virtualx-engine/drivers/gles3/storage/mesh_storage.cpp
clayjohn 8f9cd4e1e3 Some more fixes for compressed meshes
This cleans up a few more cases of uint32_t->uint64_t

Importantly this fixes an edge case in the axis-angle compression by
using the pre-existing Basis methods instead
2023-10-24 09:38:12 +02:00

2201 lines
80 KiB
C++

/**************************************************************************/
/* mesh_storage.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifdef GLES3_ENABLED
#include "mesh_storage.h"
#include "material_storage.h"
#include "utilities.h"
using namespace GLES3;
MeshStorage *MeshStorage::singleton = nullptr;
MeshStorage *MeshStorage::get_singleton() {
return singleton;
}
MeshStorage::MeshStorage() {
singleton = this;
{
skeleton_shader.shader.initialize();
skeleton_shader.shader_version = skeleton_shader.shader.version_create();
}
}
MeshStorage::~MeshStorage() {
singleton = nullptr;
skeleton_shader.shader.version_free(skeleton_shader.shader_version);
}
/* MESH API */
RID MeshStorage::mesh_allocate() {
return mesh_owner.allocate_rid();
}
void MeshStorage::mesh_initialize(RID p_rid) {
mesh_owner.initialize_rid(p_rid, Mesh());
}
void MeshStorage::mesh_free(RID p_rid) {
mesh_clear(p_rid);
mesh_set_shadow_mesh(p_rid, RID());
Mesh *mesh = mesh_owner.get_or_null(p_rid);
ERR_FAIL_NULL(mesh);
mesh->dependency.deleted_notify(p_rid);
if (mesh->instances.size()) {
ERR_PRINT("deleting mesh with active instances");
}
if (mesh->shadow_owners.size()) {
for (Mesh *E : mesh->shadow_owners) {
Mesh *shadow_owner = E;
shadow_owner->shadow_mesh = RID();
shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
}
}
mesh_owner.free(p_rid);
}
void MeshStorage::mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) {
ERR_FAIL_COND(p_blend_shape_count < 0);
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
ERR_FAIL_NULL(mesh);
ERR_FAIL_COND(mesh->surface_count > 0); //surfaces already exist
mesh->blend_shape_count = p_blend_shape_count;
}
bool MeshStorage::mesh_needs_instance(RID p_mesh, bool p_has_skeleton) {
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
ERR_FAIL_NULL_V(mesh, false);
return mesh->blend_shape_count > 0 || (mesh->has_bone_weights && p_has_skeleton);
}
void MeshStorage::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) {
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
ERR_FAIL_NULL(mesh);
ERR_FAIL_COND(mesh->surface_count == RS::MAX_MESH_SURFACES);
#ifdef DEBUG_ENABLED
//do a validation, to catch errors first
{
uint32_t stride = 0;
uint32_t attrib_stride = 0;
uint32_t skin_stride = 0;
for (int i = 0; i < RS::ARRAY_WEIGHTS; i++) {
if ((p_surface.format & (1ULL << i))) {
switch (i) {
case RS::ARRAY_VERTEX: {
if ((p_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) || (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
stride += sizeof(float) * 2;
} else {
stride += sizeof(float) * 3;
}
} break;
case RS::ARRAY_NORMAL: {
stride += sizeof(uint16_t) * 2;
} break;
case RS::ARRAY_TANGENT: {
if (!(p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
stride += sizeof(uint16_t) * 2;
}
} break;
case RS::ARRAY_COLOR: {
attrib_stride += sizeof(uint32_t);
} break;
case RS::ARRAY_TEX_UV: {
if (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
attrib_stride += sizeof(uint16_t) * 2;
} else {
attrib_stride += sizeof(float) * 2;
}
} break;
case RS::ARRAY_TEX_UV2: {
if (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
attrib_stride += sizeof(uint16_t) * 2;
} else {
attrib_stride += sizeof(float) * 2;
}
} break;
case RS::ARRAY_CUSTOM0:
case RS::ARRAY_CUSTOM1:
case RS::ARRAY_CUSTOM2:
case RS::ARRAY_CUSTOM3: {
int idx = i - RS::ARRAY_CUSTOM0;
uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
uint32_t fmt = (p_surface.format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
attrib_stride += fmtsize[fmt];
} break;
case RS::ARRAY_WEIGHTS:
case RS::ARRAY_BONES: {
//uses a separate array
bool use_8 = p_surface.format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
skin_stride += sizeof(int16_t) * (use_8 ? 16 : 8);
} break;
}
}
}
int expected_size = stride * p_surface.vertex_count;
ERR_FAIL_COND_MSG(expected_size != p_surface.vertex_data.size(), "Size of vertex data provided (" + itos(p_surface.vertex_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
int bs_expected_size = expected_size * mesh->blend_shape_count;
ERR_FAIL_COND_MSG(bs_expected_size != p_surface.blend_shape_data.size(), "Size of blend shape data provided (" + itos(p_surface.blend_shape_data.size()) + ") does not match expected (" + itos(bs_expected_size) + ")");
int expected_attrib_size = attrib_stride * p_surface.vertex_count;
