bf05309af7
As requested by reduz, an import of thekla_atlas into thirdparty/
452 lines
12 KiB
C++
452 lines
12 KiB
C++
// This code is in the public domain -- Ignacio Castaño <castano@gmail.com>
|
|
|
|
#pragma once
|
|
#ifndef NV_CORE_ARRAY_INL
|
|
#define NV_CORE_ARRAY_INL
|
|
|
|
#include "Array.h"
|
|
|
|
#include "Stream.h"
|
|
#include "Utils.h" // swap
|
|
|
|
#include <string.h> // memmove
|
|
#include <new> // for placement new
|
|
|
|
|
|
|
|
namespace nv
|
|
{
|
|
template <typename T>
|
|
NV_FORCEINLINE T & Array<T>::append()
|
|
{
|
|
uint old_size = m_size;
|
|
uint new_size = m_size + 1;
|
|
|
|
setArraySize(new_size);
|
|
|
|
construct_range(m_buffer, new_size, old_size);
|
|
|
|
return m_buffer[old_size]; // Return reference to last element.
|
|
}
|
|
|
|
// Push an element at the end of the vector.
|
|
template <typename T>
|
|
NV_FORCEINLINE void Array<T>::push_back( const T & val )
|
|
{
|
|
#if 1
|
|
nvDebugCheck(&val < m_buffer || &val >= m_buffer+m_size);
|
|
|
|
uint old_size = m_size;
|
|
uint new_size = m_size + 1;
|
|
|
|
setArraySize(new_size);
|
|
|
|
construct_range(m_buffer, new_size, old_size, val);
|
|
#else
|
|
uint new_size = m_size + 1;
|
|
|
|
if (new_size > m_capacity)
|
|
{
|
|
// @@ Is there any way to avoid this copy?
|
|
// @@ Can we create a copy without side effects? Ie. without calls to constructor/destructor. Use alloca + memcpy?
|
|
// @@ Assert instead of copy?
|
|
const T copy(val); // create a copy in case value is inside of this array.
|
|
|
|
setArraySize(new_size);
|
|
|
|
new (m_buffer+new_size-1) T(copy);
|
|
}
|
|
else
|
|
{
|
|
m_size = new_size;
|
|
new(m_buffer+new_size-1) T(val);
|
|
}
|
|
#endif // 0/1
|
|
}
|
|
template <typename T>
|
|
NV_FORCEINLINE void Array<T>::pushBack( const T & val )
|
|
{
|
|
push_back(val);
|
|
}
|
|
template <typename T>
|
|
NV_FORCEINLINE Array<T> & Array<T>::append( const T & val )
|
|
{
|
|
push_back(val);
|
|
return *this;
|
|
}
|
|
|
|
// Qt like push operator.
|
|
template <typename T>
|
|
NV_FORCEINLINE Array<T> & Array<T>::operator<< ( T & t )
|
|
{
|
|
push_back(t);
|
|
return *this;
|
|
}
|
|
|
|
// Pop the element at the end of the vector.
|
|
template <typename T>
|
|
NV_FORCEINLINE void Array<T>::pop_back()
|
|
{
|
|
nvDebugCheck( m_size > 0 );
|
|
resize( m_size - 1 );
|
|
}
|
|
template <typename T>
|
|
NV_FORCEINLINE void Array<T>::popBack(uint count)
|
|
{
|
|
nvDebugCheck(m_size >= count);
|
|
resize(m_size - count);
|
|
}
|
|
|
|
template <typename T>
|
|
NV_FORCEINLINE void Array<T>::popFront(uint count)
|
|
{
|
|
nvDebugCheck(m_size >= count);
|
|
//resize(m_size - count);
|
|
|
|
if (m_size == count) {
|
|
clear();
|
|
}
|
|
else {
|
|
destroy_range(m_buffer, 0, count);
|
|
|
|
memmove(m_buffer, m_buffer + count, sizeof(T) * (m_size - count));
|
|
|
|
m_size -= count;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
// Get back element.
