer *)p_secondary_cmd_buffers.ptr());
}
/********************/
/**** SWAP CHAIN ****/
/********************/
void RenderingDeviceDriverVulkan::_swap_chain_release(SwapChain *swap_chain) {
// Destroy views and framebuffers associated to the swapchain's images.
for (FramebufferID framebuffer : swap_chain->framebuffers) {
framebuffer_free(framebuffer);
}
for (VkImageView view : swap_chain->image_views) {
vkDestroyImageView(vk_device, view, nullptr);
}
swap_chain->image_index = UINT_MAX;
swap_chain->images.clear();
swap_chain->image_views.clear();
swap_chain->framebuffers.clear();
if (swap_chain->vk_swapchain != VK_NULL_HANDLE) {
device_functions.DestroySwapchainKHR(vk_device, swap_chain->vk_swapchain, nullptr);
swap_chain->vk_swapchain = VK_NULL_HANDLE;
}
for (uint32_t i = 0; i < swap_chain->command_queues_acquired.size(); i++) {
_recreate_image_semaphore(swap_chain->command_queues_acquired[i], swap_chain->command_queues_acquired_semaphores[i], false);
}
swap_chain->command_queues_acquired.clear();
swap_chain->command_queues_acquired_semaphores.clear();
}
RenderingDeviceDriver::SwapChainID RenderingDeviceDriverVulkan::swap_chain_create(RenderingContextDriver::SurfaceID p_surface) {
DEV_ASSERT(p_surface != 0);
RenderingContextDriverVulkan::Surface *surface = (RenderingContextDriverVulkan::Surface *)(p_surface);
const RenderingContextDriverVulkan::Functions &functions = context_driver->functions_get();
// Retrieve the formats supported by the surface.
uint32_t format_count = 0;
VkResult err = functions.GetPhysicalDeviceSurfaceFormatsKHR(physical_device, surface->vk_surface, &format_count, nullptr);
ERR_FAIL_COND_V(err != VK_SUCCESS, SwapChainID());
TightLocalVector<VkSurfaceFormatKHR> formats;
formats.resize(format_count);
err = functions.GetPhysicalDeviceSurfaceFormatsKHR(physical_device, surface->vk_surface, &format_count, formats.ptr());
ERR_FAIL_COND_V(err != VK_SUCCESS, SwapChainID());
VkFormat format = VK_FORMAT_UNDEFINED;
VkColorSpaceKHR color_space = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR;
if (format_count == 1 && formats[0].format == VK_FORMAT_UNDEFINED) {
// If the format list includes just one entry of VK_FORMAT_UNDEFINED, the surface has no preferred format.
format = VK_FORMAT_B8G8R8A8_UNORM;
color_space = formats[0].colorSpace;
} else if (format_count > 0) {
// Use one of the supported formats, prefer B8G8R8A8_UNORM.
const VkFormat preferred_format = VK_FORMAT_B8G8R8A8_UNORM;
const VkFormat second_format = VK_FORMAT_R8G8B8A8_UNORM;
for (uint32_t i = 0; i < format_count; i++) {
if (formats[i].format == preferred_format || formats[i].format == second_format) {
format = formats[i].format;
if (formats[i].format == preferred_format) {
// This is the preferred format, stop searching.
break;
}
}
}
}
// No formats are supported.
ERR_FAIL_COND_V_MSG(format == VK_FORMAT_UNDEFINED, SwapChainID(), "Surface did not return any valid formats.");
// Create the render pass for the chosen format.
VkAttachmentDescription2KHR attachment = {};
attachment.sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2_KHR;
attachment.format = format;
attachment.samples = VK_SAMPLE_COUNT_1_BIT;
attachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
VkAttachmentReference2KHR color_reference = {};
color_reference.sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2_KHR;
color_reference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkSubpassDescription2KHR subpass = {};
subpass.sType = VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2_KHR;
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &color_reference;
VkRenderPassCreateInfo2KHR pass_info = {};
pass_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2_KHR;
pass_info.attachmentCount = 1;
pass_info.pAttachments = &attachment;
pass_info.subpassCount = 1;
pass_info.pSubpasses = &subpass;
VkRenderPass render_pass = VK_NULL_HANDLE;
err = _create_render_pass(vk_device, &pass_info, nullptr, &render_pass);
ERR_FAIL_COND_V(err != VK_SUCCESS, SwapChainID());
SwapChain *swap_chain = memnew(SwapChain);
swap_chain->surface = p_surface;
swap_chain->format = format;
swap_chain->color_space = color_space;
swap_chain->render_pass = RenderPassID(render_pass);
return SwapChainID(swap_chain);
}
Error RenderingDeviceDriverVulkan::swap_chain_resize(CommandQueueID p_cmd_queue, SwapChainID p_swap_chain, uint32_t p_desired_framebuffer_count) {
DEV_ASSERT(p_cmd_queue.id != 0);
DEV_ASSERT(p_swap_chain.id != 0);
CommandQueue *command_queue = (CommandQueue *)(p_cmd_queue.id);
SwapChain *swap_chain = (SwapChain *)(p_swap_chain.id);
// Release all current contents of the swap chain.
_swap_chain_release(swap_chain);
// Validate if the command queue being used supports creating the swap chain for this surface.
const RenderingContextDriverVulkan::Functions &functions = context_driver->functions_get();
if (!context_driver->queue_family_supports_present(physical_device, command_queue->queue_family, swap_chain->surface)) {
ERR_FAIL_V_MSG(ERR_CANT_CREATE, "Surface is not supported by device. Did the GPU go offline? Was the window created on another monitor? Check"
"previous errors & try launching with --gpu-validation.");
}
// Retrieve the surface's capabilities.
RenderingContextDriverVulkan::Surface *surface = (RenderingContextDriverVulkan::Surface *)(swap_chain->surface);
VkSurfaceCapabilitiesKHR surface_capabilities = {};
VkResult err = functions.GetPhysicalDeviceSurfaceCapabilitiesKHR(physical_device, surface->vk_surface, &surface_capabilities);
ERR_FAIL_COND_V(err != VK_SUCCESS, ERR_CANT_CREATE);
VkExtent2D extent;
if (surface_capabilities.currentExtent.width == 0xFFFFFFFF) {
// The current extent is currently undefined, so the current surface width and height will be clamped to the surface's capabilities.
extent.width = CLAMP(surface->width, surface_capabilities.minImageExtent.width, surface_capabilities.maxImageExtent.width);
extent.height = CLAMP(surface->height, surface_capabilities.minImageExtent.height, surface_capabilities.maxImageExtent.height);
} else {
// Grab the dimensions from the current extent.
extent = surface_capabilities.currentExtent;
surface->width = extent.width;
surface->height = extent.height;
}
if (surface->width == 0 || surface->height == 0) {
// The surface doesn't have valid dimensions, so we can't create a swap chain.
return ERR_SKIP;
}
// Find what present modes are supported.
TightLocalVector<VkPresentModeKHR> present_modes;
uint32_t present_modes_count = 0;
err = functions.GetPhysicalDeviceSurfacePresentModesKHR(physical_device, surface->vk_surface, &present_modes_count, nullptr);
ERR_FAIL_COND_V(err != VK_SUCCESS, ERR_CANT_CREATE);
present_modes.resize(present_modes_count);
err = functions.GetPhysicalDeviceSurfacePresentModesKHR(physical_device, surface->vk_surface, &present_modes_count, present_modes.ptr());
ERR_FAIL_COND_V(err != VK_SUCCESS, ERR_CANT_CREATE);
// Choose the present mode based on the display server setting.
VkPresentModeKHR present_mode = VkPresentModeKHR::VK_PRESENT_MODE_FIFO_KHR;
String present_mode_name = "Enabled";
switch (surface->vsync_mode) {
case DisplayServer::VSYNC_MAILBOX:
present_mode = VK_PRESENT_MODE_MAILBOX_KHR;
present_mode_name = "Mailbox";
break;
case DisplayServer::VSYNC_ADAPTIVE:
present_mode = VK_PRESENT_MODE_FIFO_RELAXED_KHR;
present_mode_name = "Adaptive";
break;
case DisplayServer::VSYNC_ENABLED:
present_mode = VK_PRESENT_MODE_FIFO_KHR;
present_mode_name = "Enabled";
break;
case DisplayServer::VSYNC_DISABLED:
present_mode = VK_PRESENT_MODE_IMMEDIATE_KHR;
present_mode_name = "Disabled";
break;
}
bool present_mode_available = present_modes.find(present_mode) >= 0;
if (present_mode_available) {
print_verbose("Using present mode: " + present_mode_name);
} else {
// Present mode is not available, fall back to FIFO which is guaranteed to be supported.
WARN_PRINT(vformat("The requested V-Sync mode %s is not available. Falling back to V-Sync mode Enabled.", present_mode_name));
surface->vsync_mode = DisplayServer::VSYNC_ENABLED;
present_mode = VkPresentModeKHR::VK_PRESENT_MODE_FIFO_KHR;
}
// Clamp the desired image count to the surface's capabilities.
uint32_t desired_swapchain_images = MAX(p_desired_framebuffer_count, surface_capabilities.minImageCount);
if (surface_capabilities.maxImageCount > 0) {
// Only clamp to the max image count if it's defined. A max image count of 0 means there's no upper limit to the amount of images.
desired_swapchain_images = MIN(desired_swapchain_images, surface_capabilities.maxImageCount);
}
// Prefer identity transform if it's supported, use the current transform otherwise.
// This behavior is intended as Godot does not supported native rotation in platforms that use these bits.
// Refer to the comment in command_queue_present() for more details.
VkSurfaceTransformFlagBitsKHR surface_transform_bits;
if (surface_capabilities.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR) {
surface_transform_bits = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
} else {
surface_transform_bits = surface_capabilities.currentTransform;
}
VkCompositeAlphaFlagBitsKHR composite_alpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
if (OS::get_singleton()->is_layered_allowed() || !(surface_capabilities.supportedCompositeAlpha & composite_alpha)) {
// Find a supported composite alpha mode - one of these is guaranteed to be set.
VkCompositeAlphaFlagBitsKHR composite_alpha_flags[4] = {
VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR,
VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR,
VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR,
VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR
};
for (uint32_t i = 0; i < ARRAY_SIZE(composite_alpha_flags); i++) {
if (surface_capabilities.supportedCompositeAlpha & composite_alpha_flags[i]) {
composite_alpha = composite_alpha_flags[i];
break;
}
}
}
VkSwapchainCreateInfoKHR swap_create_info = {};
swap_create_info.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
swap_create_info.surface = surface->vk_surface;
swap_create_info.minImageCount = desired_swapchain_images;
swap_create_info.imageFormat = swap_chain->format;
swap_create_info.imageColorSpace = swap_chain->color_space;
swap_create_info.imageExtent = extent;
swap_create_info.imageArrayLayers = 1;
swap_create_info.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
swap_create_info.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
swap_create_info.preTransform = surface_transform_bits;
swap_create_info.compositeAlpha = composite_alpha;
swap_create_info.presentMode = present_mode;
swap_create_info.clipped = true;
err = device_functions.CreateSwapchainKHR(vk_device, &swap_create_info, nullptr, &swap_chain->vk_swapchain);
ERR_FAIL_COND_V(err != VK_SUCCESS, ERR_CANT_CREATE);
uint32_t image_count = 0;
err = device_functions.GetSwapchainImagesKHR(vk_device, swap_chain->vk_swapchain, &image_count, nullptr);
ERR_FAIL_COND_V(err != VK_SUCCESS, ERR_CANT_CREATE);
swap_chain->images.resize(image_count);
err = device_functions.GetSwapchainImagesKHR(vk_device, swap_chain->vk_swapchain, &image_count, swap_chain->images.ptr());
ERR_FAIL_COND_V(err != VK_SUCCESS, ERR_CANT_CREATE);
VkImageViewCreateInfo view_create_info = {};
view_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view_create_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
view_create_info.format = swap_chain->format;
view_create_info.components.r = VK_COMPONENT_SWIZZLE_R;
view_create_info.components.g = VK_COMPONENT_SWIZZLE_G;
view_create_info.components.b = VK_COMPONENT_SWIZZLE_B;
view_create_info.components.a = VK_COMPONENT_SWIZZLE_A;
view_create_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
view_create_info.subresourceRange.levelCount = 1;
view_create_info.subresourceRange.layerCount = 1;
swap_chain->image_views.reserve(image_count);
VkImageView image_view;
for (uint32_t i = 0; i < image_count; i++) {
view_create_info.image = swap_chain->images[i];
err = vkCreateImageView(vk_device, &view_create_info, nullptr, &image_view);
ERR_FAIL_COND_V(err != VK_SUCCESS, ERR_CANT_CREATE);
swap_chain->image_views.push_back(image_view);
}
swap_chain->framebuffers.reserve(image_count);
VkFramebufferCreateInfo fb_create_info = {};
fb_create_info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fb_create_info.renderPass = VkRenderPass(swap_chain->render_pass.id);
fb_create_info.attachmentCount = 1;
fb_create_info.width = surface->width;
fb_create_info.height = surface->height;
fb_create_info.layers = 1;
VkFramebuffer framebuffer;
for (uint32_t i = 0; i < image_count; i++) {
fb_create_info.pAttachments = &swap_chain->image_views[i];
err = vkCreateFramebuffer(vk_device, &fb_create_info, nullptr, &framebuffer);
ERR_FAIL_COND_V(err != VK_SUCCESS, ERR_CANT_CREATE);
swap_chain->framebuffers.push_back(RDD::FramebufferID(framebuffer));
}
// Once everything's been created correctly, indicate the surface no longer needs to be resized.
context_driver->surface_set_needs_resize(swap_chain->surface, false);
return OK;
}
RDD::FramebufferID RenderingDeviceDriverVulkan::swap_chain_acquire_framebuffer(CommandQueueID p_cmd_queue, SwapChainID p_swap_chain, bool &r_resize_required) {
DEV_ASSERT(p_cmd_queue);
DEV_ASSERT(p_swap_chain);
CommandQueue *command_queue = (CommandQueue *)(p_cmd_queue.id);
SwapChain *swap_chain = (SwapChain *)(p_swap_chain.id);
if ((swap_chain->vk_swapchain == VK_NULL_HANDLE) || context_driver->surface_get_needs_resize(swap_chain->surface)) {
// The surface does not have a valid swap chain or it indicates it requires a resize.
r_resize_required = true;
return FramebufferID();
}
VkResult err;
VkSemaphore semaphore = VK_NULL_HANDLE;
uint32_t semaphore_index = 0;
if (command_queue->free_image_semaphores.is_empty()) {
// Add a new semaphore if none are free.
VkSemaphoreCreateInfo create_info = {};
create_info.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
err = vkCreateSemaphore(vk_device, &create_info, nullptr, &semaphore);
ERR_FAIL_COND_V(err != VK_SUCCESS, FramebufferID());
semaphore_index = command_queue->image_semaphores.size();
command_queue->image_semaphores.push_back(semaphore);
command_queue->image_semaphores_swap_chains.push_back(swap_chain);
} else {
// Pick a free semaphore.
uint32_t free_index = command_queue->free_image_semaphores.size() - 1;
semaphore_index = command_queue->free_image_semaphores[free_index];
command_queue->image_semaphores_swap_chains[semaphore_index] = swap_chain;
command_queue->free_image_semaphores.remove_at(free_index);
semaphore = command_queue->image_semaphores[semaphore_index];
}
// Store in the swap chain the acquired semaphore.
swap_chain->command_queues_acquired.push_back(command_queue);
swap_chain->command_queues_acquired_semaphores.push_back(semaphore_index);
err = device_functions.AcquireNextImageKHR(vk_device, swap_chain->vk_swapchain, UINT64_MAX, semaphore, VK_NULL_HANDLE, &swap_chain->image_index);
if (err == VK_ERROR_OUT_OF_DATE_KHR) {
// Out of date leaves the semaphore in a signaled state that will never finish, so it's necessary to recreate it.
bool semaphore_recreated = _recreate_image_semaphore(command_queue, semaphore_index, true);
ERR_FAIL_COND_V(!semaphore_recreated, FramebufferID());
// Swap chain is out of date and must be recreated.
r_resize_required = true;
return FramebufferID();
} else if (err != VK_SUCCESS && err != VK_SUBOPTIMAL_KHR) {
// Swap chain failed to present but the reason is unknown.
