virtualx-engine/scene/gui/graph_edit_arranger.cpp
2024-01-05 14:49:57 -03:00

559 lines
20 KiB
C++

/**************************************************************************/
/* graph_edit_arranger.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "graph_edit_arranger.h"
#include "scene/gui/graph_edit.h"
void GraphEditArranger::arrange_nodes() {
ERR_FAIL_NULL(graph_edit);
if (!arranging_graph) {
arranging_graph = true;
} else {
return;
}
Dictionary node_names;
HashSet<StringName> selected_nodes;
bool arrange_entire_graph = true;
for (int i = graph_edit->get_child_count() - 1; i >= 0; i--) {
GraphNode *graph_element = Object::cast_to<GraphNode>(graph_edit->get_child(i));
if (!graph_element) {
continue;
}
node_names[graph_element->get_name()] = graph_element;
if (graph_element->is_selected()) {
arrange_entire_graph = false;
}
}
HashMap<StringName, HashSet<StringName>> upper_neighbours;
HashMap<StringName, Pair<int, int>> port_info;
Vector2 origin(FLT_MAX, FLT_MAX);
float gap_v = 100.0f;
float gap_h = 100.0f;
List<GraphEdit::Connection> connection_list;
graph_edit->get_connection_list(&connection_list);
for (int i = graph_edit->get_child_count() - 1; i >= 0; i--) {
GraphNode *graph_element = Object::cast_to<GraphNode>(graph_edit->get_child(i));
if (!graph_element) {
continue;
}
if (graph_element->is_selected() || arrange_entire_graph) {
selected_nodes.insert(graph_element->get_name());
HashSet<StringName> s;
for (List<GraphEdit::Connection>::Element *E = connection_list.front(); E; E = E->next()) {
GraphNode *p_from = Object::cast_to<GraphNode>(node_names[E->get().from_node]);
if (E->get().to_node == graph_element->get_name() && (p_from->is_selected() || arrange_entire_graph) && E->get().to_node != E->get().from_node) {
if (!s.has(p_from->get_name())) {
s.insert(p_from->get_name());
}
String s_connection = String(p_from->get_name()) + " " + String(E->get().to_node);
StringName _connection(s_connection);
Pair<int, int> ports(E->get().from_port, E->get().to_port);
port_info.insert(_connection, ports);
}
}
upper_neighbours.insert(graph_element->get_name(), s);
}
}
if (!selected_nodes.size()) {
arranging_graph = false;
return;
}
HashMap<int, Vector<StringName>> layers = _layering(selected_nodes, upper_neighbours);
_crossing_minimisation(layers, upper_neighbours);
Dictionary root, align, sink, shift;
_horizontal_alignment(root, align, layers, upper_neighbours, selected_nodes);
HashMap<StringName, Vector2> new_positions;
Vector2 default_position(FLT_MAX, FLT_MAX);
Dictionary inner_shift;
HashSet<StringName> block_heads;
for (const StringName &E : selected_nodes) {
inner_shift[E] = 0.0f;
sink[E] = E;
shift[E] = FLT_MAX;
new_positions.insert(E, default_position);
if ((StringName)root[E] == E) {
block_heads.insert(E);
}
}
_calculate_inner_shifts(inner_shift, root, node_names, align, block_heads, port_info);
for (const StringName &E : block_heads) {
_place_block(E, gap_v, layers, root, align, node_names, inner_shift, sink, shift, new_positions);
}
origin.y = Object::cast_to<GraphNode>(node_names[layers[0][0]])->get_position_offset().y - (new_positions[layers[0][0]].y + (float)inner_shift[layers[0][0]]);
origin.x = Object::cast_to<GraphNode>(node_names[layers[0][0]])->get_position_offset().x;
for (const StringName &E : block_heads) {
StringName u = E;
float start_from = origin.y + new_positions[E].y;
do {
Vector2 cal_pos;
cal_pos.y = start_from + (real_t)inner_shift[u];
new_positions.insert(u, cal_pos);
u = align[u];
} while (u != E);
}
// Compute horizontal coordinates individually for layers to get uniform gap.
