virtualx-engine/servers/physics_2d/body_2d_sw.cpp
Juan Linietsky 962382ac5c Refactored RID/RID_Owner to always use O(1) allocation.
* Implements a growing chunked allocator
* Removed redudant methods get and getptr, only getornull is supported now.
2019-12-12 08:55:15 +01:00

733 lines
19 KiB
C++

/*************************************************************************/
/* body_2d_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "body_2d_sw.h"
#include "area_2d_sw.h"
#include "physics_2d_server_sw.h"
#include "space_2d_sw.h"
void Body2DSW::_update_inertia() {
if (!user_inertia && get_space() && !inertia_update_list.in_list())
get_space()->body_add_to_inertia_update_list(&inertia_update_list);
}
void Body2DSW::update_inertias() {
//update shapes and motions
switch (mode) {
case Physics2DServer::BODY_MODE_RIGID: {
if (user_inertia) {
_inv_inertia = inertia > 0 ? (1.0 / inertia) : 0;
break;
}
//update tensor for allshapes, not the best way but should be somehow OK. (inspired from bullet)
real_t total_area = 0;
for (int i = 0; i < get_shape_count(); i++) {
total_area += get_shape_aabb(i).get_area();
}
inertia = 0;
for (int i = 0; i < get_shape_count(); i++) {
if (is_shape_disabled(i)) {
continue;
}
const Shape2DSW *shape = get_shape(i);
real_t area = get_shape_aabb(i).get_area();
real_t mass = area * this->mass / total_area;
Transform2D mtx = get_shape_transform(i);
Vector2 scale = mtx.get_scale();
inertia += shape->get_moment_of_inertia(mass, scale) + mass * mtx.get_origin().length_squared();
}
_inv_inertia = inertia > 0 ? (1.0 / inertia) : 0;
if (mass)
_inv_mass = 1.0 / mass;
else
_inv_mass = 0;
} break;
case Physics2DServer::BODY_MODE_KINEMATIC:
case Physics2DServer::BODY_MODE_STATIC: {
_inv_inertia = 0;
_inv_mass = 0;
} break;
case Physics2DServer::BODY_MODE_CHARACTER: {
_inv_inertia = 0;
_inv_mass = 1.0 / mass;
} break;
}
//_update_inertia_tensor();
//_update_shapes();
}
void Body2DSW::set_active(bool p_active) {
if (active == p_active)
return;
active = p_active;
if (!p_active) {
if (get_space())
get_space()->body_remove_from_active_list(&active_list);
} else {
if (mode == Physics2DServer::BODY_MODE_STATIC)
return; //static bodies can't become active
if (get_space())
get_space()->body_add_to_active_list(&active_list);
//still_time=0;
}
/*
if (!space)
return;
for(int i=0;i<get_shape_count();i++) {
Shape &s=shapes[i];
if (s.bpid>0) {
get_space()->get_broadphase()->set_active(s.bpid,active);
}
}
*/
}
void Body2DSW::set_param(Physics2DServer::BodyParameter p_param, real_t p_value) {
switch (p_param) {
case Physics2DServer::BODY_PARAM_BOUNCE: {
bounce = p_value;
} break;
case Physics2DServer::BODY_PARAM_FRICTION: {
friction = p_value;
} break;
case Physics2DServer::BODY_PARAM_MASS: {
ERR_FAIL_COND(p_value <= 0);
mass = p_value;
_update_inertia();
} break;
case Physics2DServer::BODY_PARAM_INERTIA: {
if (p_value <= 0) {
user_inertia = false;
_update_inertia();
} else {
user_inertia = true;
inertia = p_value;
_inv_inertia = 1.0 / p_value;
}
} break;
case Physics2DServer::BODY_PARAM_GRAVITY_SCALE: {
gravity_scale = p_value;
} break;
case Physics2DServer::BODY_PARAM_LINEAR_DAMP: {
linear_damp = p_value;
} break;
case Physics2DServer::BODY_PARAM_ANGULAR_DAMP: {
angular_damp = p_value;
} break;
default: {
}
}
}
real_t Body2DSW::get_param(Physics2DServer::BodyParameter p_param) const {
switch (p_param) {
case Physics2DServer::BODY_PARAM_BOUNCE: {
return bounce;
}
case Physics2DServer::BODY_PARAM_FRICTION: {
return friction;
}
case Physics2DServer::BODY_PARAM_MASS: {
return mass;
}
case Physics2DServer::BODY_PARAM_INERTIA: {
return inertia;
}
case Physics2DServer::BODY_PARAM_GRAVITY_SCALE: {
return gravity_scale;
}
case Physics2DServer::BODY_PARAM_LINEAR_DAMP: {
return linear_damp;
}
case Physics2DServer::BODY_PARAM_ANGULAR_DAMP: {
return angular_damp;
}
default: {
}
}
return 0;
}
void Body2DSW::set_mode(Physics2DServer::BodyMode p_mode) {
Physics2DServer::BodyMode prev = mode;
mode = p_mode;
switch (p_mode) {
//CLEAR UP EVERYTHING IN CASE IT NOT WORKS!