ERR_FAIL_COND_MSG(expected_attrib_size != p_surface.attribute_data.size(), "Size of attribute data provided (" + itos(p_surface.attribute_data.size()) + ") does not match expected (" + itos(expected_attrib_size) + ")");
if ((p_surface.format & RS::ARRAY_FORMAT_WEIGHTS) && (p_surface.format & RS::ARRAY_FORMAT_BONES)) {
expected_size = skin_stride * p_surface.vertex_count;
ERR_FAIL_COND_MSG(expected_size != p_surface.skin_data.size(), "Size of skin data provided (" + itos(p_surface.skin_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
}
}
#endif
uint64_t surface_version = p_surface.format & (uint64_t(RS::ARRAY_FLAG_FORMAT_VERSION_MASK) << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT);
RS::SurfaceData new_surface = p_surface;
#ifdef DISABLE_DEPRECATED
ERR_FAIL_COND_MSG(surface_version != RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION, "Surface version provided (" + itos(int(surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT)) + ") does not match current version (" + itos(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) + ")");
#else
if (surface_version != uint64_t(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION)) {
RS::get_singleton()->fix_surface_compatibility(new_surface);
surface_version = new_surface.format & (uint64_t(RS::ARRAY_FLAG_FORMAT_VERSION_MASK) << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT);
ERR_FAIL_COND_MSG(surface_version != RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION,
vformat("Surface version provided (%d) does not match current version (%d).",
(surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK,
(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK));
}
#endif
Mesh::Surface *s = memnew(Mesh::Surface);
s->format = new_surface.format;
s->primitive = new_surface.primitive;
if (new_surface.vertex_data.size()) {
glGenBuffers(1, &s->vertex_buffer);
glBindBuffer(GL_ARRAY_BUFFER, s->vertex_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s->vertex_buffer, new_surface.vertex_data.size(), new_surface.vertex_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW, "Mesh vertex buffer");
s->vertex_buffer_size = new_surface.vertex_data.size();
}
if (new_surface.attribute_data.size()) {
glGenBuffers(1, &s->attribute_buffer);
glBindBuffer(GL_ARRAY_BUFFER, s->attribute_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s->attribute_buffer, new_surface.attribute_data.size(), new_surface.attribute_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW, "Mesh attribute buffer");
s->attribute_buffer_size = new_surface.attribute_data.size();
}
if (new_surface.skin_data.size()) {
glGenBuffers(1, &s->skin_buffer);
glBindBuffer(GL_ARRAY_BUFFER, s->skin_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s->skin_buffer, new_surface.skin_data.size(), new_surface.skin_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW, "Mesh skin buffer");
s->skin_buffer_size = new_surface.skin_data.size();
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
s->vertex_count = new_surface.vertex_count;
if (new_surface.format & RS::ARRAY_FORMAT_BONES) {
mesh->has_bone_weights = true;
}
if (new_surface.index_count) {
bool is_index_16 = new_surface.vertex_count <= 65536 && new_surface.vertex_count > 0;
glGenBuffers(1, &s->index_buffer);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ELEMENT_ARRAY_BUFFER, s->index_buffer, new_surface.index_data.size(), new_surface.index_data.ptr(), GL_STATIC_DRAW, "Mesh index buffer");
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind
s->index_count = new_surface.index_count;
s->index_buffer_size = new_surface.index_data.size();
if (new_surface.lods.size()) {
s->lods = memnew_arr(Mesh::Surface::LOD, new_surface.lods.size());
s->lod_count = new_surface.lods.size();
for (int i = 0; i < new_surface.lods.size(); i++) {
glGenBuffers(1, &s->lods[i].index_buffer);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->lods[i].index_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ELEMENT_ARRAY_BUFFER, s->lods[i].index_buffer, new_surface.lods[i].index_data.size(), new_surface.lods[i].index_data.ptr(), GL_STATIC_DRAW, "Mesh index buffer LOD[" + itos(i) + "]");
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind
s->lods[i].edge_length = new_surface.lods[i].edge_length;
s->lods[i].index_count = new_surface.lods[i].index_data.size() / (is_index_16 ? 2 : 4);
s->lods[i].index_buffer_size = new_surface.lods[i].index_data.size();
}
}
}
ERR_FAIL_COND_MSG(!new_surface.index_count && !new_surface.vertex_count, "Meshes must contain a vertex array, an index array, or both");
s->aabb = new_surface.aabb;
s->bone_aabbs = new_surface.bone_aabbs; //only really useful for returning them.
s->uv_scale = new_surface.uv_scale;
if (new_surface.skin_data.size() || mesh->blend_shape_count > 0) {
// Size must match the size of the vertex array.
