virtualx-engine/servers/rendering/rendering_device_graph.cpp

2029 lines
110 KiB
C++

/**************************************************************************/
/* rendering_device_graph.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "rendering_device_graph.h"
#define PRINT_RENDER_GRAPH 0
#define FORCE_FULL_ACCESS_BITS 0
#define PRINT_RESOURCE_TRACKER_TOTAL 0
#define PRINT_COMMAND_RECORDING 0
RenderingDeviceGraph::RenderingDeviceGraph() {
// Default initialization.
}
RenderingDeviceGraph::~RenderingDeviceGraph() {
}
bool RenderingDeviceGraph::_is_write_usage(ResourceUsage p_usage) {
switch (p_usage) {
case RESOURCE_USAGE_TRANSFER_FROM:
case RESOURCE_USAGE_UNIFORM_BUFFER_READ:
case RESOURCE_USAGE_INDIRECT_BUFFER_READ:
case RESOURCE_USAGE_TEXTURE_BUFFER_READ:
case RESOURCE_USAGE_STORAGE_BUFFER_READ:
case RESOURCE_USAGE_VERTEX_BUFFER_READ:
case RESOURCE_USAGE_INDEX_BUFFER_READ:
case RESOURCE_USAGE_TEXTURE_SAMPLE:
case RESOURCE_USAGE_STORAGE_IMAGE_READ:
case RESOURCE_USAGE_ATTACHMENT_COLOR_READ:
case RESOURCE_USAGE_ATTACHMENT_DEPTH_STENCIL_READ:
return false;
case RESOURCE_USAGE_TRANSFER_TO:
case RESOURCE_USAGE_TEXTURE_BUFFER_READ_WRITE:
case RESOURCE_USAGE_STORAGE_BUFFER_READ_WRITE:
case RESOURCE_USAGE_STORAGE_IMAGE_READ_WRITE:
case RESOURCE_USAGE_ATTACHMENT_COLOR_READ_WRITE:
case RESOURCE_USAGE_ATTACHMENT_DEPTH_STENCIL_READ_WRITE:
return true;
default:
DEV_ASSERT(false && "Invalid resource tracker usage.");
return false;
}
}
RDD::TextureLayout RenderingDeviceGraph::_usage_to_image_layout(ResourceUsage p_usage) {
switch (p_usage) {
case RESOURCE_USAGE_TRANSFER_FROM:
return RDD::TEXTURE_LAYOUT_TRANSFER_SRC_OPTIMAL;
case RESOURCE_USAGE_TRANSFER_TO:
return RDD::TEXTURE_LAYOUT_TRANSFER_DST_OPTIMAL;
case RESOURCE_USAGE_TEXTURE_SAMPLE:
return RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
case RESOURCE_USAGE_STORAGE_IMAGE_READ:
case RESOURCE_USAGE_STORAGE_IMAGE_READ_WRITE:
return RDD::TEXTURE_LAYOUT_GENERAL;
case RESOURCE_USAGE_ATTACHMENT_COLOR_READ:
case RESOURCE_USAGE_ATTACHMENT_COLOR_READ_WRITE:
return RDD::TEXTURE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
case RESOURCE_USAGE_ATTACHMENT_DEPTH_STENCIL_READ:
return RDD::TEXTURE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL;
case RESOURCE_USAGE_ATTACHMENT_DEPTH_STENCIL_READ_WRITE:
return RDD::TEXTURE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
case RESOURCE_USAGE_NONE:
return RDD::TEXTURE_LAYOUT_UNDEFINED;
default:
DEV_ASSERT(false && "Invalid resource tracker usage or not an image usage.");
return RDD::TEXTURE_LAYOUT_UNDEFINED;
}
}
RDD::BarrierAccessBits RenderingDeviceGraph::_usage_to_access_bits(ResourceUsage p_usage) {
#if FORCE_FULL_ACCESS_BITS
return RDD::BarrierAccessBits(RDD::BARRIER_ACCESS_MEMORY_READ_BIT | RDD::BARRIER_ACCESS_MEMORY_WRITE_BIT);
#else
switch (p_usage) {
case RESOURCE_USAGE_NONE:
return RDD::BarrierAccessBits(0);
case RESOURCE_USAGE_TRANSFER_FROM:
return RDD::BARRIER_ACCESS_TRANSFER_READ_BIT;
case RESOURCE_USAGE_TRANSFER_TO:
return RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT;
case RESOURCE_USAGE_UNIFORM_BUFFER_READ:
return RDD::BARRIER_ACCESS_UNIFORM_READ_BIT;
case RESOURCE_USAGE_INDIRECT_BUFFER_READ:
return RDD::BARRIER_ACCESS_INDIRECT_COMMAND_READ_BIT;
case RESOURCE_USAGE_STORAGE_BUFFER_READ:
case RESOURCE_USAGE_STORAGE_IMAGE_READ:
case RESOURCE_USAGE_TEXTURE_BUFFER_READ:
case RESOURCE_USAGE_TEXTURE_SAMPLE:
return RDD::BARRIER_ACCESS_SHADER_READ_BIT;
case RESOURCE_USAGE_TEXTURE_BUFFER_READ_WRITE:
case RESOURCE_USAGE_STORAGE_BUFFER_READ_WRITE:
case RESOURCE_USAGE_STORAGE_IMAGE_READ_WRITE:
return RDD::BarrierAccessBits(RDD::BARRIER_ACCESS_SHADER_READ_BIT | RDD::BARRIER_ACCESS_SHADER_WRITE_BIT);
case RESOURCE_USAGE_VERTEX_BUFFER_READ:
return RDD::BARRIER_ACCESS_VERTEX_ATTRIBUTE_READ_BIT;
case RESOURCE_USAGE_INDEX_BUFFER_READ:
return RDD::BARRIER_ACCESS_INDEX_READ_BIT;
case RESOURCE_USAGE_ATTACHMENT_COLOR_READ:
return RDD::BARRIER_ACCESS_COLOR_ATTACHMENT_READ_BIT;
case RESOURCE_USAGE_ATTACHMENT_COLOR_READ_WRITE:
return RDD::BarrierAccessBits(RDD::BARRIER_ACCESS_COLOR_ATTACHMENT_READ_BIT | RDD::BARRIER_ACCESS_COLOR_ATTACHMENT_WRITE_BIT);
case RESOURCE_USAGE_ATTACHMENT_DEPTH_STENCIL_READ:
return RDD::BARRIER_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT;
case RESOURCE_USAGE_ATTACHMENT_DEPTH_STENCIL_READ_WRITE:
return RDD::BarrierAccessBits(RDD::BARRIER_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | RDD::BARRIER_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT);
default:
DEV_ASSERT(false && "Invalid usage.");
return RDD::BarrierAccessBits(0);
}
#endif
}
int32_t RenderingDeviceGraph::_add_to_command_list(int32_t p_command_index, int32_t p_list_index) {
DEV_ASSERT(p_command_index < int32_t(command_count));
DEV_ASSERT(p_list_index < int32_t(command_list_nodes.size()));
int32_t next_index = int32_t(command_list_nodes.size());
command_list_nodes.resize(next_index + 1);
RecordedCommandListNode &new_node = command_list_nodes[next_index];
new_node.command_index = p_command_index;
new_node.next_list_index = p_list_index;
return next_index;
}
void RenderingDeviceGraph::_add_adjacent_command(int32_t p_previous_command_index, int32_t p_command_index, RecordedCommand *r_command) {
const uint32_t previous_command_data_offset = command_data_offsets[p_previous_command_index];
RecordedCommand &previous_command = *reinterpret_cast<RecordedCommand *>(&command_data[previous_command_data_offset]);
previous_command.adjacent_command_list_index = _add_to_command_list(p_command_index, previous_command.adjacent_command_list_index);
previous_command.next_stages = previous_command.next_stages | r_command->self_stages;
r_command->previous_stages = r_command->previous_stages | previous_command.self_stages;
}
int32_t RenderingDeviceGraph::_add_to_slice_read_list(int32_t p_command_index, Rect2i p_subresources, int32_t p_list_index) {
DEV_ASSERT(p_command_index < int32_t(command_count));
DEV_ASSERT(p_list_index < int32_t(read_slice_list_nodes.size()));
int32_t next_index = int32_t(read_slice_list_nodes.size());
read_slice_list_nodes.resize(next_index + 1);
RecordedSliceListNode &new_node = read_slice_list_nodes[next_index];
new_node.command_index = p_command_index;
new_node.next_list_index = p_list_index;
new_node.subresources = p_subresources;
return next_index;
}
int32_t RenderingDeviceGraph::_add_to_write_list(int32_t p_command_index, Rect2i p_subresources, int32_t p_list_index) {
DEV_ASSERT(p_command_index < int32_t(command_count));
DEV_ASSERT(p_list_index < int32_t(write_slice_list_nodes.size()));
int32_t next_index = int32_t(write_slice_list_nodes.size());
write_slice_list_nodes.resize(next_index + 1);
RecordedSliceListNode &new_node = write_slice_list_nodes[next_index];
new_node.command_index = p_command_index;
new_node.next_list_index = p_list_index;
new_node.subresources = p_subresources;
return next_index;
}
RenderingDeviceGraph::RecordedCommand *RenderingDeviceGraph::_allocate_command(uint32_t p_command_size, int32_t &r_command_index) {
uint32_t command_data_offset = command_data.size();
command_data_offsets.push_back(command_data_offset);
command_data.resize(command_data_offset + p_command_size);
r_command_index = command_count++;
RecordedCommand *new_command = reinterpret_cast<RecordedCommand *>(&command_data[command_data_offset]);
*new_command = RecordedCommand();
return new_command;
}
RenderingDeviceGraph::DrawListInstruction *RenderingDeviceGraph::_allocate_draw_list_instruction(uint32_t p_instruction_size) {
uint32_t draw_list_data_offset = draw_instruction_list.data.size();
draw_instruction_list.data.resize(draw_list_data_offset + p_instruction_size);
return reinterpret_cast<DrawListInstruction *>(&draw_instruction_list.data[draw_list_data_offset]);
}
RenderingDeviceGraph::ComputeListInstruction *RenderingDeviceGraph::_allocate_compute_list_instruction(uint32_t p_instruction_size) {
uint32_t compute_list_data_offset = compute_instruction_list.data.size();
compute_instruction_list.data.resize(compute_list_data_offset + p_instruction_size);
return reinterpret_cast<ComputeListInstruction *>(&compute_instruction_list.data[compute_list_data_offset]);
}
void RenderingDeviceGraph::_add_command_to_graph(ResourceTracker **p_resource_trackers, ResourceUsage *p_resource_usages, uint32_t p_resource_count, int32_t p_command_index, RecordedCommand *r_command) {
// Assign the next stages derived from the stages the command requires first.
r_command->next_stages = r_command->self_stages;
if (command_label_index >= 0) {
// If a label is active, tag the command with the label.
r_command->label_index = command_label_index;
}
if (r_command->type == RecordedCommand::TYPE_CAPTURE_TIMESTAMP) {
// All previous commands starting from the previous timestamp should be adjacent to this command.
int32_t start_command_index = uint32_t(MAX(command_timestamp_index, 0));
for (int32_t i = start_command_index; i < p_command_index; i++) {
_add_adjacent_command(i, p_command_index, r_command);
}
// Make this command the new active timestamp command.
command_timestamp_index = p_command_index;
} else if (command_timestamp_index >= 0) {
// Timestamp command should be adjacent to this command.
_add_adjacent_command(command_timestamp_index, p_command_index, r_command);
}
if (command_synchronization_pending) {
// All previous commands should be adjacent to this command.
int32_t start_command_index = uint32_t(MAX(command_synchronization_index, 0));
for (int32_t i = start_command_index; i < p_command_index; i++) {
_add_adjacent_command(i, p_command_index, r_command);
}
command_synchronization_index = p_command_index;
command_synchronization_pending = false;
} else if (command_synchronization_index >= 0) {
// Synchronization command should be adjacent to this command.
_add_adjacent_command(command_synchronization_index, p_command_index, r_command);
}
for (uint32_t i = 0; i < p_resource_count; i++) {
ResourceTracker *resource_tracker = p_resource_trackers[i];
DEV_ASSERT(resource_tracker != nullptr);
resource_tracker->reset_if_outdated(tracking_frame);
const RDD::TextureSubresourceRange &subresources = resource_tracker->texture_subresources;
const Rect2i resource_tracker_rect(subresources.base_mipmap, subresources.base_layer, subresources.mipmap_count, subresources.layer_count);
Rect2i search_tracker_rect = resource_tracker_rect;
ResourceUsage new_resource_usage = p_resource_usages[i];
bool write_usage = _is_write_usage(new_resource_usage);
BitField<RDD::BarrierAccessBits> new_usage_access = _usage_to_access_bits(new_resource_usage);
bool is_resource_a_slice = resource_tracker->parent != nullptr;
if (is_resource_a_slice) {
// This resource depends on a parent resource.
resource_tracker->parent->reset_if_outdated(tracking_frame);
if (resource_tracker->texture_slice_command_index != p_command_index) {
// Indicate this slice has been used by this command.
resource_tracker->texture_slice_command_index = p_command_index;
}
if (resource_tracker->parent->usage == RESOURCE_USAGE_NONE) {
if (resource_tracker->parent->texture_driver_id != 0) {
// If the resource is a texture, we transition it entirely to the layout determined by the first slice that uses it.
_add_texture_barrier_to_command(resource_tracker->parent->texture_driver_id, RDD::BarrierAccessBits(0), new_usage_access, RDG::RESOURCE_USAGE_NONE, new_resource_usage, resource_tracker->parent->texture_subresources, command_normalization_barriers, r_command->normalization_barrier_index, r_command->normalization_barrier_count);
}
// If the parent hasn't been used yet, we assign the usage of the slice to the entire resource.
resource_tracker->parent->usage = new_resource_usage;
// Also assign the usage to the slice and consider it a write operation. Consider the parent's current usage access as its own.
resource_tracker->usage = new_resource_usage;
resource_tracker->usage_access = resource_tracker->parent->usage_access;
write_usage = true;
// Indicate the area that should be tracked is the entire resource.
const RDD::TextureSubresourceRange &parent_subresources = resource_tracker->parent->texture_subresources;
search_tracker_rect = Rect2i(parent_subresources.base_mipmap, parent_subresources.base_layer, parent_subresources.mipmap_count, parent_subresources.layer_count);
} else if (resource_tracker->in_parent_dirty_list) {
if (resource_tracker->parent->usage == new_resource_usage) {
// The slice will be transitioned to the resource of the parent and can be deleted from the dirty list.