|
|
template <typename T>
|
|
NV_FORCEINLINE const T & Array<T>::back() const
|
|
{
|
|
nvDebugCheck( m_size > 0 );
|
|
return m_buffer[m_size-1];
|
|
}
|
|
|
|
// Get back element.
|
|
template <typename T>
|
|
NV_FORCEINLINE T & Array<T>::back()
|
|
{
|
|
nvDebugCheck( m_size > 0 );
|
|
return m_buffer[m_size-1];
|
|
}
|
|
|
|
// Get front element.
|
|
template <typename T>
|
|
NV_FORCEINLINE const T & Array<T>::front() const
|
|
{
|
|
nvDebugCheck( m_size > 0 );
|
|
return m_buffer[0];
|
|
}
|
|
|
|
// Get front element.
|
|
template <typename T>
|
|
NV_FORCEINLINE T & Array<T>::front()
|
|
{
|
|
nvDebugCheck( m_size > 0 );
|
|
return m_buffer[0];
|
|
}
|
|
|
|
// Check if the given element is contained in the array.
|
|
template <typename T>
|
|
NV_FORCEINLINE bool Array<T>::contains(const T & e) const
|
|
{
|
|
return find(e, NULL);
|
|
}
|
|
|
|
// Return true if element found.
|
|
template <typename T>
|
|
NV_FORCEINLINE bool Array<T>::find(const T & element, uint * indexPtr) const
|
|
{
|
|
return find(element, 0, m_size, indexPtr);
|
|
}
|
|
|
|
// Return true if element found within the given range.
|
|
template <typename T>
|
|
NV_FORCEINLINE bool Array<T>::find(const T & element, uint begin, uint end, uint * indexPtr) const
|
|
{
|
|
return ::nv::find(element, m_buffer, begin, end, indexPtr);
|
|
}
|
|
|
|
|
|
// Remove the element at the given index. This is an expensive operation!
|
|
template <typename T>
|
|
void Array<T>::removeAt(uint index)
|
|
{
|
|
nvDebugCheck(index >= 0 && index < m_size);
|
|
|
|
if (m_size == 1) {
|
|
clear();
|
|
}
|
|
else {
|
|
m_buffer[index].~T();
|
|
|
|
memmove(m_buffer+index, m_buffer+index+1, sizeof(T) * (m_size - 1 - index));
|
|
m_size--;
|
|
}
|
|
}
|
|
|
|
// Remove the first instance of the given element.
|
|
template <typename T>
|
|
bool Array<T>::remove(const T & element)
|
|
{
|
|
uint index;
|
|
if (find(element, &index)) {
|
|
removeAt(index);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Insert the given element at the given index shifting all the elements up.
|
|
template <typename T>
|
|
void Array<T>::insertAt(uint index, const T & val/*=T()*/)
|
|
{
|
|
nvDebugCheck( index >= 0 && index <= m_size );
|
|
|
|
setArraySize(m_size + 1);
|
|
|
|
if (index < m_size - 1) {
|
|
memmove(m_buffer+index+1, m_buffer+index, sizeof(T) * (m_size - 1 - index));
|
|
}
|
|
|
|
// Copy-construct into the newly opened slot.
|
|
new(m_buffer+index) T(val);
|
|
}
|
|
|
|
// Append the given data to our vector.
|
|
template <typename T>
|
|
NV_FORCEINLINE void Array<T>::append(const Array<T> & other)
|
|
{
|
|
append(other.m_buffer, other.m_size);
|
|
}
|
|
|
|
// Append the given data to our vector.
|
|
template <typename T>
|
|
void Array<T>::append(const T other[], uint count)
|
|
{
|
|
if (count > 0) {
|
|
const uint old_size = m_size;
|
|
|
|
setArraySize(m_size + count);
|
|
|
|
for (uint i = 0; i < count; i++ ) {
|
|
new(m_buffer + old_size + i) T(other[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Remove the given element by replacing it with the last one.