float start_from = origin.x;
float largest_node_size = 0.0f;
for (unsigned int i = 0; i < layers.size(); i++) {
Vector<StringName> layer = layers[i];
for (int j = 0; j < layer.size(); j++) {
float current_node_size = Object::cast_to<GraphNode>(node_names[layer[j]])->get_size().x;
largest_node_size = MAX(largest_node_size, current_node_size);
}
for (int j = 0; j < layer.size(); j++) {
float current_node_size = Object::cast_to<GraphNode>(node_names[layer[j]])->get_size().x;
Vector2 cal_pos = new_positions[layer[j]];
if (current_node_size == largest_node_size) {
cal_pos.x = start_from;
} else {
float current_node_start_pos = start_from;
if (current_node_size < largest_node_size / 2) {
if (!(i || j)) {
start_from -= (largest_node_size - current_node_size);
}
current_node_start_pos = start_from + largest_node_size - current_node_size;
}
cal_pos.x = current_node_start_pos;
}
new_positions.insert(layer[j], cal_pos);
}
start_from += largest_node_size + gap_h;
largest_node_size = 0.0f;
}
graph_edit->emit_signal(SNAME("begin_node_move"));
for (const StringName &E : selected_nodes) {
GraphNode *graph_node = Object::cast_to<GraphNode>(node_names[E]);
graph_node->set_drag(true);
Vector2 pos = (new_positions[E]);
if (graph_edit->is_snapping_enabled()) {
float snapping_distance = graph_edit->get_snapping_distance();
pos = pos.snapped(Vector2(snapping_distance, snapping_distance));
}
graph_node->set_position_offset(pos);
graph_node->set_drag(false);
}
graph_edit->emit_signal(SNAME("end_node_move"));
arranging_graph = false;
}
int GraphEditArranger::_set_operations(SET_OPERATIONS p_operation, HashSet<StringName> &r_u, const HashSet<StringName> &r_v) {
switch (p_operation) {
case GraphEditArranger::IS_EQUAL: {
for (const StringName &E : r_u) {
if (!r_v.has(E)) {
return 0;
}
}
return r_u.size() == r_v.size();
} break;
case GraphEditArranger::IS_SUBSET: {
if (r_u.size() == r_v.size() && !r_u.size()) {
return 1;
}
for (const StringName &E : r_u) {
if (!r_v.has(E)) {
return 0;
}
}
return 1;
} break;
case GraphEditArranger::DIFFERENCE: {
Vector<StringName> common;
for (const StringName &E : r_u) {
if (r_v.has(E)) {
common.append(E);
}
}
for (const StringName &E : common) {
r_u.erase(E);
}
return r_u.size();
} break;
case GraphEditArranger::UNION: {
for (const StringName &E : r_v) {
if (!r_u.has(E)) {
r_u.insert(E);
}
}
return r_u.size();
} break;
default:
break;
}
return -1;
}
HashMap<int, Vector<StringName>> GraphEditArranger::_layering(const HashSet<StringName> &r_selected_nodes, const HashMap<StringName, HashSet<StringName>> &r_upper_neighbours) {
HashMap<int, Vector<StringName>> l;
HashSet<StringName> p = r_selected_nodes, q = r_selected_nodes, u, z;
int current_layer = 0;
bool selected = false;
while (!_set_operations(GraphEditArranger::IS_EQUAL, q, u)) {
_set_operations(GraphEditArranger::DIFFERENCE, p, u);
for (const StringName &E : p) {
HashSet<StringName> n = r_upper_neighbours[E];
if (_set_operations(GraphEditArranger::IS_SUBSET, n, z)) {
Vector<StringName> t;
t.push_back(E);
if (!l.has(current_layer)) {
l.insert(current_layer, Vector<StringName>{});
}
selected = true;
t.append_array(l[current_layer]);
l.insert(current_layer, t);
