virtualx-engine/thirdparty/enet/host.c
2023-07-20 13:50:05 +02:00

503 lines
18 KiB
C

/**
@file host.c
@brief ENet host management functions
*/
#define ENET_BUILDING_LIB 1
#include <string.h>
#include "enet/enet.h"
/** @defgroup host ENet host functions
@{
*/
/** Creates a host for communicating to peers.
@param address the address at which other peers may connect to this host. If NULL, then no peers may connect to the host.
@param peerCount the maximum number of peers that should be allocated for the host.
@param channelLimit the maximum number of channels allowed; if 0, then this is equivalent to ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT
@param incomingBandwidth downstream bandwidth of the host in bytes/second; if 0, ENet will assume unlimited bandwidth.
@param outgoingBandwidth upstream bandwidth of the host in bytes/second; if 0, ENet will assume unlimited bandwidth.
@returns the host on success and NULL on failure
@remarks ENet will strategically drop packets on specific sides of a connection between hosts
to ensure the host's bandwidth is not overwhelmed. The bandwidth parameters also determine
the window size of a connection which limits the amount of reliable packets that may be in transit
at any given time.
*/
ENetHost *
enet_host_create (const ENetAddress * address, size_t peerCount, size_t channelLimit, enet_uint32 incomingBandwidth, enet_uint32 outgoingBandwidth)
{
ENetHost * host;
ENetPeer * currentPeer;
if (peerCount > ENET_PROTOCOL_MAXIMUM_PEER_ID)
return NULL;
host = (ENetHost *) enet_malloc (sizeof (ENetHost));
if (host == NULL)
return NULL;
memset (host, 0, sizeof (ENetHost));
host -> peers = (ENetPeer *) enet_malloc (peerCount * sizeof (ENetPeer));
if (host -> peers == NULL)
{
enet_free (host);
return NULL;
}
memset (host -> peers, 0, peerCount * sizeof (ENetPeer));
host -> socket = enet_socket_create (ENET_SOCKET_TYPE_DATAGRAM);
if (host -> socket == ENET_SOCKET_NULL || (address != NULL && enet_socket_bind (host -> socket, address) < 0))
{
if (host -> socket != ENET_SOCKET_NULL)
enet_socket_destroy (host -> socket);
enet_free (host -> peers);
enet_free (host);
return NULL;
}
enet_socket_set_option (host -> socket, ENET_SOCKOPT_NONBLOCK, 1);
enet_socket_set_option (host -> socket, ENET_SOCKOPT_BROADCAST, 1);
enet_socket_set_option (host -> socket, ENET_SOCKOPT_RCVBUF, ENET_HOST_RECEIVE_BUFFER_SIZE);
enet_socket_set_option (host -> socket, ENET_SOCKOPT_SNDBUF, ENET_HOST_SEND_BUFFER_SIZE);
if (address != NULL && enet_socket_get_address (host -> socket, & host -> address) < 0)
host -> address = * address;
if (! channelLimit || channelLimit > ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT)
channelLimit = ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT;
else
if (channelLimit < ENET_PROTOCOL_MINIMUM_CHANNEL_COUNT)
channelLimit = ENET_PROTOCOL_MINIMUM_CHANNEL_COUNT;
host -> randomSeed = (enet_uint32) (size_t) host;
host -> randomSeed += enet_host_random_seed ();
host -> randomSeed = (host -> randomSeed << 16) | (host -> randomSeed >> 16);
host -> channelLimit = channelLimit;
host -> incomingBandwidth = incomingBandwidth;
host -> outgoingBandwidth = outgoingBandwidth;
host -> bandwidthThrottleEpoch = 0;
host -> recalculateBandwidthLimits = 0;
host -> mtu = ENET_HOST_DEFAULT_MTU;
host -> peerCount = peerCount;
host -> commandCount = 0;
host -> bufferCount = 0;
host -> checksum = NULL;
memset(host -> receivedAddress.host, 0, 16);
host -> receivedAddress.port = 0;
host -> receivedData = NULL;
host -> receivedDataLength = 0;
host -> totalSentData = 0;
host -> totalSentPackets = 0;
host -> totalReceivedData = 0;
host -> totalReceivedPackets = 0;
host -> totalQueued = 0;
host -> connectedPeers = 0;
host -> bandwidthLimitedPeers = 0;
host -> duplicatePeers = ENET_PROTOCOL_MAXIMUM_PEER_ID;
host -> maximumPacketSize = ENET_HOST_DEFAULT_MAXIMUM_PACKET_SIZE;
host -> maximumWaitingData = ENET_HOST_DEFAULT_MAXIMUM_WAITING_DATA;
host -> compressor.context = NULL;
host -> compressor.compress = NULL;
host -> compressor.decompress = NULL;
host -> compressor.destroy = NULL;
host -> intercept = NULL;
enet_list_clear (& host -> dispatchQueue);
for (currentPeer = host -> peers;
currentPeer < & host -> peers [host -> peerCount];
++ currentPeer)
{
currentPeer -> host = host;
currentPeer -> incomingPeerID = currentPeer - host -> peers;
currentPeer -> outgoingSessionID = currentPeer -> incomingSessionID = 0xFF;
currentPeer -> data = NULL;
enet_list_clear (& currentPeer -> acknowledgements);
enet_list_clear (& currentPeer -> sentReliableCommands);
enet_list_clear (& currentPeer -> outgoingCommands);
enet_list_clear (& currentPeer -> outgoingSendReliableCommands);
enet_list_clear (& currentPeer -> dispatchedCommands);
enet_peer_reset (currentPeer);
}
return host;
}
/** Destroys the host and all resources associated with it.