// Refer to the comment in command_queue_present() as to why VK_SUBOPTIMAL_KHR is handled the same as VK_SUCCESS.
return FramebufferID();
}
// Indicate the command queue should wait on these semaphores on the next submission and that it should
// indicate they're free again on the next fence.
command_queue->pending_semaphores_for_execute.push_back(semaphore_index);
command_queue->pending_semaphores_for_fence.push_back(semaphore_index);
// Return the corresponding framebuffer to the new current image.
return swap_chain->framebuffers[swap_chain->image_index];
}
RDD::RenderPassID RenderingDeviceDriverVulkan::swap_chain_get_render_pass(SwapChainID p_swap_chain) {
DEV_ASSERT(p_swap_chain.id != 0);
SwapChain *swap_chain = (SwapChain *)(p_swap_chain.id);
return swap_chain->render_pass;
}
RDD::DataFormat RenderingDeviceDriverVulkan::swap_chain_get_format(SwapChainID p_swap_chain) {
DEV_ASSERT(p_swap_chain.id != 0);
SwapChain *swap_chain = (SwapChain *)(p_swap_chain.id);
switch (swap_chain->format) {
case VK_FORMAT_B8G8R8A8_UNORM:
return DATA_FORMAT_B8G8R8A8_UNORM;
case VK_FORMAT_R8G8B8A8_UNORM:
return DATA_FORMAT_R8G8B8A8_UNORM;
default:
DEV_ASSERT(false && "Unknown swap chain format.");
return DATA_FORMAT_MAX;
}
}
void RenderingDeviceDriverVulkan::swap_chain_free(SwapChainID p_swap_chain) {
DEV_ASSERT(p_swap_chain.id != 0);
SwapChain *swap_chain = (SwapChain *)(p_swap_chain.id);
_swap_chain_release(swap_chain);
if (swap_chain->render_pass.id != 0) {
vkDestroyRenderPass(vk_device, VkRenderPass(swap_chain->render_pass.id), nullptr);
}
memdelete(swap_chain);
}
/*********************/
/**** FRAMEBUFFER ****/
/*********************/
RDD::FramebufferID RenderingDeviceDriverVulkan::framebuffer_create(RenderPassID p_render_pass, VectorView<TextureID> p_attachments, uint32_t p_width, uint32_t p_height) {
VkImageView *vk_img_views = ALLOCA_ARRAY(VkImageView, p_attachments.size());
for (uint32_t i = 0; i < p_attachments.size(); i++) {
vk_img_views[i] = ((const TextureInfo *)p_attachments[i].id)->vk_view;
}
VkFramebufferCreateInfo framebuffer_create_info = {};
framebuffer_create_info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
framebuffer_create_info.renderPass = (VkRenderPass)p_render_pass.id;
framebuffer_create_info.attachmentCount = p_attachments.size();
framebuffer_create_info.pAttachments = vk_img_views;
framebuffer_create_info.width = p_width;
framebuffer_create_info.height = p_height;
framebuffer_create_info.layers = 1;
VkFramebuffer vk_framebuffer = VK_NULL_HANDLE;
VkResult err = vkCreateFramebuffer(vk_device, &framebuffer_create_info, nullptr, &vk_framebuffer);
ERR_FAIL_COND_V_MSG(err, FramebufferID(), "vkCreateFramebuffer failed with error " + itos(err) + ".");
#if PRINT_NATIVE_COMMANDS
print_line(vformat("vkCreateFramebuffer 0x%uX with %d attachments", uint64_t(vk_framebuffer), p_attachments.size()));
for (uint32_t i = 0; i < p_attachments.size(); i++) {
const TextureInfo *attachment_info = (const TextureInfo *)p_attachments[i].id;
print_line(vformat(" Attachment #%d: IMAGE 0x%uX VIEW 0x%uX", i, uint64_t(attachment_info->vk_view_create_info.image), uint64_t(attachment_info->vk_view)));
}
#endif
return FramebufferID(vk_framebuffer);
}
void RenderingDeviceDriverVulkan::framebuffer_free(FramebufferID p_framebuffer) {
vkDestroyFramebuffer(vk_device, (VkFramebuffer)p_framebuffer.id, nullptr);
}
/****************/
/**** SHADER ****/
/****************/
static VkShaderStageFlagBits RD_STAGE_TO_VK_SHADER_STAGE_BITS[RDD::SHADER_STAGE_MAX] = {
VK_SHADER_STAGE_VERTEX_BIT,
VK_SHADER_STAGE_FRAGMENT_BIT,
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
VK_SHADER_STAGE_COMPUTE_BIT,
};
String RenderingDeviceDriverVulkan::shader_get_binary_cache_key() {
return "Vulkan-SV" + uitos(ShaderBinary::VERSION);
}
Vector<uint8_t> RenderingDeviceDriverVulkan::shader_compile_binary_from_spirv(VectorView<ShaderStageSPIRVData> p_spirv, const String &p_shader_name) {
ShaderReflection shader_refl;
if (_reflect_spirv(p_spirv, shader_refl) != OK) {
return Vector<uint8_t>();
}
ERR_FAIL_COND_V_MSG((uint32_t)shader_refl.uniform_sets.size() > physical_device_properties.limits.maxBoundDescriptorSets, Vector<uint8_t>(),
"Number of uniform sets is larger than what is supported by the hardware (" + itos(physical_device_properties.limits.maxBoundDescriptorSets) + ").");
// Collect reflection data into binary data.
ShaderBinary::Data binary_data;
Vector<Vector<ShaderBinary::DataBinding>> uniforms; // Set bindings.
Vector<ShaderBinary::SpecializationConstant> specialization_constants;
{
binary_data.vertex_input_mask = shader_refl.vertex_input_mask;
binary_data.fragment_output_mask = shader_refl.fragment_output_mask;
binary_data.specialization_constants_count = shader_refl.specialization_constants.size();
binary_data.is_compute = shader_refl.is_compute;
binary_data.compute_local_size[0] = shader_refl.compute_local_size[0];
binary_data.compute_local_size[1] = shader_refl.compute_local_size[1];
binary_data.compute_local_size[2] = shader_refl.compute_local_size[2];
binary_data.set_count = shader_refl.uniform_sets.size();
binary_data.push_constant_size = shader_refl.push_constant_size;
for (uint32_t i = 0; i < SHADER_STAGE_MAX; i++) {
if (shader_refl.push_constant_stages.has_flag((ShaderStage)(1 << i))) {
binary_data.vk_push_constant_stages_mask |= RD_STAGE_TO_VK_SHADER_STAGE_BITS[i];
}
}
for (const Vector<ShaderUniform> &set_refl : shader_refl.uniform_sets) {
Vector<ShaderBinary::DataBinding> set_bindings;
for (const ShaderUniform &uniform_refl : set_refl) {
ShaderBinary::DataBinding binding;
binding.type = (uint32_t)uniform_refl.type;
binding.binding = uniform_refl.binding;
binding.stages = (uint32_t)uniform_refl.stages;
binding.length = uniform_refl.length;
binding.writable = (uint32_t)uniform_refl.writable;
set_bindings.push_back(binding);
}
uniforms.push_back(set_bindings);
}
for (const ShaderSpecializationConstant &refl_sc : shader_refl.specialization_constants) {
ShaderBinary::SpecializationConstant spec_constant;
spec_constant.type = (uint32_t)refl_sc.type;
spec_constant.constant_id = refl_sc.constant_id;
spec_constant.int_value = refl_sc.int_value;
spec_constant.stage_flags = (uint32_t)refl_sc.stages;
specialization_constants.push_back(spec_constant);
}
}
Vector<Vector<uint8_t>> compressed_stages;
Vector<uint32_t> smolv_size;
Vector<uint32_t> zstd_size; // If 0, zstd not used.
uint32_t stages_binary_size = 0;
bool strip_debug = false;
for (uint32_t i = 0; i < p_spirv.size(); i++) {
smolv::ByteArray smolv;
if (!smolv::Encode(p_spirv[i].spirv.ptr(), p_spirv[i].spirv.size(), smolv, strip_debug ? smolv::kEncodeFlagStripDebugInfo : 0)) {
ERR_FAIL_V_MSG(Vector<uint8_t>(), "Error compressing shader stage :" + String(SHADER_STAGE_NAMES[p_spirv[i].shader_stage]));
} else {
smolv_size.push_back(smolv.size());
{ // zstd.
Vector<uint8_t> zstd;
zstd.resize(Compression::get_max_compressed_buffer_size(smolv.size(), Compression::MODE_ZSTD));
int dst_size = Compression::compress(zstd.ptrw(), &smolv[0], smolv.size(), Compression::MODE_ZSTD);
if (dst_size > 0 && (uint32_t)dst_size < smolv.size()) {
zstd_size.push_back(dst_size);
zstd.resize(dst_size);
compressed_stages.push_back(zstd);
} else {
Vector<uint8_t> smv;
smv.resize(smolv.size());
memcpy(smv.ptrw(), &smolv[0], smolv.size());
zstd_size.push_back(0); // Not using zstd.
compressed_stages.push_back(smv);
}
}
}
uint32_t s = compressed_stages[i].size();
if (s % 4 != 0) {
s += 4 - (s % 4);
}
stages_binary_size += s;
}
binary_data.specialization_constants_count = specialization_constants.size();
binary_data.set_count = uniforms.size();
binary_data.stage_count = p_spirv.size();
CharString shader_name_utf = p_shader_name.utf8();
binary_data.shader_name_len = shader_name_utf.length();
uint32_t total_size = sizeof(uint32_t) * 3; // Header + version + main datasize;.
total_size += sizeof(ShaderBinary::Data);
total_size += binary_data.shader_name_len;
if ((binary_data.shader_name_len % 4) != 0) { // Alignment rules are really strange.
total_size += 4 - (binary_data.shader_name_len % 4);
}
for (int i = 0; i < uniforms.size(); i++) {
total_size += sizeof(uint32_t);
total_size += uniforms[i].size() * sizeof(ShaderBinary::DataBinding);
}
total_size += sizeof(ShaderBinary::SpecializationConstant) * specialization_constants.size();
total_size += compressed_stages.size() * sizeof(uint32_t) * 3; // Sizes.
total_size += stages_binary_size;
Vector<uint8_t> ret;
ret.resize(total_size);
{
uint32_t offset = 0;
uint8_t *binptr = ret.ptrw();
binptr[0] = 'G';
binptr[1] = 'S';
binptr[2] = 'B';
binptr[3] = 'D'; // Godot Shader Binary Data.
offset += 4;
encode_uint32(ShaderBinary::VERSION, binptr + offset);
offset += sizeof(uint32_t);
encode_uint32(sizeof(ShaderBinary::Data), binptr + offset);
offset += sizeof(uint32_t);
memcpy(binptr + offset, &binary_data, sizeof(ShaderBinary::Data));
offset += sizeof(ShaderBinary::Data);
if (binary_data.shader_name_len > 0) {
memcpy(binptr + offset, shader_name_utf.ptr(), binary_data.shader_name_len);
offset += binary_data.shader_name_len;
if ((binary_data.shader_name_len % 4) != 0) { // Alignment rules are really strange.
offset += 4 - (binary_data.shader_name_len % 4);
}
}
for (int i = 0; i < uniforms.size(); i++) {
int count = uniforms[i].size();
encode_uint32(count, binptr + offset);
offset += sizeof(uint32_t);
if (count > 0) {
memcpy(binptr + offset, uniforms[i].ptr(), sizeof(ShaderBinary::DataBinding) * count);
offset += sizeof(ShaderBinary::DataBinding) * count;
}
}
if (specialization_constants.size()) {
memcpy(binptr + offset, specialization_constants.ptr(), sizeof(ShaderBinary::SpecializationConstant) * specialization_constants.size());
offset += sizeof(ShaderBinary::SpecializationConstant) * specialization_constants.size();
}
for (int i = 0; i < compressed_stages.size(); i++) {
encode_uint32(p_spirv[i].shader_stage, binptr + offset);
offset += sizeof(uint32_t);
encode_uint32(smolv_size[i], binptr + offset);
offset += sizeof(uint32_t);
encode_uint32(zstd_size[i], binptr + offset);
offset += sizeof(uint32_t);
memcpy(binptr + offset, compressed_stages[i].ptr(), compressed_stages[i].size());
uint32_t s = compressed_stages[i].size();
if (s % 4 != 0) {
s += 4 - (s % 4);
}
offset += s;
}
DEV_ASSERT(offset == (uint32_t)ret.size());
}
return ret;
}
RDD::ShaderID RenderingDeviceDriverVulkan::shader_create_from_bytecode(const Vector<uint8_t> &p_shader_binary, ShaderDescription &r_shader_desc, String &r_name) {
r_shader_desc = {}; // Driver-agnostic.
ShaderInfo shader_info; // Driver-specific.
const uint8_t *binptr = p_shader_binary.ptr();
uint32_t binsize = p_shader_binary.size();
uint32_t read_offset = 0;
// Consistency check.
ERR_FAIL_COND_V(binsize < sizeof(uint32_t) * 3 + sizeof(ShaderBinary::Data), ShaderID());
ERR_FAIL_COND_V(binptr[0] != 'G' || binptr[1] != 'S' || binptr[2] != 'B' || binptr[3] != 'D', ShaderID());
uint32_t bin_version = decode_uint32(binptr + 4);
ERR_FAIL_COND_V(bin_version != ShaderBinary::VERSION, ShaderID());
uint32_t bin_data_size = decode_uint32(binptr + 8);
const ShaderBinary::Data &binary_data = *(reinterpret_cast<const ShaderBinary::Data *>(binptr + 12));
r_shader_desc.push_constant_size = binary_data.push_constant_size;
shader_info.vk_push_constant_stages = binary_data.vk_push_constant_stages_mask;
r_shader_desc.vertex_input_mask = binary_data.vertex_input_mask;
r_shader_desc.fragment_output_mask = binary_data.fragment_output_mask;
r_shader_desc.is_compute = binary_data.is_compute;
r_shader_desc.compute_local_size[0] = binary_data.compute_local_size[0];
r_shader_desc.compute_local_size[1] = binary_data.compute_local_size[1];
r_shader_desc.compute_local_size[2] = binary_data.compute_local_size[2];
read_offset += sizeof(uint32_t) * 3 + bin_data_size;
if (binary_data.shader_name_len) {
r_name.parse_utf8((const char *)(binptr + read_offset), binary_data.shader_name_len);
read_offset += binary_data.shader_name_len;
if ((binary_data.shader_name_len % 4) != 0) { // Alignment rules are really strange.
read_offset += 4 - (binary_data.shader_name_len % 4);
}
}
Vector<Vector<VkDescriptorSetLayoutBinding>> vk_set_bindings;
r_shader_desc.uniform_sets.resize(binary_data.set_count);
vk_set_bindings.resize(binary_data.set_count);
for (uint32_t i = 0; i < binary_data.set_count; i++) {
ERR_FAIL_COND_V(read_offset + sizeof(uint32_t) >= binsize, ShaderID());
uint32_t set_count = decode_uint32(binptr + read_offset);
read_offset += sizeof(uint32_t);
const ShaderBinary::DataBinding *set_ptr = reinterpret_cast<const ShaderBinary::DataBinding *>(binptr + read_offset);
uint32_t set_size = set_count * sizeof(ShaderBinary::DataBinding);
ERR_FAIL_COND_V(read_offset + set_size >= binsize, ShaderID());
for (uint32_t j = 0; j < set_count; j++) {
ShaderUniform info;
info.type = UniformType(set_ptr[j].type);
info.writable = set_ptr[j].writable;
info.length = set_ptr[j].length;
info.binding = set_ptr[j].binding;
info.stages = set_ptr[j].stages;
VkDescriptorSetLayoutBinding layout_binding = {};
layout_binding.binding = set_ptr[j].binding;
layout_binding.descriptorCount = 1;
for (uint32_t k = 0; k < SHADER_STAGE_MAX; k++) {
if ((set_ptr[j].stages & (1 << k))) {
layout_binding.stageFlags |= RD_STAGE_TO_VK_SHADER_STAGE_BITS[k];
}
}
switch (info.type) {
case UNIFORM_TYPE_SAMPLER: {
layout_binding.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLER;
layout_binding.descriptorCount = set_ptr[j].length;
} break;
case UNIFORM_TYPE_SAMPLER_WITH_TEXTURE: {
layout_binding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
layout_binding.descriptorCount = set_ptr[j].length;
} break;
case UNIFORM_TYPE_TEXTURE: {
layout_binding.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE;
layout_binding.descriptorCount = set_ptr[j].length;
} break;
case UNIFORM_TYPE_IMAGE: {
layout_binding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE;
layout_binding.descriptorCount = set_ptr[j].length;
} break;
case UNIFORM_TYPE_TEXTURE_BUFFER: {
layout_binding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER;
layout_binding.descriptorCount = set_ptr[j].length;
} break;
case UNIFORM_TYPE_IMAGE_BUFFER: {
layout_binding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER;
} break;
case UNIFORM_TYPE_UNIFORM_BUFFER: {
layout_binding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
} break;
case UNIFORM_TYPE_STORAGE_BUFFER: {
layout_binding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
} break;
case UNIFORM_TYPE_INPUT_ATTACHMENT: {
layout_binding.descriptorType = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT;
} break;
default: {
DEV_ASSERT(false);
}
}
r_shader_desc.uniform_sets.write[i].push_back(info);
vk_set_bindings.write[i].push_back(layout_binding);
}
read_offset += set_size;
}
ERR_FAIL_COND_V(read_offset + binary_data.specialization_constants_count * sizeof(ShaderBinary::SpecializationConstant) >= binsize, ShaderID());
r_shader_desc.specialization_constants.resize(binary_data.specialization_constants_count);
for (uint32_t i = 0; i < binary_data.specialization_constants_count; i++) {
const ShaderBinary::SpecializationConstant &src_sc = *(reinterpret_cast<const ShaderBinary::SpecializationConstant *>(binptr + read_offset));
ShaderSpecializationConstant sc;
sc.type = PipelineSpecializationConstantType(src_sc.type);
sc.constant_id = src_sc.constant_id;
sc.int_value = src_sc.int_value;
sc.stages = src_sc.stage_flags;
r_shader_desc.specialization_constants.write[i] = sc;
read_offset += sizeof(ShaderBinary::SpecializationConstant);
}
Vector<Vector<uint8_t>> stages_spirv;
stages_spirv.resize(binary_data.stage_count);
r_shader_desc.stages.resize(binary_data.stage_count);
for (uint32_t i = 0; i < binary_data.stage_count; i++) {
ERR_FAIL_COND_V(read_offset + sizeof(uint32_t) * 3 >= binsize, ShaderID());
uint32_t stage = decode_uint32(binptr + read_offset);
read_offset += sizeof(uint32_t);
uint32_t smolv_size = decode_uint32(binptr + read_offset);
read_offset += sizeof(uint32_t);
uint32_t zstd_size = decode_uint32(binptr + read_offset);
read_offset += sizeof(uint32_t);
uint32_t buf_size = (zstd_size > 0) ? zstd_size : smolv_size;
Vector<uint8_t> smolv;
const uint8_t *src_smolv = nullptr;
if (zstd_size > 0) {
// Decompress to smolv.
smolv.resize(smolv_size);
int dec_smolv_size = Compression::decompress(smolv.ptrw(), smolv.size(), binptr + read_offset, zstd_size, Compression::MODE_ZSTD);
ERR_FAIL_COND_V(dec_smolv_size != (int32_t)smolv_size, ShaderID());
src_smolv = smolv.ptr();
} else {
src_smolv = binptr + read_offset;
}
Vector<uint8_t> &spirv = stages_spirv.ptrw()[i];
uint32_t spirv_size = smolv::GetDecodedBufferSize(src_smolv, smolv_size);
spirv.resize(spirv_size);
if (!smolv::Decode(src_smolv, smolv_size, spirv.ptrw(), spirv_size)) {
ERR_FAIL_V_MSG(ShaderID(), "Malformed smolv input uncompressing shader stage:" + String(SHADER_STAGE_NAMES[stage]));
}
r_shader_desc.stages.set(i, ShaderStage(stage));
if (buf_size % 4 != 0) {
buf_size += 4 - (buf_size % 4);
}
DEV_ASSERT(read_offset + buf_size <= binsize);
read_offset += buf_size;
}
DEV_ASSERT(read_offset == binsize);
// Modules.
