virtualx-engine/core/map.h
Rémi Verschelde 5dbf1809c6 A Whole New World (clang-format edition)
I can show you the code
Pretty, with proper whitespace
Tell me, coder, now when did
You last write readable code?

I can open your eyes
Make you see your bad indent
Force you to respect the style
The core devs agreed upon

A whole new world
A new fantastic code format
A de facto standard
With some sugar
Enforced with clang-format

A whole new world
A dazzling style we all dreamed of
And when we read it through
It's crystal clear
That now we're in a whole new world of code
2017-03-05 16:44:50 +01:00

689 lines
15 KiB
C++

/*************************************************************************/
/* map.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef MAP_H
#define MAP_H
#include "set.h"
/**
@author Juan Linietsky <reduzio@gmail.com>
*/
// based on the very nice implementation of rb-trees by:
// http://web.mit.edu/~emin/www/source_code/red_black_tree/index.html
template <class K, class V, class C = Comparator<K>, class A = DefaultAllocator>
class Map {
enum Color {
RED,
BLACK
};
struct _Data;
public:
class Element {
private:
friend class Map<K, V, C, A>;
//Color color;
int color;
Element *right;
Element *left;
Element *parent;
Element *_next;
Element *_prev;
K _key;
V _value;
//_Data *data;
public:
const Element *next() const {
return _next;
}
Element *next() {
return _next;
}
const Element *prev() const {
return _prev;
}
Element *prev() {
return _prev;
}
const K &key() const {
return _key;
};
V &value() {
return _value;
};
const V &value() const {
return _value;
};
V &get() {
return _value;
};
const V &get() const {
return _value;
};
Element() {
color = RED;
right = NULL;
left = NULL;
parent = NULL;
_next = NULL;
_prev = NULL;
};
};
private:
struct _Data {
Element *_root;
Element *_nil;
int size_cache;
_FORCE_INLINE_ _Data() {
#ifdef GLOBALNIL_DISABLED
_nil = memnew_allocator(Element, A);
_nil->parent = _nil->left = _nil->right = _nil;
_nil->color = BLACK;
#else
_nil = (Element *)&_GlobalNilClass::_nil;
#endif
_root = NULL;
size_cache = 0;
}
void _create_root() {
_root = memnew_allocator(Element, A);
_root->parent = _root->left = _root->right = _nil;
_root->color = BLACK;
}
void _free_root() {
if (_root) {
memdelete_allocator<Element, A>(_root);
_root = NULL;
}
}
~_Data() {
_free_root();
#ifdef GLOBALNIL_DISABLED
memdelete_allocator<Element, A>(_nil);
#endif
//memdelete_allocator<Element,A>(_root);
}
};
_Data _data;
inline void _set_color(Element *p_node, int p_color) {
ERR_FAIL_COND(p_node == _data._nil && p_color == RED);
p_node->color = p_color;
}
inline void _rotate_left(Element *p_node) {
Element *r = p_node->right;
p_node->right = r->left;
if (r->left != _data._nil)
r->left->parent = p_node;
r->parent = p_node->parent;
if (p_node == p_node->parent->left)
p_node->parent->left = r;
else
p_node->parent->right = r;
r->left = p_node;
p_node->parent = r;
}
inline void _rotate_right(Element *p_node) {
Element *l = p_node->left;
p_node->left = l->right;
if (l->right != _data._nil)
l->right->parent = p_node;
l->parent = p_node->parent;
if (p_node == p_node->parent->right)
p_node->parent->right = l;
else
p_node->parent->left = l;
l->right = p_node;
p_node->parent = l;
}
inline Element *_successor(Element *p_node) const {
Element *node = p_node;
if (node->right != _data._nil) {
node = node->right;
while (node->left != _data._nil) { /* returns the minium of the right subtree of node */
node = node->left;
}
return node;
} else {
while (node == node->parent->right) {
node = node->parent;
}
if (node->parent == _data._root)
return NULL;
return node->parent;
}
}
inline Element *_predecessor(Element *p_node) const {
Element *node = p_node;
if (node->left != _data._nil) {
node = node->left;
while (node->right != _data._nil) { /* returns the minium of the left subtree of node */
node = node->right;
}
return node;
} else {
while (node == node->parent->left) {
if (node->parent == _data._root)
return NULL;
node = node->parent;
}
return node->parent;
}
}
Element *_find(const K &p_key) const {
Element *node = _data._root->left;
C less;