int size = new_surface.vertex_data.size();
int vertex_size = 0;
int position_stride = 0;
int normal_tangent_stride = 0;
int normal_offset = 0;
int tangent_offset = 0;
if ((new_surface.format & (1ULL << RS::ARRAY_VERTEX))) {
if (new_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
vertex_size = 2;
position_stride = sizeof(float) * vertex_size;
} else {
if (new_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
vertex_size = 4;
position_stride = sizeof(uint16_t) * vertex_size;
} else {
vertex_size = 3;
position_stride = sizeof(float) * vertex_size;
}
}
}
if ((new_surface.format & (1ULL << RS::ARRAY_NORMAL))) {
normal_offset = position_stride * s->vertex_count;
normal_tangent_stride += sizeof(uint16_t) * 2;
}
if ((new_surface.format & (1ULL << RS::ARRAY_TANGENT))) {
tangent_offset = normal_offset + normal_tangent_stride;
normal_tangent_stride += sizeof(uint16_t) * 2;
}
if (mesh->blend_shape_count > 0) {
// Blend shapes are passed as one large array, for OpenGL, we need to split each of them into their own buffer
s->blend_shapes = memnew_arr(Mesh::Surface::BlendShape, mesh->blend_shape_count);
for (uint32_t i = 0; i < mesh->blend_shape_count; i++) {
glGenVertexArrays(1, &s->blend_shapes[i].vertex_array);
glBindVertexArray(s->blend_shapes[i].vertex_array);
glGenBuffers(1, &s->blend_shapes[i].vertex_buffer);
glBindBuffer(GL_ARRAY_BUFFER, s->blend_shapes[i].vertex_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s->blend_shapes[i].vertex_buffer, size, new_surface.blend_shape_data.ptr() + i * size, (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW, "Mesh blend shape buffer");
if ((new_surface.format & (1ULL << RS::ARRAY_VERTEX))) {
glEnableVertexAttribArray(RS::ARRAY_VERTEX + 3);
glVertexAttribPointer(RS::ARRAY_VERTEX + 3, vertex_size, GL_FLOAT, GL_FALSE, position_stride, CAST_INT_TO_UCHAR_PTR(0));
}
if ((new_surface.format & (1ULL << RS::ARRAY_NORMAL))) {
// Normal and tangent are packed into the same attribute.
glEnableVertexAttribArray(RS::ARRAY_NORMAL + 3);
glVertexAttribPointer(RS::ARRAY_NORMAL + 3, 2, GL_UNSIGNED_SHORT, GL_TRUE, normal_tangent_stride, CAST_INT_TO_UCHAR_PTR(normal_offset));
}
if ((p_surface.format & (1ULL << RS::ARRAY_TANGENT))) {
glEnableVertexAttribArray(RS::ARRAY_TANGENT + 3);
glVertexAttribPointer(RS::ARRAY_TANGENT + 3, 2, GL_UNSIGNED_SHORT, GL_TRUE, normal_tangent_stride, CAST_INT_TO_UCHAR_PTR(tangent_offset));
}
}
glBindVertexArray(0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
glBindVertexArray(0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
if (mesh->surface_count == 0) {
mesh->aabb = new_surface.aabb;
} else {
mesh->aabb.merge_with(new_surface.aabb);
}
mesh->skeleton_aabb_version = 0;
s->material = new_surface.material;
mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count + 1));
mesh->surfaces[mesh->surface_count] = s;
mesh->surface_count++;
for (MeshInstance *mi : mesh->instances) {
_mesh_instance_add_surface(mi, mesh, mesh->surface_count - 1);
}
mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
for (Mesh *E : mesh->shadow_owners) {
Mesh *shadow_owner = E;
shadow_owner->shadow_mesh = RID();
shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
}
mesh->material_cache.clear();
}
int MeshStorage::mesh_get_blend_shape_count(RID p_mesh) const {
const Mesh *mesh = mesh_owner.get_or_null(p_mesh);
ERR_FAIL_NULL_V(mesh, -1);
return mesh->blend_shape_count;
}
void MeshStorage::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) {
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
ERR_FAIL_NULL(mesh);
ERR_FAIL_INDEX((int)p_mode, 2);
mesh->blend_shape_mode = p_mode;
}
RS::BlendShapeMode MeshStorage::mesh_get_blend_shape_mode(RID p_mesh) const {
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
ERR_FAIL_NULL_V(mesh, RS::BLEND_SHAPE_MODE_NORMALIZED);
return mesh->blend_shape_mode;
}
void MeshStorage::mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
ERR_FAIL_NULL(mesh);
ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
ERR_FAIL_COND(p_data.size() == 0);
uint64_t data_size = p_data.size();
ERR_FAIL_COND(p_offset + data_size > mesh->surfaces[p_surface]->vertex_buffer_size);
const uint8_t *r = p_data.ptr();
glBindBuffer(GL_ARRAY_BUFFER, mesh->surfaces[p_surface]->vertex_buffer);
glBufferSubData(GL_ARRAY_BUFFER, p_offset, data_size, r);
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
void MeshStorage::mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
ERR_FAIL_NULL(mesh);
ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
ERR_FAIL_COND(p_data.size() == 0);
uint64_t data_size = p_data.size();
ERR_FAIL_COND(p_offset + data_size > mesh->surfaces[p_surface]->attribute_buffer_size);
const uint8_t *r = p_data.ptr();
glBindBuffer(GL_ARRAY_BUFFER, mesh->surfaces[p_surface]->attribute_buffer);
glBufferSubData(GL_ARRAY_BUFFER, p_offset, data_size, r);
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
void MeshStorage::mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
ERR_FAIL_NULL(mesh);
ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
ERR_FAIL_COND(p_data.size() == 0);
uint64_t data_size = p_data.size();
ERR_FAIL_COND(p_offset + data_size > mesh->surfaces[p_surface]->skin_buffer_size);
const uint8_t *r = p_data.ptr();
glBindBuffer(GL_ARRAY_BUFFER, mesh->surfaces[p_surface]->skin_buffer);
glBufferSubData(GL_ARRAY_BUFFER, p_offset, data_size, r);
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
void MeshStorage::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