|
|
template <typename T>
|
|
void Array<T>::replaceWithLast(uint index)
|
|
{
|
|
nvDebugCheck( index < m_size );
|
|
nv::swap(m_buffer[index], back()); // @@ Is this OK when index == size-1?
|
|
(m_buffer+m_size-1)->~T();
|
|
m_size--;
|
|
}
|
|
|
|
// Resize the vector preserving existing elements.
|
|
template <typename T>
|
|
void Array<T>::resize(uint new_size)
|
|
{
|
|
uint old_size = m_size;
|
|
|
|
// Destruct old elements (if we're shrinking).
|
|
destroy_range(m_buffer, new_size, old_size);
|
|
|
|
setArraySize(new_size);
|
|
|
|
// Call default constructors
|
|
construct_range(m_buffer, new_size, old_size);
|
|
}
|
|
|
|
|
|
// Resize the vector preserving existing elements and initializing the
|
|
// new ones with the given value.
|
|
template <typename T>
|
|
void Array<T>::resize(uint new_size, const T & elem)
|
|
{
|
|
nvDebugCheck(&elem < m_buffer || &elem > m_buffer+m_size);
|
|
|
|
uint old_size = m_size;
|
|
|
|
// Destruct old elements (if we're shrinking).
|
|
destroy_range(m_buffer, new_size, old_size);
|
|
|
|
setArraySize(new_size);
|
|
|
|
// Call copy constructors
|
|
construct_range(m_buffer, new_size, old_size, elem);
|
|
}
|
|
|
|
// Fill array with the given value.
|
|
template <typename T>
|
|
void Array<T>::fill(const T & elem)
|
|
{
|
|
fill(m_buffer, m_size, elem);
|
|
}
|
|
|
|
// Clear the buffer.
|
|
template <typename T>
|
|
NV_FORCEINLINE void Array<T>::clear()
|
|
{
|
|
nvDebugCheck(isValidPtr(m_buffer));
|
|
|
|
// Destruct old elements
|
|
destroy_range(m_buffer, 0, m_size);
|
|
|
|
m_size = 0;
|
|
}
|
|
|
|
// Shrink the allocated vector.
|
|
template <typename T>
|
|
NV_FORCEINLINE void Array<T>::shrink()
|
|
{
|
|
if (m_size < m_capacity) {
|
|
setArrayCapacity(m_size);
|
|
}
|
|
}
|
|
|
|
// Preallocate space.
|
|
template <typename T>
|
|
NV_FORCEINLINE void Array<T>::reserve(uint desired_size)
|
|
{
|
|
if (desired_size > m_capacity) {
|
|
setArrayCapacity(desired_size);
|
|
}
|
|
}
|
|
|
|
// Copy elements to this array. Resizes it if needed.
|
|
template <typename T>
|
|
NV_FORCEINLINE void Array<T>::copy(const T * data, uint count)
|
|
{
|
|
#if 1 // More simple, but maybe not be as efficient?
|
|
destroy_range(m_buffer, 0, m_size);
|
|
|
|
setArraySize(count);
|
|
|
|
construct_range(m_buffer, count, 0, data);
|
|
#else
|
|
const uint old_size = m_size;
|
|
|
|
destroy_range(m_buffer, count, old_size);
|
|
|
|
setArraySize(count);
|
|
|
|
copy_range(m_buffer, data, old_size);
|
|
|
|
construct_range(m_buffer, count, old_size, data);
|
|
#endif
|
|
}
|
|
|
|
// Assignment operator.
|
|
template <typename T>
|
|
NV_FORCEINLINE Array<T> & Array<T>::operator=( const Array<T> & a )
|
|
{
|
|
copy(a.m_buffer, a.m_size);
|
|
return *this;
|
|
}
|
|
|
|
// Release ownership of allocated memory and returns pointer to it.