ResourceTracker *previous_tracker = nullptr;
ResourceTracker *current_tracker = resource_tracker->parent->dirty_shared_list;
bool initialized_dirty_rect = false;
while (current_tracker != nullptr) {
current_tracker->reset_if_outdated(tracking_frame);
if (current_tracker == resource_tracker) {
current_tracker->in_parent_dirty_list = false;
if (previous_tracker != nullptr) {
previous_tracker->next_shared = current_tracker->next_shared;
} else {
resource_tracker->parent->dirty_shared_list = current_tracker->next_shared;
}
current_tracker = current_tracker->next_shared;
} else {
if (initialized_dirty_rect) {
resource_tracker->parent->texture_slice_or_dirty_rect = resource_tracker->parent->texture_slice_or_dirty_rect.merge(current_tracker->texture_slice_or_dirty_rect);
} else {
resource_tracker->parent->texture_slice_or_dirty_rect = current_tracker->texture_slice_or_dirty_rect;
initialized_dirty_rect = true;
}
previous_tracker = current_tracker;
current_tracker = current_tracker->next_shared;
}
}
}
} else {
if (resource_tracker->parent->dirty_shared_list != nullptr && resource_tracker->parent->texture_slice_or_dirty_rect.intersects(resource_tracker->texture_slice_or_dirty_rect)) {
// There's an intersection with the current dirty area of the parent and the slice. We must verify if the intersection is against a slice
// that was used in this command or not. Any slice we can find that wasn't used by this command must be reverted to the layout of the parent.
ResourceTracker *previous_tracker = nullptr;
ResourceTracker *current_tracker = resource_tracker->parent->dirty_shared_list;
bool initialized_dirty_rect = false;
while (current_tracker != nullptr) {
current_tracker->reset_if_outdated(tracking_frame);
if (current_tracker->texture_slice_or_dirty_rect.intersects(resource_tracker->texture_slice_or_dirty_rect)) {
if (current_tracker->command_frame == tracking_frame && current_tracker->texture_slice_command_index == p_command_index) {
ERR_FAIL_MSG("Texture slices that overlap can't be used in the same command.");
} else {
// Delete the slice from the dirty list and revert it to the usage of the parent.
if (current_tracker->texture_driver_id != 0) {
_add_texture_barrier_to_command(current_tracker->texture_driver_id, current_tracker->usage_access, new_usage_access, current_tracker->usage, resource_tracker->parent->usage, current_tracker->texture_subresources, command_normalization_barriers, r_command->normalization_barrier_index, r_command->normalization_barrier_count);
// Merge the area of the slice with the current tracking area of the command and indicate it's a write usage as well.
search_tracker_rect = search_tracker_rect.merge(current_tracker->texture_slice_or_dirty_rect);
write_usage = true;
}
current_tracker->in_parent_dirty_list = false;
if (previous_tracker != nullptr) {
previous_tracker->next_shared = current_tracker->next_shared;
} else {
resource_tracker->parent->dirty_shared_list = current_tracker->next_shared;
}
current_tracker = current_tracker->next_shared;
}
} else {
// Recalculate the dirty rect of the parent so the deleted slices are excluded.
if (initialized_dirty_rect) {
resource_tracker->parent->texture_slice_or_dirty_rect = resource_tracker->parent->texture_slice_or_dirty_rect.merge(current_tracker->texture_slice_or_dirty_rect);
} else {
resource_tracker->parent->texture_slice_or_dirty_rect = current_tracker->texture_slice_or_dirty_rect;
initialized_dirty_rect = true;
}
previous_tracker = current_tracker;
current_tracker = current_tracker->next_shared;
}
}
}
// If it wasn't in the list, assume the usage is the same as the parent. Consider the parent's current usage access as its own.
resource_tracker->usage = resource_tracker->parent->usage;
resource_tracker->usage_access = resource_tracker->parent->usage_access;
if (resource_tracker->usage != new_resource_usage) {
// Insert to the dirty list if the requested usage is different.
resource_tracker->next_shared = resource_tracker->parent->dirty_shared_list;
resource_tracker->parent->dirty_shared_list = resource_tracker;
resource_tracker->in_parent_dirty_list = true;
if (resource_tracker->parent->dirty_shared_list != nullptr) {
resource_tracker->parent->texture_slice_or_dirty_rect = resource_tracker->parent->texture_slice_or_dirty_rect.merge(resource_tracker->texture_slice_or_dirty_rect);
} else {
resource_tracker->parent->texture_slice_or_dirty_rect = resource_tracker->texture_slice_or_dirty_rect;
}
}
}
} else {
ResourceTracker *current_tracker = resource_tracker->dirty_shared_list;
if (current_tracker != nullptr) {
// Consider the usage as write if we must transition any of the slices.
write_usage = true;
}
while (current_tracker != nullptr) {
current_tracker->reset_if_outdated(tracking_frame);
if (current_tracker->texture_driver_id != 0) {
// Transition all slices to the layout of the parent resource.
_add_texture_barrier_to_command(current_tracker->texture_driver_id, current_tracker->usage_access, new_usage_access, current_tracker->usage, resource_tracker->usage, current_tracker->texture_subresources, command_normalization_barriers, r_command->normalization_barrier_index, r_command->normalization_barrier_count);
}
current_tracker->in_parent_dirty_list = false;
current_tracker = current_tracker->next_shared;
}
resource_tracker->dirty_shared_list = nullptr;
}
// Use the resource's parent tracker directly for all search operations.
bool resource_has_parent = resource_tracker->parent != nullptr;
ResourceTracker *search_tracker = resource_has_parent ? resource_tracker->parent : resource_tracker;
bool different_usage = resource_tracker->usage != new_resource_usage;
bool write_usage_after_write = (write_usage && search_tracker->write_command_or_list_index >= 0);
if (different_usage || write_usage_after_write) {
// A barrier must be pushed if the usage is different of it's a write usage and there was already a command that wrote to this resource previously.
if (resource_tracker->texture_driver_id.id != 0) {
if (resource_tracker->usage_access.is_empty()) {
// FIXME: If the tracker does not know the previous type of usage, assume the generic memory write one.
// Tracking access bits across texture slices can be tricky, so this failsafe can be removed once that's improved.
resource_tracker->usage_access = RDD::BARRIER_ACCESS_MEMORY_WRITE_BIT;
}
_add_texture_barrier_to_command(resource_tracker->texture_driver_id, resource_tracker->usage_access, new_usage_access, resource_tracker->usage, new_resource_usage, resource_tracker->texture_subresources, command_transition_barriers, r_command->transition_barrier_index, r_command->transition_barrier_count);
} else if (resource_tracker->buffer_driver_id.id != 0) {
#if USE_BUFFER_BARRIERS
_add_buffer_barrier_to_command(resource_tracker->buffer_driver_id, resource_tracker->usage_access, new_usage_access, r_command->buffer_barrier_index, r_command->buffer_barrier_count);
#endif
// FIXME: Memory barriers are currently pushed regardless of whether buffer barriers are being used or not. Refer to the comment on the
// definition of USE_BUFFER_BARRIERS for the reason behind this. This can be fixed to be one case or the other once it's been confirmed
// the buffer and memory barrier behavior discrepancy has been solved.
r_command->memory_barrier.src_access = resource_tracker->usage_access;
r_command->memory_barrier.dst_access = new_usage_access;
} else {
DEV_ASSERT(false && "Resource tracker does not contain a valid buffer or texture ID.");
}
}
// Always update the access of the tracker according to the latest usage.
resource_tracker->usage_access = new_usage_access;
if (different_usage) {
// Even if the usage of the resource isn't a write usage explicitly, a different usage implies a transition and it should therefore be considered a write.
write_usage = true;
resource_tracker->usage = new_resource_usage;
}
if (search_tracker->write_command_or_list_index >= 0) {
if (search_tracker->write_command_list_enabled) {
// Make this command adjacent to any commands that wrote to this resource and intersect with the slice if it applies.
// For buffers or textures that never use slices, this list will only be one element long at most.
int32_t previous_write_list_index = -1;
int32_t write_list_index = search_tracker->write_command_or_list_index;
while (write_list_index >= 0) {
const RecordedSliceListNode &write_list_node = write_slice_list_nodes[write_list_index];
if (!resource_has_parent || search_tracker_rect.intersects(write_list_node.subresources)) {
if (write_list_node.command_index == p_command_index) {
ERR_FAIL_COND_MSG(!resource_has_parent, "Command can't have itself as a dependency.");
} else {
// Command is dependent on this command. Add this command to the adjacency list of the write command.
_add_adjacent_command(write_list_node.command_index, p_command_index, r_command);
if (resource_has_parent && write_usage && search_tracker_rect.encloses(write_list_node.subresources)) {
// Eliminate redundant writes from the list.
if (previous_write_list_index >= 0) {
RecordedSliceListNode &previous_list_node = write_slice_list_nodes[previous_write_list_index];
previous_list_node.next_list_index = write_list_node.next_list_index;
} else {
search_tracker->write_command_or_list_index = write_list_node.next_list_index;
}
write_list_index = write_list_node.next_list_index;
continue;
}
}
}
previous_write_list_index = write_list_index;
write_list_index = write_list_node.next_list_index;
}
} else {
// The index is just the latest command index that wrote to the resource.
if (search_tracker->write_command_or_list_index == p_command_index) {
ERR_FAIL_MSG("Command can't have itself as a dependency.");
} else {
_add_adjacent_command(search_tracker->write_command_or_list_index, p_command_index, r_command);
}
}
}
if (write_usage) {
if (resource_has_parent) {
if (!search_tracker->write_command_list_enabled && search_tracker->write_command_or_list_index >= 0) {
// Write command list was not being used but there was a write command recorded. Add a new node with the entire parent resource's subresources and the recorded command index to the list.
const RDD::TextureSubresourceRange &tracker_subresources = search_tracker->texture_subresources;
Rect2i tracker_rect(tracker_subresources.base_mipmap, tracker_subresources.base_layer, tracker_subresources.mipmap_count, tracker_subresources.layer_count);
search_tracker->write_command_or_list_index = _add_to_write_list(search_tracker->write_command_or_list_index, tracker_rect, -1);
}
search_tracker->write_command_or_list_index = _add_to_write_list(p_command_index, search_tracker_rect, search_tracker->write_command_or_list_index);
search_tracker->write_command_list_enabled = true;
} else {
search_tracker->write_command_or_list_index = p_command_index;
search_tracker->write_command_list_enabled = false;
}
// We add this command to the adjacency list of all commands that were reading from the entire resource.
int32_t read_full_command_list_index = search_tracker->read_full_command_list_index;
while (read_full_command_list_index >= 0) {
const RecordedCommandListNode &command_list_node = command_list_nodes[read_full_command_list_index];
if (command_list_node.command_index == p_command_index) {
if (!resource_has_parent) {
// Only slices are allowed to be in different usages in the same command as they are guaranteed to have no overlap in the same command.
ERR_FAIL_MSG("Command can't have itself as a dependency.");
}
} else {
// Add this command to the adjacency list of each command that was reading this resource.
_add_adjacent_command(command_list_node.command_index, p_command_index, r_command);
}
read_full_command_list_index = command_list_node.next_list_index;
}
if (!resource_has_parent) {
// Clear the full list if this resource is not a slice.
search_tracker->read_full_command_list_index = -1;
}
// We add this command to the adjacency list of all commands that were reading from resource slices.
int32_t previous_slice_command_list_index = -1;
int32_t read_slice_command_list_index = search_tracker->read_slice_command_list_index;
while (read_slice_command_list_index >= 0) {
const RecordedSliceListNode &read_list_node = read_slice_list_nodes[read_slice_command_list_index];
if (!resource_has_parent || search_tracker_rect.encloses(read_list_node.subresources)) {
if (previous_slice_command_list_index >= 0) {
// Erase this element and connect the previous one to the next element.
read_slice_list_nodes[previous_slice_command_list_index].next_list_index = read_list_node.next_list_index;
} else {
// Erase this element from the head of the list.
DEV_ASSERT(search_tracker->read_slice_command_list_index == read_slice_command_list_index);
search_tracker->read_slice_command_list_index = read_list_node.next_list_index;
}
// Advance to the next element.
read_slice_command_list_index = read_list_node.next_list_index;
} else {
previous_slice_command_list_index = read_slice_command_list_index;
read_slice_command_list_index = read_list_node.next_list_index;
}
if (!resource_has_parent || search_tracker_rect.intersects(read_list_node.subresources)) {
// Add this command to the adjacency list of each command that was reading this resource.
// We only add the dependency if there's an intersection between slices or this resource isn't a slice.
_add_adjacent_command(read_list_node.command_index, p_command_index, r_command);
}
}
} else if (resource_has_parent) {
// We add a read dependency to the tracker to indicate this command reads from the resource slice.
search_tracker->read_slice_command_list_index = _add_to_slice_read_list(p_command_index, resource_tracker_rect, search_tracker->read_slice_command_list_index);
} else {
// We add a read dependency to the tracker to indicate this command reads from the entire resource.