String error_text;
for (int i = 0; i < r_shader_desc.stages.size(); i++) {
VkShaderModuleCreateInfo shader_module_create_info = {};
shader_module_create_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
shader_module_create_info.codeSize = stages_spirv[i].size();
shader_module_create_info.pCode = (const uint32_t *)stages_spirv[i].ptr();
VkShaderModule vk_module = VK_NULL_HANDLE;
VkResult res = vkCreateShaderModule(vk_device, &shader_module_create_info, nullptr, &vk_module);
if (res) {
error_text = "Error (" + itos(res) + ") creating shader module for stage: " + String(SHADER_STAGE_NAMES[r_shader_desc.stages[i]]);
break;
}
VkPipelineShaderStageCreateInfo create_info = {};
create_info.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
create_info.stage = RD_STAGE_TO_VK_SHADER_STAGE_BITS[r_shader_desc.stages[i]];
create_info.module = vk_module;
create_info.pName = "main";
shader_info.vk_stages_create_info.push_back(create_info);
}
// Descriptor sets.
if (error_text.is_empty()) {
DEV_ASSERT((uint32_t)vk_set_bindings.size() == binary_data.set_count);
for (uint32_t i = 0; i < binary_data.set_count; i++) {
// Empty ones are fine if they were not used according to spec (binding count will be 0).
VkDescriptorSetLayoutCreateInfo layout_create_info = {};
layout_create_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
layout_create_info.bindingCount = vk_set_bindings[i].size();
layout_create_info.pBindings = vk_set_bindings[i].ptr();
VkDescriptorSetLayout layout = VK_NULL_HANDLE;
VkResult res = vkCreateDescriptorSetLayout(vk_device, &layout_create_info, nullptr, &layout);
if (res) {
error_text = "Error (" + itos(res) + ") creating descriptor set layout for set " + itos(i);
break;
}
shader_info.vk_descriptor_set_layouts.push_back(layout);
}
}
if (error_text.is_empty()) {
// Pipeline layout.
VkPipelineLayoutCreateInfo pipeline_layout_create_info = {};
pipeline_layout_create_info.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipeline_layout_create_info.setLayoutCount = binary_data.set_count;
pipeline_layout_create_info.pSetLayouts = shader_info.vk_descriptor_set_layouts.ptr();
if (binary_data.push_constant_size) {
VkPushConstantRange *push_constant_range = ALLOCA_SINGLE(VkPushConstantRange);
*push_constant_range = {};
push_constant_range->stageFlags = binary_data.vk_push_constant_stages_mask;
push_constant_range->size = binary_data.push_constant_size;
pipeline_layout_create_info.pushConstantRangeCount = 1;
pipeline_layout_create_info.pPushConstantRanges = push_constant_range;
}
VkResult err = vkCreatePipelineLayout(vk_device, &pipeline_layout_create_info, nullptr, &shader_info.vk_pipeline_layout);
if (err) {
error_text = "Error (" + itos(err) + ") creating pipeline layout.";
}
}
if (!error_text.is_empty()) {
// Clean up if failed.
for (uint32_t i = 0; i < shader_info.vk_stages_create_info.size(); i++) {
vkDestroyShaderModule(vk_device, shader_info.vk_stages_create_info[i].module, nullptr);
}
for (uint32_t i = 0; i < binary_data.set_count; i++) {
vkDestroyDescriptorSetLayout(vk_device, shader_info.vk_descriptor_set_layouts[i], nullptr);
}
ERR_FAIL_V_MSG(ShaderID(), error_text);
}
// Bookkeep.
ShaderInfo *shader_info_ptr = VersatileResource::allocate<ShaderInfo>(resources_allocator);
*shader_info_ptr = shader_info;
return ShaderID(shader_info_ptr);
}
void RenderingDeviceDriverVulkan::shader_free(ShaderID p_shader) {
ShaderInfo *shader_info = (ShaderInfo *)p_shader.id;
for (uint32_t i = 0; i < shader_info->vk_descriptor_set_layouts.size(); i++) {
vkDestroyDescriptorSetLayout(vk_device, shader_info->vk_descriptor_set_layouts[i], nullptr);
}
vkDestroyPipelineLayout(vk_device, shader_info->vk_pipeline_layout, nullptr);
for (uint32_t i = 0; i < shader_info->vk_stages_create_info.size(); i++) {
vkDestroyShaderModule(vk_device, shader_info->vk_stages_create_info[i].module, nullptr);
}
VersatileResource::free(resources_allocator, shader_info);
}
/*********************/
/**** UNIFORM SET ****/
/*********************/
VkDescriptorPool RenderingDeviceDriverVulkan::_descriptor_set_pool_find_or_create(const DescriptorSetPoolKey &p_key, DescriptorSetPools::Iterator *r_pool_sets_it) {
DescriptorSetPools::Iterator pool_sets_it = descriptor_set_pools.find(p_key);
if (pool_sets_it) {
for (KeyValue<VkDescriptorPool, uint32_t> &E : pool_sets_it->value) {
if (E.value < max_descriptor_sets_per_pool) {
*r_pool_sets_it = pool_sets_it;
return E.key;
}
}
}
// Create a new one.
// Here comes more vulkan API strangeness.
VkDescriptorPoolSize *vk_sizes = ALLOCA_ARRAY(VkDescriptorPoolSize, UNIFORM_TYPE_MAX);
uint32_t vk_sizes_count = 0;
{
VkDescriptorPoolSize *curr_vk_size = vk_sizes;
if (p_key.uniform_type[UNIFORM_TYPE_SAMPLER]) {
*curr_vk_size = {};
curr_vk_size->type = VK_DESCRIPTOR_TYPE_SAMPLER;
curr_vk_size->descriptorCount = p_key.uniform_type[UNIFORM_TYPE_SAMPLER] * max_descriptor_sets_per_pool;
curr_vk_size++;
vk_sizes_count++;
}
if (p_key.uniform_type[UNIFORM_TYPE_SAMPLER_WITH_TEXTURE]) {
*curr_vk_size = {};
curr_vk_size->type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
curr_vk_size->descriptorCount = p_key.uniform_type[UNIFORM_TYPE_SAMPLER_WITH_TEXTURE] * max_descriptor_sets_per_pool;
curr_vk_size++;
vk_sizes_count++;
}
if (p_key.uniform_type[UNIFORM_TYPE_TEXTURE]) {
*curr_vk_size = {};
curr_vk_size->type = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE;
curr_vk_size->descriptorCount = p_key.uniform_type[UNIFORM_TYPE_TEXTURE] * max_descriptor_sets_per_pool;
curr_vk_size++;
vk_sizes_count++;
}
if (p_key.uniform_type[UNIFORM_TYPE_IMAGE]) {
*curr_vk_size = {};
curr_vk_size->type = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE;
curr_vk_size->descriptorCount = p_key.uniform_type[UNIFORM_TYPE_IMAGE] * max_descriptor_sets_per_pool;
curr_vk_size++;
vk_sizes_count++;
}
if (p_key.uniform_type[UNIFORM_TYPE_TEXTURE_BUFFER] || p_key.uniform_type[UNIFORM_TYPE_SAMPLER_WITH_TEXTURE_BUFFER]) {
*curr_vk_size = {};
curr_vk_size->type = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER;
curr_vk_size->descriptorCount = (p_key.uniform_type[UNIFORM_TYPE_TEXTURE_BUFFER] + p_key.uniform_type[UNIFORM_TYPE_SAMPLER_WITH_TEXTURE_BUFFER]) * max_descriptor_sets_per_pool;
curr_vk_size++;
vk_sizes_count++;
}
if (p_key.uniform_type[UNIFORM_TYPE_IMAGE_BUFFER]) {
*curr_vk_size = {};
curr_vk_size->type = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER;
curr_vk_size->descriptorCount = p_key.uniform_type[UNIFORM_TYPE_IMAGE_BUFFER] * max_descriptor_sets_per_pool;
curr_vk_size++;
vk_sizes_count++;
}
if (p_key.uniform_type[UNIFORM_TYPE_UNIFORM_BUFFER]) {
*curr_vk_size = {};
curr_vk_size->type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
curr_vk_size->descriptorCount = p_key.uniform_type[UNIFORM_TYPE_UNIFORM_BUFFER] * max_descriptor_sets_per_pool;
curr_vk_size++;
vk_sizes_count++;
}
if (p_key.uniform_type[UNIFORM_TYPE_STORAGE_BUFFER]) {
*curr_vk_size = {};
curr_vk_size->type = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
curr_vk_size->descriptorCount = p_key.uniform_type[UNIFORM_TYPE_STORAGE_BUFFER] * max_descriptor_sets_per_pool;
curr_vk_size++;
vk_sizes_count++;
}
if (p_key.uniform_type[UNIFORM_TYPE_INPUT_ATTACHMENT]) {
*curr_vk_size = {};
curr_vk_size->type = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT;
curr_vk_size->descriptorCount = p_key.uniform_type[UNIFORM_TYPE_INPUT_ATTACHMENT] * max_descriptor_sets_per_pool;
curr_vk_size++;
vk_sizes_count++;
}
DEV_ASSERT(vk_sizes_count <= UNIFORM_TYPE_MAX);
}
VkDescriptorPoolCreateInfo descriptor_set_pool_create_info = {};
descriptor_set_pool_create_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
descriptor_set_pool_create_info.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT; // Can't think how somebody may NOT need this flag.
descriptor_set_pool_create_info.maxSets = max_descriptor_sets_per_pool;
descriptor_set_pool_create_info.poolSizeCount = vk_sizes_count;
descriptor_set_pool_create_info.pPoolSizes = vk_sizes;
VkDescriptorPool vk_pool = VK_NULL_HANDLE;
VkResult res = vkCreateDescriptorPool(vk_device, &descriptor_set_pool_create_info, nullptr, &vk_pool);
if (res) {
ERR_FAIL_COND_V_MSG(res, VK_NULL_HANDLE, "vkCreateDescriptorPool failed with error " + itos(res) + ".");
}
// Bookkeep.
if (!pool_sets_it) {
pool_sets_it = descriptor_set_pools.insert(p_key, HashMap<VkDescriptorPool, uint32_t>());
}
HashMap<VkDescriptorPool, uint32_t> &pool_rcs = pool_sets_it->value;
pool_rcs.insert(vk_pool, 0);
*r_pool_sets_it = pool_sets_it;
return vk_pool;
}
void RenderingDeviceDriverVulkan::_descriptor_set_pool_unreference(DescriptorSetPools::Iterator p_pool_sets_it, VkDescriptorPool p_vk_descriptor_pool) {
HashMap<VkDescriptorPool, uint32_t>::Iterator pool_rcs_it = p_pool_sets_it->value.find(p_vk_descriptor_pool);
pool_rcs_it->value--;
if (pool_rcs_it->value == 0) {
vkDestroyDescriptorPool(vk_device, p_vk_descriptor_pool, nullptr);
p_pool_sets_it->value.erase(p_vk_descriptor_pool);
if (p_pool_sets_it->value.is_empty()) {
descriptor_set_pools.remove(p_pool_sets_it);
}
}
}
RDD::UniformSetID RenderingDeviceDriverVulkan::uniform_set_create(VectorView<BoundUniform> p_uniforms, ShaderID p_shader, uint32_t p_set_index) {
DescriptorSetPoolKey pool_key;
VkWriteDescriptorSet *vk_writes = ALLOCA_ARRAY(VkWriteDescriptorSet, p_uniforms.size());
for (uint32_t i = 0; i < p_uniforms.size(); i++) {
const BoundUniform &uniform = p_uniforms[i];
vk_writes[i] = {};
vk_writes[i].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
vk_writes[i].dstBinding = uniform.binding;
vk_writes[i].descriptorType = VK_DESCRIPTOR_TYPE_MAX_ENUM; // Invalid value.
uint32_t num_descriptors = 1;
switch (uniform.type) {
case UNIFORM_TYPE_SAMPLER: {
num_descriptors = uniform.ids.size();
VkDescriptorImageInfo *vk_img_infos = ALLOCA_ARRAY(VkDescriptorImageInfo, num_descriptors);
for (uint32_t j = 0; j < num_descriptors; j++) {
vk_img_infos[j] = {};
vk_img_infos[j].sampler = (VkSampler)uniform.ids[j].id;
vk_img_infos[j].imageView = VK_NULL_HANDLE;
vk_img_infos[j].imageLayout = VK_IMAGE_LAYOUT_UNDEFINED;
}
vk_writes[i].descriptorType = VK_DESCRIPTOR_TYPE_SAMPLER;
vk_writes[i].pImageInfo = vk_img_infos;
} break;
case UNIFORM_TYPE_SAMPLER_WITH_TEXTURE: {
num_descriptors = uniform.ids.size() / 2;
VkDescriptorImageInfo *vk_img_infos = ALLOCA_ARRAY(VkDescriptorImageInfo, num_descriptors);
for (uint32_t j = 0; j < num_descriptors; j++) {
vk_img_infos[j] = {};
vk_img_infos[j].sampler = (VkSampler)uniform.ids[j * 2 + 0].id;
vk_img_infos[j].imageView = ((const TextureInfo *)uniform.ids[j * 2 + 1].id)->vk_view;
vk_img_infos[j].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
vk_writes[i].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
vk_writes[i].pImageInfo = vk_img_infos;
} break;
case UNIFORM_TYPE_TEXTURE: {
num_descriptors = uniform.ids.size();
VkDescriptorImageInfo *vk_img_infos = ALLOCA_ARRAY(VkDescriptorImageInfo, num_descriptors);
for (uint32_t j = 0; j < num_descriptors; j++) {
vk_img_infos[j] = {};
vk_img_infos[j].imageView = ((const TextureInfo *)uniform.ids[j].id)->vk_view;
vk_img_infos[j].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
vk_writes[i].descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE;
vk_writes[i].pImageInfo = vk_img_infos;
} break;
case UNIFORM_TYPE_IMAGE: {
num_descriptors = uniform.ids.size();
VkDescriptorImageInfo *vk_img_infos = ALLOCA_ARRAY(VkDescriptorImageInfo, num_descriptors);
for (uint32_t j = 0; j < num_descriptors; j++) {
vk_img_infos[j] = {};
vk_img_infos[j].imageView = ((const TextureInfo *)uniform.ids[j].id)->vk_view;
vk_img_infos[j].imageLayout = VK_IMAGE_LAYOUT_GENERAL;
}
vk_writes[i].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE;
vk_writes[i].pImageInfo = vk_img_infos;
} break;
case UNIFORM_TYPE_TEXTURE_BUFFER: {
num_descriptors = uniform.ids.size();
VkDescriptorBufferInfo *vk_buf_infos = ALLOCA_ARRAY(VkDescriptorBufferInfo, num_descriptors);
VkBufferView *vk_buf_views = ALLOCA_ARRAY(VkBufferView, num_descriptors);
for (uint32_t j = 0; j < num_descriptors; j++) {
const BufferInfo *buf_info = (const BufferInfo *)uniform.ids[j].id;
vk_buf_infos[j] = {};
vk_buf_infos[j].buffer = buf_info->vk_buffer;
vk_buf_infos[j].range = buf_info->size;
vk_buf_views[j] = buf_info->vk_view;
}
vk_writes[i].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER;
vk_writes[i].pBufferInfo = vk_buf_infos;
vk_writes[i].pTexelBufferView = vk_buf_views;
} break;
case UNIFORM_TYPE_SAMPLER_WITH_TEXTURE_BUFFER: {
num_descriptors = uniform.ids.size() / 2;
VkDescriptorImageInfo *vk_img_infos = ALLOCA_ARRAY(VkDescriptorImageInfo, num_descriptors);
VkDescriptorBufferInfo *vk_buf_infos = ALLOCA_ARRAY(VkDescriptorBufferInfo, num_descriptors);
VkBufferView *vk_buf_views = ALLOCA_ARRAY(VkBufferView, num_descriptors);
for (uint32_t j = 0; j < num_descriptors; j++) {
vk_img_infos[j] = {};
vk_img_infos[j].sampler = (VkSampler)uniform.ids[j * 2 + 0].id;
const BufferInfo *buf_info = (const BufferInfo *)uniform.ids[j * 2 + 1].id;
vk_buf_infos[j] = {};
vk_buf_infos[j].buffer = buf_info->vk_buffer;
vk_buf_infos[j].range = buf_info->size;
vk_buf_views[j] = buf_info->vk_view;
}
vk_writes[i].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER;
vk_writes[i].pImageInfo = vk_img_infos;
vk_writes[i].pBufferInfo = vk_buf_infos;
vk_writes[i].pTexelBufferView = vk_buf_views;
} break;
case UNIFORM_TYPE_IMAGE_BUFFER: {
CRASH_NOW_MSG("Unimplemented!"); // TODO.