ERR_FAIL_NULL(mesh);
ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
mesh->surfaces[p_surface]->material = p_material;
mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL);
mesh->material_cache.clear();
}
RID MeshStorage::mesh_surface_get_material(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
ERR_FAIL_NULL_V(mesh, RID());
ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RID());
return mesh->surfaces[p_surface]->material;
}
RS::SurfaceData MeshStorage::mesh_get_surface(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
ERR_FAIL_NULL_V(mesh, RS::SurfaceData());
ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RS::SurfaceData());
Mesh::Surface &s = *mesh->surfaces[p_surface];
RS::SurfaceData sd;
sd.format = s.format;
if (s.vertex_buffer != 0) {
sd.vertex_data = Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.vertex_buffer, s.vertex_buffer_size);
}
if (s.attribute_buffer != 0) {
sd.attribute_data = Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.attribute_buffer, s.attribute_buffer_size);
}
if (s.skin_buffer != 0) {
sd.skin_data = Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.skin_buffer, s.skin_buffer_size);
}
sd.vertex_count = s.vertex_count;
sd.index_count = s.index_count;
sd.primitive = s.primitive;
if (sd.index_count) {
sd.index_data = Utilities::buffer_get_data(GL_ELEMENT_ARRAY_BUFFER, s.index_buffer, s.index_buffer_size);
}
sd.aabb = s.aabb;
for (uint32_t i = 0; i < s.lod_count; i++) {
RS::SurfaceData::LOD lod;
lod.edge_length = s.lods[i].edge_length;
lod.index_data = Utilities::buffer_get_data(GL_ELEMENT_ARRAY_BUFFER, s.lods[i].index_buffer, s.lods[i].index_buffer_size);
sd.lods.push_back(lod);
}
sd.bone_aabbs = s.bone_aabbs;
if (mesh->blend_shape_count) {
sd.blend_shape_data = Vector<uint8_t>();
for (uint32_t i = 0; i < mesh->blend_shape_count; i++) {
sd.blend_shape_data.append_array(Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.blend_shapes[i].vertex_buffer, s.vertex_buffer_size));
}
}
sd.uv_scale = s.uv_scale;
return sd;
}
int MeshStorage::mesh_get_surface_count(RID p_mesh) const {
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
ERR_FAIL_NULL_V(mesh, 0);
return mesh->surface_count;
}
void MeshStorage::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
ERR_FAIL_NULL(mesh);
mesh->custom_aabb = p_aabb;
mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
}
AABB MeshStorage::mesh_get_custom_aabb(RID p_mesh) const {
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
ERR_FAIL_NULL_V(mesh, AABB());
return mesh->custom_aabb;
}
AABB MeshStorage::mesh_get_aabb(RID p_mesh, RID p_skeleton) {
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
ERR_FAIL_NULL_V(mesh, AABB());
if (mesh->custom_aabb != AABB()) {
return mesh->custom_aabb;
}
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
if (!skeleton || skeleton->size == 0 || mesh->skeleton_aabb_version == skeleton->version) {
return mesh->aabb;
}
// Calculate AABB based on Skeleton
AABB aabb;
for (uint32_t i = 0; i < mesh->surface_count; i++) {
AABB laabb;
if ((mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES) && mesh->surfaces[i]->bone_aabbs.size()) {
int bs = mesh->surfaces[i]->bone_aabbs.size();
const AABB *skbones = mesh->surfaces[i]->bone_aabbs.ptr();
int sbs = skeleton->size;
ERR_CONTINUE(bs > sbs);
const float *baseptr = skeleton->data.ptr();
bool first = true;
if (skeleton->use_2d) {
for (int j = 0; j < bs; j++) {
if (skbones[j].size == Vector3(-1, -1, -1)) {
continue; //bone is unused
}
const float *dataptr = baseptr + j * 8;
Transform3D mtx;
mtx.basis.rows[0][0] = dataptr[0];
mtx.basis.rows[0][1] = dataptr[1];
mtx.origin.x = dataptr[3];
mtx.basis.rows[1][0] = dataptr[4];
mtx.basis.rows[1][1] = dataptr[5];
mtx.origin.y = dataptr[7];
AABB baabb = mtx.xform(skbones[j]);
if (first) {
laabb = baabb;
first = false;
} else {
laabb.merge_with(baabb);
}
}
} else {
for (int j = 0; j < bs; j++) {
if (skbones[j].size == Vector3(-1, -1, -1)) {
continue; //bone is unused
}
const float *dataptr = baseptr + j * 12;
Transform3D mtx;
mtx.basis.rows[0][0] = dataptr[0];
mtx.basis.rows[0][1] = dataptr[1];
mtx.basis.rows[0][2] = dataptr[2];
mtx.origin.x = dataptr[3];
mtx.basis.rows[1][0] = dataptr[4];
mtx.basis.rows[1][1] = dataptr[5];
mtx.basis.rows[1][2] = dataptr[6];
mtx.origin.y = dataptr[7];
mtx.basis.rows[2][0] = dataptr[8];
mtx.basis.rows[2][1] = dataptr[9];
mtx.basis.rows[2][2] = dataptr[10];
mtx.origin.z = dataptr[11];
AABB baabb = mtx.xform(skbones[j]);
if (first) {
laabb = baabb;
first = false;
} else {
laabb.merge_with(baabb);
}
}
}
if (laabb.size == Vector3()) {
laabb = mesh->surfaces[i]->aabb;
}
} else {
laabb = mesh->surfaces[i]->aabb;
}
if (i == 0) {
aabb = laabb;
} else {
aabb.merge_with(laabb);
}
}
mesh->aabb = aabb;
mesh->skeleton_aabb_version = skeleton->version;
return aabb;
}
void MeshStorage::mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) {
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
ERR_FAIL_NULL(mesh);
Mesh *shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
if (shadow_mesh) {
shadow_mesh->shadow_owners.erase(mesh);
}
mesh->shadow_mesh = p_shadow_mesh;
shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
if (shadow_mesh) {
shadow_mesh->shadow_owners.insert(mesh);
}
mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
}
void MeshStorage::mesh_clear(RID p_mesh) {
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
ERR_FAIL_NULL(mesh);
// Clear instance data before mesh data.