search_tracker->read_full_command_list_index = _add_to_command_list(p_command_index, search_tracker->read_full_command_list_index);
}
}
}
void RenderingDeviceGraph::_add_texture_barrier_to_command(RDD::TextureID p_texture_id, BitField<RDD::BarrierAccessBits> p_src_access, BitField<RDD::BarrierAccessBits> p_dst_access, ResourceUsage p_prev_usage, ResourceUsage p_next_usage, RDD::TextureSubresourceRange p_subresources, LocalVector<RDD::TextureBarrier> &r_barrier_vector, int32_t &r_barrier_index, int32_t &r_barrier_count) {
if (!driver_honors_barriers) {
return;
}
if (r_barrier_index < 0) {
r_barrier_index = r_barrier_vector.size();
}
RDD::TextureBarrier texture_barrier;
texture_barrier.texture = p_texture_id;
texture_barrier.src_access = p_src_access;
texture_barrier.dst_access = p_dst_access;
texture_barrier.prev_layout = _usage_to_image_layout(p_prev_usage);
texture_barrier.next_layout = _usage_to_image_layout(p_next_usage);
texture_barrier.subresources = p_subresources;
r_barrier_vector.push_back(texture_barrier);
r_barrier_count++;
}
#if USE_BUFFER_BARRIERS
void RenderingDeviceGraph::_add_buffer_barrier_to_command(RDD::BufferID p_buffer_id, BitField<RDD::BarrierAccessBits> p_src_access, BitField<RDD::BarrierAccessBits> p_dst_access, int32_t &r_barrier_index, int32_t &r_barrier_count) {
if (!driver_honors_barriers) {
return;
}
if (r_barrier_index < 0) {
r_barrier_index = command_buffer_barriers.size();
}
RDD::BufferBarrier buffer_barrier;
buffer_barrier.buffer = p_buffer_id;
buffer_barrier.src_access = p_src_access;
buffer_barrier.dst_access = p_dst_access;
buffer_barrier.offset = 0;
buffer_barrier.size = RDD::BUFFER_WHOLE_SIZE;
command_buffer_barriers.push_back(buffer_barrier);
r_barrier_count++;
}
#endif
void RenderingDeviceGraph::_run_compute_list_command(RDD::CommandBufferID p_command_buffer, const uint8_t *p_instruction_data, uint32_t p_instruction_data_size) {
uint32_t instruction_data_cursor = 0;
while (instruction_data_cursor < p_instruction_data_size) {
DEV_ASSERT((instruction_data_cursor + sizeof(ComputeListInstruction)) <= p_instruction_data_size);
const ComputeListInstruction *instruction = reinterpret_cast<const ComputeListInstruction *>(&p_instruction_data[instruction_data_cursor]);
switch (instruction->type) {
case ComputeListInstruction::TYPE_BIND_PIPELINE: {
const ComputeListBindPipelineInstruction *bind_pipeline_instruction = reinterpret_cast<const ComputeListBindPipelineInstruction *>(instruction);
driver->command_bind_compute_pipeline(p_command_buffer, bind_pipeline_instruction->pipeline);
instruction_data_cursor += sizeof(ComputeListBindPipelineInstruction);
} break;
case ComputeListInstruction::TYPE_BIND_UNIFORM_SET: {
const ComputeListBindUniformSetInstruction *bind_uniform_set_instruction = reinterpret_cast<const ComputeListBindUniformSetInstruction *>(instruction);
driver->command_bind_compute_uniform_set(p_command_buffer, bind_uniform_set_instruction->uniform_set, bind_uniform_set_instruction->shader, bind_uniform_set_instruction->set_index);
instruction_data_cursor += sizeof(ComputeListBindUniformSetInstruction);
} break;
case ComputeListInstruction::TYPE_DISPATCH: {
const ComputeListDispatchInstruction *dispatch_instruction = reinterpret_cast<const ComputeListDispatchInstruction *>(instruction);
driver->command_compute_dispatch(p_command_buffer, dispatch_instruction->x_groups, dispatch_instruction->y_groups, dispatch_instruction->z_groups);
instruction_data_cursor += sizeof(ComputeListDispatchInstruction);
} break;
case ComputeListInstruction::TYPE_DISPATCH_INDIRECT: {
const ComputeListDispatchIndirectInstruction *dispatch_indirect_instruction = reinterpret_cast<const ComputeListDispatchIndirectInstruction *>(instruction);
driver->command_compute_dispatch_indirect(p_command_buffer, dispatch_indirect_instruction->buffer, dispatch_indirect_instruction->offset);
instruction_data_cursor += sizeof(ComputeListDispatchIndirectInstruction);
} break;
case ComputeListInstruction::TYPE_SET_PUSH_CONSTANT: {
const ComputeListSetPushConstantInstruction *set_push_constant_instruction = reinterpret_cast<const ComputeListSetPushConstantInstruction *>(instruction);
const VectorView push_constant_data_view(reinterpret_cast<const uint32_t *>(set_push_constant_instruction->data()), set_push_constant_instruction->size / sizeof(uint32_t));
driver->command_bind_push_constants(p_command_buffer, set_push_constant_instruction->shader, 0, push_constant_data_view);
instruction_data_cursor += sizeof(ComputeListSetPushConstantInstruction);
instruction_data_cursor += set_push_constant_instruction->size;
} break;
case ComputeListInstruction::TYPE_UNIFORM_SET_PREPARE_FOR_USE: {
const ComputeListUniformSetPrepareForUseInstruction *uniform_set_prepare_for_use_instruction = reinterpret_cast<const ComputeListUniformSetPrepareForUseInstruction *>(instruction);
driver->command_uniform_set_prepare_for_use(p_command_buffer, uniform_set_prepare_for_use_instruction->uniform_set, uniform_set_prepare_for_use_instruction->shader, uniform_set_prepare_for_use_instruction->set_index);
instruction_data_cursor += sizeof(ComputeListUniformSetPrepareForUseInstruction);
} break;
default:
DEV_ASSERT(false && "Unknown compute list instruction type.");
return;
}
}
}
void RenderingDeviceGraph::_run_draw_list_command(RDD::CommandBufferID p_command_buffer, const uint8_t *p_instruction_data, uint32_t p_instruction_data_size) {
uint32_t instruction_data_cursor = 0;
while (instruction_data_cursor < p_instruction_data_size) {
DEV_ASSERT((instruction_data_cursor + sizeof(DrawListInstruction)) <= p_instruction_data_size);
const DrawListInstruction *instruction = reinterpret_cast<const DrawListInstruction *>(&p_instruction_data[instruction_data_cursor]);
switch (instruction->type) {
case DrawListInstruction::TYPE_BIND_INDEX_BUFFER: {
const DrawListBindIndexBufferInstruction *bind_index_buffer_instruction = reinterpret_cast<const DrawListBindIndexBufferInstruction *>(instruction);
driver->command_render_bind_index_buffer(p_command_buffer, bind_index_buffer_instruction->buffer, bind_index_buffer_instruction->format, bind_index_buffer_instruction->offset);
instruction_data_cursor += sizeof(DrawListBindIndexBufferInstruction);
} break;
case DrawListInstruction::TYPE_BIND_PIPELINE: {
const DrawListBindPipelineInstruction *bind_pipeline_instruction = reinterpret_cast<const DrawListBindPipelineInstruction *>(instruction);
driver->command_bind_render_pipeline(p_command_buffer, bind_pipeline_instruction->pipeline);
instruction_data_cursor += sizeof(DrawListBindPipelineInstruction);
} break;
case DrawListInstruction::TYPE_BIND_UNIFORM_SET: {
const DrawListBindUniformSetInstruction *bind_uniform_set_instruction = reinterpret_cast<const DrawListBindUniformSetInstruction *>(instruction);
driver->command_bind_render_uniform_set(p_command_buffer, bind_uniform_set_instruction->uniform_set, bind_uniform_set_instruction->shader, bind_uniform_set_instruction->set_index);
instruction_data_cursor += sizeof(DrawListBindUniformSetInstruction);
} break;
case DrawListInstruction::TYPE_BIND_VERTEX_BUFFERS: {
const DrawListBindVertexBuffersInstruction *bind_vertex_buffers_instruction = reinterpret_cast<const DrawListBindVertexBuffersInstruction *>(instruction);
driver->command_render_bind_vertex_buffers(p_command_buffer, bind_vertex_buffers_instruction->vertex_buffers_count, bind_vertex_buffers_instruction->vertex_buffers(), bind_vertex_buffers_instruction->vertex_buffer_offsets());
instruction_data_cursor += sizeof(DrawListBindVertexBuffersInstruction);
instruction_data_cursor += sizeof(RDD::BufferID) * bind_vertex_buffers_instruction->vertex_buffers_count;
instruction_data_cursor += sizeof(uint64_t) * bind_vertex_buffers_instruction->vertex_buffers_count;
} break;
case DrawListInstruction::TYPE_CLEAR_ATTACHMENTS: {
const DrawListClearAttachmentsInstruction *clear_attachments_instruction = reinterpret_cast<const DrawListClearAttachmentsInstruction *>(instruction);
const VectorView attachments_clear_view(clear_attachments_instruction->attachments_clear(), clear_attachments_instruction->attachments_clear_count);
const VectorView attachments_clear_rect_view(clear_attachments_instruction->attachments_clear_rect(), clear_attachments_instruction->attachments_clear_rect_count);
driver->command_render_clear_attachments(p_command_buffer, attachments_clear_view, attachments_clear_rect_view);
instruction_data_cursor += sizeof(DrawListClearAttachmentsInstruction);
instruction_data_cursor += sizeof(RDD::AttachmentClear) * clear_attachments_instruction->attachments_clear_count;
instruction_data_cursor += sizeof(Rect2i) * clear_attachments_instruction->attachments_clear_rect_count;
} break;
case DrawListInstruction::TYPE_DRAW: {
const DrawListDrawInstruction *draw_instruction = reinterpret_cast<const DrawListDrawInstruction *>(instruction);
driver->command_render_draw(p_command_buffer, draw_instruction->vertex_count, draw_instruction->instance_count, 0, 0);
instruction_data_cursor += sizeof(DrawListDrawInstruction);
} break;
case DrawListInstruction::TYPE_DRAW_INDEXED: {
const DrawListDrawIndexedInstruction *draw_indexed_instruction = reinterpret_cast<const DrawListDrawIndexedInstruction *>(instruction);
driver->command_render_draw_indexed(p_command_buffer, draw_indexed_instruction->index_count, draw_indexed_instruction->instance_count, draw_indexed_instruction->first_index, 0, 0);
instruction_data_cursor += sizeof(DrawListDrawIndexedInstruction);
} break;
case DrawListInstruction::TYPE_EXECUTE_COMMANDS: {
const DrawListExecuteCommandsInstruction *execute_commands_instruction = reinterpret_cast<const DrawListExecuteCommandsInstruction *>(instruction);
driver->command_buffer_execute_secondary(p_command_buffer, execute_commands_instruction->command_buffer);
instruction_data_cursor += sizeof(DrawListExecuteCommandsInstruction);
} break;
case DrawListInstruction::TYPE_NEXT_SUBPASS: {
const DrawListNextSubpassInstruction *next_subpass_instruction = reinterpret_cast<const DrawListNextSubpassInstruction *>(instruction);
driver->command_next_render_subpass(p_command_buffer, next_subpass_instruction->command_buffer_type);
instruction_data_cursor += sizeof(DrawListNextSubpassInstruction);
} break;
case DrawListInstruction::TYPE_SET_BLEND_CONSTANTS: {
const DrawListSetBlendConstantsInstruction *set_blend_constants_instruction = reinterpret_cast<const DrawListSetBlendConstantsInstruction *>(instruction);
driver->command_render_set_blend_constants(p_command_buffer, set_blend_constants_instruction->color);
instruction_data_cursor += sizeof(DrawListSetBlendConstantsInstruction);
} break;
case DrawListInstruction::TYPE_SET_LINE_WIDTH: {
const DrawListSetLineWidthInstruction *set_line_width_instruction = reinterpret_cast<const DrawListSetLineWidthInstruction *>(instruction);
driver->command_render_set_line_width(p_command_buffer, set_line_width_instruction->width);
instruction_data_cursor += sizeof(DrawListSetLineWidthInstruction);
} break;
case DrawListInstruction::TYPE_SET_PUSH_CONSTANT: {
const DrawListSetPushConstantInstruction *set_push_constant_instruction = reinterpret_cast<const DrawListSetPushConstantInstruction *>(instruction);
const VectorView push_constant_data_view(reinterpret_cast<const uint32_t *>(set_push_constant_instruction->data()), set_push_constant_instruction->size / sizeof(uint32_t));
driver->command_bind_push_constants(p_command_buffer, set_push_constant_instruction->shader, 0, push_constant_data_view);
instruction_data_cursor += sizeof(DrawListSetPushConstantInstruction);
instruction_data_cursor += set_push_constant_instruction->size;
} break;
case DrawListInstruction::TYPE_SET_SCISSOR: {
const DrawListSetScissorInstruction *set_scissor_instruction = reinterpret_cast<const DrawListSetScissorInstruction *>(instruction);
driver->command_render_set_scissor(p_command_buffer, set_scissor_instruction->rect);
instruction_data_cursor += sizeof(DrawListSetScissorInstruction);
} break;
case DrawListInstruction::TYPE_SET_VIEWPORT: {
const DrawListSetViewportInstruction *set_viewport_instruction = reinterpret_cast<const DrawListSetViewportInstruction *>(instruction);
driver->command_render_set_viewport(p_command_buffer, set_viewport_instruction->rect);
instruction_data_cursor += sizeof(DrawListSetViewportInstruction);
} break;
case DrawListInstruction::TYPE_UNIFORM_SET_PREPARE_FOR_USE: {
const DrawListUniformSetPrepareForUseInstruction *uniform_set_prepare_for_use_instruction = reinterpret_cast<const DrawListUniformSetPrepareForUseInstruction *>(instruction);
driver->command_uniform_set_prepare_for_use(p_command_buffer, uniform_set_prepare_for_use_instruction->uniform_set, uniform_set_prepare_for_use_instruction->shader, uniform_set_prepare_for_use_instruction->set_index);
instruction_data_cursor += sizeof(DrawListUniformSetPrepareForUseInstruction);
} break;
default:
DEV_ASSERT(false && "Unknown draw list instruction type.");
return;
}
}
}
void RenderingDeviceGraph::_run_secondary_command_buffer_task(const SecondaryCommandBuffer *p_secondary) {
driver->command_buffer_begin_secondary(p_secondary->command_buffer, p_secondary->render_pass, 0, p_secondary->framebuffer);
_run_draw_list_command(p_secondary->command_buffer, p_secondary->instruction_data.ptr(), p_secondary->instruction_data.size());
driver->command_buffer_end(p_secondary->command_buffer);
}
void RenderingDeviceGraph::_wait_for_secondary_command_buffer_tasks() {
for (uint32_t i = 0; i < frames[frame].secondary_command_buffers_used; i++) {
WorkerThreadPool::TaskID &task = frames[frame].secondary_command_buffers[i].task;
if (task != WorkerThreadPool::INVALID_TASK_ID) {