u.insert(E);
}
}
if (!selected) {
current_layer++;
uint32_t previous_size_z = z.size();
_set_operations(GraphEditArranger::UNION, z, u);
if (z.size() == previous_size_z) {
WARN_PRINT("Graph contains cycle(s). The cycle(s) will not be rearranged accurately.");
Vector<StringName> t;
if (l.has(0)) {
t.append_array(l[0]);
}
for (const StringName &E : p) {
t.push_back(E);
}
l.insert(0, t);
break;
}
}
selected = false;
}
return l;
}
Vector<StringName> GraphEditArranger::_split(const Vector<StringName> &r_layer, const HashMap<StringName, Dictionary> &r_crossings) {
if (!r_layer.size()) {
return Vector<StringName>();
}
const StringName &p = r_layer[Math::random(0, r_layer.size() - 1)];
Vector<StringName> left;
Vector<StringName> right;
for (int i = 0; i < r_layer.size(); i++) {
if (p != r_layer[i]) {
const StringName &q = r_layer[i];
int cross_pq = r_crossings[p][q];
int cross_qp = r_crossings[q][p];
if (cross_pq > cross_qp) {
left.push_back(q);
} else {
right.push_back(q);
}
}
}
left.push_back(p);
left.append_array(right);
return left;
}
void GraphEditArranger::_horizontal_alignment(Dictionary &r_root, Dictionary &r_align, const HashMap<int, Vector<StringName>> &r_layers, const HashMap<StringName, HashSet<StringName>> &r_upper_neighbours, const HashSet<StringName> &r_selected_nodes) {
for (const StringName &E : r_selected_nodes) {
r_root[E] = E;
r_align[E] = E;
}
if (r_layers.size() == 1) {
return;
}
for (unsigned int i = 1; i < r_layers.size(); i++) {
Vector<StringName> lower_layer = r_layers[i];
Vector<StringName> upper_layer = r_layers[i - 1];
int r = -1;
for (int j = 0; j < lower_layer.size(); j++) {
Vector<Pair<int, StringName>> up;
const StringName &current_node = lower_layer[j];
for (int k = 0; k < upper_layer.size(); k++) {
const StringName &adjacent_neighbour = upper_layer[k];
if (r_upper_neighbours[current_node].has(adjacent_neighbour)) {
up.push_back(Pair<int, StringName>(k, adjacent_neighbour));
}
}
int start = (up.size() - 1) / 2;
int end = (up.size() - 1) % 2 ? start + 1 : start;
for (int p = start; p <= end; p++) {
StringName Align = r_align[current_node];
if (Align == current_node && r < up[p].first) {
r_align[up[p].second] = lower_layer[j];
r_root[current_node] = r_root[up[p].second];
r_align[current_node] = r_root[up[p].second];
r = up[p].first;
}
}
}
}
}
void GraphEditArranger::_crossing_minimisation(HashMap<int, Vector<StringName>> &r_layers, const HashMap<StringName, HashSet<StringName>> &r_upper_neighbours) {
if (r_layers.size() == 1) {
return;
}
for (unsigned int i = 1; i < r_layers.size(); i++) {
Vector<StringName> upper_layer = r_layers[i - 1];
Vector<StringName> lower_layer = r_layers[i];
HashMap<StringName, Dictionary> c;
for (int j = 0; j < lower_layer.size(); j++) {
const StringName &p = lower_layer[j];
Dictionary d;
for (int k = 0; k < lower_layer.size(); k++) {
unsigned int crossings = 0;
const StringName &q = lower_layer[k];
if (j != k) {
for (int h = 1; h < upper_layer.size(); h++) {
if (r_upper_neighbours[p].has(upper_layer[h])) {
for (int g = 0; g < h; g++) {
if (r_upper_neighbours[q].has(upper_layer[g])) {
crossings++;
}
}
}
}
}
d[q] = crossings;
}
c.insert(p, d);
}