} break;
case UNIFORM_TYPE_UNIFORM_BUFFER: {
const BufferInfo *buf_info = (const BufferInfo *)uniform.ids[0].id;
VkDescriptorBufferInfo *vk_buf_info = ALLOCA_SINGLE(VkDescriptorBufferInfo);
*vk_buf_info = {};
vk_buf_info->buffer = buf_info->vk_buffer;
vk_buf_info->range = buf_info->size;
vk_writes[i].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
vk_writes[i].pBufferInfo = vk_buf_info;
} break;
case UNIFORM_TYPE_STORAGE_BUFFER: {
const BufferInfo *buf_info = (const BufferInfo *)uniform.ids[0].id;
VkDescriptorBufferInfo *vk_buf_info = ALLOCA_SINGLE(VkDescriptorBufferInfo);
*vk_buf_info = {};
vk_buf_info->buffer = buf_info->vk_buffer;
vk_buf_info->range = buf_info->size;
vk_writes[i].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
vk_writes[i].pBufferInfo = vk_buf_info;
} break;
case UNIFORM_TYPE_INPUT_ATTACHMENT: {
num_descriptors = uniform.ids.size();
VkDescriptorImageInfo *vk_img_infos = ALLOCA_ARRAY(VkDescriptorImageInfo, num_descriptors);
for (uint32_t j = 0; j < uniform.ids.size(); j++) {
vk_img_infos[j] = {};
vk_img_infos[j].imageView = ((const TextureInfo *)uniform.ids[j].id)->vk_view;
vk_img_infos[j].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
vk_writes[i].descriptorType = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT;
vk_writes[i].pImageInfo = vk_img_infos;
} break;
default: {
DEV_ASSERT(false);
}
}
vk_writes[i].descriptorCount = num_descriptors;
ERR_FAIL_COND_V_MSG(pool_key.uniform_type[uniform.type] == MAX_UNIFORM_POOL_ELEMENT, UniformSetID(),
"Uniform set reached the limit of bindings for the same type (" + itos(MAX_UNIFORM_POOL_ELEMENT) + ").");
pool_key.uniform_type[uniform.type] += num_descriptors;
}
// Need a descriptor pool.
DescriptorSetPools::Iterator pool_sets_it = {};
VkDescriptorPool vk_pool = _descriptor_set_pool_find_or_create(pool_key, &pool_sets_it);
DEV_ASSERT(vk_pool);
pool_sets_it->value[vk_pool]++;
VkDescriptorSetAllocateInfo descriptor_set_allocate_info = {};
descriptor_set_allocate_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
descriptor_set_allocate_info.descriptorPool = vk_pool;
descriptor_set_allocate_info.descriptorSetCount = 1;
const ShaderInfo *shader_info = (const ShaderInfo *)p_shader.id;
descriptor_set_allocate_info.pSetLayouts = &shader_info->vk_descriptor_set_layouts[p_set_index];
VkDescriptorSet vk_descriptor_set = VK_NULL_HANDLE;
VkResult res = vkAllocateDescriptorSets(vk_device, &descriptor_set_allocate_info, &vk_descriptor_set);
if (res) {
_descriptor_set_pool_unreference(pool_sets_it, vk_pool);
ERR_FAIL_V_MSG(UniformSetID(), "Cannot allocate descriptor sets, error " + itos(res) + ".");
}
for (uint32_t i = 0; i < p_uniforms.size(); i++) {
vk_writes[i].dstSet = vk_descriptor_set;
}
vkUpdateDescriptorSets(vk_device, p_uniforms.size(), vk_writes, 0, nullptr);
// Bookkeep.
UniformSetInfo *usi = VersatileResource::allocate<UniformSetInfo>(resources_allocator);
usi->vk_descriptor_set = vk_descriptor_set;
usi->vk_descriptor_pool = vk_pool;
usi->pool_sets_it = pool_sets_it;
return UniformSetID(usi);
}
void RenderingDeviceDriverVulkan::uniform_set_free(UniformSetID p_uniform_set) {
UniformSetInfo *usi = (UniformSetInfo *)p_uniform_set.id;
vkFreeDescriptorSets(vk_device, usi->vk_descriptor_pool, 1, &usi->vk_descriptor_set);
_descriptor_set_pool_unreference(usi->pool_sets_it, usi->vk_descriptor_pool);
VersatileResource::free(resources_allocator, usi);
}
// ----- COMMANDS -----
void RenderingDeviceDriverVulkan::command_uniform_set_prepare_for_use(CommandBufferID p_cmd_buffer, UniformSetID p_uniform_set, ShaderID p_shader, uint32_t p_set_index) {
}
/******************/
/**** TRANSFER ****/
/******************/
static_assert(ARRAYS_COMPATIBLE_FIELDWISE(RDD::BufferCopyRegion, VkBufferCopy));
static void _texture_subresource_range_to_vk(const RDD::TextureSubresourceRange &p_subresources, VkImageSubresourceRange *r_vk_subreources) {
*r_vk_subreources = {};
r_vk_subreources->aspectMask = (VkImageAspectFlags)p_subresources.aspect;
r_vk_subreources->baseMipLevel = p_subresources.base_mipmap;
r_vk_subreources->levelCount = p_subresources.mipmap_count;
r_vk_subreources->baseArrayLayer = p_subresources.base_layer;
r_vk_subreources->layerCount = p_subresources.layer_count;
}
static void _texture_subresource_layers_to_vk(const RDD::TextureSubresourceLayers &p_subresources, VkImageSubresourceLayers *r_vk_subreources) {
*r_vk_subreources = {};
r_vk_subreources->aspectMask = (VkImageAspectFlags)p_subresources.aspect;
r_vk_subreources->mipLevel = p_subresources.mipmap;
r_vk_subreources->baseArrayLayer = p_subresources.base_layer;
r_vk_subreources->layerCount = p_subresources.layer_count;
}
static void _buffer_texture_copy_region_to_vk(const RDD::BufferTextureCopyRegion &p_copy_region, VkBufferImageCopy *r_vk_copy_region) {
*r_vk_copy_region = {};
r_vk_copy_region->bufferOffset = p_copy_region.buffer_offset;
_texture_subresource_layers_to_vk(p_copy_region.texture_subresources, &r_vk_copy_region->imageSubresource);
r_vk_copy_region->imageOffset.x = p_copy_region.texture_offset.x;
r_vk_copy_region->imageOffset.y = p_copy_region.texture_offset.y;
r_vk_copy_region->imageOffset.z = p_copy_region.texture_offset.z;
r_vk_copy_region->imageExtent.width = p_copy_region.texture_region_size.x;
r_vk_copy_region->imageExtent.height = p_copy_region.texture_region_size.y;
r_vk_copy_region->imageExtent.depth = p_copy_region.texture_region_size.z;
}
static void _texture_copy_region_to_vk(const RDD::TextureCopyRegion &p_copy_region, VkImageCopy *r_vk_copy_region) {
*r_vk_copy_region = {};
_texture_subresource_layers_to_vk(p_copy_region.src_subresources, &r_vk_copy_region->srcSubresource);
r_vk_copy_region->srcOffset.x = p_copy_region.src_offset.x;
r_vk_copy_region->srcOffset.y = p_copy_region.src_offset.y;
r_vk_copy_region->srcOffset.z = p_copy_region.src_offset.z;
_texture_subresource_layers_to_vk(p_copy_region.dst_subresources, &r_vk_copy_region->dstSubresource);
r_vk_copy_region->dstOffset.x = p_copy_region.dst_offset.x;
r_vk_copy_region->dstOffset.y = p_copy_region.dst_offset.y;
r_vk_copy_region->dstOffset.z = p_copy_region.dst_offset.z;
r_vk_copy_region->extent.width = p_copy_region.size.x;
r_vk_copy_region->extent.height = p_copy_region.size.y;
r_vk_copy_region->extent.depth = p_copy_region.size.z;
}
void RenderingDeviceDriverVulkan::command_clear_buffer(CommandBufferID p_cmd_buffer, BufferID p_buffer, uint64_t p_offset, uint64_t p_size) {
const BufferInfo *buf_info = (const BufferInfo *)p_buffer.id;
vkCmdFillBuffer((VkCommandBuffer)p_cmd_buffer.id, buf_info->vk_buffer, p_offset, p_size, 0);
}
void RenderingDeviceDriverVulkan::command_copy_buffer(CommandBufferID p_cmd_buffer, BufferID p_src_buffer, BufferID p_dst_buffer, VectorView<BufferCopyRegion> p_regions) {
const BufferInfo *src_buf_info = (const BufferInfo *)p_src_buffer.id;
const BufferInfo *dst_buf_info = (const BufferInfo *)p_dst_buffer.id;
vkCmdCopyBuffer((VkCommandBuffer)p_cmd_buffer.id, src_buf_info->vk_buffer, dst_buf_info->vk_buffer, p_regions.size(), (const VkBufferCopy *)p_regions.ptr());
}
void RenderingDeviceDriverVulkan::command_copy_texture(CommandBufferID p_cmd_buffer, TextureID p_src_texture, TextureLayout p_src_texture_layout, TextureID p_dst_texture, TextureLayout p_dst_texture_layout, VectorView<TextureCopyRegion> p_regions) {
VkImageCopy *vk_copy_regions = ALLOCA_ARRAY(VkImageCopy, p_regions.size());
for (uint32_t i = 0; i < p_regions.size(); i++) {
_texture_copy_region_to_vk(p_regions[i], &vk_copy_regions[i]);
}
const TextureInfo *src_tex_info = (const TextureInfo *)p_src_texture.id;
const TextureInfo *dst_tex_info = (const TextureInfo *)p_dst_texture.id;
vkCmdCopyImage((VkCommandBuffer)p_cmd_buffer.id, src_tex_info->vk_view_create_info.image, (VkImageLayout)p_src_texture_layout, dst_tex_info->vk_view_create_info.image, (VkImageLayout)p_dst_texture_layout, p_regions.size(), vk_copy_regions);
}
void RenderingDeviceDriverVulkan::command_resolve_texture(CommandBufferID p_cmd_buffer, TextureID p_src_texture, TextureLayout p_src_texture_layout, uint32_t p_src_layer, uint32_t p_src_mipmap, TextureID p_dst_texture, TextureLayout p_dst_texture_layout, uint32_t p_dst_layer, uint32_t p_dst_mipmap) {
const TextureInfo *src_tex_info = (const TextureInfo *)p_src_texture.id;
const TextureInfo *dst_tex_info = (const TextureInfo *)p_dst_texture.id;
VkImageResolve vk_resolve = {};
vk_resolve.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
vk_resolve.srcSubresource.mipLevel = p_src_mipmap;
vk_resolve.srcSubresource.baseArrayLayer = p_src_layer;
vk_resolve.srcSubresource.layerCount = 1;
vk_resolve.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
vk_resolve.dstSubresource.mipLevel = p_dst_mipmap;
vk_resolve.dstSubresource.baseArrayLayer = p_dst_layer;
vk_resolve.dstSubresource.layerCount = 1;
vk_resolve.extent.width = MAX(1u, src_tex_info->vk_create_info.extent.width >> p_src_mipmap);
vk_resolve.extent.height = MAX(1u, src_tex_info->vk_create_info.extent.height >> p_src_mipmap);
vk_resolve.extent.depth = MAX(1u, src_tex_info->vk_create_info.extent.depth >> p_src_mipmap);
vkCmdResolveImage((VkCommandBuffer)p_cmd_buffer.id, src_tex_info->vk_view_create_info.image, (VkImageLayout)p_src_texture_layout, dst_tex_info->vk_view_create_info.image, (VkImageLayout)p_dst_texture_layout, 1, &vk_resolve);
}
void RenderingDeviceDriverVulkan::command_clear_color_texture(CommandBufferID p_cmd_buffer, TextureID p_texture, TextureLayout p_texture_layout, const Color &p_color, const TextureSubresourceRange &p_subresources) {
VkClearColorValue vk_color = {};
memcpy(&vk_color.float32, p_color.components, sizeof(VkClearColorValue::float32));
VkImageSubresourceRange vk_subresources = {};
_texture_subresource_range_to_vk(p_subresources, &vk_subresources);
const TextureInfo *tex_info = (const TextureInfo *)p_texture.id;
vkCmdClearColorImage((VkCommandBuffer)p_cmd_buffer.id, tex_info->vk_view_create_info.image, (VkImageLayout)p_texture_layout, &vk_color, 1, &vk_subresources);
}
void RenderingDeviceDriverVulkan::command_copy_buffer_to_texture(CommandBufferID p_cmd_buffer, BufferID p_src_buffer, TextureID p_dst_texture, TextureLayout p_dst_texture_layout, VectorView<BufferTextureCopyRegion> p_regions) {
VkBufferImageCopy *vk_copy_regions = ALLOCA_ARRAY(VkBufferImageCopy, p_regions.size());
for (uint32_t i = 0; i < p_regions.size(); i++) {
_buffer_texture_copy_region_to_vk(p_regions[i], &vk_copy_regions[i]);
}
const BufferInfo *buf_info = (const BufferInfo *)p_src_buffer.id;
const TextureInfo *tex_info = (const TextureInfo *)p_dst_texture.id;
vkCmdCopyBufferToImage((VkCommandBuffer)p_cmd_buffer.id, buf_info->vk_buffer, tex_info->vk_view_create_info.image, (VkImageLayout)p_dst_texture_layout, p_regions.size(), vk_copy_regions);
}
void RenderingDeviceDriverVulkan::command_copy_texture_to_buffer(CommandBufferID p_cmd_buffer, TextureID p_src_texture, TextureLayout p_src_texture_layout, BufferID p_dst_buffer, VectorView<BufferTextureCopyRegion> p_regions) {
VkBufferImageCopy *vk_copy_regions = ALLOCA_ARRAY(VkBufferImageCopy, p_regions.size());
for (uint32_t i = 0; i < p_regions.size(); i++) {
_buffer_texture_copy_region_to_vk(p_regions[i], &vk_copy_regions[i]);
}
const TextureInfo *tex_info = (const TextureInfo *)p_src_texture.id;
const BufferInfo *buf_info = (const BufferInfo *)p_dst_buffer.id;
vkCmdCopyImageToBuffer((VkCommandBuffer)p_cmd_buffer.id, tex_info->vk_view_create_info.image, (VkImageLayout)p_src_texture_layout, buf_info->vk_buffer, p_regions.size(), vk_copy_regions);
}
/******************/
/**** PIPELINE ****/
/******************/
void RenderingDeviceDriverVulkan::pipeline_free(PipelineID p_pipeline) {
vkDestroyPipeline(vk_device, (VkPipeline)p_pipeline.id, nullptr);
}
// ----- BINDING -----
void RenderingDeviceDriverVulkan::command_bind_push_constants(CommandBufferID p_cmd_buffer, ShaderID p_shader, uint32_t p_dst_first_index, VectorView<uint32_t> p_data) {
const ShaderInfo *shader_info = (const ShaderInfo *)p_shader.id;
vkCmdPushConstants((VkCommandBuffer)p_cmd_buffer.id, shader_info->vk_pipeline_layout, shader_info->vk_push_constant_stages, p_dst_first_index * sizeof(uint32_t), p_data.size() * sizeof(uint32_t), p_data.ptr());
}
// ----- CACHE -----
int RenderingDeviceDriverVulkan::caching_instance_count = 0;
bool RenderingDeviceDriverVulkan::pipeline_cache_create(const Vector<uint8_t> &p_data) {
if (caching_instance_count) {
WARN_PRINT("There's already a RenderingDeviceDriverVulkan instance doing PSO caching. Only one can at the same time. This one won't.");
return false;
}
caching_instance_count++;
pipelines_cache.current_size = 0;
pipelines_cache.buffer.resize(sizeof(PipelineCacheHeader));
// Parse.