WorkerThreadPool::get_singleton()->wait_for_task_completion(task);
task = WorkerThreadPool::INVALID_TASK_ID;
}
}
}
void RenderingDeviceGraph::_run_render_commands(RDD::CommandBufferID p_command_buffer, int32_t p_level, const RecordedCommandSort *p_sorted_commands, uint32_t p_sorted_commands_count, int32_t &r_current_label_index, int32_t &r_current_label_level) {
for (uint32_t i = 0; i < p_sorted_commands_count; i++) {
const uint32_t command_index = p_sorted_commands[i].index;
const uint32_t command_data_offset = command_data_offsets[command_index];
const RecordedCommand *command = reinterpret_cast<RecordedCommand *>(&command_data[command_data_offset]);
_run_label_command_change(p_command_buffer, command->label_index, p_level, false, true, &p_sorted_commands[i], p_sorted_commands_count - i, r_current_label_index, r_current_label_level);
switch (command->type) {
case RecordedCommand::TYPE_BUFFER_CLEAR: {
const RecordedBufferClearCommand *buffer_clear_command = reinterpret_cast<const RecordedBufferClearCommand *>(command);
driver->command_clear_buffer(p_command_buffer, buffer_clear_command->buffer, buffer_clear_command->offset, buffer_clear_command->size);
} break;
case RecordedCommand::TYPE_BUFFER_COPY: {
const RecordedBufferCopyCommand *buffer_copy_command = reinterpret_cast<const RecordedBufferCopyCommand *>(command);
driver->command_copy_buffer(p_command_buffer, buffer_copy_command->source, buffer_copy_command->destination, buffer_copy_command->region);
} break;
case RecordedCommand::TYPE_BUFFER_GET_DATA: {
const RecordedBufferGetDataCommand *buffer_get_data_command = reinterpret_cast<const RecordedBufferGetDataCommand *>(command);
driver->command_copy_buffer(p_command_buffer, buffer_get_data_command->source, buffer_get_data_command->destination, buffer_get_data_command->region);
} break;
case RecordedCommand::TYPE_BUFFER_UPDATE: {
const RecordedBufferUpdateCommand *buffer_update_command = reinterpret_cast<const RecordedBufferUpdateCommand *>(command);
const RecordedBufferCopy *command_buffer_copies = buffer_update_command->buffer_copies();
for (uint32_t j = 0; j < buffer_update_command->buffer_copies_count; j++) {
driver->command_copy_buffer(p_command_buffer, command_buffer_copies[j].source, buffer_update_command->destination, command_buffer_copies[j].region);
}
} break;
case RecordedCommand::TYPE_COMPUTE_LIST: {
const RecordedComputeListCommand *compute_list_command = reinterpret_cast<const RecordedComputeListCommand *>(command);
_run_compute_list_command(p_command_buffer, compute_list_command->instruction_data(), compute_list_command->instruction_data_size);
} break;
case RecordedCommand::TYPE_DRAW_LIST: {
const RecordedDrawListCommand *draw_list_command = reinterpret_cast<const RecordedDrawListCommand *>(command);
const VectorView clear_values(draw_list_command->clear_values(), draw_list_command->clear_values_count);
driver->command_begin_render_pass(p_command_buffer, draw_list_command->render_pass, draw_list_command->framebuffer, draw_list_command->command_buffer_type, draw_list_command->region, clear_values);
_run_draw_list_command(p_command_buffer, draw_list_command->instruction_data(), draw_list_command->instruction_data_size);
driver->command_end_render_pass(p_command_buffer);
} break;
case RecordedCommand::TYPE_TEXTURE_CLEAR: {
const RecordedTextureClearCommand *texture_clear_command = reinterpret_cast<const RecordedTextureClearCommand *>(command);
driver->command_clear_color_texture(p_command_buffer, texture_clear_command->texture, RDD::TEXTURE_LAYOUT_TRANSFER_DST_OPTIMAL, texture_clear_command->color, texture_clear_command->range);
} break;
case RecordedCommand::TYPE_TEXTURE_COPY: {
const RecordedTextureCopyCommand *texture_copy_command = reinterpret_cast<const RecordedTextureCopyCommand *>(command);
driver->command_copy_texture(p_command_buffer, texture_copy_command->from_texture, RDD::TEXTURE_LAYOUT_TRANSFER_SRC_OPTIMAL, texture_copy_command->to_texture, RDD::TEXTURE_LAYOUT_TRANSFER_DST_OPTIMAL, texture_copy_command->region);
} break;
case RecordedCommand::TYPE_TEXTURE_GET_DATA: {
const RecordedTextureGetDataCommand *texture_get_data_command = reinterpret_cast<const RecordedTextureGetDataCommand *>(command);
const VectorView<RDD::BufferTextureCopyRegion> command_buffer_texture_copy_regions_view(texture_get_data_command->buffer_texture_copy_regions(), texture_get_data_command->buffer_texture_copy_regions_count);
driver->command_copy_texture_to_buffer(p_command_buffer, texture_get_data_command->from_texture, RDD::TEXTURE_LAYOUT_TRANSFER_SRC_OPTIMAL, texture_get_data_command->to_buffer, command_buffer_texture_copy_regions_view);
} break;
case RecordedCommand::TYPE_TEXTURE_RESOLVE: {
const RecordedTextureResolveCommand *texture_resolve_command = reinterpret_cast<const RecordedTextureResolveCommand *>(command);
driver->command_resolve_texture(p_command_buffer, texture_resolve_command->from_texture, RDD::TEXTURE_LAYOUT_TRANSFER_SRC_OPTIMAL, texture_resolve_command->src_layer, texture_resolve_command->src_mipmap, texture_resolve_command->to_texture, RDD::TEXTURE_LAYOUT_TRANSFER_DST_OPTIMAL, texture_resolve_command->dst_layer, texture_resolve_command->dst_mipmap);
} break;
case RecordedCommand::TYPE_TEXTURE_UPDATE: {
const RecordedTextureUpdateCommand *texture_update_command = reinterpret_cast<const RecordedTextureUpdateCommand *>(command);
const RecordedBufferToTextureCopy *command_buffer_to_texture_copies = texture_update_command->buffer_to_texture_copies();
for (uint32_t j = 0; j < texture_update_command->buffer_to_texture_copies_count; j++) {
driver->command_copy_buffer_to_texture(p_command_buffer, command_buffer_to_texture_copies[j].from_buffer, texture_update_command->to_texture, RDD::TEXTURE_LAYOUT_TRANSFER_DST_OPTIMAL, command_buffer_to_texture_copies[j].region);
}
} break;
case RecordedCommand::TYPE_CAPTURE_TIMESTAMP: {
const RecordedCaptureTimestampCommand *texture_capture_timestamp_command = reinterpret_cast<const RecordedCaptureTimestampCommand *>(command);
driver->command_timestamp_write(p_command_buffer, texture_capture_timestamp_command->pool, texture_capture_timestamp_command->index);
} break;
default: {
DEV_ASSERT(false && "Unknown recorded command type.");
return;
}
}
}
}
void RenderingDeviceGraph::_run_label_command_change(RDD::CommandBufferID p_command_buffer, int32_t p_new_label_index, int32_t p_new_level, bool p_ignore_previous_value, bool p_use_label_for_empty, const RecordedCommandSort *p_sorted_commands, uint32_t p_sorted_commands_count, int32_t &r_current_label_index, int32_t &r_current_label_level) {
if (command_label_count == 0) {
// Ignore any label operations if no labels were pushed.
return;
}
if (p_ignore_previous_value || p_new_label_index != r_current_label_index || p_new_level != r_current_label_level) {
if (!p_ignore_previous_value && (p_use_label_for_empty || r_current_label_index >= 0)) {
// End the current label.
driver->command_end_label(p_command_buffer);
}
String label_name;
Color label_color;
if (p_new_label_index >= 0) {
const char *label_chars = &command_label_chars[command_label_offsets[p_new_label_index]];
label_name.parse_utf8(label_chars);
label_color = command_label_colors[p_new_label_index];
} else if (p_use_label_for_empty) {
label_name = "Command graph";
label_color = Color(1, 1, 1, 1);
}
// Add the level to the name.
label_name += " (L" + itos(p_new_level) + ")";
if (p_sorted_commands != nullptr && p_sorted_commands_count > 0) {
// Analyze the commands in the level that have the same label to detect what type of operations are performed.
bool copy_commands = false;
bool compute_commands = false;
bool draw_commands = false;
for (uint32_t i = 0; i < p_sorted_commands_count; i++) {
const uint32_t command_index = p_sorted_commands[i].index;
const uint32_t command_data_offset = command_data_offsets[command_index];
const RecordedCommand *command = reinterpret_cast<RecordedCommand *>(&command_data[command_data_offset]);
if (command->label_index != p_new_label_index) {
break;
}
switch (command->type) {
case RecordedCommand::TYPE_BUFFER_CLEAR:
case RecordedCommand::TYPE_BUFFER_COPY:
case RecordedCommand::TYPE_BUFFER_GET_DATA:
case RecordedCommand::TYPE_BUFFER_UPDATE:
case RecordedCommand::TYPE_TEXTURE_CLEAR:
case RecordedCommand::TYPE_TEXTURE_COPY:
case RecordedCommand::TYPE_TEXTURE_GET_DATA:
case RecordedCommand::TYPE_TEXTURE_RESOLVE:
case RecordedCommand::TYPE_TEXTURE_UPDATE: {
copy_commands = true;
} break;
case RecordedCommand::TYPE_COMPUTE_LIST: {
compute_commands = true;
} break;
case RecordedCommand::TYPE_DRAW_LIST: {
draw_commands = true;
} break;
default: {
// Ignore command.
} break;
}
if (copy_commands && compute_commands && draw_commands) {
// There's no more command types to find.
break;
}
}
if (copy_commands || compute_commands || draw_commands) {
// Add the operations to the name.
bool plus_after_copy = copy_commands && (compute_commands || draw_commands);
bool plus_after_compute = compute_commands && draw_commands;
label_name += " (";
label_name += copy_commands ? "Copy" : "";
label_name += plus_after_copy ? "+" : "";
label_name += compute_commands ? "Compute" : "";
label_name += plus_after_compute ? "+" : "";
label_name += draw_commands ? "Draw" : "";
label_name += ")";
}
}
// Start the new label.
CharString label_name_utf8 = label_name.utf8();
driver->command_begin_label(p_command_buffer, label_name_utf8.get_data(), label_color);
r_current_label_index = p_new_label_index;
r_current_label_level = p_new_level;
}
}
void RenderingDeviceGraph::_boost_priority_for_render_commands(RecordedCommandSort *p_sorted_commands, uint32_t p_sorted_commands_count, uint32_t &r_boosted_priority) {
if (p_sorted_commands_count == 0) {
return;
}
const uint32_t boosted_priority_value = 0;
if (r_boosted_priority > 0) {
bool perform_sort = false;
for (uint32_t j = 0; j < p_sorted_commands_count; j++) {
if (p_sorted_commands[j].priority == r_boosted_priority) {
p_sorted_commands[j].priority = boosted_priority_value;
perform_sort = true;
}
}
if (perform_sort) {
SortArray<RecordedCommandSort> command_sorter;
command_sorter.sort(p_sorted_commands, p_sorted_commands_count);
}
}
if (p_sorted_commands[p_sorted_commands_count - 1].priority != boosted_priority_value) {
r_boosted_priority = p_sorted_commands[p_sorted_commands_count - 1].priority;
}
}
void RenderingDeviceGraph::_group_barriers_for_render_commands(RDD::CommandBufferID p_command_buffer, const RecordedCommandSort *p_sorted_commands, uint32_t p_sorted_commands_count, bool p_full_memory_barrier) {
if (!driver_honors_barriers) {
return;
}
barrier_group.clear();
barrier_group.src_stages = RDD::PIPELINE_STAGE_TOP_OF_PIPE_BIT;
barrier_group.dst_stages = RDD::PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
for (uint32_t i = 0; i < p_sorted_commands_count; i++) {
const uint32_t command_index = p_sorted_commands[i].index;
const uint32_t command_data_offset = command_data_offsets[command_index];
const RecordedCommand *command = reinterpret_cast<RecordedCommand *>(&command_data[command_data_offset]);
#if PRINT_COMMAND_RECORDING
print_line(vformat("Grouping barriers for #%d", command_index));
#endif
// Merge command's stage bits with the barrier group.
barrier_group.src_stages = barrier_group.src_stages | command->previous_stages;
barrier_group.dst_stages = barrier_group.dst_stages | command->next_stages;
// Merge command's memory barrier bits with the barrier group.
barrier_group.memory_barrier.src_access = barrier_group.memory_barrier.src_access | command->memory_barrier.src_access;
barrier_group.memory_barrier.dst_access = barrier_group.memory_barrier.dst_access | command->memory_barrier.dst_access;
// Gather texture barriers.
for (int32_t j = 0; j < command->normalization_barrier_count; j++) {
const RDD::TextureBarrier &recorded_barrier = command_normalization_barriers[command->normalization_barrier_index + j];
barrier_group.normalization_barriers.push_back(recorded_barrier);
#if PRINT_COMMAND_RECORDING
print_line(vformat("Normalization Barrier #%d", barrier_group.normalization_barriers.size() - 1));
#endif
}
for (int32_t j = 0; j < command->transition_barrier_count; j++) {
const RDD::TextureBarrier &recorded_barrier = command_transition_barriers[command->transition_barrier_index + j];
barrier_group.transition_barriers.push_back(recorded_barrier);
#if PRINT_COMMAND_RECORDING
print_line(vformat("Transition Barrier #%d", barrier_group.transition_barriers.size() - 1));
#endif
}
#if USE_BUFFER_BARRIERS
// Gather buffer barriers.
for (int32_t j = 0; j < command->buffer_barrier_count; j++) {
const RDD::BufferBarrier &recorded_barrier = command_buffer_barriers[command->buffer_barrier_index + j];
barrier_group.buffer_barriers.push_back(recorded_barrier);
}
#endif
}
if (p_full_memory_barrier) {
barrier_group.src_stages = RDD::PIPELINE_STAGE_ALL_COMMANDS_BIT;
barrier_group.dst_stages = RDD::PIPELINE_STAGE_ALL_COMMANDS_BIT;
barrier_group.memory_barrier.src_access = RDD::BARRIER_ACCESS_MEMORY_READ_BIT | RDD::BARRIER_ACCESS_MEMORY_WRITE_BIT;
barrier_group.memory_barrier.dst_access = RDD::BARRIER_ACCESS_MEMORY_READ_BIT | RDD::BARRIER_ACCESS_MEMORY_WRITE_BIT;
}
const bool is_memory_barrier_empty = barrier_group.memory_barrier.src_access.is_empty() && barrier_group.memory_barrier.dst_access.is_empty();
const bool are_texture_barriers_empty = barrier_group.normalization_barriers.is_empty() && barrier_group.transition_barriers.is_empty();
#if USE_BUFFER_BARRIERS
const bool are_buffer_barriers_empty = barrier_group.buffer_barriers.is_empty();
#else
const bool are_buffer_barriers_empty = true;
#endif
if (is_memory_barrier_empty && are_texture_barriers_empty && are_buffer_barriers_empty) {
// Commands don't require synchronization.