r_layers.insert(i, _split(lower_layer, c));
}
}
void GraphEditArranger::_calculate_inner_shifts(Dictionary &r_inner_shifts, const Dictionary &r_root, const Dictionary &r_node_names, const Dictionary &r_align, const HashSet<StringName> &r_block_heads, const HashMap<StringName, Pair<int, int>> &r_port_info) {
for (const StringName &E : r_block_heads) {
real_t left = 0;
StringName u = E;
StringName v = r_align[u];
while (u != v && (StringName)r_root[u] != v) {
String _connection = String(u) + " " + String(v);
GraphNode *gnode_from = Object::cast_to<GraphNode>(r_node_names[u]);
GraphNode *gnode_to = Object::cast_to<GraphNode>(r_node_names[v]);
Pair<int, int> ports = r_port_info[_connection];
int port_from = ports.first;
int port_to = ports.second;
Vector2 pos_from = gnode_from->get_output_port_position(port_from) * graph_edit->get_zoom();
Vector2 pos_to = gnode_to->get_input_port_position(port_to) * graph_edit->get_zoom();
real_t s = (real_t)r_inner_shifts[u] + (pos_from.y - pos_to.y) / graph_edit->get_zoom();
r_inner_shifts[v] = s;
left = MIN(left, s);
u = v;
v = (StringName)r_align[v];
}
u = E;
do {
r_inner_shifts[u] = (real_t)r_inner_shifts[u] - left;
u = (StringName)r_align[u];
} while (u != E);
}
}
float GraphEditArranger::_calculate_threshold(const StringName &p_v, const StringName &p_w, const Dictionary &r_node_names, const HashMap<int, Vector<StringName>> &r_layers, const Dictionary &r_root, const Dictionary &r_align, const Dictionary &r_inner_shift, real_t p_current_threshold, const HashMap<StringName, Vector2> &r_node_positions) {
#define MAX_ORDER 2147483647
#define ORDER(node, layers) \
for (unsigned int i = 0; i < layers.size(); i++) { \
int index = layers[i].find(node); \
if (index > 0) { \
order = index; \
break; \
} \
order = MAX_ORDER; \
}
int order = MAX_ORDER;
float threshold = p_current_threshold;
if (p_v == p_w) {
int min_order = MAX_ORDER;
GraphEdit::Connection incoming;
List<GraphEdit::Connection> connection_list;
graph_edit->get_connection_list(&connection_list);
for (List<GraphEdit::Connection>::Element *E = connection_list.front(); E; E = E->next()) {
if (E->get().to_node == p_w) {
ORDER(E->get().from_node, r_layers);
if (min_order > order) {
min_order = order;
incoming = E->get();
}
}
}
if (incoming.from_node != StringName()) {
GraphNode *gnode_from = Object::cast_to<GraphNode>(r_node_names[incoming.from_node]);
GraphNode *gnode_to = Object::cast_to<GraphNode>(r_node_names[p_w]);
Vector2 pos_from = gnode_from->get_output_port_position(incoming.from_port) * graph_edit->get_zoom();
Vector2 pos_to = gnode_to->get_input_port_position(incoming.to_port) * graph_edit->get_zoom();
// If connected block node is selected, calculate thershold or add current block to list.
if (gnode_from->is_selected()) {
Vector2 connected_block_pos = r_node_positions[r_root[incoming.from_node]];
if (connected_block_pos.y != FLT_MAX) {
//Connected block is placed, calculate threshold.
threshold = connected_block_pos.y + (real_t)r_inner_shift[incoming.from_node] - (real_t)r_inner_shift[p_w] + pos_from.y - pos_to.y;
}
}
}
}
if (threshold == FLT_MIN && (StringName)r_align[p_w] == p_v) {
// This time, pick an outgoing edge and repeat as above!