{
if (p_data.size() <= (int)sizeof(PipelineCacheHeader)) {
WARN_PRINT("Invalid/corrupt pipelines cache.");
} else {
const PipelineCacheHeader *loaded_header = reinterpret_cast<const PipelineCacheHeader *>(p_data.ptr());
if (loaded_header->magic != 868 + VK_PIPELINE_CACHE_HEADER_VERSION_ONE) {
WARN_PRINT("Invalid pipelines cache magic number.");
} else {
const uint8_t *loaded_buffer_start = p_data.ptr() + sizeof(PipelineCacheHeader);
uint32_t loaded_buffer_size = p_data.size() - sizeof(PipelineCacheHeader);
const PipelineCacheHeader *current_header = (PipelineCacheHeader *)pipelines_cache.buffer.ptr();
if (loaded_header->data_hash != hash_murmur3_buffer(loaded_buffer_start, loaded_buffer_size) ||
loaded_header->data_size != loaded_buffer_size ||
loaded_header->vendor_id != current_header->vendor_id ||
loaded_header->device_id != current_header->device_id ||
loaded_header->driver_version != current_header->driver_version ||
memcmp(loaded_header->uuid, current_header->uuid, VK_UUID_SIZE) != 0 ||
loaded_header->driver_abi != current_header->driver_abi) {
WARN_PRINT("Invalid pipelines cache header.");
} else {
pipelines_cache.current_size = loaded_buffer_size;
pipelines_cache.buffer = p_data;
}
}
}
}
// Create.
{
VkPipelineCacheCreateInfo cache_info = {};
cache_info.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
cache_info.initialDataSize = pipelines_cache.buffer.size() - sizeof(PipelineCacheHeader);
cache_info.pInitialData = pipelines_cache.buffer.ptr() + sizeof(PipelineCacheHeader);
if (pipeline_cache_control_support) {
cache_info.flags = VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT;
}
VkResult err = vkCreatePipelineCache(vk_device, &cache_info, nullptr, &pipelines_cache.vk_cache);
if (err != VK_SUCCESS) {
WARN_PRINT("vkCreatePipelinecache failed with error " + itos(err) + ".");
return false;
}
}
return true;
}
void RenderingDeviceDriverVulkan::pipeline_cache_free() {
DEV_ASSERT(pipelines_cache.vk_cache);
vkDestroyPipelineCache(vk_device, pipelines_cache.vk_cache, nullptr);
pipelines_cache.vk_cache = VK_NULL_HANDLE;
DEV_ASSERT(caching_instance_count > 0);
caching_instance_count--;
}
size_t RenderingDeviceDriverVulkan::pipeline_cache_query_size() {
DEV_ASSERT(pipelines_cache.vk_cache);
// FIXME:
// We're letting the cache grow unboundedly. We may want to set at limit and see if implementations use LRU or the like.
// If we do, we won't be able to assume any longer that the cache is dirty if, and only if, it has grown.
VkResult err = vkGetPipelineCacheData(vk_device, pipelines_cache.vk_cache, &pipelines_cache.current_size, nullptr);
ERR_FAIL_COND_V_MSG(err, 0, "vkGetPipelineCacheData failed with error " + itos(err) + ".");
return pipelines_cache.current_size;
}
Vector<uint8_t> RenderingDeviceDriverVulkan::pipeline_cache_serialize() {
DEV_ASSERT(pipelines_cache.vk_cache);
pipelines_cache.buffer.resize(pipelines_cache.current_size + sizeof(PipelineCacheHeader));
VkResult err = vkGetPipelineCacheData(vk_device, pipelines_cache.vk_cache, &pipelines_cache.current_size, pipelines_cache.buffer.ptrw() + sizeof(PipelineCacheHeader));
ERR_FAIL_COND_V(err != VK_SUCCESS && err != VK_INCOMPLETE, Vector<uint8_t>()); // Incomplete is OK because the cache may have grown since the size was queried (unless when exiting).
// The real buffer size may now be bigger than the updated current_size.
// We take into account the new size but keep the buffer resized in a worst-case fashion.
PipelineCacheHeader *header = (PipelineCacheHeader *)pipelines_cache.buffer.ptrw();
header->data_size = pipelines_cache.current_size;
header->data_hash = hash_murmur3_buffer(pipelines_cache.buffer.ptr() + sizeof(PipelineCacheHeader), pipelines_cache.current_size);
return pipelines_cache.buffer;
}
/*******************/
/**** RENDERING ****/
/*******************/
// ----- SUBPASS -----
// RDD::AttachmentLoadOp == VkAttachmentLoadOp.
static_assert(ENUM_MEMBERS_EQUAL(RDD::ATTACHMENT_LOAD_OP_LOAD, VK_ATTACHMENT_LOAD_OP_LOAD));
static_assert(ENUM_MEMBERS_EQUAL(RDD::ATTACHMENT_LOAD_OP_CLEAR, VK_ATTACHMENT_LOAD_OP_CLEAR));
static_assert(ENUM_MEMBERS_EQUAL(RDD::ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_LOAD_OP_DONT_CARE));
// RDD::AttachmentStoreOp == VkAttachmentStoreOp.
static_assert(ENUM_MEMBERS_EQUAL(RDD::ATTACHMENT_STORE_OP_STORE, VK_ATTACHMENT_STORE_OP_STORE));
static_assert(ENUM_MEMBERS_EQUAL(RDD::ATTACHMENT_STORE_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE));
// Assuming Vulkan and RDD's are backed by uint32_t in:
// - VkSubpassDescription2::pPreserveAttachments and RDD::Subpass::preserve_attachments.
// - VkRenderPassCreateInfo2KHR::pCorrelatedViewMasks and p_view_correlation_mask.
static void _attachment_reference_to_vk(const RDD::AttachmentReference &p_attachment_reference, VkAttachmentReference2KHR *r_vk_attachment_reference) {
*r_vk_attachment_reference = {};
r_vk_attachment_reference->sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2_KHR;
r_vk_attachment_reference->attachment = p_attachment_reference.attachment;
r_vk_attachment_reference->layout = (VkImageLayout)p_attachment_reference.layout;
r_vk_attachment_reference->aspectMask = (VkImageAspectFlags)p_attachment_reference.aspect;
}
RDD::RenderPassID RenderingDeviceDriverVulkan::render_pass_create(VectorView<Attachment> p_attachments, VectorView<Subpass> p_subpasses, VectorView<SubpassDependency> p_subpass_dependencies, uint32_t p_view_count) {
// These are only used if we use multiview but we need to define them in scope.
const uint32_t view_mask = (1 << p_view_count) - 1;
const uint32_t correlation_mask = (1 << p_view_count) - 1;
VkAttachmentDescription2KHR *vk_attachments = ALLOCA_ARRAY(VkAttachmentDescription2KHR, p_attachments.size());
for (uint32_t i = 0; i < p_attachments.size(); i++) {
vk_attachments[i] = {};
vk_attachments[i].sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2_KHR;
vk_attachments[i].format = RD_TO_VK_FORMAT[p_attachments[i].format];
vk_attachments[i].samples = _ensure_supported_sample_count(p_attachments[i].samples);
vk_attachments[i].loadOp = (VkAttachmentLoadOp)p_attachments[i].load_op;
vk_attachments[i].storeOp = (VkAttachmentStoreOp)p_attachments[i].store_op;
vk_attachments[i].stencilLoadOp = (VkAttachmentLoadOp)p_attachments[i].stencil_load_op;
vk_attachments[i].stencilStoreOp = (VkAttachmentStoreOp)p_attachments[i].stencil_store_op;
vk_attachments[i].initialLayout = (VkImageLayout)p_attachments[i].initial_layout;
vk_attachments[i].finalLayout = (VkImageLayout)p_attachments[i].final_layout;
}
VkSubpassDescription2KHR *vk_subpasses = ALLOCA_ARRAY(VkSubpassDescription2KHR, p_subpasses.size());
for (uint32_t i = 0; i < p_subpasses.size(); i++) {
VkAttachmentReference2KHR *vk_subpass_input_attachments = ALLOCA_ARRAY(VkAttachmentReference2KHR, p_subpasses[i].input_references.size());
for (uint32_t j = 0; j < p_subpasses[i].input_references.size(); j++) {
_attachment_reference_to_vk(p_subpasses[i].input_references[j], &vk_subpass_input_attachments[j]);
}
VkAttachmentReference2KHR *vk_subpass_color_attachments = ALLOCA_ARRAY(VkAttachmentReference2KHR, p_subpasses[i].color_references.size());
for (uint32_t j = 0; j < p_subpasses[i].color_references.size(); j++) {
_attachment_reference_to_vk(p_subpasses[i].color_references[j], &vk_subpass_color_attachments[j]);
}
VkAttachmentReference2KHR *vk_subpass_resolve_attachments = ALLOCA_ARRAY(VkAttachmentReference2KHR, p_subpasses[i].resolve_references.size());
for (uint32_t j = 0; j < p_subpasses[i].resolve_references.size(); j++) {
_attachment_reference_to_vk(p_subpasses[i].resolve_references[j], &vk_subpass_resolve_attachments[j]);
}
VkAttachmentReference2KHR *vk_subpass_depth_stencil_attachment = nullptr;
if (p_subpasses[i].depth_stencil_reference.attachment != AttachmentReference::UNUSED) {
vk_subpass_depth_stencil_attachment = ALLOCA_SINGLE(VkAttachmentReference2KHR);
_attachment_reference_to_vk(p_subpasses[i].depth_stencil_reference, vk_subpass_depth_stencil_attachment);
}
vk_subpasses[i] = {};
vk_subpasses[i].sType = VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2_KHR;
vk_subpasses[i].pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
vk_subpasses[i].viewMask = p_view_count == 1 ? 0 : view_mask;
vk_subpasses[i].inputAttachmentCount = p_subpasses[i].input_references.size();
vk_subpasses[i].pInputAttachments = vk_subpass_input_attachments;
vk_subpasses[i].colorAttachmentCount = p_subpasses[i].color_references.size();
vk_subpasses[i].pColorAttachments = vk_subpass_color_attachments;
vk_subpasses[i].pResolveAttachments = vk_subpass_resolve_attachments;
vk_subpasses[i].pDepthStencilAttachment = vk_subpass_depth_stencil_attachment;
vk_subpasses[i].preserveAttachmentCount = p_subpasses[i].preserve_attachments.size();
vk_subpasses[i].pPreserveAttachments = p_subpasses[i].preserve_attachments.ptr();
// VRS.
if (vrs_capabilities.attachment_vrs_supported && p_subpasses[i].vrs_reference.attachment != AttachmentReference::UNUSED) {
VkAttachmentReference2KHR *vk_subpass_vrs_attachment = ALLOCA_SINGLE(VkAttachmentReference2KHR);
*vk_subpass_vrs_attachment = {};
vk_subpass_vrs_attachment->sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2_KHR;
vk_subpass_vrs_attachment->attachment = p_subpasses[i].vrs_reference.attachment;
vk_subpass_vrs_attachment->layout = VK_IMAGE_LAYOUT_FRAGMENT_SHADING_RATE_ATTACHMENT_OPTIMAL_KHR;
VkFragmentShadingRateAttachmentInfoKHR *vk_vrs_info = ALLOCA_SINGLE(VkFragmentShadingRateAttachmentInfoKHR);
*vk_vrs_info = {};
vk_vrs_info->sType = VK_STRUCTURE_TYPE_FRAGMENT_SHADING_RATE_ATTACHMENT_INFO_KHR;
vk_vrs_info->pFragmentShadingRateAttachment = vk_subpass_vrs_attachment;
vk_vrs_info->shadingRateAttachmentTexelSize.width = vrs_capabilities.texel_size.x;
vk_vrs_info->shadingRateAttachmentTexelSize.height = vrs_capabilities.texel_size.y;
vk_subpasses[i].pNext = vk_vrs_info;
}
}
VkSubpassDependency2KHR *vk_subpass_dependencies = ALLOCA_ARRAY(VkSubpassDependency2KHR, p_subpass_dependencies.size());
for (uint32_t i = 0; i < p_subpass_dependencies.size(); i++) {
vk_subpass_dependencies[i] = {};
vk_subpass_dependencies[i].sType = VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2;
vk_subpass_dependencies[i].srcSubpass = p_subpass_dependencies[i].src_subpass;
vk_subpass_dependencies[i].dstSubpass = p_subpass_dependencies[i].dst_subpass;
vk_subpass_dependencies[i].srcStageMask = (VkPipelineStageFlags)p_subpass_dependencies[i].src_stages;
vk_subpass_dependencies[i].dstStageMask = (VkPipelineStageFlags)p_subpass_dependencies[i].dst_stages;
vk_subpass_dependencies[i].srcAccessMask = (VkAccessFlags)p_subpass_dependencies[i].src_access;
vk_subpass_dependencies[i].dstAccessMask = (VkAccessFlags)p_subpass_dependencies[i].dst_access;
}
VkRenderPassCreateInfo2KHR create_info = {};
create_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2_KHR;
create_info.attachmentCount = p_attachments.size();
create_info.pAttachments = vk_attachments;
create_info.subpassCount = p_subpasses.size();
create_info.pSubpasses = vk_subpasses;
create_info.dependencyCount = p_subpass_dependencies.size();
create_info.pDependencies = vk_subpass_dependencies;
create_info.correlatedViewMaskCount = p_view_count == 1 ? 0 : 1;
create_info.pCorrelatedViewMasks = p_view_count == 1 ? nullptr : &correlation_mask;
// Multiview.
if (p_view_count > 1 && device_functions.CreateRenderPass2KHR == nullptr) {
// This is only required when not using vkCreateRenderPass2.
// We add it if vkCreateRenderPass2KHR is not supported,
// resulting this in being passed to our vkCreateRenderPass fallback.