return;
}
const VectorView<RDD::MemoryBarrier> memory_barriers = !is_memory_barrier_empty ? barrier_group.memory_barrier : VectorView<RDD::MemoryBarrier>();
const VectorView<RDD::TextureBarrier> texture_barriers = barrier_group.normalization_barriers.is_empty() ? barrier_group.transition_barriers : barrier_group.normalization_barriers;
#if USE_BUFFER_BARRIERS
const VectorView<RDD::BufferBarrier> buffer_barriers = !are_buffer_barriers_empty ? barrier_group.buffer_barriers : VectorView<RDD::BufferBarrier>();
#else
const VectorView<RDD::BufferBarrier> buffer_barriers = VectorView<RDD::BufferBarrier>();
#endif
driver->command_pipeline_barrier(p_command_buffer, barrier_group.src_stages, barrier_group.dst_stages, memory_barriers, buffer_barriers, texture_barriers);
bool separate_texture_barriers = !barrier_group.normalization_barriers.is_empty() && !barrier_group.transition_barriers.is_empty();
if (separate_texture_barriers) {
driver->command_pipeline_barrier(p_command_buffer, barrier_group.src_stages, barrier_group.dst_stages, VectorView<RDD::MemoryBarrier>(), VectorView<RDD::BufferBarrier>(), barrier_group.transition_barriers);
}
}
void RenderingDeviceGraph::_print_render_commands(const RecordedCommandSort *p_sorted_commands, uint32_t p_sorted_commands_count) {
for (uint32_t i = 0; i < p_sorted_commands_count; i++) {
const uint32_t command_index = p_sorted_commands[i].index;
const uint32_t command_level = p_sorted_commands[i].level;
const uint32_t command_data_offset = command_data_offsets[command_index];
const RecordedCommand *command = reinterpret_cast<RecordedCommand *>(&command_data[command_data_offset]);
switch (command->type) {
case RecordedCommand::TYPE_BUFFER_CLEAR: {
const RecordedBufferClearCommand *buffer_clear_command = reinterpret_cast<const RecordedBufferClearCommand *>(command);
print_line(command_index, "LEVEL", command_level, "BUFFER CLEAR DESTINATION", itos(buffer_clear_command->buffer.id));
} break;
case RecordedCommand::TYPE_BUFFER_COPY: {
const RecordedBufferCopyCommand *buffer_copy_command = reinterpret_cast<const RecordedBufferCopyCommand *>(command);
print_line(command_index, "LEVEL", command_level, "BUFFER COPY SOURCE", itos(buffer_copy_command->source.id), "DESTINATION", itos(buffer_copy_command->destination.id));
} break;
case RecordedCommand::TYPE_BUFFER_GET_DATA: {
const RecordedBufferGetDataCommand *buffer_get_data_command = reinterpret_cast<const RecordedBufferGetDataCommand *>(command);
print_line(command_index, "LEVEL", command_level, "BUFFER GET DATA DESTINATION", itos(buffer_get_data_command->destination.id));
} break;
case RecordedCommand::TYPE_BUFFER_UPDATE: {
const RecordedBufferUpdateCommand *buffer_update_command = reinterpret_cast<const RecordedBufferUpdateCommand *>(command);
print_line(command_index, "LEVEL", command_level, "BUFFER UPDATE DESTINATION", itos(buffer_update_command->destination.id), "COPIES", buffer_update_command->buffer_copies_count);
} break;
case RecordedCommand::TYPE_COMPUTE_LIST: {
const RecordedComputeListCommand *compute_list_command = reinterpret_cast<const RecordedComputeListCommand *>(command);
print_line(command_index, "LEVEL", command_level, "COMPUTE LIST SIZE", compute_list_command->instruction_data_size);
} break;
case RecordedCommand::TYPE_DRAW_LIST: {
const RecordedDrawListCommand *draw_list_command = reinterpret_cast<const RecordedDrawListCommand *>(command);
print_line(command_index, "LEVEL", command_level, "DRAW LIST SIZE", draw_list_command->instruction_data_size);
} break;
case RecordedCommand::TYPE_TEXTURE_CLEAR: {
const RecordedTextureClearCommand *texture_clear_command = reinterpret_cast<const RecordedTextureClearCommand *>(command);
print_line(command_index, "LEVEL", command_level, "TEXTURE CLEAR", itos(texture_clear_command->texture.id), "COLOR", texture_clear_command->color);
} break;
case RecordedCommand::TYPE_TEXTURE_COPY: {
const RecordedTextureCopyCommand *texture_copy_command = reinterpret_cast<const RecordedTextureCopyCommand *>(command);
print_line(command_index, "LEVEL", command_level, "TEXTURE COPY FROM", itos(texture_copy_command->from_texture.id), "TO", itos(texture_copy_command->to_texture.id));
} break;
case RecordedCommand::TYPE_TEXTURE_GET_DATA: {
print_line(command_index, "LEVEL", command_level, "TEXTURE GET DATA");
} break;
case RecordedCommand::TYPE_TEXTURE_RESOLVE: {
const RecordedTextureResolveCommand *texture_resolve_command = reinterpret_cast<const RecordedTextureResolveCommand *>(command);
print_line(command_index, "LEVEL", command_level, "TEXTURE RESOLVE FROM", itos(texture_resolve_command->from_texture.id), "TO", itos(texture_resolve_command->to_texture.id));
} break;
case RecordedCommand::TYPE_TEXTURE_UPDATE: {
const RecordedTextureUpdateCommand *texture_update_command = reinterpret_cast<const RecordedTextureUpdateCommand *>(command);
print_line(command_index, "LEVEL", command_level, "TEXTURE UPDATE TO", itos(texture_update_command->to_texture.id));
} break;
case RecordedCommand::TYPE_CAPTURE_TIMESTAMP: {
const RecordedCaptureTimestampCommand *texture_capture_timestamp_command = reinterpret_cast<const RecordedCaptureTimestampCommand *>(command);
print_line(command_index, "LEVEL", command_level, "CAPTURE TIMESTAMP POOL", itos(texture_capture_timestamp_command->pool.id), "INDEX", texture_capture_timestamp_command->index);
} break;
default:
DEV_ASSERT(false && "Unknown recorded command type.");
return;
}
}
}
void RenderingDeviceGraph::_print_draw_list(const uint8_t *p_instruction_data, uint32_t p_instruction_data_size) {
uint32_t instruction_data_cursor = 0;
while (instruction_data_cursor < p_instruction_data_size) {
DEV_ASSERT((instruction_data_cursor + sizeof(DrawListInstruction)) <= p_instruction_data_size);
const DrawListInstruction *instruction = reinterpret_cast<const DrawListInstruction *>(&p_instruction_data[instruction_data_cursor]);
switch (instruction->type) {
case DrawListInstruction::TYPE_BIND_INDEX_BUFFER: {
const DrawListBindIndexBufferInstruction *bind_index_buffer_instruction = reinterpret_cast<const DrawListBindIndexBufferInstruction *>(instruction);
print_line("\tBIND INDEX BUFFER ID", itos(bind_index_buffer_instruction->buffer.id), "FORMAT", bind_index_buffer_instruction->format, "OFFSET", bind_index_buffer_instruction->offset);
instruction_data_cursor += sizeof(DrawListBindIndexBufferInstruction);
} break;
case DrawListInstruction::TYPE_BIND_PIPELINE: {
const DrawListBindPipelineInstruction *bind_pipeline_instruction = reinterpret_cast<const DrawListBindPipelineInstruction *>(instruction);
print_line("\tBIND PIPELINE ID", itos(bind_pipeline_instruction->pipeline.id));
instruction_data_cursor += sizeof(DrawListBindPipelineInstruction);
} break;
case DrawListInstruction::TYPE_BIND_UNIFORM_SET: {
const DrawListBindUniformSetInstruction *bind_uniform_set_instruction = reinterpret_cast<const DrawListBindUniformSetInstruction *>(instruction);
print_line("\tBIND UNIFORM SET ID", itos(bind_uniform_set_instruction->uniform_set.id), "SET INDEX", bind_uniform_set_instruction->set_index);
instruction_data_cursor += sizeof(DrawListBindUniformSetInstruction);
} break;
case DrawListInstruction::TYPE_BIND_VERTEX_BUFFERS: {
const DrawListBindVertexBuffersInstruction *bind_vertex_buffers_instruction = reinterpret_cast<const DrawListBindVertexBuffersInstruction *>(instruction);
print_line("\tBIND VERTEX BUFFERS COUNT", bind_vertex_buffers_instruction->vertex_buffers_count);
instruction_data_cursor += sizeof(DrawListBindVertexBuffersInstruction);
instruction_data_cursor += sizeof(RDD::BufferID) * bind_vertex_buffers_instruction->vertex_buffers_count;
instruction_data_cursor += sizeof(uint64_t) * bind_vertex_buffers_instruction->vertex_buffers_count;
} break;
case DrawListInstruction::TYPE_CLEAR_ATTACHMENTS: {
const DrawListClearAttachmentsInstruction *clear_attachments_instruction = reinterpret_cast<const DrawListClearAttachmentsInstruction *>(instruction);
print_line("\tATTACHMENTS CLEAR COUNT", clear_attachments_instruction->attachments_clear_count, "RECT COUNT", clear_attachments_instruction->attachments_clear_rect_count);
instruction_data_cursor += sizeof(DrawListClearAttachmentsInstruction);
instruction_data_cursor += sizeof(RDD::AttachmentClear) * clear_attachments_instruction->attachments_clear_count;
instruction_data_cursor += sizeof(Rect2i) * clear_attachments_instruction->attachments_clear_rect_count;
} break;
case DrawListInstruction::TYPE_DRAW: {
const DrawListDrawInstruction *draw_instruction = reinterpret_cast<const DrawListDrawInstruction *>(instruction);
print_line("\tDRAW VERTICES", draw_instruction->vertex_count, "INSTANCES", draw_instruction->instance_count);
instruction_data_cursor += sizeof(DrawListDrawInstruction);
} break;
case DrawListInstruction::TYPE_DRAW_INDEXED: {
const DrawListDrawIndexedInstruction *draw_indexed_instruction = reinterpret_cast<const DrawListDrawIndexedInstruction *>(instruction);
print_line("\tDRAW INDICES", draw_indexed_instruction->index_count, "INSTANCES", draw_indexed_instruction->instance_count, "FIRST INDEX", draw_indexed_instruction->first_index);
instruction_data_cursor += sizeof(DrawListDrawIndexedInstruction);
} break;
case DrawListInstruction::TYPE_EXECUTE_COMMANDS: {
print_line("\tEXECUTE COMMANDS");
instruction_data_cursor += sizeof(DrawListExecuteCommandsInstruction);
} break;
case DrawListInstruction::TYPE_NEXT_SUBPASS: {
print_line("\tNEXT SUBPASS");
instruction_data_cursor += sizeof(DrawListNextSubpassInstruction);
} break;
case DrawListInstruction::TYPE_SET_BLEND_CONSTANTS: {
const DrawListSetBlendConstantsInstruction *set_blend_constants_instruction = reinterpret_cast<const DrawListSetBlendConstantsInstruction *>(instruction);
print_line("\tSET BLEND CONSTANTS COLOR", set_blend_constants_instruction->color);
instruction_data_cursor += sizeof(DrawListSetBlendConstantsInstruction);
} break;
case DrawListInstruction::TYPE_SET_LINE_WIDTH: {
const DrawListSetLineWidthInstruction *set_line_width_instruction = reinterpret_cast<const DrawListSetLineWidthInstruction *>(instruction);
print_line("\tSET LINE WIDTH", set_line_width_instruction->width);
instruction_data_cursor += sizeof(DrawListSetLineWidthInstruction);
} break;
case DrawListInstruction::TYPE_SET_PUSH_CONSTANT: {
const DrawListSetPushConstantInstruction *set_push_constant_instruction = reinterpret_cast<const DrawListSetPushConstantInstruction *>(instruction);
print_line("\tSET PUSH CONSTANT SIZE", set_push_constant_instruction->size);
instruction_data_cursor += sizeof(DrawListSetPushConstantInstruction);
instruction_data_cursor += set_push_constant_instruction->size;
} break;
case DrawListInstruction::TYPE_SET_SCISSOR: {
const DrawListSetScissorInstruction *set_scissor_instruction = reinterpret_cast<const DrawListSetScissorInstruction *>(instruction);
print_line("\tSET SCISSOR", set_scissor_instruction->rect);
instruction_data_cursor += sizeof(DrawListSetScissorInstruction);
} break;
case DrawListInstruction::TYPE_SET_VIEWPORT: {
const DrawListSetViewportInstruction *set_viewport_instruction = reinterpret_cast<const DrawListSetViewportInstruction *>(instruction);
print_line("\tSET VIEWPORT", set_viewport_instruction->rect);
instruction_data_cursor += sizeof(DrawListSetViewportInstruction);
} break;
case DrawListInstruction::TYPE_UNIFORM_SET_PREPARE_FOR_USE: {
const DrawListUniformSetPrepareForUseInstruction *uniform_set_prepare_for_use_instruction = reinterpret_cast<const DrawListUniformSetPrepareForUseInstruction *>(instruction);
print_line("\tUNIFORM SET PREPARE FOR USE ID", itos(uniform_set_prepare_for_use_instruction->uniform_set.id), "SHADER ID", itos(uniform_set_prepare_for_use_instruction->shader.id), "INDEX", uniform_set_prepare_for_use_instruction->set_index);
instruction_data_cursor += sizeof(DrawListUniformSetPrepareForUseInstruction);
} break;
default:
DEV_ASSERT(false && "Unknown draw list instruction type.");
return;
}
}
}
void RenderingDeviceGraph::_print_compute_list(const uint8_t *p_instruction_data, uint32_t p_instruction_data_size) {
uint32_t instruction_data_cursor = 0;
while (instruction_data_cursor < p_instruction_data_size) {
DEV_ASSERT((instruction_data_cursor + sizeof(ComputeListInstruction)) <= p_instruction_data_size);