case Physics2DServer::BODY_MODE_STATIC:
case Physics2DServer::BODY_MODE_KINEMATIC: {
_set_inv_transform(get_transform().affine_inverse());
_inv_mass = 0;
_inv_inertia = 0;
_set_static(p_mode == Physics2DServer::BODY_MODE_STATIC);
set_active(p_mode == Physics2DServer::BODY_MODE_KINEMATIC && contacts.size());
linear_velocity = Vector2();
angular_velocity = 0;
if (mode == Physics2DServer::BODY_MODE_KINEMATIC && prev != mode) {
first_time_kinematic = true;
}
} break;
case Physics2DServer::BODY_MODE_RIGID: {
_inv_mass = mass > 0 ? (1.0 / mass) : 0;
_inv_inertia = inertia > 0 ? (1.0 / inertia) : 0;
_set_static(false);
set_active(true);
} break;
case Physics2DServer::BODY_MODE_CHARACTER: {
_inv_mass = mass > 0 ? (1.0 / mass) : 0;
_inv_inertia = 0;
_set_static(false);
set_active(true);
angular_velocity = 0;
} break;
}
if (p_mode == Physics2DServer::BODY_MODE_RIGID && _inv_inertia == 0) {
_update_inertia();
}
/*
if (get_space())
_update_queries();
*/
}
Physics2DServer::BodyMode Body2DSW::get_mode() const {
return mode;
}
void Body2DSW::_shapes_changed() {
_update_inertia();
wakeup_neighbours();
}
void Body2DSW::set_state(Physics2DServer::BodyState p_state, const Variant &p_variant) {
switch (p_state) {
case Physics2DServer::BODY_STATE_TRANSFORM: {
if (mode == Physics2DServer::BODY_MODE_KINEMATIC) {
new_transform = p_variant;
//wakeup_neighbours();
set_active(true);
if (first_time_kinematic) {
_set_transform(p_variant);
_set_inv_transform(get_transform().affine_inverse());
first_time_kinematic = false;
}
} else if (mode == Physics2DServer::BODY_MODE_STATIC) {
_set_transform(p_variant);
_set_inv_transform(get_transform().affine_inverse());
wakeup_neighbours();
} else {
Transform2D t = p_variant;
t.orthonormalize();
new_transform = get_transform(); //used as old to compute motion
if (t == new_transform)
break;
_set_transform(t);
_set_inv_transform(get_transform().inverse());
}
wakeup();
} break;
case Physics2DServer::BODY_STATE_LINEAR_VELOCITY: {
/*
if (mode==Physics2DServer::BODY_MODE_STATIC)
break;
*/
linear_velocity = p_variant;
wakeup();
} break;
case Physics2DServer::BODY_STATE_ANGULAR_VELOCITY: {
/*
if (mode!=Physics2DServer::BODY_MODE_RIGID)
break;
*/
angular_velocity = p_variant;
wakeup();
} break;
case Physics2DServer::BODY_STATE_SLEEPING: {
//?