uint32_t *vk_view_masks = ALLOCA_ARRAY(uint32_t, p_subpasses.size());
for (uint32_t i = 0; i < p_subpasses.size(); i++) {
vk_view_masks[i] = view_mask;
}
VkRenderPassMultiviewCreateInfo *multiview_create_info = ALLOCA_SINGLE(VkRenderPassMultiviewCreateInfo);
*multiview_create_info = {};
multiview_create_info->sType = VK_STRUCTURE_TYPE_RENDER_PASS_MULTIVIEW_CREATE_INFO;
multiview_create_info->subpassCount = p_subpasses.size();
multiview_create_info->pViewMasks = vk_view_masks;
multiview_create_info->correlationMaskCount = 1;
multiview_create_info->pCorrelationMasks = &correlation_mask;
create_info.pNext = multiview_create_info;
}
VkRenderPass vk_render_pass = VK_NULL_HANDLE;
VkResult res = _create_render_pass(vk_device, &create_info, nullptr, &vk_render_pass);
ERR_FAIL_COND_V_MSG(res, RenderPassID(), "vkCreateRenderPass2KHR failed with error " + itos(res) + ".");
return RenderPassID(vk_render_pass);
}
void RenderingDeviceDriverVulkan::render_pass_free(RenderPassID p_render_pass) {
vkDestroyRenderPass(vk_device, (VkRenderPass)p_render_pass.id, nullptr);
}
// ----- COMMANDS -----
static_assert(ARRAYS_COMPATIBLE_FIELDWISE(RDD::RenderPassClearValue, VkClearValue));
void RenderingDeviceDriverVulkan::command_begin_render_pass(CommandBufferID p_cmd_buffer, RenderPassID p_render_pass, FramebufferID p_framebuffer, CommandBufferType p_cmd_buffer_type, const Rect2i &p_rect, VectorView<RenderPassClearValue> p_clear_values) {
VkRenderPassBeginInfo render_pass_begin = {};
render_pass_begin.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
render_pass_begin.renderPass = (VkRenderPass)p_render_pass.id;
render_pass_begin.framebuffer = (VkFramebuffer)p_framebuffer.id;
render_pass_begin.renderArea.offset.x = p_rect.position.x;
render_pass_begin.renderArea.offset.y = p_rect.position.y;
render_pass_begin.renderArea.extent.width = p_rect.size.x;
render_pass_begin.renderArea.extent.height = p_rect.size.y;
render_pass_begin.clearValueCount = p_clear_values.size();
render_pass_begin.pClearValues = (const VkClearValue *)p_clear_values.ptr();
VkSubpassContents vk_subpass_contents = p_cmd_buffer_type == COMMAND_BUFFER_TYPE_PRIMARY ? VK_SUBPASS_CONTENTS_INLINE : VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS;
vkCmdBeginRenderPass((VkCommandBuffer)p_cmd_buffer.id, &render_pass_begin, vk_subpass_contents);
#if PRINT_NATIVE_COMMANDS
print_line(vformat("vkCmdBeginRenderPass Pass 0x%uX Framebuffer 0x%uX", p_render_pass.id, p_framebuffer.id));
#endif
}
void RenderingDeviceDriverVulkan::command_end_render_pass(CommandBufferID p_cmd_buffer) {
vkCmdEndRenderPass((VkCommandBuffer)p_cmd_buffer.id);
#if PRINT_NATIVE_COMMANDS
print_line("vkCmdEndRenderPass");
#endif
}
void RenderingDeviceDriverVulkan::command_next_render_subpass(CommandBufferID p_cmd_buffer, CommandBufferType p_cmd_buffer_type) {
VkSubpassContents vk_subpass_contents = p_cmd_buffer_type == COMMAND_BUFFER_TYPE_PRIMARY ? VK_SUBPASS_CONTENTS_INLINE : VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS;
vkCmdNextSubpass((VkCommandBuffer)p_cmd_buffer.id, vk_subpass_contents);
}
void RenderingDeviceDriverVulkan::command_render_set_viewport(CommandBufferID p_cmd_buffer, VectorView<Rect2i> p_viewports) {
VkViewport *vk_viewports = ALLOCA_ARRAY(VkViewport, p_viewports.size());
for (uint32_t i = 0; i < p_viewports.size(); i++) {
vk_viewports[i] = {};
vk_viewports[i].x = p_viewports[i].position.x;
vk_viewports[i].y = p_viewports[i].position.y;
vk_viewports[i].width = p_viewports[i].size.x;
vk_viewports[i].height = p_viewports[i].size.y;
vk_viewports[i].minDepth = 0.0f;
vk_viewports[i].maxDepth = 1.0f;
}
vkCmdSetViewport((VkCommandBuffer)p_cmd_buffer.id, 0, p_viewports.size(), vk_viewports);
}
void RenderingDeviceDriverVulkan::command_render_set_scissor(CommandBufferID p_cmd_buffer, VectorView<Rect2i> p_scissors) {
vkCmdSetScissor((VkCommandBuffer)p_cmd_buffer.id, 0, p_scissors.size(), (VkRect2D *)p_scissors.ptr());
}
void RenderingDeviceDriverVulkan::command_render_clear_attachments(CommandBufferID p_cmd_buffer, VectorView<AttachmentClear> p_attachment_clears, VectorView<Rect2i> p_rects) {
VkClearAttachment *vk_clears = ALLOCA_ARRAY(VkClearAttachment, p_attachment_clears.size());
for (uint32_t i = 0; i < p_attachment_clears.size(); i++) {
vk_clears[i] = {};
memcpy(&vk_clears[i].clearValue, &p_attachment_clears[i].value, sizeof(VkClearValue));
vk_clears[i].colorAttachment = p_attachment_clears[i].color_attachment;
vk_clears[i].aspectMask = p_attachment_clears[i].aspect;
}
VkClearRect *vk_rects = ALLOCA_ARRAY(VkClearRect, p_rects.size());
for (uint32_t i = 0; i < p_rects.size(); i++) {
vk_rects[i] = {};
vk_rects[i].rect.offset.x = p_rects[i].position.x;
vk_rects[i].rect.offset.y = p_rects[i].position.y;
vk_rects[i].rect.extent.width = p_rects[i].size.x;
vk_rects[i].rect.extent.height = p_rects[i].size.y;
vk_rects[i].baseArrayLayer = 0;
vk_rects[i].layerCount = 1;
}
vkCmdClearAttachments((VkCommandBuffer)p_cmd_buffer.id, p_attachment_clears.size(), vk_clears, p_rects.size(), vk_rects);
}
void RenderingDeviceDriverVulkan::command_bind_render_pipeline(CommandBufferID p_cmd_buffer, PipelineID p_pipeline) {
vkCmdBindPipeline((VkCommandBuffer)p_cmd_buffer.id, VK_PIPELINE_BIND_POINT_GRAPHICS, (VkPipeline)p_pipeline.id);
}
void RenderingDeviceDriverVulkan::command_bind_render_uniform_set(CommandBufferID p_cmd_buffer, UniformSetID p_uniform_set, ShaderID p_shader, uint32_t p_set_index) {
const ShaderInfo *shader_info = (const ShaderInfo *)p_shader.id;
const UniformSetInfo *usi = (const UniformSetInfo *)p_uniform_set.id;
vkCmdBindDescriptorSets((VkCommandBuffer)p_cmd_buffer.id, VK_PIPELINE_BIND_POINT_GRAPHICS, shader_info->vk_pipeline_layout, p_set_index, 1, &usi->vk_descriptor_set, 0, nullptr);
}
void RenderingDeviceDriverVulkan::command_render_draw(CommandBufferID p_cmd_buffer, uint32_t p_vertex_count, uint32_t p_instance_count, uint32_t p_base_vertex, uint32_t p_first_instance) {
vkCmdDraw((VkCommandBuffer)p_cmd_buffer.id, p_vertex_count, p_instance_count, p_base_vertex, p_first_instance);
}
void RenderingDeviceDriverVulkan::command_render_draw_indexed(CommandBufferID p_cmd_buffer, uint32_t p_index_count, uint32_t p_instance_count, uint32_t p_first_index, int32_t p_vertex_offset, uint32_t p_first_instance) {
vkCmdDrawIndexed((VkCommandBuffer)p_cmd_buffer.id, p_index_count, p_instance_count, p_first_index, p_vertex_offset, p_first_instance);
}
void RenderingDeviceDriverVulkan::command_render_draw_indexed_indirect(CommandBufferID p_cmd_buffer, BufferID p_indirect_buffer, uint64_t p_offset, uint32_t p_draw_count, uint32_t p_stride) {
const BufferInfo *buf_info = (const BufferInfo *)p_indirect_buffer.id;
vkCmdDrawIndexedIndirect((VkCommandBuffer)p_cmd_buffer.id, buf_info->vk_buffer, p_offset, p_draw_count, p_stride);
}
void RenderingDeviceDriverVulkan::command_render_draw_indexed_indirect_count(CommandBufferID p_cmd_buffer, BufferID p_indirect_buffer, uint64_t p_offset, BufferID p_count_buffer, uint64_t p_count_buffer_offset, uint32_t p_max_draw_count, uint32_t p_stride) {
const BufferInfo *indirect_buf_info = (const BufferInfo *)p_indirect_buffer.id;
const BufferInfo *count_buf_info = (const BufferInfo *)p_count_buffer.id;
vkCmdDrawIndexedIndirectCount((VkCommandBuffer)p_cmd_buffer.id, indirect_buf_info->vk_buffer, p_offset, count_buf_info->vk_buffer, p_count_buffer_offset, p_max_draw_count, p_stride);
}
void RenderingDeviceDriverVulkan::command_render_draw_indirect(CommandBufferID p_cmd_buffer, BufferID p_indirect_buffer, uint64_t p_offset, uint32_t p_draw_count, uint32_t p_stride) {
const BufferInfo *buf_info = (const BufferInfo *)p_indirect_buffer.id;
vkCmdDrawIndirect((VkCommandBuffer)p_cmd_buffer.id, buf_info->vk_buffer, p_offset, p_draw_count, p_stride);
}
void RenderingDeviceDriverVulkan::command_render_draw_indirect_count(CommandBufferID p_cmd_buffer, BufferID p_indirect_buffer, uint64_t p_offset, BufferID p_count_buffer, uint64_t p_count_buffer_offset, uint32_t p_max_draw_count, uint32_t p_stride) {
const BufferInfo *indirect_buf_info = (const BufferInfo *)p_indirect_buffer.id;
const BufferInfo *count_buf_info = (const BufferInfo *)p_count_buffer.id;
vkCmdDrawIndirectCount((VkCommandBuffer)p_cmd_buffer.id, indirect_buf_info->vk_buffer, p_offset, count_buf_info->vk_buffer, p_count_buffer_offset, p_max_draw_count, p_stride);
}
void RenderingDeviceDriverVulkan::command_render_bind_vertex_buffers(CommandBufferID p_cmd_buffer, uint32_t p_binding_count, const BufferID *p_buffers, const uint64_t *p_offsets) {
VkBuffer *vk_buffers = ALLOCA_ARRAY(VkBuffer, p_binding_count);
for (uint32_t i = 0; i < p_binding_count; i++) {
vk_buffers[i] = ((const BufferInfo *)p_buffers[i].id)->vk_buffer;
}
vkCmdBindVertexBuffers((VkCommandBuffer)p_cmd_buffer.id, 0, p_binding_count, vk_buffers, p_offsets);
}
void RenderingDeviceDriverVulkan::command_render_bind_index_buffer(CommandBufferID p_cmd_buffer, BufferID p_buffer, IndexBufferFormat p_format, uint64_t p_offset) {
const BufferInfo *buf_info = (const BufferInfo *)p_buffer.id;
vkCmdBindIndexBuffer((VkCommandBuffer)p_cmd_buffer.id, buf_info->vk_buffer, p_offset, p_format == INDEX_BUFFER_FORMAT_UINT16 ? VK_INDEX_TYPE_UINT16 : VK_INDEX_TYPE_UINT32);
}
void RenderingDeviceDriverVulkan::command_render_set_blend_constants(CommandBufferID p_cmd_buffer, const Color &p_constants) {
vkCmdSetBlendConstants((VkCommandBuffer)p_cmd_buffer.id, p_constants.components);
}
void RenderingDeviceDriverVulkan::command_render_set_line_width(CommandBufferID p_cmd_buffer, float p_width) {
vkCmdSetLineWidth((VkCommandBuffer)p_cmd_buffer.id, p_width);
}
// ----- PIPELINE -----
static const VkPrimitiveTopology RD_TO_VK_PRIMITIVE[RDD::RENDER_PRIMITIVE_MAX] = {
VK_PRIMITIVE_TOPOLOGY_POINT_LIST,
VK_PRIMITIVE_TOPOLOGY_LINE_LIST,
VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY,
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP,
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
VK_PRIMITIVE_TOPOLOGY_PATCH_LIST,
};
// RDD::PolygonCullMode == VkCullModeFlagBits.
static_assert(ENUM_MEMBERS_EQUAL(RDD::POLYGON_CULL_DISABLED, VK_CULL_MODE_NONE));
static_assert(ENUM_MEMBERS_EQUAL(RDD::POLYGON_CULL_FRONT, VK_CULL_MODE_FRONT_BIT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::POLYGON_CULL_BACK, VK_CULL_MODE_BACK_BIT));
// RDD::StencilOperation == VkStencilOp.
static_assert(ENUM_MEMBERS_EQUAL(RDD::STENCIL_OP_KEEP, VK_STENCIL_OP_KEEP));
static_assert(ENUM_MEMBERS_EQUAL(RDD::STENCIL_OP_ZERO, VK_STENCIL_OP_ZERO));
static_assert(ENUM_MEMBERS_EQUAL(RDD::STENCIL_OP_REPLACE, VK_STENCIL_OP_REPLACE));
static_assert(ENUM_MEMBERS_EQUAL(RDD::STENCIL_OP_INCREMENT_AND_CLAMP, VK_STENCIL_OP_INCREMENT_AND_CLAMP));
static_assert(ENUM_MEMBERS_EQUAL(RDD::STENCIL_OP_DECREMENT_AND_CLAMP, VK_STENCIL_OP_DECREMENT_AND_CLAMP));
static_assert(ENUM_MEMBERS_EQUAL(RDD::STENCIL_OP_INVERT, VK_STENCIL_OP_INVERT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::STENCIL_OP_INCREMENT_AND_WRAP, VK_STENCIL_OP_INCREMENT_AND_WRAP));
static_assert(ENUM_MEMBERS_EQUAL(RDD::STENCIL_OP_DECREMENT_AND_WRAP, VK_STENCIL_OP_DECREMENT_AND_WRAP));
// RDD::LogicOperation == VkLogicOp.
static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_CLEAR, VK_LOGIC_OP_CLEAR));
static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_AND, VK_LOGIC_OP_AND));
static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_AND_REVERSE, VK_LOGIC_OP_AND_REVERSE));
static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_COPY, VK_LOGIC_OP_COPY));
static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_AND_INVERTED, VK_LOGIC_OP_AND_INVERTED));
static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_NO_OP, VK_LOGIC_OP_NO_OP));
static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_XOR, VK_LOGIC_OP_XOR));
static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_OR, VK_LOGIC_OP_OR));
static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_NOR, VK_LOGIC_OP_NOR));
static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_EQUIVALENT, VK_LOGIC_OP_EQUIVALENT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_INVERT, VK_LOGIC_OP_INVERT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_OR_REVERSE, VK_LOGIC_OP_OR_REVERSE));
static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_COPY_INVERTED, VK_LOGIC_OP_COPY_INVERTED));
static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_OR_INVERTED, VK_LOGIC_OP_OR_INVERTED));
static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_NAND, VK_LOGIC_OP_NAND));
static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_SET, VK_LOGIC_OP_SET));
// RDD::BlendFactor == VkBlendFactor.
static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_ZERO, VK_BLEND_FACTOR_ZERO));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_ONE, VK_BLEND_FACTOR_ONE));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_SRC_COLOR, VK_BLEND_FACTOR_SRC_COLOR));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_ONE_MINUS_SRC_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_DST_COLOR, VK_BLEND_FACTOR_DST_COLOR));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_ONE_MINUS_DST_COLOR, VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_SRC_ALPHA, VK_BLEND_FACTOR_SRC_ALPHA));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_DST_ALPHA, VK_BLEND_FACTOR_DST_ALPHA));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_ONE_MINUS_DST_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_CONSTANT_COLOR, VK_BLEND_FACTOR_CONSTANT_COLOR));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_CONSTANT_ALPHA, VK_BLEND_FACTOR_CONSTANT_ALPHA));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_SRC_ALPHA_SATURATE, VK_BLEND_FACTOR_SRC_ALPHA_SATURATE));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_SRC1_COLOR, VK_BLEND_FACTOR_SRC1_COLOR));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_ONE_MINUS_SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_SRC1_ALPHA, VK_BLEND_FACTOR_SRC1_ALPHA));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA));
// RDD::BlendOperation == VkBlendOp.
static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_OP_ADD, VK_BLEND_OP_ADD));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_OP_SUBTRACT, VK_BLEND_OP_SUBTRACT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_OP_REVERSE_SUBTRACT, VK_BLEND_OP_REVERSE_SUBTRACT));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_OP_MINIMUM, VK_BLEND_OP_MIN));
static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_OP_MAXIMUM, VK_BLEND_OP_MAX));
RDD::PipelineID RenderingDeviceDriverVulkan::render_pipeline_create(
ShaderID p_shader,
VertexFormatID p_vertex_format,
RenderPrimitive p_render_primitive,
PipelineRasterizationState p_rasterization_state,
PipelineMultisampleState p_multisample_state,
PipelineDepthStencilState p_depth_stencil_state,
PipelineColorBlendState p_blend_state,
VectorView<int32_t> p_color_attachments,
BitField<PipelineDynamicStateFlags> p_dynamic_state,
RenderPassID p_render_pass,
uint32_t p_render_subpass,
VectorView<PipelineSpecializationConstant> p_specialization_constants) {
// Vertex.
const VkPipelineVertexInputStateCreateInfo *vertex_input_state_create_info = nullptr;
if (p_vertex_format.id) {
const VertexFormatInfo *vf_info = (const VertexFormatInfo *)p_vertex_format.id;
vertex_input_state_create_info = &vf_info->vk_create_info;
} else {
VkPipelineVertexInputStateCreateInfo *null_vertex_input_state = ALLOCA_SINGLE(VkPipelineVertexInputStateCreateInfo);
*null_vertex_input_state = {};
null_vertex_input_state->sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertex_input_state_create_info = null_vertex_input_state;
}
// Input assembly.
VkPipelineInputAssemblyStateCreateInfo input_assembly_create_info = {};
input_assembly_create_info.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
input_assembly_create_info.topology = RD_TO_VK_PRIMITIVE[p_render_primitive];
input_assembly_create_info.primitiveRestartEnable = (p_render_primitive == RENDER_PRIMITIVE_TRIANGLE_STRIPS_WITH_RESTART_INDEX);
// Tessellation.
VkPipelineTessellationStateCreateInfo tessellation_create_info = {};
tessellation_create_info.sType = VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO;
ERR_FAIL_COND_V(physical_device_properties.limits.maxTessellationPatchSize > 0 && (p_rasterization_state.patch_control_points < 1 || p_rasterization_state.patch_control_points > physical_device_properties.limits.maxTessellationPatchSize), PipelineID());
tessellation_create_info.patchControlPoints = p_rasterization_state.patch_control_points;
// Viewport.
VkPipelineViewportStateCreateInfo viewport_state_create_info = {};
viewport_state_create_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewport_state_create_info.viewportCount = 1; // If VR extensions are supported at some point, this will have to be customizable in the framebuffer format.
viewport_state_create_info.scissorCount = 1;
// Rasterization.
VkPipelineRasterizationStateCreateInfo rasterization_state_create_info = {};
rasterization_state_create_info.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rasterization_state_create_info.depthClampEnable = p_rasterization_state.enable_depth_clamp;
rasterization_state_create_info.rasterizerDiscardEnable = p_rasterization_state.discard_primitives;
rasterization_state_create_info.polygonMode = p_rasterization_state.wireframe ? VK_POLYGON_MODE_LINE : VK_POLYGON_MODE_FILL;
rasterization_state_create_info.cullMode = (PolygonCullMode)p_rasterization_state.cull_mode;
rasterization_state_create_info.frontFace = (p_rasterization_state.front_face == POLYGON_FRONT_FACE_CLOCKWISE ? VK_FRONT_FACE_CLOCKWISE : VK_FRONT_FACE_COUNTER_CLOCKWISE);
rasterization_state_create_info.depthBiasEnable = p_rasterization_state.depth_bias_enabled;
rasterization_state_create_info.depthBiasConstantFactor = p_rasterization_state.depth_bias_constant_factor;
rasterization_state_create_info.depthBiasClamp = p_rasterization_state.depth_bias_clamp;
rasterization_state_create_info.depthBiasSlopeFactor = p_rasterization_state.depth_bias_slope_factor;
rasterization_state_create_info.lineWidth = p_rasterization_state.line_width;
// Multisample.