const ComputeListInstruction *instruction = reinterpret_cast<const ComputeListInstruction *>(&p_instruction_data[instruction_data_cursor]);
switch (instruction->type) {
case ComputeListInstruction::TYPE_BIND_PIPELINE: {
const ComputeListBindPipelineInstruction *bind_pipeline_instruction = reinterpret_cast<const ComputeListBindPipelineInstruction *>(instruction);
print_line("\tBIND PIPELINE ID", itos(bind_pipeline_instruction->pipeline.id));
instruction_data_cursor += sizeof(ComputeListBindPipelineInstruction);
} break;
case ComputeListInstruction::TYPE_BIND_UNIFORM_SET: {
const ComputeListBindUniformSetInstruction *bind_uniform_set_instruction = reinterpret_cast<const ComputeListBindUniformSetInstruction *>(instruction);
print_line("\tBIND UNIFORM SET ID", itos(bind_uniform_set_instruction->uniform_set.id), "SHADER ID", itos(bind_uniform_set_instruction->shader.id));
instruction_data_cursor += sizeof(ComputeListBindUniformSetInstruction);
} break;
case ComputeListInstruction::TYPE_DISPATCH: {
const ComputeListDispatchInstruction *dispatch_instruction = reinterpret_cast<const ComputeListDispatchInstruction *>(instruction);
print_line("\tDISPATCH", dispatch_instruction->x_groups, dispatch_instruction->y_groups, dispatch_instruction->z_groups);
instruction_data_cursor += sizeof(ComputeListDispatchInstruction);
} break;
case ComputeListInstruction::TYPE_DISPATCH_INDIRECT: {
const ComputeListDispatchIndirectInstruction *dispatch_indirect_instruction = reinterpret_cast<const ComputeListDispatchIndirectInstruction *>(instruction);
print_line("\tDISPATCH INDIRECT BUFFER ID", itos(dispatch_indirect_instruction->buffer.id), "OFFSET", dispatch_indirect_instruction->offset);
instruction_data_cursor += sizeof(ComputeListDispatchIndirectInstruction);
} break;
case ComputeListInstruction::TYPE_SET_PUSH_CONSTANT: {
const ComputeListSetPushConstantInstruction *set_push_constant_instruction = reinterpret_cast<const ComputeListSetPushConstantInstruction *>(instruction);
print_line("\tSET PUSH CONSTANT SIZE", set_push_constant_instruction->size);
instruction_data_cursor += sizeof(ComputeListSetPushConstantInstruction);
instruction_data_cursor += set_push_constant_instruction->size;
} break;
case ComputeListInstruction::TYPE_UNIFORM_SET_PREPARE_FOR_USE: {
const ComputeListUniformSetPrepareForUseInstruction *uniform_set_prepare_for_use_instruction = reinterpret_cast<const ComputeListUniformSetPrepareForUseInstruction *>(instruction);
print_line("\tUNIFORM SET PREPARE FOR USE ID", itos(uniform_set_prepare_for_use_instruction->uniform_set.id), "SHADER ID", itos(uniform_set_prepare_for_use_instruction->shader.id), "INDEX", itos(uniform_set_prepare_for_use_instruction->set_index));
instruction_data_cursor += sizeof(ComputeListUniformSetPrepareForUseInstruction);
} break;
default:
DEV_ASSERT(false && "Unknown compute list instruction type.");
return;
}
}
}
void RenderingDeviceGraph::initialize(RDD *p_driver, uint32_t p_frame_count, RDD::CommandQueueFamilyID p_secondary_command_queue_family, uint32_t p_secondary_command_buffers_per_frame) {
driver = p_driver;
frames.resize(p_frame_count);
for (uint32_t i = 0; i < p_frame_count; i++) {
frames[i].secondary_command_buffers.resize(p_secondary_command_buffers_per_frame);
for (uint32_t j = 0; j < p_secondary_command_buffers_per_frame; j++) {
SecondaryCommandBuffer &secondary = frames[i].secondary_command_buffers[j];
secondary.command_pool = driver->command_pool_create(p_secondary_command_queue_family, RDD::COMMAND_BUFFER_TYPE_SECONDARY);
secondary.command_buffer = driver->command_buffer_create(secondary.command_pool);
secondary.task = WorkerThreadPool::INVALID_TASK_ID;
}
}
driver_honors_barriers = driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS);
}
void RenderingDeviceGraph::finalize() {
_wait_for_secondary_command_buffer_tasks();
for (Frame &f : frames) {
for (SecondaryCommandBuffer &secondary : f.secondary_command_buffers) {
if (secondary.command_pool.id != 0) {
driver->command_pool_free(secondary.command_pool);
}
}
}
frames.clear();
}
void RenderingDeviceGraph::begin() {
command_data.clear();
command_data_offsets.clear();
command_normalization_barriers.clear();
command_transition_barriers.clear();
command_buffer_barriers.clear();
command_label_chars.clear();
command_label_colors.clear();
command_label_offsets.clear();
command_list_nodes.clear();
read_slice_list_nodes.clear();
write_slice_list_nodes.clear();
command_count = 0;
command_label_count = 0;
command_timestamp_index = -1;
command_synchronization_index = -1;
command_synchronization_pending = false;
command_label_index = -1;
frames[frame].secondary_command_buffers_used = 0;
draw_instruction_list.index = 0;
compute_instruction_list.index = 0;
tracking_frame++;
#ifdef DEV_ENABLED
write_dependency_counters.clear();
#endif
}
void RenderingDeviceGraph::add_buffer_clear(RDD::BufferID p_dst, ResourceTracker *p_dst_tracker, uint32_t p_offset, uint32_t p_size) {
DEV_ASSERT(p_dst_tracker != nullptr);
int32_t command_index;
RecordedBufferClearCommand *command = static_cast<RecordedBufferClearCommand *>(_allocate_command(sizeof(RecordedBufferClearCommand), command_index));
command->type = RecordedCommand::TYPE_BUFFER_CLEAR;
command->self_stages = RDD::PIPELINE_STAGE_TRANSFER_BIT;
command->buffer = p_dst;
command->offset = p_offset;
command->size = p_size;
ResourceUsage usage = RESOURCE_USAGE_TRANSFER_TO;
_add_command_to_graph(&p_dst_tracker, &usage, 1, command_index, command);
}
void RenderingDeviceGraph::add_buffer_copy(RDD::BufferID p_src, ResourceTracker *p_src_tracker, RDD::BufferID p_dst, ResourceTracker *p_dst_tracker, RDD::BufferCopyRegion p_region) {
// Source tracker is allowed to be null as it could be a read-only buffer.
DEV_ASSERT(p_dst_tracker != nullptr);
int32_t command_index;
RecordedBufferCopyCommand *command = static_cast<RecordedBufferCopyCommand *>(_allocate_command(sizeof(RecordedBufferCopyCommand), command_index));
command->type = RecordedCommand::TYPE_BUFFER_COPY;
command->self_stages = RDD::PIPELINE_STAGE_TRANSFER_BIT;
command->source = p_src;
command->destination = p_dst;
command->region = p_region;
ResourceTracker *trackers[2] = { p_dst_tracker, p_src_tracker };
ResourceUsage usages[2] = { RESOURCE_USAGE_TRANSFER_TO, RESOURCE_USAGE_TRANSFER_FROM };
_add_command_to_graph(trackers, usages, p_src_tracker != nullptr ? 2 : 1, command_index, command);
}
void RenderingDeviceGraph::add_buffer_get_data(RDD::BufferID p_src, ResourceTracker *p_src_tracker, RDD::BufferID p_dst, RDD::BufferCopyRegion p_region) {
// Source tracker is allowed to be null as it could be a read-only buffer.
int32_t command_index;
RecordedBufferGetDataCommand *command = static_cast<RecordedBufferGetDataCommand *>(_allocate_command(sizeof(RecordedBufferGetDataCommand), command_index));
command->type = RecordedCommand::TYPE_BUFFER_GET_DATA;
command->self_stages = RDD::PIPELINE_STAGE_TRANSFER_BIT;
command->source = p_src;
command->destination = p_dst;
command->region = p_region;
if (p_src_tracker != nullptr) {
ResourceUsage usage = RESOURCE_USAGE_TRANSFER_FROM;
_add_command_to_graph(&p_src_tracker, &usage, 1, command_index, command);
} else {
_add_command_to_graph(nullptr, nullptr, 0, command_index, command);
}
}
void RenderingDeviceGraph::add_buffer_update(RDD::BufferID p_dst, ResourceTracker *p_dst_tracker, VectorView<RecordedBufferCopy> p_buffer_copies) {
DEV_ASSERT(p_dst_tracker != nullptr);
size_t buffer_copies_size = p_buffer_copies.size() * sizeof(RecordedBufferCopy);
uint64_t command_size = sizeof(RecordedBufferUpdateCommand) + buffer_copies_size;
int32_t command_index;
RecordedBufferUpdateCommand *command = static_cast<RecordedBufferUpdateCommand *>(_allocate_command(command_size, command_index));
command->type = RecordedCommand::TYPE_BUFFER_UPDATE;
command->self_stages = RDD::PIPELINE_STAGE_TRANSFER_BIT;
command->destination = p_dst;
command->buffer_copies_count = p_buffer_copies.size();
RecordedBufferCopy *buffer_copies = command->buffer_copies();
for (uint32_t i = 0; i < command->buffer_copies_count; i++) {
buffer_copies[i] = p_buffer_copies[i];
}
ResourceUsage buffer_usage = RESOURCE_USAGE_TRANSFER_TO;
_add_command_to_graph(&p_dst_tracker, &buffer_usage, 1, command_index, command);
}
void RenderingDeviceGraph::add_compute_list_begin() {
compute_instruction_list.clear();
compute_instruction_list.index++;
}
void RenderingDeviceGraph::add_compute_list_bind_pipeline(RDD::PipelineID p_pipeline) {
ComputeListBindPipelineInstruction *instruction = reinterpret_cast<ComputeListBindPipelineInstruction *>(_allocate_compute_list_instruction(sizeof(ComputeListBindPipelineInstruction)));
instruction->type = ComputeListInstruction::TYPE_BIND_PIPELINE;
instruction->pipeline = p_pipeline;
compute_instruction_list.stages.set_flag(RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT);
}
void RenderingDeviceGraph::add_compute_list_bind_uniform_set(RDD::ShaderID p_shader, RDD::UniformSetID p_uniform_set, uint32_t set_index) {
ComputeListBindUniformSetInstruction *instruction = reinterpret_cast<ComputeListBindUniformSetInstruction *>(_allocate_compute_list_instruction(sizeof(ComputeListBindUniformSetInstruction)));
instruction->type = ComputeListInstruction::TYPE_BIND_UNIFORM_SET;
instruction->shader = p_shader;
instruction->uniform_set = p_uniform_set;
instruction->set_index = set_index;
}
void RenderingDeviceGraph::add_compute_list_dispatch(uint32_t p_x_groups, uint32_t p_y_groups, uint32_t p_z_groups) {
ComputeListDispatchInstruction *instruction = reinterpret_cast<ComputeListDispatchInstruction *>(_allocate_compute_list_instruction(sizeof(ComputeListDispatchInstruction)));
instruction->type = ComputeListInstruction::TYPE_DISPATCH;
instruction->x_groups = p_x_groups;
instruction->y_groups = p_y_groups;
instruction->z_groups = p_z_groups;
}
void RenderingDeviceGraph::add_compute_list_dispatch_indirect(RDD::BufferID p_buffer, uint32_t p_offset) {
ComputeListDispatchIndirectInstruction *instruction = reinterpret_cast<ComputeListDispatchIndirectInstruction *>(_allocate_compute_list_instruction(sizeof(ComputeListDispatchIndirectInstruction)));
instruction->type = ComputeListInstruction::TYPE_DISPATCH_INDIRECT;
instruction->buffer = p_buffer;
instruction->offset = p_offset;
compute_instruction_list.stages.set_flag(RDD::PIPELINE_STAGE_DRAW_INDIRECT_BIT);
}
void RenderingDeviceGraph::add_compute_list_set_push_constant(RDD::ShaderID p_shader, const void *p_data, uint32_t p_data_size) {
uint32_t instruction_size = sizeof(ComputeListSetPushConstantInstruction) + p_data_size;
ComputeListSetPushConstantInstruction *instruction = reinterpret_cast<ComputeListSetPushConstantInstruction *>(_allocate_compute_list_instruction(instruction_size));
instruction->type = ComputeListInstruction::TYPE_SET_PUSH_CONSTANT;
instruction->size = p_data_size;
instruction->shader = p_shader;
memcpy(instruction->data(), p_data, p_data_size);
}
void RenderingDeviceGraph::add_compute_list_uniform_set_prepare_for_use(RDD::ShaderID p_shader, RDD::UniformSetID p_uniform_set, uint32_t set_index) {
ComputeListUniformSetPrepareForUseInstruction *instruction = reinterpret_cast<ComputeListUniformSetPrepareForUseInstruction *>(_allocate_compute_list_instruction(sizeof(ComputeListUniformSetPrepareForUseInstruction)));
instruction->type = ComputeListInstruction::TYPE_UNIFORM_SET_PREPARE_FOR_USE;
instruction->shader = p_shader;
instruction->uniform_set = p_uniform_set;
instruction->set_index = set_index;
}
void RenderingDeviceGraph::add_compute_list_usage(ResourceTracker *p_tracker, ResourceUsage p_usage) {
DEV_ASSERT(p_tracker != nullptr);
p_tracker->reset_if_outdated(tracking_frame);
if (p_tracker->compute_list_index != compute_instruction_list.index) {
compute_instruction_list.command_trackers.push_back(p_tracker);
compute_instruction_list.command_tracker_usages.push_back(p_usage);
p_tracker->compute_list_index = compute_instruction_list.index;
p_tracker->compute_list_usage = p_usage;
}
#ifdef DEV_ENABLED
else if (p_tracker->compute_list_usage != p_usage) {
ERR_FAIL_MSG(vformat("Tracker can't have more than one type of usage in the same compute list. Compute list usage is %d and the requested usage is %d.", p_tracker->compute_list_usage, p_usage));
}
#endif
}
void RenderingDeviceGraph::add_compute_list_usages(VectorView<ResourceTracker *> p_trackers, VectorView<ResourceUsage> p_usages) {