if (mode == Physics2DServer::BODY_MODE_STATIC || mode == Physics2DServer::BODY_MODE_KINEMATIC)
break;
bool do_sleep = p_variant;
if (do_sleep) {
linear_velocity = Vector2();
//biased_linear_velocity=Vector3();
angular_velocity = 0;
//biased_angular_velocity=Vector3();
set_active(false);
} else {
if (mode != Physics2DServer::BODY_MODE_STATIC)
set_active(true);
}
} break;
case Physics2DServer::BODY_STATE_CAN_SLEEP: {
can_sleep = p_variant;
if (mode == Physics2DServer::BODY_MODE_RIGID && !active && !can_sleep)
set_active(true);
} break;
}
}
Variant Body2DSW::get_state(Physics2DServer::BodyState p_state) const {
switch (p_state) {
case Physics2DServer::BODY_STATE_TRANSFORM: {
return get_transform();
}
case Physics2DServer::BODY_STATE_LINEAR_VELOCITY: {
return linear_velocity;
}
case Physics2DServer::BODY_STATE_ANGULAR_VELOCITY: {
return angular_velocity;
}
case Physics2DServer::BODY_STATE_SLEEPING: {
return !is_active();
}
case Physics2DServer::BODY_STATE_CAN_SLEEP: {
return can_sleep;
}
}
return Variant();
}
void Body2DSW::set_space(Space2DSW *p_space) {
if (get_space()) {
wakeup_neighbours();
if (inertia_update_list.in_list())
get_space()->body_remove_from_inertia_update_list(&inertia_update_list);
if (active_list.in_list())
get_space()->body_remove_from_active_list(&active_list);
if (direct_state_query_list.in_list())
get_space()->body_remove_from_state_query_list(&direct_state_query_list);
}
_set_space(p_space);
if (get_space()) {
_update_inertia();
if (active)
get_space()->body_add_to_active_list(&active_list);
/*
_update_queries();
if (is_active()) {
active=false;
set_active(true);
}
*/
}
first_integration = false;
}
void Body2DSW::_compute_area_gravity_and_dampenings(const Area2DSW *p_area) {
if (p_area->is_gravity_point()) {
if (p_area->get_gravity_distance_scale() > 0) {
Vector2 v = p_area->get_transform().xform(p_area->get_gravity_vector()) - get_transform().get_origin();
gravity += v.normalized() * (p_area->get_gravity() / Math::pow(v.length() * p_area->get_gravity_distance_scale() + 1, 2));
} else {
gravity += (p_area->get_transform().xform(p_area->get_gravity_vector()) - get_transform().get_origin()).normalized() * p_area->get_gravity();
}
} else {
gravity += p_area->get_gravity_vector() * p_area->get_gravity();
}
area_linear_damp += p_area->get_linear_damp();
area_angular_damp += p_area->get_angular_damp();
}
void Body2DSW::integrate_forces(real_t p_step) {
if (mode == Physics2DServer::BODY_MODE_STATIC)
return;
Area2DSW *def_area = get_space()->get_default_area();
// Area2DSW *damp_area = def_area;
ERR_FAIL_COND(!def_area);
int ac = areas.size();
bool stopped = false;
gravity = Vector2(0, 0);
area_angular_damp = 0;
area_linear_damp = 0;
if (ac) {
areas.sort();
const AreaCMP *aa = &areas[0];
// damp_area = aa[ac-1].area;
for (int i = ac - 1; i >= 0 && !stopped; i--) {
Physics2DServer::AreaSpaceOverrideMode mode = aa[i].area->get_space_override_mode();
switch (mode) {
case Physics2DServer::AREA_SPACE_OVERRIDE_COMBINE:
case Physics2DServer::AREA_SPACE_OVERRIDE_COMBINE_REPLACE: {
_compute_area_gravity_and_dampenings(aa[i].area);
stopped = mode == Physics2DServer::AREA_SPACE_OVERRIDE_COMBINE_REPLACE;
} break;
case Physics2DServer::AREA_SPACE_OVERRIDE_REPLACE:
case Physics2DServer::AREA_SPACE_OVERRIDE_REPLACE_COMBINE: {
gravity = Vector2(0, 0);
area_angular_damp = 0;
area_linear_damp = 0;
_compute_area_gravity_and_dampenings(aa[i].area);