for (MeshInstance *mi : mesh->instances) {
_mesh_instance_clear(mi);
}
for (uint32_t i = 0; i < mesh->surface_count; i++) {
Mesh::Surface &s = *mesh->surfaces[i];
if (s.vertex_buffer != 0) {
GLES3::Utilities::get_singleton()->buffer_free_data(s.vertex_buffer);
s.vertex_buffer = 0;
}
if (s.version_count != 0) {
for (uint32_t j = 0; j < s.version_count; j++) {
glDeleteVertexArrays(1, &s.versions[j].vertex_array);
s.versions[j].vertex_array = 0;
}
}
if (s.attribute_buffer != 0) {
GLES3::Utilities::get_singleton()->buffer_free_data(s.attribute_buffer);
s.attribute_buffer = 0;
}
if (s.skin_buffer != 0) {
GLES3::Utilities::get_singleton()->buffer_free_data(s.skin_buffer);
s.skin_buffer = 0;
}
if (s.index_buffer != 0) {
GLES3::Utilities::get_singleton()->buffer_free_data(s.index_buffer);
s.index_buffer = 0;
}
if (s.versions) {
memfree(s.versions); //reallocs, so free with memfree.
}
if (s.lod_count) {
for (uint32_t j = 0; j < s.lod_count; j++) {
if (s.lods[j].index_buffer != 0) {
GLES3::Utilities::get_singleton()->buffer_free_data(s.lods[j].index_buffer);
s.lods[j].index_buffer = 0;
}
}
memdelete_arr(s.lods);
}
if (mesh->blend_shape_count) {
for (uint32_t j = 0; j < mesh->blend_shape_count; j++) {
if (s.blend_shapes[j].vertex_buffer != 0) {
GLES3::Utilities::get_singleton()->buffer_free_data(s.blend_shapes[j].vertex_buffer);
s.blend_shapes[j].vertex_buffer = 0;
}
if (s.blend_shapes[j].vertex_array != 0) {
glDeleteVertexArrays(1, &s.blend_shapes[j].vertex_array);
s.blend_shapes[j].vertex_array = 0;
}
}
memdelete_arr(s.blend_shapes);
}
memdelete(mesh->surfaces[i]);
}
if (mesh->surfaces) {
memfree(mesh->surfaces);
}
mesh->surfaces = nullptr;
mesh->surface_count = 0;
mesh->material_cache.clear();
mesh->has_bone_weights = false;
mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
for (Mesh *E : mesh->shadow_owners) {
Mesh *shadow_owner = E;
shadow_owner->shadow_mesh = RID();
shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
}
}
void MeshStorage::_mesh_surface_generate_version_for_input_mask(Mesh::Surface::Version &v, Mesh::Surface *s, uint64_t p_input_mask, MeshInstance::Surface *mis) {
Mesh::Surface::Attrib attribs[RS::ARRAY_MAX];
int position_stride = 0; // Vertex position only.
int normal_tangent_stride = 0;
int attributes_stride = 0;
int skin_stride = 0;
for (int i = 0; i < RS::ARRAY_INDEX; i++) {
if (!(s->format & (1ULL << i))) {
attribs[i].enabled = false;
attribs[i].integer = false;
continue;
}
attribs[i].enabled = true;
attribs[i].integer = false;
switch (i) {
case RS::ARRAY_VERTEX: {
attribs[i].offset = 0;
attribs[i].type = GL_FLOAT;
attribs[i].normalized = GL_FALSE;
if (s->format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
attribs[i].size = 2;
position_stride = attribs[i].size * sizeof(float);
} else {
if (!mis && (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
attribs[i].size = 4;
position_stride = attribs[i].size * sizeof(uint16_t);
attribs[i].type = GL_UNSIGNED_SHORT;
attribs[i].normalized = GL_TRUE;
} else {
attribs[i].size = 3;
position_stride = attribs[i].size * sizeof(float);
}
}
} break;
case RS::ARRAY_NORMAL: {
if (!mis && (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
attribs[i].size = 2;
normal_tangent_stride += 2 * attribs[i].size;
} else {
attribs[i].size = 4;
// A small trick here: if we are uncompressed and we have normals, but no tangents. We need
// the shader to think there are 4 components to "axis_tangent_attrib". So we give a size of 4,
// but a stride based on only having 2 elements.
if (!(s->format & RS::ARRAY_FORMAT_TANGENT)) {
normal_tangent_stride += (mis ? sizeof(float) : sizeof(uint16_t)) * 2;
} else {
normal_tangent_stride += (mis ? sizeof(float) : sizeof(uint16_t)) * 4;
}
}
if (mis) {
// Transform feedback has interleave all or no attributes. It can't mix interleaving.
attribs[i].offset = position_stride;
normal_tangent_stride += position_stride;
position_stride = normal_tangent_stride;
} else {
attribs[i].offset = position_stride * s->vertex_count;
}
attribs[i].type = (mis ? GL_FLOAT : GL_UNSIGNED_SHORT);
attribs[i].normalized = GL_TRUE;
} break;
case RS::ARRAY_TANGENT: {
// We never use the tangent attribute. It is always packed in ARRAY_NORMAL, or ARRAY_VERTEX.