DEV_ASSERT(p_trackers.size() == p_usages.size());
for (uint32_t i = 0; i < p_trackers.size(); i++) {
add_compute_list_usage(p_trackers[i], p_usages[i]);
}
}
void RenderingDeviceGraph::add_compute_list_end() {
int32_t command_index;
uint32_t instruction_data_size = compute_instruction_list.data.size();
uint32_t command_size = sizeof(RecordedComputeListCommand) + instruction_data_size;
RecordedComputeListCommand *command = static_cast<RecordedComputeListCommand *>(_allocate_command(command_size, command_index));
command->type = RecordedCommand::TYPE_COMPUTE_LIST;
command->self_stages = compute_instruction_list.stages;
command->instruction_data_size = instruction_data_size;
memcpy(command->instruction_data(), compute_instruction_list.data.ptr(), instruction_data_size);
_add_command_to_graph(compute_instruction_list.command_trackers.ptr(), compute_instruction_list.command_tracker_usages.ptr(), compute_instruction_list.command_trackers.size(), command_index, command);
}
void RenderingDeviceGraph::add_draw_list_begin(RDD::RenderPassID p_render_pass, RDD::FramebufferID p_framebuffer, Rect2i p_region, VectorView<RDD::RenderPassClearValue> p_clear_values, bool p_uses_color, bool p_uses_depth) {
draw_instruction_list.clear();
draw_instruction_list.index++;
draw_instruction_list.render_pass = p_render_pass;
draw_instruction_list.framebuffer = p_framebuffer;
draw_instruction_list.region = p_region;
draw_instruction_list.clear_values.resize(p_clear_values.size());
for (uint32_t i = 0; i < p_clear_values.size(); i++) {
draw_instruction_list.clear_values[i] = p_clear_values[i];
}
if (p_uses_color) {
draw_instruction_list.stages.set_flag(RDD::PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT);
}
if (p_uses_depth) {
draw_instruction_list.stages.set_flag(RDD::PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT);
draw_instruction_list.stages.set_flag(RDD::PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT);
}
}
void RenderingDeviceGraph::add_draw_list_bind_index_buffer(RDD::BufferID p_buffer, RDD::IndexBufferFormat p_format, uint32_t p_offset) {
DrawListBindIndexBufferInstruction *instruction = reinterpret_cast<DrawListBindIndexBufferInstruction *>(_allocate_draw_list_instruction(sizeof(DrawListBindIndexBufferInstruction)));
instruction->type = DrawListInstruction::TYPE_BIND_INDEX_BUFFER;
instruction->buffer = p_buffer;
instruction->format = p_format;
instruction->offset = p_offset;
if (instruction->buffer.id != 0) {
draw_instruction_list.stages.set_flag(RDD::PIPELINE_STAGE_VERTEX_INPUT_BIT);
}
}
void RenderingDeviceGraph::add_draw_list_bind_pipeline(RDD::PipelineID p_pipeline, BitField<RDD::PipelineStageBits> p_pipeline_stage_bits) {
DrawListBindPipelineInstruction *instruction = reinterpret_cast<DrawListBindPipelineInstruction *>(_allocate_draw_list_instruction(sizeof(DrawListBindPipelineInstruction)));
instruction->type = DrawListInstruction::TYPE_BIND_PIPELINE;
instruction->pipeline = p_pipeline;
draw_instruction_list.stages = draw_instruction_list.stages | p_pipeline_stage_bits;
}
void RenderingDeviceGraph::add_draw_list_bind_uniform_set(RDD::ShaderID p_shader, RDD::UniformSetID p_uniform_set, uint32_t set_index) {
DrawListBindUniformSetInstruction *instruction = reinterpret_cast<DrawListBindUniformSetInstruction *>(_allocate_draw_list_instruction(sizeof(DrawListBindUniformSetInstruction)));
instruction->type = DrawListInstruction::TYPE_BIND_UNIFORM_SET;
instruction->shader = p_shader;
instruction->uniform_set = p_uniform_set;
instruction->set_index = set_index;
}
void RenderingDeviceGraph::add_draw_list_bind_vertex_buffers(VectorView<RDD::BufferID> p_vertex_buffers, VectorView<uint64_t> p_vertex_buffer_offsets) {
DEV_ASSERT(p_vertex_buffers.size() == p_vertex_buffer_offsets.size());
uint32_t instruction_size = sizeof(DrawListBindVertexBuffersInstruction) + sizeof(RDD::BufferID) * p_vertex_buffers.size() + sizeof(uint64_t) * p_vertex_buffer_offsets.size();
DrawListBindVertexBuffersInstruction *instruction = reinterpret_cast<DrawListBindVertexBuffersInstruction *>(_allocate_draw_list_instruction(instruction_size));
instruction->type = DrawListInstruction::TYPE_BIND_VERTEX_BUFFERS;
instruction->vertex_buffers_count = p_vertex_buffers.size();
RDD::BufferID *vertex_buffers = instruction->vertex_buffers();
uint64_t *vertex_buffer_offsets = instruction->vertex_buffer_offsets();
for (uint32_t i = 0; i < instruction->vertex_buffers_count; i++) {
vertex_buffers[i] = p_vertex_buffers[i];
vertex_buffer_offsets[i] = p_vertex_buffer_offsets[i];
}
if (instruction->vertex_buffers_count > 0) {
draw_instruction_list.stages.set_flag(RDD::PIPELINE_STAGE_VERTEX_INPUT_BIT);
}
}
void RenderingDeviceGraph::add_draw_list_clear_attachments(VectorView<RDD::AttachmentClear> p_attachments_clear, VectorView<Rect2i> p_attachments_clear_rect) {
uint32_t instruction_size = sizeof(DrawListClearAttachmentsInstruction) + sizeof(RDD::AttachmentClear) * p_attachments_clear.size() + sizeof(Rect2i) * p_attachments_clear_rect.size();
DrawListClearAttachmentsInstruction *instruction = reinterpret_cast<DrawListClearAttachmentsInstruction *>(_allocate_draw_list_instruction(instruction_size));
instruction->type = DrawListInstruction::TYPE_CLEAR_ATTACHMENTS;
instruction->attachments_clear_count = p_attachments_clear.size();
instruction->attachments_clear_rect_count = p_attachments_clear_rect.size();
RDD::AttachmentClear *attachments_clear = instruction->attachments_clear();
Rect2i *attachments_clear_rect = instruction->attachments_clear_rect();
for (uint32_t i = 0; i < instruction->attachments_clear_count; i++) {
attachments_clear[i] = p_attachments_clear[i];
}
for (uint32_t i = 0; i < instruction->attachments_clear_rect_count; i++) {
attachments_clear_rect[i] = p_attachments_clear_rect[i];
}
}
void RenderingDeviceGraph::add_draw_list_draw(uint32_t p_vertex_count, uint32_t p_instance_count) {
DrawListDrawInstruction *instruction = reinterpret_cast<DrawListDrawInstruction *>(_allocate_draw_list_instruction(sizeof(DrawListDrawInstruction)));
instruction->type = DrawListInstruction::TYPE_DRAW;
instruction->vertex_count = p_vertex_count;
instruction->instance_count = p_instance_count;
}
void RenderingDeviceGraph::add_draw_list_draw_indexed(uint32_t p_index_count, uint32_t p_instance_count, uint32_t p_first_index) {
DrawListDrawIndexedInstruction *instruction = reinterpret_cast<DrawListDrawIndexedInstruction *>(_allocate_draw_list_instruction(sizeof(DrawListDrawIndexedInstruction)));
instruction->type = DrawListInstruction::TYPE_DRAW_INDEXED;
instruction->index_count = p_index_count;
instruction->instance_count = p_instance_count;
instruction->first_index = p_first_index;
}
void RenderingDeviceGraph::add_draw_list_execute_commands(RDD::CommandBufferID p_command_buffer) {
DrawListExecuteCommandsInstruction *instruction = reinterpret_cast<DrawListExecuteCommandsInstruction *>(_allocate_draw_list_instruction(sizeof(DrawListExecuteCommandsInstruction)));
instruction->type = DrawListInstruction::TYPE_EXECUTE_COMMANDS;
instruction->command_buffer = p_command_buffer;
}
void RenderingDeviceGraph::add_draw_list_next_subpass(RDD::CommandBufferType p_command_buffer_type) {
DrawListNextSubpassInstruction *instruction = reinterpret_cast<DrawListNextSubpassInstruction *>(_allocate_draw_list_instruction(sizeof(DrawListNextSubpassInstruction)));
instruction->type = DrawListInstruction::TYPE_NEXT_SUBPASS;
instruction->command_buffer_type = p_command_buffer_type;
}
void RenderingDeviceGraph::add_draw_list_set_blend_constants(const Color &p_color) {
DrawListSetBlendConstantsInstruction *instruction = reinterpret_cast<DrawListSetBlendConstantsInstruction *>(_allocate_draw_list_instruction(sizeof(DrawListSetBlendConstantsInstruction)));
instruction->type = DrawListInstruction::TYPE_SET_BLEND_CONSTANTS;
instruction->color = p_color;
}
void RenderingDeviceGraph::add_draw_list_set_line_width(float p_width) {
DrawListSetLineWidthInstruction *instruction = reinterpret_cast<DrawListSetLineWidthInstruction *>(_allocate_draw_list_instruction(sizeof(DrawListSetLineWidthInstruction)));
instruction->type = DrawListInstruction::TYPE_SET_LINE_WIDTH;
instruction->width = p_width;
}
void RenderingDeviceGraph::add_draw_list_set_push_constant(RDD::ShaderID p_shader, const void *p_data, uint32_t p_data_size) {
uint32_t instruction_size = sizeof(DrawListSetPushConstantInstruction) + p_data_size;
DrawListSetPushConstantInstruction *instruction = reinterpret_cast<DrawListSetPushConstantInstruction *>(_allocate_draw_list_instruction(instruction_size));
instruction->type = DrawListInstruction::TYPE_SET_PUSH_CONSTANT;
instruction->size = p_data_size;
instruction->shader = p_shader;
memcpy(instruction->data(), p_data, p_data_size);
}
void RenderingDeviceGraph::add_draw_list_set_scissor(Rect2i p_rect) {
DrawListSetScissorInstruction *instruction = reinterpret_cast<DrawListSetScissorInstruction *>(_allocate_draw_list_instruction(sizeof(DrawListSetScissorInstruction)));
instruction->type = DrawListInstruction::TYPE_SET_SCISSOR;
instruction->rect = p_rect;
}
void RenderingDeviceGraph::add_draw_list_set_viewport(Rect2i p_rect) {
DrawListSetViewportInstruction *instruction = reinterpret_cast<DrawListSetViewportInstruction *>(_allocate_draw_list_instruction(sizeof(DrawListSetViewportInstruction)));
instruction->type = DrawListInstruction::TYPE_SET_VIEWPORT;
instruction->rect = p_rect;
}
void RenderingDeviceGraph::add_draw_list_uniform_set_prepare_for_use(RDD::ShaderID p_shader, RDD::UniformSetID p_uniform_set, uint32_t set_index) {
DrawListUniformSetPrepareForUseInstruction *instruction = reinterpret_cast<DrawListUniformSetPrepareForUseInstruction *>(_allocate_draw_list_instruction(sizeof(DrawListUniformSetPrepareForUseInstruction)));
instruction->type = DrawListInstruction::TYPE_UNIFORM_SET_PREPARE_FOR_USE;
instruction->shader = p_shader;
instruction->uniform_set = p_uniform_set;
instruction->set_index = set_index;
}
void RenderingDeviceGraph::add_draw_list_usage(ResourceTracker *p_tracker, ResourceUsage p_usage) {
p_tracker->reset_if_outdated(tracking_frame);
if (p_tracker->draw_list_index != draw_instruction_list.index) {
draw_instruction_list.command_trackers.push_back(p_tracker);
draw_instruction_list.command_tracker_usages.push_back(p_usage);
p_tracker->draw_list_index = draw_instruction_list.index;
p_tracker->draw_list_usage = p_usage;
}
#ifdef DEV_ENABLED
else if (p_tracker->draw_list_usage != p_usage) {
ERR_FAIL_MSG(vformat("Tracker can't have more than one type of usage in the same draw list. Draw list usage is %d and the requested usage is %d.", p_tracker->draw_list_usage, p_usage));
}
#endif
}
void RenderingDeviceGraph::add_draw_list_usages(VectorView<ResourceTracker *> p_trackers, VectorView<ResourceUsage> p_usages) {
DEV_ASSERT(p_trackers.size() == p_usages.size());
for (uint32_t i = 0; i < p_trackers.size(); i++) {
add_draw_list_usage(p_trackers[i], p_usages[i]);
}
}
void RenderingDeviceGraph::add_draw_list_end() {
// Arbitrary size threshold to evaluate if it'd be best to record the draw list on the background as a secondary buffer.
const uint32_t instruction_data_threshold_for_secondary = 16384;
RDD::CommandBufferType command_buffer_type;
uint32_t &secondary_buffers_used = frames[frame].secondary_command_buffers_used;
if (draw_instruction_list.data.size() > instruction_data_threshold_for_secondary && secondary_buffers_used < frames[frame].secondary_command_buffers.size()) {
// Copy the current instruction list data into another array that will be used by the secondary command buffer worker.
SecondaryCommandBuffer &secondary = frames[frame].secondary_command_buffers[secondary_buffers_used];
secondary.render_pass = draw_instruction_list.render_pass;
secondary.framebuffer = draw_instruction_list.framebuffer;
secondary.instruction_data.resize(draw_instruction_list.data.size());
memcpy(secondary.instruction_data.ptr(), draw_instruction_list.data.ptr(), draw_instruction_list.data.size());
// Run a background task for recording the secondary command buffer.
secondary.task = WorkerThreadPool::get_singleton()->add_template_task(this, &RenderingDeviceGraph::_run_secondary_command_buffer_task, &secondary, true);
// Clear the instruction list and add a single command for executing the secondary command buffer instead.