stopped = mode == Physics2DServer::AREA_SPACE_OVERRIDE_REPLACE;
} break;
default: {
}
}
}
}
if (!stopped) {
_compute_area_gravity_and_dampenings(def_area);
}
gravity *= gravity_scale;
// If less than 0, override dampenings with that of the Body2D
if (angular_damp >= 0)
area_angular_damp = angular_damp;
/*
else
area_angular_damp=damp_area->get_angular_damp();
*/
if (linear_damp >= 0)
area_linear_damp = linear_damp;
/*
else
area_linear_damp=damp_area->get_linear_damp();
*/
Vector2 motion;
bool do_motion = false;
if (mode == Physics2DServer::BODY_MODE_KINEMATIC) {
//compute motion, angular and etc. velocities from prev transform
motion = new_transform.get_origin() - get_transform().get_origin();
linear_velocity = motion / p_step;
real_t rot = new_transform.get_rotation() - get_transform().get_rotation();
angular_velocity = rot / p_step;
do_motion = true;
/*
for(int i=0;i<get_shape_count();i++) {
set_shape_kinematic_advance(i,Vector2());
set_shape_kinematic_retreat(i,0);
}
*/
} else {
if (!omit_force_integration && !first_integration) {
//overridden by direct state query
Vector2 force = gravity * mass;
force += applied_force;
real_t torque = applied_torque;
real_t damp = 1.0 - p_step * area_linear_damp;
if (damp < 0) // reached zero in the given time
damp = 0;
real_t angular_damp = 1.0 - p_step * area_angular_damp;
if (angular_damp < 0) // reached zero in the given time
angular_damp = 0;
linear_velocity *= damp;
angular_velocity *= angular_damp;
linear_velocity += _inv_mass * force * p_step;
angular_velocity += _inv_inertia * torque * p_step;
}
if (continuous_cd_mode != Physics2DServer::CCD_MODE_DISABLED) {
motion = linear_velocity * p_step;
do_motion = true;
}
}
//motion=linear_velocity*p_step;
first_integration = false;
biased_angular_velocity = 0;
biased_linear_velocity = Vector2();
if (do_motion) { //shapes temporarily extend for raycast
_update_shapes_with_motion(motion);
}
// damp_area=NULL; // clear the area, so it is set in the next frame
def_area = NULL; // clear the area, so it is set in the next frame
contact_count = 0;
}
void Body2DSW::integrate_velocities(real_t p_step) {
if (mode == Physics2DServer::BODY_MODE_STATIC)
return;
if (fi_callback)
get_space()->body_add_to_state_query_list(&direct_state_query_list);
if (mode == Physics2DServer::BODY_MODE_KINEMATIC) {
_set_transform(new_transform, false);
_set_inv_transform(new_transform.affine_inverse());
if (contacts.size() == 0 && linear_velocity == Vector2() && angular_velocity == 0)
set_active(false); //stopped moving, deactivate
return;
}
real_t total_angular_velocity = angular_velocity + biased_angular_velocity;
Vector2 total_linear_velocity = linear_velocity + biased_linear_velocity;
real_t angle = get_transform().get_rotation() + total_angular_velocity * p_step;
Vector2 pos = get_transform().get_origin() + total_linear_velocity * p_step;
_set_transform(Transform2D(angle, pos), continuous_cd_mode == Physics2DServer::CCD_MODE_DISABLED);
_set_inv_transform(get_transform().inverse());
if (continuous_cd_mode != Physics2DServer::CCD_MODE_DISABLED)
new_transform = get_transform();
//_update_inertia_tensor();
}
void Body2DSW::wakeup_neighbours() {
for (Map<Constraint2DSW *, int>::Element *E = constraint_map.front(); E; E = E->next()) {
const Constraint2DSW *c = E->key();
Body2DSW **n = c->get_body_ptr();
int bc = c->get_body_count();
for (int i = 0; i < bc; i++) {