attribs[i].enabled = false;
attribs[i].integer = false;
} break;
case RS::ARRAY_COLOR: {
attribs[i].offset = attributes_stride;
attribs[i].size = 4;
attribs[i].type = GL_UNSIGNED_BYTE;
attributes_stride += 4;
attribs[i].normalized = GL_TRUE;
} break;
case RS::ARRAY_TEX_UV: {
attribs[i].offset = attributes_stride;
attribs[i].size = 2;
if (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
attribs[i].type = GL_UNSIGNED_SHORT;
attributes_stride += 2 * sizeof(uint16_t);
attribs[i].normalized = GL_TRUE;
} else {
attribs[i].type = GL_FLOAT;
attributes_stride += 2 * sizeof(float);
attribs[i].normalized = GL_FALSE;
}
} break;
case RS::ARRAY_TEX_UV2: {
attribs[i].offset = attributes_stride;
attribs[i].size = 2;
if (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
attribs[i].type = GL_UNSIGNED_SHORT;
attributes_stride += 2 * sizeof(uint16_t);
attribs[i].normalized = GL_TRUE;
} else {
attribs[i].type = GL_FLOAT;
attributes_stride += 2 * sizeof(float);
attribs[i].normalized = GL_FALSE;
}
} break;
case RS::ARRAY_CUSTOM0:
case RS::ARRAY_CUSTOM1:
case RS::ARRAY_CUSTOM2:
case RS::ARRAY_CUSTOM3: {
attribs[i].offset = attributes_stride;
int idx = i - RS::ARRAY_CUSTOM0;
uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
uint32_t fmt = (s->format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
GLenum gl_type[RS::ARRAY_CUSTOM_MAX] = { GL_UNSIGNED_BYTE, GL_BYTE, GL_HALF_FLOAT, GL_HALF_FLOAT, GL_FLOAT, GL_FLOAT, GL_FLOAT, GL_FLOAT };
GLboolean norm[RS::ARRAY_CUSTOM_MAX] = { GL_TRUE, GL_TRUE, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE };
attribs[i].type = gl_type[fmt];
attributes_stride += fmtsize[fmt];
attribs[i].size = fmtsize[fmt] / sizeof(float);
attribs[i].normalized = norm[fmt];
} break;
case RS::ARRAY_BONES: {
attribs[i].offset = skin_stride;
attribs[i].size = 4;
attribs[i].type = GL_UNSIGNED_SHORT;
skin_stride += 4 * sizeof(uint16_t);
attribs[i].normalized = GL_FALSE;
attribs[i].integer = true;
} break;
case RS::ARRAY_WEIGHTS: {
attribs[i].offset = skin_stride;
attribs[i].size = 4;
attribs[i].type = GL_UNSIGNED_SHORT;
skin_stride += 4 * sizeof(uint16_t);
attribs[i].normalized = GL_TRUE;
} break;
}
}
glGenVertexArrays(1, &v.vertex_array);
glBindVertexArray(v.vertex_array);
for (int i = 0; i < RS::ARRAY_INDEX; i++) {
if (!attribs[i].enabled) {
glDisableVertexAttribArray(i);
continue;
}
if (i <= RS::ARRAY_TANGENT) {
attribs[i].stride = (i == RS::ARRAY_VERTEX) ? position_stride : normal_tangent_stride;
if (mis) {
glBindBuffer(GL_ARRAY_BUFFER, mis->vertex_buffer);
} else {
glBindBuffer(GL_ARRAY_BUFFER, s->vertex_buffer);
}
} else if (i <= RS::ARRAY_CUSTOM3) {
attribs[i].stride = attributes_stride;
glBindBuffer(GL_ARRAY_BUFFER, s->attribute_buffer);
} else {
attribs[i].stride = skin_stride;
glBindBuffer(GL_ARRAY_BUFFER, s->skin_buffer);
}
if (attribs[i].integer) {
glVertexAttribIPointer(i, attribs[i].size, attribs[i].type, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset));
} else {
glVertexAttribPointer(i, attribs[i].size, attribs[i].type, attribs[i].normalized, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset));
}
glEnableVertexAttribArray(i);
}
// Do not bind index here as we want to switch between index buffers for LOD
glBindVertexArray(0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
v.input_mask = p_input_mask;
}
/* MESH INSTANCE API */
RID MeshStorage::mesh_instance_create(RID p_base) {
Mesh *mesh = mesh_owner.get_or_null(p_base);
ERR_FAIL_NULL_V(mesh, RID());
RID rid = mesh_instance_owner.make_rid();
MeshInstance *mi = mesh_instance_owner.get_or_null(rid);
mi->mesh = mesh;
for (uint32_t i = 0; i < mesh->surface_count; i++) {
_mesh_instance_add_surface(mi, mesh, i);
}
mi->I = mesh->instances.push_back(mi);
mi->dirty = true;
return rid;
}
void MeshStorage::mesh_instance_free(RID p_rid) {
MeshInstance *mi = mesh_instance_owner.get_or_null(p_rid);
_mesh_instance_clear(mi);
mi->mesh->instances.erase(mi->I);
mi->I = nullptr;
mesh_instance_owner.free(p_rid);
}
void MeshStorage::mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) {
MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
if (mi->skeleton == p_skeleton) {
return;
}
mi->skeleton = p_skeleton;
mi->skeleton_version = 0;
mi->dirty = true;
}
void MeshStorage::mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) {
MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
ERR_FAIL_NULL(mi);
ERR_FAIL_INDEX(p_shape, (int)mi->blend_weights.size());
mi->blend_weights[p_shape] = p_weight;
mi->dirty = true;
}
void MeshStorage::_mesh_instance_clear(MeshInstance *mi) {
for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
if (mi->surfaces[i].version_count != 0) {
for (uint32_t j = 0; j < mi->surfaces[i].version_count; j++) {