draw_instruction_list.data.clear();
add_draw_list_execute_commands(secondary.command_buffer);
secondary_buffers_used++;
command_buffer_type = RDD::COMMAND_BUFFER_TYPE_SECONDARY;
} else {
command_buffer_type = RDD::COMMAND_BUFFER_TYPE_PRIMARY;
}
int32_t command_index;
uint32_t clear_values_size = sizeof(RDD::RenderPassClearValue) * draw_instruction_list.clear_values.size();
uint32_t instruction_data_size = draw_instruction_list.data.size();
uint32_t command_size = sizeof(RecordedDrawListCommand) + clear_values_size + instruction_data_size;
RecordedDrawListCommand *command = static_cast<RecordedDrawListCommand *>(_allocate_command(command_size, command_index));
command->type = RecordedCommand::TYPE_DRAW_LIST;
command->self_stages = draw_instruction_list.stages;
command->instruction_data_size = instruction_data_size;
command->render_pass = draw_instruction_list.render_pass;
command->framebuffer = draw_instruction_list.framebuffer;
command->command_buffer_type = command_buffer_type;
command->region = draw_instruction_list.region;
command->clear_values_count = draw_instruction_list.clear_values.size();
RDD::RenderPassClearValue *clear_values = command->clear_values();
for (uint32_t i = 0; i < command->clear_values_count; i++) {
clear_values[i] = draw_instruction_list.clear_values[i];
}
memcpy(command->instruction_data(), draw_instruction_list.data.ptr(), instruction_data_size);
_add_command_to_graph(draw_instruction_list.command_trackers.ptr(), draw_instruction_list.command_tracker_usages.ptr(), draw_instruction_list.command_trackers.size(), command_index, command);
}
void RenderingDeviceGraph::add_texture_clear(RDD::TextureID p_dst, ResourceTracker *p_dst_tracker, const Color &p_color, const RDD::TextureSubresourceRange &p_range) {
DEV_ASSERT(p_dst_tracker != nullptr);
int32_t command_index;
RecordedTextureClearCommand *command = static_cast<RecordedTextureClearCommand *>(_allocate_command(sizeof(RecordedTextureClearCommand), command_index));
command->type = RecordedCommand::TYPE_TEXTURE_CLEAR;
command->self_stages = RDD::PIPELINE_STAGE_TRANSFER_BIT;
command->texture = p_dst;
command->color = p_color;
command->range = p_range;
ResourceUsage usage = RESOURCE_USAGE_TRANSFER_TO;
_add_command_to_graph(&p_dst_tracker, &usage, 1, command_index, command);
}
void RenderingDeviceGraph::add_texture_copy(RDD::TextureID p_src, ResourceTracker *p_src_tracker, RDD::TextureID p_dst, ResourceTracker *p_dst_tracker, RDD::TextureCopyRegion p_region) {
DEV_ASSERT(p_src_tracker != nullptr);
DEV_ASSERT(p_dst_tracker != nullptr);
int32_t command_index;
RecordedTextureCopyCommand *command = static_cast<RecordedTextureCopyCommand *>(_allocate_command(sizeof(RecordedTextureCopyCommand), command_index));
command->type = RecordedCommand::TYPE_TEXTURE_COPY;
command->self_stages = RDD::PIPELINE_STAGE_TRANSFER_BIT;
command->from_texture = p_src;
command->to_texture = p_dst;
command->region = p_region;
ResourceTracker *trackers[2] = { p_dst_tracker, p_src_tracker };
ResourceUsage usages[2] = { RESOURCE_USAGE_TRANSFER_TO, RESOURCE_USAGE_TRANSFER_FROM };
_add_command_to_graph(trackers, usages, 2, command_index, command);
}
void RenderingDeviceGraph::add_texture_get_data(RDD::TextureID p_src, ResourceTracker *p_src_tracker, RDD::BufferID p_dst, VectorView<RDD::BufferTextureCopyRegion> p_buffer_texture_copy_regions) {
DEV_ASSERT(p_src_tracker != nullptr);
int32_t command_index;
uint64_t command_size = sizeof(RecordedTextureGetDataCommand) + p_buffer_texture_copy_regions.size() * sizeof(RDD::BufferTextureCopyRegion);
RecordedTextureGetDataCommand *command = static_cast<RecordedTextureGetDataCommand *>(_allocate_command(command_size, command_index));
command->type = RecordedCommand::TYPE_TEXTURE_GET_DATA;
command->self_stages = RDD::PIPELINE_STAGE_TRANSFER_BIT;
command->from_texture = p_src;
command->to_buffer = p_dst;
command->buffer_texture_copy_regions_count = p_buffer_texture_copy_regions.size();
RDD::BufferTextureCopyRegion *buffer_texture_copy_regions = command->buffer_texture_copy_regions();
for (uint32_t i = 0; i < command->buffer_texture_copy_regions_count; i++) {
buffer_texture_copy_regions[i] = p_buffer_texture_copy_regions[i];
}
ResourceUsage usage = RESOURCE_USAGE_TRANSFER_FROM;
_add_command_to_graph(&p_src_tracker, &usage, 1, command_index, command);
}
void RenderingDeviceGraph::add_texture_resolve(RDD::TextureID p_src, ResourceTracker *p_src_tracker, RDD::TextureID p_dst, ResourceTracker *p_dst_tracker, uint32_t p_src_layer, uint32_t p_src_mipmap, uint32_t p_dst_layer, uint32_t p_dst_mipmap) {
DEV_ASSERT(p_src_tracker != nullptr);
DEV_ASSERT(p_dst_tracker != nullptr);
int32_t command_index;
RecordedTextureResolveCommand *command = static_cast<RecordedTextureResolveCommand *>(_allocate_command(sizeof(RecordedTextureResolveCommand), command_index));
command->type = RecordedCommand::TYPE_TEXTURE_RESOLVE;
command->self_stages = RDD::PIPELINE_STAGE_TRANSFER_BIT;
command->from_texture = p_src;
command->to_texture = p_dst;
command->src_layer = p_src_layer;
command->src_mipmap = p_src_mipmap;
command->dst_layer = p_dst_layer;
command->dst_mipmap = p_dst_mipmap;
ResourceTracker *trackers[2] = { p_dst_tracker, p_src_tracker };
ResourceUsage usages[2] = { RESOURCE_USAGE_TRANSFER_TO, RESOURCE_USAGE_TRANSFER_FROM };
_add_command_to_graph(trackers, usages, 2, command_index, command);
}
void RenderingDeviceGraph::add_texture_update(RDD::TextureID p_dst, ResourceTracker *p_dst_tracker, VectorView<RecordedBufferToTextureCopy> p_buffer_copies) {
DEV_ASSERT(p_dst_tracker != nullptr);
int32_t command_index;
uint64_t command_size = sizeof(RecordedTextureUpdateCommand) + p_buffer_copies.size() * sizeof(RecordedBufferToTextureCopy);
RecordedTextureUpdateCommand *command = static_cast<RecordedTextureUpdateCommand *>(_allocate_command(command_size, command_index));
command->type = RecordedCommand::TYPE_TEXTURE_UPDATE;
command->self_stages = RDD::PIPELINE_STAGE_TRANSFER_BIT;
command->to_texture = p_dst;
command->buffer_to_texture_copies_count = p_buffer_copies.size();
RecordedBufferToTextureCopy *buffer_to_texture_copies = command->buffer_to_texture_copies();
for (uint32_t i = 0; i < command->buffer_to_texture_copies_count; i++) {
buffer_to_texture_copies[i] = p_buffer_copies[i];
}
ResourceUsage usage = RESOURCE_USAGE_TRANSFER_TO;
_add_command_to_graph(&p_dst_tracker, &usage, 1, command_index, command);
}
void RenderingDeviceGraph::add_capture_timestamp(RDD::QueryPoolID p_query_pool, uint32_t p_index) {
int32_t command_index;
RecordedCaptureTimestampCommand *command = static_cast<RecordedCaptureTimestampCommand *>(_allocate_command(sizeof(RecordedCaptureTimestampCommand), command_index));
command->type = RecordedCommand::TYPE_CAPTURE_TIMESTAMP;
command->self_stages = 0;
command->pool = p_query_pool;
command->index = p_index;
_add_command_to_graph(nullptr, nullptr, 0, command_index, command);
}
void RenderingDeviceGraph::add_synchronization() {
// Synchronization is only acknowledged if commands have been recorded on the graph already.
if (command_count > 0) {
command_synchronization_pending = true;
}
}
void RenderingDeviceGraph::begin_label(const String &p_label_name, const Color &p_color) {
uint32_t command_label_offset = command_label_chars.size();
PackedByteArray command_label_utf8 = p_label_name.to_utf8_buffer();
int command_label_utf8_size = command_label_utf8.size();
command_label_chars.resize(command_label_offset + command_label_utf8_size + 1);
memcpy(&command_label_chars[command_label_offset], command_label_utf8.ptr(), command_label_utf8.size());
command_label_chars[command_label_offset + command_label_utf8_size] = '\0';
command_label_colors.push_back(p_color);
command_label_offsets.push_back(command_label_offset);
command_label_index = command_label_count;
command_label_count++;
}
void RenderingDeviceGraph::end_label() {
command_label_index = -1;
}
void RenderingDeviceGraph::end(RDD::CommandBufferID p_command_buffer, bool p_reorder_commands, bool p_full_barriers) {
if (command_count == 0) {
// No commands have been logged, do nothing.
return;
}
thread_local LocalVector<RecordedCommandSort> commands_sorted;
if (p_reorder_commands) {
thread_local LocalVector<int64_t> command_stack;
thread_local LocalVector<int32_t> sorted_command_indices;
thread_local LocalVector<uint32_t> command_degrees;
int32_t adjacency_list_index = 0;
int32_t command_index;
// Count all the incoming connections to every node by traversing their adjacency list.
command_degrees.resize(command_count);
memset(command_degrees.ptr(), 0, sizeof(uint32_t) * command_degrees.size());
for (uint32_t i = 0; i < command_count; i++) {
const RecordedCommand &recorded_command = *reinterpret_cast<const RecordedCommand *>(&command_data[command_data_offsets[i]]);
adjacency_list_index = recorded_command.adjacent_command_list_index;
while (adjacency_list_index >= 0) {
const RecordedCommandListNode &command_list_node = command_list_nodes[adjacency_list_index];
DEV_ASSERT((command_list_node.command_index != int32_t(i)) && "Command can't have itself as a dependency.");
command_degrees[command_list_node.command_index] += 1;
adjacency_list_index = command_list_node.next_list_index;
}
}
// Push to the stack all nodes that have no incoming connections.
command_stack.clear();
for (uint32_t i = 0; i < command_count; i++) {
if (command_degrees[i] == 0) {
command_stack.push_back(i);
}
}
sorted_command_indices.clear();
while (!command_stack.is_empty()) {
// Pop command from the stack.
command_index = command_stack[command_stack.size() - 1];
command_stack.resize(command_stack.size() - 1);
// Add it to the sorted commands.
sorted_command_indices.push_back(command_index);
// Search for its adjacents and lower their degree for every visit. If the degree reaches zero, we push the command to the stack.
const uint32_t command_data_offset = command_data_offsets[command_index];
const RecordedCommand &recorded_command = *reinterpret_cast<const RecordedCommand *>(&command_data[command_data_offset]);
adjacency_list_index = recorded_command.adjacent_command_list_index;
while (adjacency_list_index >= 0) {
const RecordedCommandListNode &command_list_node = command_list_nodes[adjacency_list_index];
uint32_t &command_degree = command_degrees[command_list_node.command_index];
DEV_ASSERT(command_degree > 0);
command_degree--;
if (command_degree == 0) {
command_stack.push_back(command_list_node.command_index);
}
adjacency_list_index = command_list_node.next_list_index;
}
}
// Batch buffer, texture, draw lists and compute operations together.
const uint32_t PriorityTable[RecordedCommand::TYPE_MAX] = {
0, // TYPE_NONE
1, // TYPE_BUFFER_CLEAR
1, // TYPE_BUFFER_COPY
1, // TYPE_BUFFER_GET_DATA
1, // TYPE_BUFFER_UPDATE
4, // TYPE_COMPUTE_LIST
3, // TYPE_DRAW_LIST
2, // TYPE_TEXTURE_CLEAR
2, // TYPE_TEXTURE_COPY
2, // TYPE_TEXTURE_GET_DATA
2, // TYPE_TEXTURE_RESOLVE
2, // TYPE_TEXTURE_UPDATE
};
commands_sorted.clear();
commands_sorted.resize(command_count);
for (uint32_t i = 0; i < command_count; i++) {
const int32_t sorted_command_index = sorted_command_indices[i];
const uint32_t command_data_offset = command_data_offsets[sorted_command_index];
const RecordedCommand recorded_command = *reinterpret_cast<const RecordedCommand *>(&command_data[command_data_offset]);
const uint32_t next_command_level = commands_sorted[sorted_command_index].level + 1;
adjacency_list_index = recorded_command.adjacent_command_list_index;
while (adjacency_list_index >= 0) {
const RecordedCommandListNode &command_list_node = command_list_nodes[adjacency_list_index];
uint32_t &adjacent_command_level = commands_sorted[command_list_node.command_index].level;
if (adjacent_command_level < next_command_level) {
adjacent_command_level = next_command_level;
}
adjacency_list_index = command_list_node.next_list_index;
}
commands_sorted[sorted_command_index].index = sorted_command_index;
commands_sorted[sorted_command_index].priority = PriorityTable[recorded_command.type];
}
} else {
commands_sorted.clear();
commands_sorted.resize(command_count);
for (uint32_t i = 0; i < command_count; i++) {
commands_sorted[i].index = i;
}
}
_wait_for_secondary_command_buffer_tasks();
if (command_count > 0) {
int32_t current_label_index = -1;
int32_t current_label_level = -1;
_run_label_command_change(p_command_buffer, -1, -1, true, true, nullptr, 0, current_label_index, current_label_level);
if (p_reorder_commands) {
#if PRINT_RENDER_GRAPH
print_line("BEFORE SORT");
_print_render_commands(commands_sorted.ptr(), command_count);
#endif
commands_sorted.sort();
#if PRINT_RENDER_GRAPH
print_line("AFTER SORT");
_print_render_commands(commands_sorted.ptr(), command_count);
#endif
#if PRINT_COMMAND_RECORDING
print_line(vformat("Recording %d commands", command_count));
#endif
uint32_t boosted_priority = 0;
uint32_t current_level = commands_sorted[0].level;
uint32_t current_level_start = 0;
for (uint32_t i = 0; i < command_count; i++) {
if (current_level != commands_sorted[i].level) {
RecordedCommandSort *level_command_ptr = &commands_sorted[current_level_start];
uint32_t level_command_count = i - current_level_start;
_boost_priority_for_render_commands(level_command_ptr, level_command_count, boosted_priority);
_group_barriers_for_render_commands(p_command_buffer, level_command_ptr, level_command_count, p_full_barriers);
_run_render_commands(p_command_buffer, current_level, level_command_ptr, level_command_count, current_label_index, current_label_level);
current_level = commands_sorted[i].level;
current_level_start = i;
}
}
RecordedCommandSort *level_command_ptr = &commands_sorted[current_level_start];
uint32_t level_command_count = command_count - current_level_start;
_boost_priority_for_render_commands(level_command_ptr, level_command_count, boosted_priority);
_group_barriers_for_render_commands(p_command_buffer, level_command_ptr, level_command_count, p_full_barriers);
_run_render_commands(p_command_buffer, current_level, level_command_ptr, level_command_count, current_label_index, current_label_level);
#if PRINT_RENDER_GRAPH
print_line("COMMANDS", command_count, "LEVELS", current_level + 1);
#endif
} else {
for (uint32_t i = 0; i < command_count; i++) {
_group_barriers_for_render_commands(p_command_buffer, &commands_sorted[i], 1, p_full_barriers);
_run_render_commands(p_command_buffer, i, &commands_sorted[i], 1, current_label_index, current_label_level);
}
}
_run_label_command_change(p_command_buffer, -1, -1, true, false, nullptr, 0, current_label_index, current_label_level);
#if PRINT_COMMAND_RECORDING
print_line(vformat("Recorded %d commands", command_count));
#endif
}
// Advance the frame counter. It's not necessary to do this if no commands are recorded because that means no secondary command buffers were used.
frame = (frame + 1) % frames.size();
}
#if PRINT_RESOURCE_TRACKER_TOTAL
static uint32_t resource_tracker_total = 0;
#endif
RenderingDeviceGraph::ResourceTracker *RenderingDeviceGraph::resource_tracker_create() {
#if PRINT_RESOURCE_TRACKER_TOTAL
print_line("Resource trackers:", ++resource_tracker_total);
#endif
return memnew(ResourceTracker);
}
void RenderingDeviceGraph::resource_tracker_free(ResourceTracker *tracker) {
if (tracker == nullptr) {
return;
}
if (tracker->in_parent_dirty_list) {
// Delete the tracker from the parent's dirty linked list.
if (tracker->parent->dirty_shared_list == tracker) {
tracker->parent->dirty_shared_list = tracker->next_shared;
} else {
ResourceTracker *node = tracker->parent->dirty_shared_list;
while (node != nullptr) {
if (node->next_shared == tracker) {
node->next_shared = tracker->next_shared;
node = nullptr;
} else {
node = node->next_shared;
}
}
}
}
memdelete(tracker);
#if PRINT_RESOURCE_TRACKER_TOTAL
print_line("Resource trackers:", --resource_tracker_total);
#endif
}