while (node != _data._nil) {
if (less(p_key, node->_key))
node = node->left;
else if (less(node->_key, p_key))
node = node->right;
else
break; // found
}
return (node != _data._nil) ? node : NULL;
}
Element *_find_closest(const K &p_key) const {
Element *node = _data._root->left;
Element *prev = NULL;
C less;
while (node != _data._nil) {
prev = node;
if (less(p_key, node->_key))
node = node->left;
else if (less(node->_key, p_key))
node = node->right;
else
break; // found
}
if (node == _data._nil) {
if (prev == NULL)
return NULL;
if (less(p_key, prev->_key)) {
prev = prev->_prev;
}
return prev;
} else
return node;
}
Element *_insert(const K &p_key, bool &r_exists) {
Element *new_parent = _data._root;
Element *node = _data._root->left;
C less;
while (node != _data._nil) {
new_parent = node;
if (less(p_key, node->_key))
node = node->left;
else if (less(node->_key, p_key))
node = node->right;
else {
r_exists = true;
return node;
}
}
Element *new_node = memnew_allocator(Element, A);
new_node->parent = new_parent;
new_node->right = _data._nil;
new_node->left = _data._nil;
new_node->_key = p_key;
//new_node->data=_data;
if (new_parent == _data._root || less(p_key, new_parent->_key)) {
new_parent->left = new_node;
} else {
new_parent->right = new_node;
}
r_exists = false;
new_node->_next = _successor(new_node);
new_node->_prev = _predecessor(new_node);
if (new_node->_next)
new_node->_next->_prev = new_node;
if (new_node->_prev)
new_node->_prev->_next = new_node;
return new_node;
}
Element *_insert_rb(const K &p_key, const V &p_value) {
bool exists = false;
Element *new_node = _insert(p_key, exists);
if (new_node) {
new_node->_value = p_value;
}
if (exists)
return new_node;
Element *node = new_node;
_data.size_cache++;
while (node->parent->color == RED) {
if (node->parent == node->parent->parent->left) {
Element *aux = node->parent->parent->right;
if (aux->color == RED) {
_set_color(node->parent, BLACK);
_set_color(aux, BLACK);
_set_color(node->parent->parent, RED);
node = node->parent->parent;
} else {
if (node == node->parent->right) {
node = node->parent;
_rotate_left(node);
}
_set_color(node->parent, BLACK);
_set_color(node->parent->parent, RED);
_rotate_right(node->parent->parent);
}
} else {
Element *aux = node->parent->parent->left;
if (aux->color == RED) {
_set_color(node->parent, BLACK);
_set_color(aux, BLACK);
_set_color(node->parent->parent, RED);
node = node->parent->parent;
} else {
if (node == node->parent->left) {
node = node->parent;
_rotate_right(node);
}
_set_color(node->parent, BLACK);
_set_color(node->parent->parent, RED);
_rotate_left(node->parent->parent);
}
}
}
_set_color(_data._root->left, BLACK);
return new_node;
}
void _erase_fix(Element *p_node) {
Element *root = _data._root->left;
Element *node = p_node;
while ((node->color == BLACK) && (root != node)) {
if (node == node->parent->left) {
Element *aux = node->parent->right;
if (aux->color == RED) {
_set_color(aux, BLACK);
_set_color(node->parent, RED);
_rotate_left(node->parent);
aux = node->parent->right;
}
if ((aux->right->color == BLACK) && (aux->left->color == BLACK)) {
_set_color(aux, RED);
node = node->parent;
} else {
if (aux->right->color == BLACK) {
_set_color(aux->left, BLACK);
_set_color(aux, RED);
_rotate_right(aux);
aux = node->parent->right;
}
_set_color(aux, node->parent->color);
_set_color(node->parent, BLACK);
_set_color(aux->right, BLACK);
_rotate_left(node->parent);
node = root; /* this is to exit while loop */
}
} else { /* the code below is has left and right switched from above */
Element *aux = node->parent->left;
if (aux->color == RED) {
_set_color(aux, BLACK);
_set_color(node->parent, RED);
_rotate_right(node->parent);
aux = node->parent->left;
}
if ((aux->right->color == BLACK) && (aux->left->color == BLACK)) {
_set_color(aux, RED);
node = node->parent;
} else {
if (aux->left->color == BLACK) {
_set_color(aux->right, BLACK);
_set_color(aux, RED);
_rotate_left(aux);
aux = node->parent->left;
}
_set_color(aux, node->parent->color);
_set_color(node->parent, BLACK);
_set_color(aux->left, BLACK);
_rotate_right(node->parent);
node = root;
}
}
}