if (i == E->get())
continue;
Body2DSW *b = n[i];
if (b->mode != Physics2DServer::BODY_MODE_RIGID)
continue;
if (!b->is_active())
b->set_active(true);
}
}
}
void Body2DSW::call_queries() {
if (fi_callback) {
Physics2DDirectBodyStateSW *dbs = Physics2DDirectBodyStateSW::singleton;
dbs->body = this;
Variant v = dbs;
const Variant *vp[2] = { &v, &fi_callback->callback_udata };
Object *obj = ObjectDB::get_instance(fi_callback->id);
if (!obj) {
set_force_integration_callback(0, StringName());
} else {
Variant::CallError ce;
if (fi_callback->callback_udata.get_type() != Variant::NIL) {
obj->call(fi_callback->method, vp, 2, ce);
} else {
obj->call(fi_callback->method, vp, 1, ce);
}
}
}
}
bool Body2DSW::sleep_test(real_t p_step) {
if (mode == Physics2DServer::BODY_MODE_STATIC || mode == Physics2DServer::BODY_MODE_KINEMATIC)
return true; //
else if (mode == Physics2DServer::BODY_MODE_CHARACTER)
return !active; // characters and kinematic bodies don't sleep unless asked to sleep
else if (!can_sleep)
return false;
if (Math::abs(angular_velocity) < get_space()->get_body_angular_velocity_sleep_threshold() && Math::abs(linear_velocity.length_squared()) < get_space()->get_body_linear_velocity_sleep_threshold() * get_space()->get_body_linear_velocity_sleep_threshold()) {
still_time += p_step;
return still_time > get_space()->get_body_time_to_sleep();
} else {
still_time = 0; //maybe this should be set to 0 on set_active?
return false;
}
}
void Body2DSW::set_force_integration_callback(ObjectID p_id, const StringName &p_method, const Variant &p_udata) {
if (fi_callback) {
memdelete(fi_callback);
fi_callback = NULL;
}
if (p_id != 0) {
fi_callback = memnew(ForceIntegrationCallback);
fi_callback->id = p_id;
fi_callback->method = p_method;
fi_callback->callback_udata = p_udata;
}
}
Body2DSW::Body2DSW() :
CollisionObject2DSW(TYPE_BODY),
active_list(this),
inertia_update_list(this),
direct_state_query_list(this) {
mode = Physics2DServer::BODY_MODE_RIGID;
active = true;
angular_velocity = 0;
biased_angular_velocity = 0;
mass = 1;
inertia = 0;
user_inertia = false;
_inv_inertia = 0;
_inv_mass = 1;
bounce = 0;
friction = 1;
omit_force_integration = false;
applied_torque = 0;
island_step = 0;
island_next = NULL;
island_list_next = NULL;
_set_static(false);
first_time_kinematic = false;
linear_damp = -1;
angular_damp = -1;
area_angular_damp = 0;
area_linear_damp = 0;
contact_count = 0;
gravity_scale = 1.0;
first_integration = false;
still_time = 0;
continuous_cd_mode = Physics2DServer::CCD_MODE_DISABLED;
can_sleep = true;
fi_callback = NULL;
}
Body2DSW::~Body2DSW() {
if (fi_callback)
memdelete(fi_callback);
}
Physics2DDirectBodyStateSW *Physics2DDirectBodyStateSW::singleton = NULL;
Physics2DDirectSpaceState *Physics2DDirectBodyStateSW::get_space_state() {
return body->get_space()->get_direct_state();
}
Variant Physics2DDirectBodyStateSW::get_contact_collider_shape_metadata(int p_contact_idx) const {
ERR_FAIL_INDEX_V(p_contact_idx, body->contact_count, Variant());
if (!Physics2DServerSW::singletonsw->body_owner.owns(body->contacts[p_contact_idx].collider)) {
return Variant();
}
Body2DSW *other = Physics2DServerSW::singletonsw->body_owner.getornull(body->contacts[p_contact_idx].collider);
int sidx = body->contacts[p_contact_idx].collider_shape;
if (sidx < 0 || sidx >= other->get_shape_count()) {
return Variant();
}
return other->get_shape_metadata(sidx);
}