int min_order = MAX_ORDER;
GraphEdit::Connection outgoing;
List<GraphEdit::Connection> connection_list;
graph_edit->get_connection_list(&connection_list);
for (List<GraphEdit::Connection>::Element *E = connection_list.front(); E; E = E->next()) {
if (E->get().from_node == p_w) {
ORDER(E->get().to_node, r_layers);
if (min_order > order) {
min_order = order;
outgoing = E->get();
}
}
}
if (outgoing.to_node != StringName()) {
GraphNode *gnode_from = Object::cast_to<GraphNode>(r_node_names[p_w]);
GraphNode *gnode_to = Object::cast_to<GraphNode>(r_node_names[outgoing.to_node]);
Vector2 pos_from = gnode_from->get_output_port_position(outgoing.from_port) * graph_edit->get_zoom();
Vector2 pos_to = gnode_to->get_input_port_position(outgoing.to_port) * graph_edit->get_zoom();
// If connected block node is selected, calculate thershold or add current block to list.
if (gnode_to->is_selected()) {
Vector2 connected_block_pos = r_node_positions[r_root[outgoing.to_node]];
if (connected_block_pos.y != FLT_MAX) {
//Connected block is placed. Calculate threshold
threshold = connected_block_pos.y + (real_t)r_inner_shift[outgoing.to_node] - (real_t)r_inner_shift[p_w] + pos_from.y - pos_to.y;
}
}
}
}
#undef MAX_ORDER
#undef ORDER
return threshold;
}
void GraphEditArranger::_place_block(const StringName &p_v, float p_delta, const HashMap<int, Vector<StringName>> &r_layers, const Dictionary &r_root, const Dictionary &r_align, const Dictionary &r_node_name, const Dictionary &r_inner_shift, Dictionary &r_sink, Dictionary &r_shift, HashMap<StringName, Vector2> &r_node_positions) {
#define PRED(node, layers) \
for (unsigned int i = 0; i < layers.size(); i++) { \
int index = layers[i].find(node); \
if (index > 0) { \
predecessor = layers[i][index - 1]; \
break; \
} \
predecessor = StringName(); \
}
StringName predecessor;
StringName successor;
Vector2 pos = r_node_positions[p_v];
if (pos.y == FLT_MAX) {
pos.y = 0;
bool initial = false;
StringName w = p_v;
real_t threshold = FLT_MIN;
do {
PRED(w, r_layers);
if (predecessor != StringName()) {
StringName u = r_root[predecessor];
_place_block(u, p_delta, r_layers, r_root, r_align, r_node_name, r_inner_shift, r_sink, r_shift, r_node_positions);
threshold = _calculate_threshold(p_v, w, r_node_name, r_layers, r_root, r_align, r_inner_shift, threshold, r_node_positions);
if ((StringName)r_sink[p_v] == p_v) {
r_sink[p_v] = r_sink[u];
}
Vector2 predecessor_root_pos = r_node_positions[u];
Vector2 predecessor_node_size = Object::cast_to<GraphNode>(r_node_name[predecessor])->get_size();
if (r_sink[p_v] != r_sink[u]) {
real_t sc = pos.y + (real_t)r_inner_shift[w] - predecessor_root_pos.y - (real_t)r_inner_shift[predecessor] - predecessor_node_size.y - p_delta;
r_shift[r_sink[u]] = MIN(sc, (real_t)r_shift[r_sink[u]]);
} else {
real_t sb = predecessor_root_pos.y + (real_t)r_inner_shift[predecessor] + predecessor_node_size.y - (real_t)r_inner_shift[w] + p_delta;
sb = MAX(sb, threshold);
if (initial) {
pos.y = sb;
} else {
pos.y = MAX(pos.y, sb);
}
initial = false;
}
}
threshold = _calculate_threshold(p_v, w, r_node_name, r_layers, r_root, r_align, r_inner_shift, threshold, r_node_positions);
w = r_align[w];
} while (w != p_v);
r_node_positions.insert(p_v, pos);
}
#undef PRED
}