@param host pointer to the host to destroy
*/
void
enet_host_destroy (ENetHost * host)
{
ENetPeer * currentPeer;
if (host == NULL)
return;
enet_socket_destroy (host -> socket);
for (currentPeer = host -> peers;
currentPeer < & host -> peers [host -> peerCount];
++ currentPeer)
{
enet_peer_reset (currentPeer);
}
if (host -> compressor.context != NULL && host -> compressor.destroy)
(* host -> compressor.destroy) (host -> compressor.context);
enet_free (host -> peers);
enet_free (host);
}
enet_uint32
enet_host_random (ENetHost * host)
{
/* Mulberry32 by Tommy Ettinger */
enet_uint32 n = (host -> randomSeed += 0x6D2B79F5U);
n = (n ^ (n >> 15)) * (n | 1U);
n ^= n + (n ^ (n >> 7)) * (n | 61U);
return n ^ (n >> 14);
}
/** Initiates a connection to a foreign host.
@param host host seeking the connection
@param address destination for the connection
@param channelCount number of channels to allocate
@param data user data supplied to the receiving host
@returns a peer representing the foreign host on success, NULL on failure
@remarks The peer returned will have not completed the connection until enet_host_service()
notifies of an ENET_EVENT_TYPE_CONNECT event for the peer.
*/
ENetPeer *
enet_host_connect (ENetHost * host, const ENetAddress * address, size_t channelCount, enet_uint32 data)
{
ENetPeer * currentPeer;
ENetChannel * channel;
ENetProtocol command;
if (channelCount < ENET_PROTOCOL_MINIMUM_CHANNEL_COUNT)
channelCount = ENET_PROTOCOL_MINIMUM_CHANNEL_COUNT;
else
if (channelCount > ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT)
channelCount = ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT;
for (currentPeer = host -> peers;
currentPeer < & host -> peers [host -> peerCount];
++ currentPeer)
{
if (currentPeer -> state == ENET_PEER_STATE_DISCONNECTED)
break;
}
if (currentPeer >= & host -> peers [host -> peerCount])
return NULL;
currentPeer -> channels = (ENetChannel *) enet_malloc (channelCount * sizeof (ENetChannel));
if (currentPeer -> channels == NULL)
return NULL;
currentPeer -> channelCount = channelCount;
currentPeer -> state = ENET_PEER_STATE_CONNECTING;
currentPeer -> address = * address;
currentPeer -> connectID = enet_host_random (host);
currentPeer -> mtu = host -> mtu;
if (host -> outgoingBandwidth == 0)
currentPeer -> windowSize = ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE;
else
currentPeer -> windowSize = (host -> outgoingBandwidth /
ENET_PEER_WINDOW_SIZE_SCALE) *
ENET_PROTOCOL_MINIMUM_WINDOW_SIZE;
if (currentPeer -> windowSize < ENET_PROTOCOL_MINIMUM_WINDOW_SIZE)
currentPeer -> windowSize = ENET_PROTOCOL_MINIMUM_WINDOW_SIZE;
else
if (currentPeer -> windowSize > ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE)
currentPeer -> windowSize = ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE;
for (channel = currentPeer -> channels;
channel < & currentPeer -> channels [channelCount];
++ channel)
{
channel -> outgoingReliableSequenceNumber = 0;
channel -> outgoingUnreliableSequenceNumber = 0;
channel -> incomingReliableSequenceNumber = 0;
channel -> incomingUnreliableSequenceNumber = 0;
enet_list_clear (& channel -> incomingReliableCommands);
enet_list_clear (& channel -> incomingUnreliableCommands);
channel -> usedReliableWindows = 0;
memset (channel -> reliableWindows, 0, sizeof (channel -> reliableWindows));
}
command.header.command = ENET_PROTOCOL_COMMAND_CONNECT | ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE;
command.header.channelID = 0xFF;
command.connect.outgoingPeerID = ENET_HOST_TO_NET_16 (currentPeer -> incomingPeerID);
command.connect.incomingSessionID = currentPeer -> incomingSessionID;
command.connect.outgoingSessionID = currentPeer -> outgoingSessionID;
command.connect.mtu = ENET_HOST_TO_NET_32 (currentPeer -> mtu);
command.connect.windowSize = ENET_HOST_TO_NET_32 (currentPeer -> windowSize);
command.connect.channelCount = ENET_HOST_TO_NET_32 (channelCount);
command.connect.incomingBandwidth = ENET_HOST_TO_NET_32 (host -> incomingBandwidth);
command.connect.outgoingBandwidth = ENET_HOST_TO_NET_32 (host -> outgoingBandwidth);
command.connect.packetThrottleInterval = ENET_HOST_TO_NET_32 (currentPeer -> packetThrottleInterval);
command.connect.packetThrottleAcceleration = ENET_HOST_TO_NET_32 (currentPeer -> packetThrottleAcceleration);
command.connect.packetThrottleDeceleration = ENET_HOST_TO_NET_32 (currentPeer -> packetThrottleDeceleration);
command.connect.connectID = currentPeer -> connectID;
command.connect.data = ENET_HOST_TO_NET_32 (data);
enet_peer_queue_outgoing_command (currentPeer, & command, NULL, 0, 0);
return currentPeer;
}
/** Queues a packet to be sent to all peers associated with the host.