VkPipelineMultisampleStateCreateInfo multisample_state_create_info = {};
multisample_state_create_info.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
multisample_state_create_info.rasterizationSamples = _ensure_supported_sample_count(p_multisample_state.sample_count);
multisample_state_create_info.sampleShadingEnable = p_multisample_state.enable_sample_shading;
multisample_state_create_info.minSampleShading = p_multisample_state.min_sample_shading;
if (p_multisample_state.sample_mask.size()) {
static_assert(ARRAYS_COMPATIBLE(uint32_t, VkSampleMask));
multisample_state_create_info.pSampleMask = p_multisample_state.sample_mask.ptr();
} else {
multisample_state_create_info.pSampleMask = nullptr;
}
multisample_state_create_info.alphaToCoverageEnable = p_multisample_state.enable_alpha_to_coverage;
multisample_state_create_info.alphaToOneEnable = p_multisample_state.enable_alpha_to_one;
// Depth stencil.
VkPipelineDepthStencilStateCreateInfo depth_stencil_state_create_info = {};
depth_stencil_state_create_info.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
depth_stencil_state_create_info.depthTestEnable = p_depth_stencil_state.enable_depth_test;
depth_stencil_state_create_info.depthWriteEnable = p_depth_stencil_state.enable_depth_write;
depth_stencil_state_create_info.depthCompareOp = (VkCompareOp)p_depth_stencil_state.depth_compare_operator;
depth_stencil_state_create_info.depthBoundsTestEnable = p_depth_stencil_state.enable_depth_range;
depth_stencil_state_create_info.stencilTestEnable = p_depth_stencil_state.enable_stencil;
depth_stencil_state_create_info.front.failOp = (VkStencilOp)p_depth_stencil_state.front_op.fail;
depth_stencil_state_create_info.front.passOp = (VkStencilOp)p_depth_stencil_state.front_op.pass;
depth_stencil_state_create_info.front.depthFailOp = (VkStencilOp)p_depth_stencil_state.front_op.depth_fail;
depth_stencil_state_create_info.front.compareOp = (VkCompareOp)p_depth_stencil_state.front_op.compare;
depth_stencil_state_create_info.front.compareMask = p_depth_stencil_state.front_op.compare_mask;
depth_stencil_state_create_info.front.writeMask = p_depth_stencil_state.front_op.write_mask;
depth_stencil_state_create_info.front.reference = p_depth_stencil_state.front_op.reference;
depth_stencil_state_create_info.back.failOp = (VkStencilOp)p_depth_stencil_state.back_op.fail;
depth_stencil_state_create_info.back.passOp = (VkStencilOp)p_depth_stencil_state.back_op.pass;
depth_stencil_state_create_info.back.depthFailOp = (VkStencilOp)p_depth_stencil_state.back_op.depth_fail;
depth_stencil_state_create_info.back.compareOp = (VkCompareOp)p_depth_stencil_state.back_op.compare;
depth_stencil_state_create_info.back.compareMask = p_depth_stencil_state.back_op.compare_mask;
depth_stencil_state_create_info.back.writeMask = p_depth_stencil_state.back_op.write_mask;
depth_stencil_state_create_info.back.reference = p_depth_stencil_state.back_op.reference;
depth_stencil_state_create_info.minDepthBounds = p_depth_stencil_state.depth_range_min;
depth_stencil_state_create_info.maxDepthBounds = p_depth_stencil_state.depth_range_max;
// Blend state.
VkPipelineColorBlendStateCreateInfo color_blend_state_create_info = {};
color_blend_state_create_info.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
color_blend_state_create_info.logicOpEnable = p_blend_state.enable_logic_op;
color_blend_state_create_info.logicOp = (VkLogicOp)p_blend_state.logic_op;
VkPipelineColorBlendAttachmentState *vk_attachment_states = ALLOCA_ARRAY(VkPipelineColorBlendAttachmentState, p_color_attachments.size());
{
for (uint32_t i = 0; i < p_color_attachments.size(); i++) {
vk_attachment_states[i] = {};
if (p_color_attachments[i] != ATTACHMENT_UNUSED) {
vk_attachment_states[i].blendEnable = p_blend_state.attachments[i].enable_blend;
vk_attachment_states[i].srcColorBlendFactor = (VkBlendFactor)p_blend_state.attachments[i].src_color_blend_factor;
vk_attachment_states[i].dstColorBlendFactor = (VkBlendFactor)p_blend_state.attachments[i].dst_color_blend_factor;
vk_attachment_states[i].colorBlendOp = (VkBlendOp)p_blend_state.attachments[i].color_blend_op;
vk_attachment_states[i].srcAlphaBlendFactor = (VkBlendFactor)p_blend_state.attachments[i].src_alpha_blend_factor;
vk_attachment_states[i].dstAlphaBlendFactor = (VkBlendFactor)p_blend_state.attachments[i].dst_alpha_blend_factor;
vk_attachment_states[i].alphaBlendOp = (VkBlendOp)p_blend_state.attachments[i].alpha_blend_op;
if (p_blend_state.attachments[i].write_r) {
vk_attachment_states[i].colorWriteMask |= VK_COLOR_COMPONENT_R_BIT;
}
if (p_blend_state.attachments[i].write_g) {
vk_attachment_states[i].colorWriteMask |= VK_COLOR_COMPONENT_G_BIT;
}
if (p_blend_state.attachments[i].write_b) {
vk_attachment_states[i].colorWriteMask |= VK_COLOR_COMPONENT_B_BIT;
}
if (p_blend_state.attachments[i].write_a) {
vk_attachment_states[i].colorWriteMask |= VK_COLOR_COMPONENT_A_BIT;
}
}
}
}
color_blend_state_create_info.attachmentCount = p_color_attachments.size();
color_blend_state_create_info.pAttachments = vk_attachment_states;
color_blend_state_create_info.blendConstants[0] = p_blend_state.blend_constant.r;
color_blend_state_create_info.blendConstants[1] = p_blend_state.blend_constant.g;
color_blend_state_create_info.blendConstants[2] = p_blend_state.blend_constant.b;
color_blend_state_create_info.blendConstants[3] = p_blend_state.blend_constant.a;
// Dynamic state.
VkPipelineDynamicStateCreateInfo dynamic_state_create_info = {};
dynamic_state_create_info.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
static const uint32_t MAX_DYN_STATE_COUNT = 9;
VkDynamicState *vk_dynamic_states = ALLOCA_ARRAY(VkDynamicState, MAX_DYN_STATE_COUNT);
uint32_t vk_dynamic_states_count = 0;
vk_dynamic_states[vk_dynamic_states_count] = VK_DYNAMIC_STATE_VIEWPORT; // Viewport and scissor are always dynamic.
vk_dynamic_states_count++;
vk_dynamic_states[vk_dynamic_states_count] = VK_DYNAMIC_STATE_SCISSOR;
vk_dynamic_states_count++;
if (p_dynamic_state.has_flag(DYNAMIC_STATE_LINE_WIDTH)) {
vk_dynamic_states[vk_dynamic_states_count] = VK_DYNAMIC_STATE_LINE_WIDTH;
vk_dynamic_states_count++;
}
if (p_dynamic_state.has_flag(DYNAMIC_STATE_DEPTH_BIAS)) {
vk_dynamic_states[vk_dynamic_states_count] = VK_DYNAMIC_STATE_DEPTH_BIAS;
vk_dynamic_states_count++;
}
if (p_dynamic_state.has_flag(DYNAMIC_STATE_BLEND_CONSTANTS)) {
vk_dynamic_states[vk_dynamic_states_count] = VK_DYNAMIC_STATE_BLEND_CONSTANTS;
vk_dynamic_states_count++;
}
if (p_dynamic_state.has_flag(DYNAMIC_STATE_DEPTH_BOUNDS)) {
vk_dynamic_states[vk_dynamic_states_count] = VK_DYNAMIC_STATE_DEPTH_BOUNDS;
vk_dynamic_states_count++;
}
if (p_dynamic_state.has_flag(DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
vk_dynamic_states[vk_dynamic_states_count] = VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK;
vk_dynamic_states_count++;
}
if (p_dynamic_state.has_flag(DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
vk_dynamic_states[vk_dynamic_states_count] = VK_DYNAMIC_STATE_STENCIL_WRITE_MASK;
vk_dynamic_states_count++;
}
if (p_dynamic_state.has_flag(DYNAMIC_STATE_STENCIL_REFERENCE)) {
vk_dynamic_states[vk_dynamic_states_count] = VK_DYNAMIC_STATE_STENCIL_REFERENCE;
vk_dynamic_states_count++;
}
DEV_ASSERT(vk_dynamic_states_count <= MAX_DYN_STATE_COUNT);
dynamic_state_create_info.dynamicStateCount = vk_dynamic_states_count;
dynamic_state_create_info.pDynamicStates = vk_dynamic_states;
// VRS.
void *graphics_pipeline_nextptr = nullptr;
if (vrs_capabilities.attachment_vrs_supported) {
// If VRS is used, this defines how the different VRS types are combined.
// combinerOps[0] decides how we use the output of pipeline and primitive (drawcall) VRS.
// combinerOps[1] decides how we use the output of combinerOps[0] and our attachment VRS.
VkPipelineFragmentShadingRateStateCreateInfoKHR *vrs_create_info = ALLOCA_SINGLE(VkPipelineFragmentShadingRateStateCreateInfoKHR);
*vrs_create_info = {};
vrs_create_info->sType = VK_STRUCTURE_TYPE_PIPELINE_FRAGMENT_SHADING_RATE_STATE_CREATE_INFO_KHR;
vrs_create_info->fragmentSize = { 4, 4 };
vrs_create_info->combinerOps[0] = VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR; // We don't use pipeline/primitive VRS so this really doesn't matter.
vrs_create_info->combinerOps[1] = VK_FRAGMENT_SHADING_RATE_COMBINER_OP_REPLACE_KHR; // Always use the outcome of attachment VRS if enabled.
graphics_pipeline_nextptr = vrs_create_info;
}
// Finally, pipeline create info.
const ShaderInfo *shader_info = (const ShaderInfo *)p_shader.id;
VkGraphicsPipelineCreateInfo pipeline_create_info = {};
pipeline_create_info.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipeline_create_info.pNext = graphics_pipeline_nextptr;
pipeline_create_info.stageCount = shader_info->vk_stages_create_info.size();
VkPipelineShaderStageCreateInfo *vk_pipeline_stages = ALLOCA_ARRAY(VkPipelineShaderStageCreateInfo, shader_info->vk_stages_create_info.size());
for (uint32_t i = 0; i < shader_info->vk_stages_create_info.size(); i++) {
vk_pipeline_stages[i] = shader_info->vk_stages_create_info[i];
if (p_specialization_constants.size()) {
VkSpecializationMapEntry *specialization_map_entries = ALLOCA_ARRAY(VkSpecializationMapEntry, p_specialization_constants.size());
for (uint32_t j = 0; j < p_specialization_constants.size(); j++) {
specialization_map_entries[j] = {};
specialization_map_entries[j].constantID = p_specialization_constants[j].constant_id;
specialization_map_entries[j].offset = (const char *)&p_specialization_constants[j].int_value - (const char *)p_specialization_constants.ptr();
specialization_map_entries[j].size = sizeof(uint32_t);
}
VkSpecializationInfo *specialization_info = ALLOCA_SINGLE(VkSpecializationInfo);
*specialization_info = {};
specialization_info->dataSize = p_specialization_constants.size() * sizeof(PipelineSpecializationConstant);
specialization_info->pData = p_specialization_constants.ptr();
specialization_info->mapEntryCount = p_specialization_constants.size();
specialization_info->pMapEntries = specialization_map_entries;
vk_pipeline_stages[i].pSpecializationInfo = specialization_info;
}
}
pipeline_create_info.pStages = vk_pipeline_stages;
pipeline_create_info.pVertexInputState = vertex_input_state_create_info;
pipeline_create_info.pInputAssemblyState = &input_assembly_create_info;
pipeline_create_info.pTessellationState = &tessellation_create_info;
pipeline_create_info.pViewportState = &viewport_state_create_info;
pipeline_create_info.pRasterizationState = &rasterization_state_create_info;
pipeline_create_info.pMultisampleState = &multisample_state_create_info;
pipeline_create_info.pDepthStencilState = &depth_stencil_state_create_info;
pipeline_create_info.pColorBlendState = &color_blend_state_create_info;
pipeline_create_info.pDynamicState = &dynamic_state_create_info;
pipeline_create_info.layout = shader_info->vk_pipeline_layout;
pipeline_create_info.renderPass = (VkRenderPass)p_render_pass.id;
pipeline_create_info.subpass = p_render_subpass;
// ---
VkPipeline vk_pipeline = VK_NULL_HANDLE;
VkResult err = vkCreateGraphicsPipelines(vk_device, pipelines_cache.vk_cache, 1, &pipeline_create_info, nullptr, &vk_pipeline);
ERR_FAIL_COND_V_MSG(err, PipelineID(), "vkCreateGraphicsPipelines failed with error " + itos(err) + ".");
return PipelineID(vk_pipeline);
}
/*****************/
/**** COMPUTE ****/
/*****************/
// ----- COMMANDS -----
void RenderingDeviceDriverVulkan::command_bind_compute_pipeline(CommandBufferID p_cmd_buffer, PipelineID p_pipeline) {
vkCmdBindPipeline((VkCommandBuffer)p_cmd_buffer.id, VK_PIPELINE_BIND_POINT_COMPUTE, (VkPipeline)p_pipeline.id);
}
void RenderingDeviceDriverVulkan::command_bind_compute_uniform_set(CommandBufferID p_cmd_buffer, UniformSetID p_uniform_set, ShaderID p_shader, uint32_t p_set_index) {
const ShaderInfo *shader_info = (const ShaderInfo *)p_shader.id;
const UniformSetInfo *usi = (const UniformSetInfo *)p_uniform_set.id;
vkCmdBindDescriptorSets((VkCommandBuffer)p_cmd_buffer.id, VK_PIPELINE_BIND_POINT_COMPUTE, shader_info->vk_pipeline_layout, p_set_index, 1, &usi->vk_descriptor_set, 0, nullptr);
}
void RenderingDeviceDriverVulkan::command_compute_dispatch(CommandBufferID p_cmd_buffer, uint32_t p_x_groups, uint32_t p_y_groups, uint32_t p_z_groups) {
vkCmdDispatch((VkCommandBuffer)p_cmd_buffer.id, p_x_groups, p_y_groups, p_z_groups);
}
void RenderingDeviceDriverVulkan::command_compute_dispatch_indirect(CommandBufferID p_cmd_buffer, BufferID p_indirect_buffer, uint64_t p_offset) {
const BufferInfo *buf_info = (const BufferInfo *)p_indirect_buffer.id;
vkCmdDispatchIndirect((VkCommandBuffer)p_cmd_buffer.id, buf_info->vk_buffer, p_offset);
}
// ----- PIPELINE -----
RDD::PipelineID RenderingDeviceDriverVulkan::compute_pipeline_create(ShaderID p_shader, VectorView<PipelineSpecializationConstant> p_specialization_constants) {
const ShaderInfo *shader_info = (const ShaderInfo *)p_shader.id;
VkComputePipelineCreateInfo pipeline_create_info = {};
pipeline_create_info.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO;
pipeline_create_info.stage = shader_info->vk_stages_create_info[0];
pipeline_create_info.layout = shader_info->vk_pipeline_layout;
if (p_specialization_constants.size()) {
VkSpecializationMapEntry *specialization_map_entries = ALLOCA_ARRAY(VkSpecializationMapEntry, p_specialization_constants.size());
for (uint32_t i = 0; i < p_specialization_constants.size(); i++) {
specialization_map_entries[i] = {};
specialization_map_entries[i].constantID = p_specialization_constants[i].constant_id;
specialization_map_entries[i].offset = (const char *)&p_specialization_constants[i].int_value - (const char *)p_specialization_constants.ptr();
specialization_map_entries[i].size = sizeof(uint32_t);
}
VkSpecializationInfo *specialization_info = ALLOCA_SINGLE(VkSpecializationInfo);
*specialization_info = {};
specialization_info->dataSize = p_specialization_constants.size() * sizeof(PipelineSpecializationConstant);
specialization_info->pData = p_specialization_constants.ptr();
specialization_info->mapEntryCount = p_specialization_constants.size();
specialization_info->pMapEntries = specialization_map_entries;
pipeline_create_info.stage.pSpecializationInfo = specialization_info;
}
VkPipeline vk_pipeline = VK_NULL_HANDLE;
VkResult err = vkCreateComputePipelines(vk_device, pipelines_cache.vk_cache, 1, &pipeline_create_info, nullptr, &vk_pipeline);
ERR_FAIL_COND_V_MSG(err, PipelineID(), "vkCreateComputePipelines failed with error " + itos(err) + ".");
return PipelineID(vk_pipeline);
}
/*****************/
/**** QUERIES ****/
/*****************/
// ----- TIMESTAMP -----
RDD::QueryPoolID RenderingDeviceDriverVulkan::timestamp_query_pool_create(uint32_t p_query_count) {
VkQueryPoolCreateInfo query_pool_create_info = {};
query_pool_create_info.sType = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO;
query_pool_create_info.queryType = VK_QUERY_TYPE_TIMESTAMP;
query_pool_create_info.queryCount = p_query_count;
VkQueryPool vk_query_pool = VK_NULL_HANDLE;
vkCreateQueryPool(vk_device, &query_pool_create_info, nullptr, &vk_query_pool);
return RDD::QueryPoolID(vk_query_pool);
}
void RenderingDeviceDriverVulkan::timestamp_query_pool_free(QueryPoolID p_pool_id) {
vkDestroyQueryPool(vk_device, (VkQueryPool)p_pool_id.id, nullptr);
}
void RenderingDeviceDriverVulkan::timestamp_query_pool_get_results(QueryPoolID p_pool_id, uint32_t p_query_count, uint64_t *r_results) {
vkGetQueryPoolResults(vk_device, (VkQueryPool)p_pool_id.id, 0, p_query_count, sizeof(uint64_t) * p_query_count, r_results, sizeof(uint64_t), VK_QUERY_RESULT_64_BIT);
}
uint64_t RenderingDeviceDriverVulkan::timestamp_query_result_to_time(uint64_t p_result) {
// This sucks because timestampPeriod multiplier is a float, while the timestamp is 64 bits nanosecs.