glDeleteVertexArrays(1, &mi->surfaces[i].versions[j].vertex_array);
mi->surfaces[i].versions[j].vertex_array = 0;
}
memfree(mi->surfaces[i].versions);
}
if (mi->surfaces[i].vertex_buffers[0] != 0) {
GLES3::Utilities::get_singleton()->buffer_free_data(mi->surfaces[i].vertex_buffers[0]);
GLES3::Utilities::get_singleton()->buffer_free_data(mi->surfaces[i].vertex_buffers[1]);
mi->surfaces[i].vertex_buffers[0] = 0;
mi->surfaces[i].vertex_buffers[1] = 0;
}
if (mi->surfaces[i].vertex_buffer != 0) {
GLES3::Utilities::get_singleton()->buffer_free_data(mi->surfaces[i].vertex_buffer);
mi->surfaces[i].vertex_buffer = 0;
}
}
mi->surfaces.clear();
mi->blend_weights.clear();
mi->skeleton_version = 0;
}
void MeshStorage::_mesh_instance_add_surface(MeshInstance *mi, Mesh *mesh, uint32_t p_surface) {
if (mesh->blend_shape_count > 0) {
mi->blend_weights.resize(mesh->blend_shape_count);
for (uint32_t i = 0; i < mi->blend_weights.size(); i++) {
mi->blend_weights[i] = 0.0;
}
}
MeshInstance::Surface s;
if ((mesh->blend_shape_count > 0 || (mesh->surfaces[p_surface]->format & RS::ARRAY_FORMAT_BONES)) && mesh->surfaces[p_surface]->vertex_buffer_size > 0) {
// Cache surface properties
s.format_cache = mesh->surfaces[p_surface]->format;
if ((s.format_cache & (1ULL << RS::ARRAY_VERTEX))) {
if (s.format_cache & RS::ARRAY_FLAG_USE_2D_VERTICES) {
s.vertex_size_cache = 2;
} else {
s.vertex_size_cache = 3;
}
s.vertex_stride_cache = sizeof(float) * s.vertex_size_cache;
}
if ((s.format_cache & (1ULL << RS::ARRAY_NORMAL))) {
s.vertex_normal_offset_cache = s.vertex_stride_cache;
s.vertex_stride_cache += sizeof(uint32_t) * 2;
}
if ((s.format_cache & (1ULL << RS::ARRAY_TANGENT))) {
s.vertex_tangent_offset_cache = s.vertex_stride_cache;
s.vertex_stride_cache += sizeof(uint32_t) * 2;
}
int buffer_size = s.vertex_stride_cache * mesh->surfaces[p_surface]->vertex_count;
// Buffer to be used for rendering. Final output of skeleton and blend shapes.
glGenBuffers(1, &s.vertex_buffer);
glBindBuffer(GL_ARRAY_BUFFER, s.vertex_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s.vertex_buffer, buffer_size, nullptr, GL_DYNAMIC_DRAW, "MeshInstance vertex buffer");
if (mesh->blend_shape_count > 0) {
// Ping-Pong buffers for processing blendshapes.
glGenBuffers(2, s.vertex_buffers);
for (uint32_t i = 0; i < 2; i++) {
glBindBuffer(GL_ARRAY_BUFFER, s.vertex_buffers[i]);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s.vertex_buffers[i], buffer_size, nullptr, GL_DYNAMIC_DRAW, "MeshInstance process buffer[" + itos(i) + "]");
}
}
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
}
mi->surfaces.push_back(s);
mi->dirty = true;
}
void MeshStorage::mesh_instance_check_for_update(RID p_mesh_instance) {
MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
bool needs_update = mi->dirty;
if (mi->array_update_list.in_list()) {
return;
}
if (!needs_update && mi->skeleton.is_valid()) {
Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
if (sk && sk->version != mi->skeleton_version) {
needs_update = true;
}
}
if (needs_update) {
dirty_mesh_instance_arrays.add(&mi->array_update_list);
}
}
void MeshStorage::mesh_instance_set_canvas_item_transform(RID p_mesh_instance, const Transform2D &p_transform) {
MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
mi->canvas_item_transform_2d = p_transform;
}
void MeshStorage::_blend_shape_bind_mesh_instance_buffer(MeshInstance *p_mi, uint32_t p_surface) {
glBindBuffer(GL_ARRAY_BUFFER, p_mi->surfaces[p_surface].vertex_buffers[0]);
if ((p_mi->surfaces[p_surface].format_cache & (1ULL << RS::ARRAY_VERTEX))) {
glEnableVertexAttribArray(RS::ARRAY_VERTEX);
glVertexAttribPointer(RS::ARRAY_VERTEX, p_mi->surfaces[p_surface].vertex_size_cache, GL_FLOAT, GL_FALSE, p_mi->surfaces[p_surface].vertex_stride_cache, CAST_INT_TO_UCHAR_PTR(0));
} else {
glDisableVertexAttribArray(RS::ARRAY_VERTEX);
}
if ((p_mi->surfaces[p_surface].format_cache & (1ULL << RS::ARRAY_NORMAL))) {
glEnableVertexAttribArray(RS::ARRAY_NORMAL);
glVertexAttribIPointer(RS::ARRAY_NORMAL, 2, GL_UNSIGNED_INT, p_mi->surfaces[p_surface].vertex_stride_cache, CAST_INT_TO_UCHAR_PTR(p_mi->surfaces[p_surface].vertex_normal_offset_cache));
} else {
glDisableVertexAttribArray(RS::ARRAY_NORMAL);
}
if ((p_mi->surfaces[p_surface].format_cache & (1ULL << RS::ARRAY_TANGENT))) {
glEnableVertexAttribArray(RS::ARRAY_TANGENT);
glVertexAttribIPointer(RS::ARRAY_TANGENT, 2, GL_UNSIGNED_INT, p_mi->surfaces[p_surface].vertex_stride_cache, CAST_INT_TO_UCHAR_PTR(p_mi->surfaces[p_surface].vertex_tangent_offset_cache));
} else {
glDisableVertexAttribArray(RS::ARRAY_TANGENT);
}
}
void MeshStorage::_compute_skeleton(MeshInstance *p_mi, Skeleton *p_sk, uint32_t p_surface) {
glBindBuffer(GL_ARRAY_BUFFER, 0);
// Add in the bones and weights.