@param host host on which to broadcast the packet
@param channelID channel on which to broadcast
@param packet packet to broadcast
*/
void
enet_host_broadcast (ENetHost * host, enet_uint8 channelID, ENetPacket * packet)
{
ENetPeer * currentPeer;
for (currentPeer = host -> peers;
currentPeer < & host -> peers [host -> peerCount];
++ currentPeer)
{
if (currentPeer -> state != ENET_PEER_STATE_CONNECTED)
continue;
enet_peer_send (currentPeer, channelID, packet);
}
if (packet -> referenceCount == 0)
enet_packet_destroy (packet);
}
/** Sets the packet compressor the host should use to compress and decompress packets.
@param host host to enable or disable compression for
@param compressor callbacks for for the packet compressor; if NULL, then compression is disabled
*/
void
enet_host_compress (ENetHost * host, const ENetCompressor * compressor)
{
if (host -> compressor.context != NULL && host -> compressor.destroy)
(* host -> compressor.destroy) (host -> compressor.context);
if (compressor)
host -> compressor = * compressor;
else
host -> compressor.context = NULL;
}
/** Limits the maximum allowed channels of future incoming connections.
@param host host to limit
@param channelLimit the maximum number of channels allowed; if 0, then this is equivalent to ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT
*/
void
enet_host_channel_limit (ENetHost * host, size_t channelLimit)
{
if (! channelLimit || channelLimit > ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT)
channelLimit = ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT;
else
if (channelLimit < ENET_PROTOCOL_MINIMUM_CHANNEL_COUNT)
channelLimit = ENET_PROTOCOL_MINIMUM_CHANNEL_COUNT;
host -> channelLimit = channelLimit;
}
/** Adjusts the bandwidth limits of a host.
@param host host to adjust
@param incomingBandwidth new incoming bandwidth
@param outgoingBandwidth new outgoing bandwidth
@remarks the incoming and outgoing bandwidth parameters are identical in function to those
specified in enet_host_create().
*/
void
enet_host_bandwidth_limit (ENetHost * host, enet_uint32 incomingBandwidth, enet_uint32 outgoingBandwidth)
{
host -> incomingBandwidth = incomingBandwidth;
host -> outgoingBandwidth = outgoingBandwidth;
host -> recalculateBandwidthLimits = 1;
}
void
enet_host_bandwidth_throttle (ENetHost * host)
{
enet_uint32 timeCurrent = enet_time_get (),
elapsedTime = timeCurrent - host -> bandwidthThrottleEpoch,
peersRemaining = (enet_uint32) host -> connectedPeers,
dataTotal = ~0,
bandwidth = ~0,
throttle = 0,
bandwidthLimit = 0;
int needsAdjustment = host -> bandwidthLimitedPeers > 0 ? 1 : 0;
ENetPeer * peer;
ENetProtocol command;
if (elapsedTime < ENET_HOST_BANDWIDTH_THROTTLE_INTERVAL)
return;
host -> bandwidthThrottleEpoch = timeCurrent;
if (peersRemaining == 0)
return;
if (host -> outgoingBandwidth != 0)
{
dataTotal = 0;
bandwidth = (host -> outgoingBandwidth * elapsedTime) / 1000;
for (peer = host -> peers;
peer < & host -> peers [host -> peerCount];
++ peer)
{
if (peer -> state != ENET_PEER_STATE_CONNECTED && peer -> state != ENET_PEER_STATE_DISCONNECT_LATER)
continue;
dataTotal += peer -> outgoingDataTotal;
}
}
while (peersRemaining > 0 && needsAdjustment != 0)
{
needsAdjustment = 0;
if (dataTotal <= bandwidth)
throttle = ENET_PEER_PACKET_THROTTLE_SCALE;
else