// So, in cases like nvidia which give you enormous numbers and 1 as multiplier, multiplying is next to impossible.
// Need to do 128 bits fixed point multiplication to get the right value.
auto mult64to128 = [](uint64_t u, uint64_t v, uint64_t &h, uint64_t &l) {
uint64_t u1 = (u & 0xffffffff);
uint64_t v1 = (v & 0xffffffff);
uint64_t t = (u1 * v1);
uint64_t w3 = (t & 0xffffffff);
uint64_t k = (t >> 32);
u >>= 32;
t = (u * v1) + k;
k = (t & 0xffffffff);
uint64_t w1 = (t >> 32);
v >>= 32;
t = (u1 * v) + k;
k = (t >> 32);
h = (u * v) + w1 + k;
l = (t << 32) + w3;
};
uint64_t shift_bits = 16;
uint64_t h = 0, l = 0;
mult64to128(p_result, uint64_t(double(physical_device_properties.limits.timestampPeriod) * double(1 << shift_bits)), h, l);
l >>= shift_bits;
l |= h << (64 - shift_bits);
return l;
}
void RenderingDeviceDriverVulkan::command_timestamp_query_pool_reset(CommandBufferID p_cmd_buffer, QueryPoolID p_pool_id, uint32_t p_query_count) {
vkCmdResetQueryPool((VkCommandBuffer)p_cmd_buffer.id, (VkQueryPool)p_pool_id.id, 0, p_query_count);
}
void RenderingDeviceDriverVulkan::command_timestamp_write(CommandBufferID p_cmd_buffer, QueryPoolID p_pool_id, uint32_t p_index) {
vkCmdWriteTimestamp((VkCommandBuffer)p_cmd_buffer.id, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, (VkQueryPool)p_pool_id.id, p_index);
}
/****************/
/**** LABELS ****/
/****************/
void RenderingDeviceDriverVulkan::command_begin_label(CommandBufferID p_cmd_buffer, const char *p_label_name, const Color &p_color) {
const RenderingContextDriverVulkan::Functions &functions = context_driver->functions_get();
VkDebugUtilsLabelEXT label;
label.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT;
label.pNext = nullptr;
label.pLabelName = p_label_name;
label.color[0] = p_color[0];
label.color[1] = p_color[1];
label.color[2] = p_color[2];
label.color[3] = p_color[3];
functions.CmdBeginDebugUtilsLabelEXT((VkCommandBuffer)p_cmd_buffer.id, &label);
}
void RenderingDeviceDriverVulkan::command_end_label(CommandBufferID p_cmd_buffer) {
const RenderingContextDriverVulkan::Functions &functions = context_driver->functions_get();
functions.CmdEndDebugUtilsLabelEXT((VkCommandBuffer)p_cmd_buffer.id);
}
/********************/
/**** SUBMISSION ****/
/********************/
void RenderingDeviceDriverVulkan::begin_segment(uint32_t p_frame_index, uint32_t p_frames_drawn) {
// Per-frame segments are not required in Vulkan.
}
void RenderingDeviceDriverVulkan::end_segment() {
// Per-frame segments are not required in Vulkan.
}
/**************/
/**** MISC ****/
/**************/
void RenderingDeviceDriverVulkan::set_object_name(ObjectType p_type, ID p_driver_id, const String &p_name) {
switch (p_type) {
case OBJECT_TYPE_TEXTURE: {
const TextureInfo *tex_info = (const TextureInfo *)p_driver_id.id;
if (tex_info->allocation.handle) {
_set_object_name(VK_OBJECT_TYPE_IMAGE, (uint64_t)tex_info->vk_view_create_info.image, p_name);
}
_set_object_name(VK_OBJECT_TYPE_IMAGE_VIEW, (uint64_t)tex_info->vk_view, p_name + " View");
} break;
case OBJECT_TYPE_SAMPLER: {
_set_object_name(VK_OBJECT_TYPE_SAMPLER, p_driver_id.id, p_name);
} break;
case OBJECT_TYPE_BUFFER: {
const BufferInfo *buf_info = (const BufferInfo *)p_driver_id.id;
_set_object_name(VK_OBJECT_TYPE_BUFFER, (uint64_t)buf_info->vk_buffer, p_name);
if (buf_info->vk_view) {
_set_object_name(VK_OBJECT_TYPE_BUFFER_VIEW, (uint64_t)buf_info->vk_view, p_name + " View");
}
} break;
case OBJECT_TYPE_SHADER: {
const ShaderInfo *shader_info = (const ShaderInfo *)p_driver_id.id;
for (uint32_t i = 0; i < shader_info->vk_descriptor_set_layouts.size(); i++) {
_set_object_name(VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT, (uint64_t)shader_info->vk_descriptor_set_layouts[i], p_name);
}
_set_object_name(VK_OBJECT_TYPE_PIPELINE_LAYOUT, (uint64_t)shader_info->vk_pipeline_layout, p_name + " Pipeline Layout");
} break;
case OBJECT_TYPE_UNIFORM_SET: {
const UniformSetInfo *usi = (const UniformSetInfo *)p_driver_id.id;
_set_object_name(VK_OBJECT_TYPE_DESCRIPTOR_SET, (uint64_t)usi->vk_descriptor_set, p_name);
} break;
case OBJECT_TYPE_PIPELINE: {
_set_object_name(VK_OBJECT_TYPE_PIPELINE, (uint64_t)p_driver_id.id, p_name);
} break;
default: {
DEV_ASSERT(false);
}
}
}
uint64_t RenderingDeviceDriverVulkan::get_resource_native_handle(DriverResource p_type, ID p_driver_id) {
switch (p_type) {
case DRIVER_RESOURCE_LOGICAL_DEVICE: {
return (uint64_t)vk_device;
}
case DRIVER_RESOURCE_PHYSICAL_DEVICE: {
return (uint64_t)physical_device;
}
case DRIVER_RESOURCE_TOPMOST_OBJECT: {
return (uint64_t)context_driver->instance_get();
}
case DRIVER_RESOURCE_COMMAND_QUEUE: {
const CommandQueue *queue_info = (const CommandQueue *)p_driver_id.id;
return (uint64_t)queue_families[queue_info->queue_family][queue_info->queue_index].queue;
}
case DRIVER_RESOURCE_QUEUE_FAMILY: {
return uint32_t(p_driver_id.id) - 1;
}
case DRIVER_RESOURCE_TEXTURE: {
const TextureInfo *tex_info = (const TextureInfo *)p_driver_id.id;
return (uint64_t)tex_info->vk_view_create_info.image;
}
case DRIVER_RESOURCE_TEXTURE_VIEW: {
const TextureInfo *tex_info = (const TextureInfo *)p_driver_id.id;
return (uint64_t)tex_info->vk_view;
}
case DRIVER_RESOURCE_TEXTURE_DATA_FORMAT: {
const TextureInfo *tex_info = (const TextureInfo *)p_driver_id.id;
return (uint64_t)tex_info->vk_view_create_info.format;
}
case DRIVER_RESOURCE_SAMPLER:
case DRIVER_RESOURCE_UNIFORM_SET:
case DRIVER_RESOURCE_BUFFER:
case DRIVER_RESOURCE_COMPUTE_PIPELINE:
case DRIVER_RESOURCE_RENDER_PIPELINE: {
return p_driver_id.id;
}
default: {
return 0;
}
}
}
uint64_t RenderingDeviceDriverVulkan::get_total_memory_used() {
VmaTotalStatistics stats = {};
vmaCalculateStatistics(allocator, &stats);
return stats.total.statistics.allocationBytes;
}
uint64_t RenderingDeviceDriverVulkan::limit_get(Limit p_limit) {
const VkPhysicalDeviceLimits &limits = physical_device_properties.limits;
switch (p_limit) {
case LIMIT_MAX_BOUND_UNIFORM_SETS:
return limits.maxBoundDescriptorSets;
case LIMIT_MAX_FRAMEBUFFER_COLOR_ATTACHMENTS:
return limits.maxColorAttachments;
case LIMIT_MAX_TEXTURES_PER_UNIFORM_SET:
return limits.maxDescriptorSetSampledImages;
case LIMIT_MAX_SAMPLERS_PER_UNIFORM_SET:
return limits.maxDescriptorSetSamplers;
case LIMIT_MAX_STORAGE_BUFFERS_PER_UNIFORM_SET:
return limits.maxDescriptorSetStorageBuffers;
case LIMIT_MAX_STORAGE_IMAGES_PER_UNIFORM_SET:
return limits.maxDescriptorSetStorageImages;
case LIMIT_MAX_UNIFORM_BUFFERS_PER_UNIFORM_SET:
return limits.maxDescriptorSetUniformBuffers;
case LIMIT_MAX_DRAW_INDEXED_INDEX:
return limits.maxDrawIndexedIndexValue;
case LIMIT_MAX_FRAMEBUFFER_HEIGHT:
return limits.maxFramebufferHeight;
case LIMIT_MAX_FRAMEBUFFER_WIDTH:
return limits.maxFramebufferWidth;
case LIMIT_MAX_TEXTURE_ARRAY_LAYERS:
return limits.maxImageArrayLayers;
case LIMIT_MAX_TEXTURE_SIZE_1D:
return limits.maxImageDimension1D;
case LIMIT_MAX_TEXTURE_SIZE_2D:
return limits.maxImageDimension2D;
case LIMIT_MAX_TEXTURE_SIZE_3D:
return limits.maxImageDimension3D;
case LIMIT_MAX_TEXTURE_SIZE_CUBE:
return limits.maxImageDimensionCube;
case LIMIT_MAX_TEXTURES_PER_SHADER_STAGE:
return limits.maxPerStageDescriptorSampledImages;
case LIMIT_MAX_SAMPLERS_PER_SHADER_STAGE:
return limits.maxPerStageDescriptorSamplers;
case LIMIT_MAX_STORAGE_BUFFERS_PER_SHADER_STAGE:
return limits.maxPerStageDescriptorStorageBuffers;
case LIMIT_MAX_STORAGE_IMAGES_PER_SHADER_STAGE:
return limits.maxPerStageDescriptorStorageImages;
case LIMIT_MAX_UNIFORM_BUFFERS_PER_SHADER_STAGE:
return limits.maxPerStageDescriptorUniformBuffers;
case LIMIT_MAX_PUSH_CONSTANT_SIZE:
return limits.maxPushConstantsSize;
case LIMIT_MAX_UNIFORM_BUFFER_SIZE:
return limits.maxUniformBufferRange;
case LIMIT_MAX_VERTEX_INPUT_ATTRIBUTE_OFFSET:
return limits.maxVertexInputAttributeOffset;
case LIMIT_MAX_VERTEX_INPUT_ATTRIBUTES:
return limits.maxVertexInputAttributes;
case LIMIT_MAX_VERTEX_INPUT_BINDINGS:
return limits.maxVertexInputBindings;
case LIMIT_MAX_VERTEX_INPUT_BINDING_STRIDE:
return limits.maxVertexInputBindingStride;
case LIMIT_MIN_UNIFORM_BUFFER_OFFSET_ALIGNMENT:
return limits.minUniformBufferOffsetAlignment;
case LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_X:
return limits.maxComputeWorkGroupCount[0];
case LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_Y:
return limits.maxComputeWorkGroupCount[1];
case LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_Z:
return limits.maxComputeWorkGroupCount[2];
case LIMIT_MAX_COMPUTE_WORKGROUP_INVOCATIONS:
return limits.maxComputeWorkGroupInvocations;
case LIMIT_MAX_COMPUTE_WORKGROUP_SIZE_X:
return limits.maxComputeWorkGroupSize[0];
case LIMIT_MAX_COMPUTE_WORKGROUP_SIZE_Y:
return limits.maxComputeWorkGroupSize[1];
case LIMIT_MAX_COMPUTE_WORKGROUP_SIZE_Z:
return limits.maxComputeWorkGroupSize[2];
case LIMIT_MAX_VIEWPORT_DIMENSIONS_X:
return limits.maxViewportDimensions[0];
case LIMIT_MAX_VIEWPORT_DIMENSIONS_Y:
return limits.maxViewportDimensions[1];
case LIMIT_SUBGROUP_SIZE:
return subgroup_capabilities.size;
case LIMIT_SUBGROUP_MIN_SIZE:
return subgroup_capabilities.min_size;
case LIMIT_SUBGROUP_MAX_SIZE:
return subgroup_capabilities.max_size;
case LIMIT_SUBGROUP_IN_SHADERS:
return subgroup_capabilities.supported_stages_flags_rd();
case LIMIT_SUBGROUP_OPERATIONS:
return subgroup_capabilities.supported_operations_flags_rd();
case LIMIT_VRS_TEXEL_WIDTH:
return vrs_capabilities.texel_size.x;
case LIMIT_VRS_TEXEL_HEIGHT:
return vrs_capabilities.texel_size.y;
default:
ERR_FAIL_V(0);
}
}
uint64_t RenderingDeviceDriverVulkan::api_trait_get(ApiTrait p_trait) {
switch (p_trait) {
case API_TRAIT_TEXTURE_TRANSFER_ALIGNMENT:
return (uint64_t)MAX((uint64_t)16, physical_device_properties.limits.optimalBufferCopyOffsetAlignment);
case API_TRAIT_SHADER_CHANGE_INVALIDATION:
return (uint64_t)SHADER_CHANGE_INVALIDATION_INCOMPATIBLE_SETS_PLUS_CASCADE;
default:
return RenderingDeviceDriver::api_trait_get(p_trait);
}
}
bool RenderingDeviceDriverVulkan::has_feature(Features p_feature) {
switch (p_feature) {
case SUPPORTS_MULTIVIEW:
return multiview_capabilities.is_supported && multiview_capabilities.max_view_count > 1;
case SUPPORTS_FSR_HALF_FLOAT:
return shader_capabilities.shader_float16_is_supported && physical_device_features.shaderInt16 && storage_buffer_capabilities.storage_buffer_16_bit_access_is_supported;
case SUPPORTS_ATTACHMENT_VRS:
return vrs_capabilities.attachment_vrs_supported && physical_device_features.shaderStorageImageExtendedFormats;
case SUPPORTS_FRAGMENT_SHADER_WITH_ONLY_SIDE_EFFECTS:
return true;
default:
return false;
}
}
const RDD::MultiviewCapabilities &RenderingDeviceDriverVulkan::get_multiview_capabilities() {
return multiview_capabilities;
}
String RenderingDeviceDriverVulkan::get_api_name() const {
return "Vulkan";
}
String RenderingDeviceDriverVulkan::get_api_version() const {
uint32_t api_version = physical_device_properties.apiVersion;
return vformat("%d.%d.%d", VK_API_VERSION_MAJOR(api_version), VK_API_VERSION_MINOR(api_version), VK_API_VERSION_PATCH(api_version));
}
String RenderingDeviceDriverVulkan::get_pipeline_cache_uuid() const {
return pipeline_cache_id;
}
const RDD::Capabilities &RenderingDeviceDriverVulkan::get_capabilities() const {
return device_capabilities;
}
/******************/
RenderingDeviceDriverVulkan::RenderingDeviceDriverVulkan(RenderingContextDriverVulkan *p_context_driver) {
DEV_ASSERT(p_context_driver != nullptr);
context_driver = p_context_driver;
}
RenderingDeviceDriverVulkan::~RenderingDeviceDriverVulkan() {
while (small_allocs_pools.size()) {
HashMap<uint32_t, VmaPool>::Iterator E = small_allocs_pools.begin();
vmaDestroyPool(allocator, E->value);
small_allocs_pools.remove(E);
}
vmaDestroyAllocator(allocator);
if (vk_device != VK_NULL_HANDLE) {
vkDestroyDevice(vk_device, nullptr);
}
}