virtualx-engine/core/math/bvh_structs.inc
2024-02-18 13:31:05 -07:00

216 lines
6.3 KiB
C++

public:
struct ItemRef {
uint32_t tnode_id; // -1 is invalid
uint32_t item_id; // in the leaf
bool is_active() const { return tnode_id != BVHCommon::INACTIVE; }
void set_inactive() {
tnode_id = BVHCommon::INACTIVE;
item_id = BVHCommon::INACTIVE;
}
};
// extra info kept in separate parallel list to the references,
// as this is less used as keeps cache better
struct ItemExtra {
// Before doing user defined pairing checks (especially in the find_leavers function),
// we may want to check that two items have compatible tree ids and tree masks,
// as if they are incompatible they should not pair / collide.
bool are_item_trees_compatible(const ItemExtra &p_other) const {
uint32_t other_type = 1 << p_other.tree_id;
if (tree_collision_mask & other_type) {
return true;
}
uint32_t our_type = 1 << tree_id;
if (p_other.tree_collision_mask & our_type) {
return true;
}
return false;
}
// There can be multiple user defined trees
uint32_t tree_id;
// Defines which trees this item should collision check against.
// 1 << tree_id, and normally items would collide against there own
// tree (but not always).
uint32_t tree_collision_mask;
uint32_t last_updated_tick;
int32_t subindex;
T *userdata;
// the active reference is a separate list of which references
// are active so that we can slowly iterate through it over many frames for
// slow optimize.
uint32_t active_ref_id;
};
// tree leaf
struct TLeaf {
uint16_t num_items;
private:
uint16_t dirty;
// separate data orientated lists for faster SIMD traversal
uint32_t item_ref_ids[MAX_ITEMS];
BVHABB_CLASS aabbs[MAX_ITEMS];
public:
// accessors
BVHABB_CLASS &get_aabb(uint32_t p_id) {
BVH_ASSERT(p_id < MAX_ITEMS);
return aabbs[p_id];
}
const BVHABB_CLASS &get_aabb(uint32_t p_id) const {
BVH_ASSERT(p_id < MAX_ITEMS);
return aabbs[p_id];
}
uint32_t &get_item_ref_id(uint32_t p_id) {
BVH_ASSERT(p_id < MAX_ITEMS);
return item_ref_ids[p_id];
}
const uint32_t &get_item_ref_id(uint32_t p_id) const {
BVH_ASSERT(p_id < MAX_ITEMS);
return item_ref_ids[p_id];
}
bool is_dirty() const { return dirty; }
void set_dirty(bool p) { dirty = p; }
void clear() {
num_items = 0;
set_dirty(false);
}
bool is_full() const { return num_items >= MAX_ITEMS; }
void remove_item_unordered(uint32_t p_id) {
BVH_ASSERT(p_id < num_items);
num_items--;
aabbs[p_id] = aabbs[num_items];
item_ref_ids[p_id] = item_ref_ids[num_items];
}
uint32_t request_item() {
if (num_items < MAX_ITEMS) {
uint32_t id = num_items;
num_items++;
return id;
}
#ifdef DEV_ENABLED
return -1;
#else
ERR_FAIL_V_MSG(0, "BVH request_item error.");
#endif
}
};
// tree node
struct TNode {
BVHABB_CLASS aabb;
// either number of children if positive
// or leaf id if negative (leaf id 0 is disallowed)
union {
int32_t num_children;
int32_t neg_leaf_id;
};
uint32_t parent_id; // or -1
uint16_t children[MAX_CHILDREN];
// height in the tree, where leaves are 0, and all above are 1+
// (or the highest where there is a tie off)
int32_t height;
bool is_leaf() const { return num_children < 0; }
void set_leaf_id(int id) { neg_leaf_id = -id; }
int get_leaf_id() const { return -neg_leaf_id; }
void clear() {
num_children = 0;
parent_id = BVHCommon::INVALID;
height = 0; // or -1 for testing
// for safety set to improbable value
aabb.set_to_max_opposite_extents();
// other members are not blanked for speed .. they may be uninitialized
}
bool is_full_of_children() const { return num_children >= MAX_CHILDREN; }
void remove_child_internal(uint32_t child_num) {
children[child_num] = children[num_children - 1];
num_children--;
}
int find_child(uint32_t p_child_node_id) {
BVH_ASSERT(!is_leaf());
for (int n = 0; n < num_children; n++) {
if (children[n] == p_child_node_id) {
return n;
}
}
// not found
return -1;
}
};
// instead of using linked list we maintain
// item references (for quick lookup)
PooledList<ItemRef, uint32_t, true> _refs;
PooledList<ItemExtra, uint32_t, true> _extra;
PooledList<ItemPairs> _pairs;
// these 2 are not in sync .. nodes != leaves!
PooledList<TNode, uint32_t, true> _nodes;
PooledList<TLeaf, uint32_t, true> _leaves;
// we can maintain an un-ordered list of which references are active,
// in order to do a slow incremental optimize of the tree over each frame.
// This will work best if dynamic objects and static objects are in a different tree.
LocalVector<uint32_t, uint32_t, true> _active_refs;
uint32_t _current_active_ref = 0;
// instead of translating directly to the userdata output,
// we keep an intermediate list of hits as reference IDs, which can be used
// for pairing collision detection
LocalVector<uint32_t, uint32_t, true> _cull_hits;
// We can now have a user definable number of trees.
// This allows using e.g. a non-pairable and pairable tree,
// which can be more efficient for example, if we only need check non pairable against the pairable tree.
// It also may be more efficient in terms of separating static from dynamic objects, by reducing housekeeping.
// However this is a trade off, as there is a cost of traversing two trees.
uint32_t _root_node_id[NUM_TREES];
// these values may need tweaking according to the project
// the bound of the world, and the average velocities of the objects
// node expansion is important in the rendering tree
// larger values give less re-insertion as items move...
// but on the other hand over estimates the bounding box of nodes.
// we can either use auto mode, where the expansion is based on the root node size, or specify manually
real_t _node_expansion = 0.5;
bool _auto_node_expansion = true;
// pairing expansion important for physics pairing
// larger values gives more 'sticky' pairing, and is less likely to exhibit tunneling
// we can either use auto mode, where the expansion is based on the root node size, or specify manually
real_t _pairing_expansion = 0.1;
#ifdef BVH_ALLOW_AUTO_EXPANSION
bool _auto_pairing_expansion = true;
#endif
// when using an expanded bound, we must detect the condition where a new AABB
// is significantly smaller than the expanded bound, as this is a special case where we
// should override the optimization and create a new expanded bound.
// This threshold is derived from the _pairing_expansion, and should be recalculated
// if _pairing_expansion is changed.
real_t _aabb_shrinkage_threshold = 0.0;