throttle = (bandwidth * ENET_PEER_PACKET_THROTTLE_SCALE) / dataTotal;
for (peer = host -> peers;
peer < & host -> peers [host -> peerCount];
++ peer)
{
enet_uint32 peerBandwidth;
if ((peer -> state != ENET_PEER_STATE_CONNECTED && peer -> state != ENET_PEER_STATE_DISCONNECT_LATER) ||
peer -> incomingBandwidth == 0 ||
peer -> outgoingBandwidthThrottleEpoch == timeCurrent)
continue;
peerBandwidth = (peer -> incomingBandwidth * elapsedTime) / 1000;
if ((throttle * peer -> outgoingDataTotal) / ENET_PEER_PACKET_THROTTLE_SCALE <= peerBandwidth)
continue;
peer -> packetThrottleLimit = (peerBandwidth *
ENET_PEER_PACKET_THROTTLE_SCALE) / peer -> outgoingDataTotal;
if (peer -> packetThrottleLimit == 0)
peer -> packetThrottleLimit = 1;
if (peer -> packetThrottle > peer -> packetThrottleLimit)
peer -> packetThrottle = peer -> packetThrottleLimit;
peer -> outgoingBandwidthThrottleEpoch = timeCurrent;
peer -> incomingDataTotal = 0;
peer -> outgoingDataTotal = 0;
needsAdjustment = 1;
-- peersRemaining;
bandwidth -= peerBandwidth;
dataTotal -= peerBandwidth;
}
}
if (peersRemaining > 0)
{
if (dataTotal <= bandwidth)
throttle = ENET_PEER_PACKET_THROTTLE_SCALE;
else
throttle = (bandwidth * ENET_PEER_PACKET_THROTTLE_SCALE) / dataTotal;
for (peer = host -> peers;
peer < & host -> peers [host -> peerCount];
++ peer)
{
if ((peer -> state != ENET_PEER_STATE_CONNECTED && peer -> state != ENET_PEER_STATE_DISCONNECT_LATER) ||
peer -> outgoingBandwidthThrottleEpoch == timeCurrent)
continue;
peer -> packetThrottleLimit = throttle;
if (peer -> packetThrottle > peer -> packetThrottleLimit)
peer -> packetThrottle = peer -> packetThrottleLimit;
peer -> incomingDataTotal = 0;
peer -> outgoingDataTotal = 0;
}
}
if (host -> recalculateBandwidthLimits)
{
host -> recalculateBandwidthLimits = 0;
peersRemaining = (enet_uint32) host -> connectedPeers;
bandwidth = host -> incomingBandwidth;
needsAdjustment = 1;
if (bandwidth == 0)
bandwidthLimit = 0;
else
while (peersRemaining > 0 && needsAdjustment != 0)
{
needsAdjustment = 0;
bandwidthLimit = bandwidth / peersRemaining;
for (peer = host -> peers;
peer < & host -> peers [host -> peerCount];
++ peer)
{
if ((peer -> state != ENET_PEER_STATE_CONNECTED && peer -> state != ENET_PEER_STATE_DISCONNECT_LATER) ||
peer -> incomingBandwidthThrottleEpoch == timeCurrent)
continue;
if (peer -> outgoingBandwidth > 0 &&
peer -> outgoingBandwidth >= bandwidthLimit)
continue;
peer -> incomingBandwidthThrottleEpoch = timeCurrent;
needsAdjustment = 1;
-- peersRemaining;
bandwidth -= peer -> outgoingBandwidth;
}
}
for (peer = host -> peers;
peer < & host -> peers [host -> peerCount];
++ peer)
{
if (peer -> state != ENET_PEER_STATE_CONNECTED && peer -> state != ENET_PEER_STATE_DISCONNECT_LATER)
continue;
command.header.command = ENET_PROTOCOL_COMMAND_BANDWIDTH_LIMIT | ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE;
command.header.channelID = 0xFF;
command.bandwidthLimit.outgoingBandwidth = ENET_HOST_TO_NET_32 (host -> outgoingBandwidth);
if (peer -> incomingBandwidthThrottleEpoch == timeCurrent)
command.bandwidthLimit.incomingBandwidth = ENET_HOST_TO_NET_32 (peer -> outgoingBandwidth);
else
command.bandwidthLimit.incomingBandwidth = ENET_HOST_TO_NET_32 (bandwidthLimit);
enet_peer_queue_outgoing_command (peer, & command, NULL, 0, 0);
}
}
}
/** @} */