|
|
template <typename T>
|
|
T * Array<T>::release() {
|
|
T * tmp = m_buffer;
|
|
m_buffer = NULL;
|
|
m_capacity = 0;
|
|
m_size = 0;
|
|
return tmp;
|
|
}
|
|
|
|
|
|
|
|
// Change array size.
|
|
template <typename T>
|
|
inline void Array<T>::setArraySize(uint new_size) {
|
|
m_size = new_size;
|
|
|
|
if (new_size > m_capacity) {
|
|
uint new_buffer_size;
|
|
if (m_capacity == 0) {
|
|
// first allocation is exact
|
|
new_buffer_size = new_size;
|
|
}
|
|
else {
|
|
// following allocations grow array by 25%
|
|
new_buffer_size = new_size + (new_size >> 2);
|
|
}
|
|
|
|
setArrayCapacity( new_buffer_size );
|
|
}
|
|
}
|
|
|
|
// Change array capacity.
|
|
template <typename T>
|
|
inline void Array<T>::setArrayCapacity(uint new_capacity) {
|
|
nvDebugCheck(new_capacity >= m_size);
|
|
|
|
if (new_capacity == 0) {
|
|
// free the buffer.
|
|
if (m_buffer != NULL) {
|
|
free<T>(m_buffer);
|
|
m_buffer = NULL;
|
|
}
|
|
}
|
|
else {
|
|
// realloc the buffer
|
|
m_buffer = realloc<T>(m_buffer, new_capacity);
|
|
}
|
|
|
|
m_capacity = new_capacity;
|
|
}
|
|
|
|
// Array serialization.
|
|
template <typename Typ>
|
|
inline Stream & operator<< ( Stream & s, Array<Typ> & p )
|
|
{
|
|
if (s.isLoading()) {
|
|
uint size;
|
|
s << size;
|
|
p.resize( size );
|
|
}
|
|
else {
|
|
s << p.m_size;
|
|
}
|
|
|
|
for (uint i = 0; i < p.m_size; i++) {
|
|
s << p.m_buffer[i];
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
// Swap the members of the two given vectors.
|
|
template <typename Typ>
|
|
inline void swap(Array<Typ> & a, Array<Typ> & b)
|
|
{
|
|
nv::swap(a.m_buffer, b.m_buffer);
|
|
nv::swap(a.m_capacity, b.m_capacity);
|
|
nv::swap(a.m_size, b.m_size);
|
|
}
|
|
|
|
|
|
} // nv namespace
|
|
|
|
// IC: These functions are for compatibility with the Foreach macro in The Witness.
|
|
template <typename T> inline int item_count(const nv::Array<T> & array) { return array.count(); }
|
|
template <typename T> inline const T & item_at(const nv::Array<T> & array, int i) { return array.at(i); }
|
|
template <typename T> inline T & item_at(nv::Array<T> & array, int i) { return array.at(i); }
|
|
template <typename T> inline int item_advance(const nv::Array<T> & array, int i) { return ++i; }
|
|
template <typename T> inline int item_remove(nv::Array<T> & array, int i) { array.replaceWithLast(i); return i - 1; }
|
|
|
|
template <typename T> inline int item_count(const nv::Array<T> * array) { return array->count(); }
|
|
template <typename T> inline const T & item_at(const nv::Array<T> * array, int i) { return array->at(i); }
|
|
template <typename T> inline T & item_at(nv::Array<T> * array, int i) { return array->at(i); }
|
|
template <typename T> inline int item_advance(const nv::Array<T> * array, int i) { return ++i; }
|
|
template <typename T> inline int item_remove(nv::Array<T> * array, int i) { array->replaceWithLast(i); return i - 1; }
|
|
|
|
|
|
#endif // NV_CORE_ARRAY_INL
|