_set_color(node, BLACK);
ERR_FAIL_COND(_data._nil->color != BLACK);
}
void _erase(Element *p_node) {
Element *rp = ((p_node->left == _data._nil) || (p_node->right == _data._nil)) ? p_node : _successor(p_node);
if (!rp)
rp = _data._nil;
Element *node = (rp->left == _data._nil) ? rp->right : rp->left;
if (_data._root == (node->parent = rp->parent)) {
_data._root->left = node;
} else {
if (rp == rp->parent->left) {
rp->parent->left = node;
} else {
rp->parent->right = node;
}
}
if (rp != p_node) {
ERR_FAIL_COND(rp == _data._nil);
if (rp->color == BLACK)
_erase_fix(node);
rp->left = p_node->left;
rp->right = p_node->right;
rp->parent = p_node->parent;
rp->color = p_node->color;
p_node->left->parent = rp;
p_node->right->parent = rp;
if (p_node == p_node->parent->left) {
p_node->parent->left = rp;
} else {
p_node->parent->right = rp;
}
} else {
if (p_node->color == BLACK)
_erase_fix(node);
}
if (p_node->_next)
p_node->_next->_prev = p_node->_prev;
if (p_node->_prev)
p_node->_prev->_next = p_node->_next;
memdelete_allocator<Element, A>(p_node);
_data.size_cache--;
ERR_FAIL_COND(_data._nil->color == RED);
}
void _calculate_depth(Element *p_element, int &max_d, int d) const {
if (p_element == _data._nil) {
return;
}
_calculate_depth(p_element->left, max_d, d + 1);
_calculate_depth(p_element->right, max_d, d + 1);
if (d > max_d)
max_d = d;
}
void _cleanup_tree(Element *p_element) {
if (p_element == _data._nil)
return;
_cleanup_tree(p_element->left);
_cleanup_tree(p_element->right);
memdelete_allocator<Element, A>(p_element);
}
void _copy_from(const Map &p_map) {
clear();
// not the fastest way, but safeset to write.
for (Element *I = p_map.front(); I; I = I->next()) {
insert(I->key(), I->value());
}
}
public:
const Element *find(const K &p_key) const {
if (!_data._root)
return NULL;
const Element *res = _find(p_key);
return res;
}
Element *find(const K &p_key) {
if (!_data._root)
return NULL;
Element *res = _find(p_key);
return res;
}
const Element *find_closest(const K &p_key) const {
if (!_data._root)
return NULL;
const Element *res = _find_closest(p_key);
return res;
}
Element *find_closest(const K &p_key) {
if (!_data._root)
return NULL;
Element *res = _find_closest(p_key);
return res;
}
Element *insert(const K &p_key, const V &p_value) {
if (!_data._root)
_data._create_root();
return _insert_rb(p_key, p_value);
}
void erase(Element *p_element) {
if (!_data._root)
return;
_erase(p_element);
if (_data.size_cache == 0 && _data._root)
_data._free_root();
}
bool erase(const K &p_key) {
if (!_data._root)
return false;
Element *e = find(p_key);
if (!e)
return false;
_erase(e);
return true;
}
bool has(const K &p_key) const {
if (!_data._root)
return false;
return find(p_key) != NULL;
}
const V &operator[](const K &p_key) const {
ERR_FAIL_COND_V(!_data._root, *(V *)NULL); // crash on purpose
const Element *e = find(p_key);
ERR_FAIL_COND_V(!e, *(V *)NULL); // crash on purpose
return e->_value;
}
V &operator[](const K &p_key) {
if (!_data._root)
_data._create_root();
Element *e = find(p_key);
if (!e)
e = insert(p_key, V());
ERR_FAIL_COND_V(!e, *(V *)NULL); // crash on purpose
return e->_value;
}
Element *front() const {
if (!_data._root)
return NULL;
Element *e = _data._root->left;
if (e == _data._nil)
return NULL;
while (e->left != _data._nil)
e = e->left;
return e;
}
Element *back() const {
if (!_data._root)
return NULL;
Element *e = _data._root->left;
if (e == _data._nil)
return NULL;
while (e->right != _data._nil)
e = e->right;
return e;
}
inline bool empty() const { return _data.size_cache == 0; }
inline int size() const { return _data.size_cache; }
int calculate_depth() const {
// used for debug mostly
if (!_data._root)
return 0;
int max_d = 0;
_calculate_depth(_data._root->left, max_d, 0);
return max_d;
}
void clear() {
if (!_data._root)
return;
_cleanup_tree(_data._root->left);
_data._root->left = _data._nil;
_data.size_cache = 0;
_data._nil->parent = _data._nil;
_data._free_root();
}
void operator=(const Map &p_map) {
_copy_from(p_map);
}
Map(const Map &p_map) {
_copy_from(p_map);
}
_FORCE_INLINE_ Map() {
}
~Map() {
clear();
}
};
#endif