glBindBuffer(GL_ARRAY_BUFFER, p_mi->mesh->surfaces[p_surface]->skin_buffer);
bool use_8_weights = p_mi->surfaces[p_surface].format_cache & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
int skin_stride = sizeof(int16_t) * (use_8_weights ? 16 : 8);
glEnableVertexAttribArray(RS::ARRAY_BONES);
glVertexAttribIPointer(RS::ARRAY_BONES, 4, GL_UNSIGNED_SHORT, skin_stride, CAST_INT_TO_UCHAR_PTR(0));
if (use_8_weights) {
glEnableVertexAttribArray(11);
glVertexAttribIPointer(11, 4, GL_UNSIGNED_SHORT, skin_stride, CAST_INT_TO_UCHAR_PTR(4 * sizeof(uint16_t)));
glEnableVertexAttribArray(12);
glVertexAttribPointer(12, 4, GL_UNSIGNED_SHORT, GL_TRUE, skin_stride, CAST_INT_TO_UCHAR_PTR(8 * sizeof(uint16_t)));
glEnableVertexAttribArray(13);
glVertexAttribPointer(13, 4, GL_UNSIGNED_SHORT, GL_TRUE, skin_stride, CAST_INT_TO_UCHAR_PTR(12 * sizeof(uint16_t)));
} else {
glEnableVertexAttribArray(RS::ARRAY_WEIGHTS);
glVertexAttribPointer(RS::ARRAY_WEIGHTS, 4, GL_UNSIGNED_SHORT, GL_TRUE, skin_stride, CAST_INT_TO_UCHAR_PTR(4 * sizeof(uint16_t)));
}
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, p_mi->surfaces[p_surface].vertex_buffer);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, p_sk->transforms_texture);
glBeginTransformFeedback(GL_POINTS);
glDrawArrays(GL_POINTS, 0, p_mi->mesh->surfaces[p_surface]->vertex_count);
glEndTransformFeedback();
glDisableVertexAttribArray(RS::ARRAY_BONES);
glDisableVertexAttribArray(RS::ARRAY_WEIGHTS);
glDisableVertexAttribArray(RS::ARRAY_BONES + 2);
glDisableVertexAttribArray(RS::ARRAY_WEIGHTS + 2);
glBindVertexArray(0);
glBindBuffer(GL_TRANSFORM_FEEDBACK_BUFFER, 0);
}
void MeshStorage::update_mesh_instances() {
if (dirty_mesh_instance_arrays.first() == nullptr) {
return; //nothing to do
}
glEnable(GL_RASTERIZER_DISCARD);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// Process skeletons and blend shapes using transform feedback
while (dirty_mesh_instance_arrays.first()) {
MeshInstance *mi = dirty_mesh_instance_arrays.first()->self();
Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
// Precompute base weight if using blend shapes.
float base_weight = 1.0;
if (mi->mesh->blend_shape_count && mi->mesh->blend_shape_mode == RS::BLEND_SHAPE_MODE_NORMALIZED) {
for (uint32_t i = 0; i < mi->mesh->blend_shape_count; i++) {
base_weight -= mi->blend_weights[i];
}
}
for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
if (mi->surfaces[i].vertex_buffer == 0) {
continue;
}
bool array_is_2d = mi->surfaces[i].format_cache & RS::ARRAY_FLAG_USE_2D_VERTICES;
bool can_use_skeleton = sk != nullptr && sk->use_2d == array_is_2d && (mi->surfaces[i].format_cache & RS::ARRAY_FORMAT_BONES);
bool use_8_weights = mi->surfaces[i].format_cache & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
// Always process blend shapes first.
if (mi->mesh->blend_shape_count) {
SkeletonShaderGLES3::ShaderVariant variant = SkeletonShaderGLES3::MODE_BASE_PASS;
uint64_t specialization = 0;
specialization |= array_is_2d ? SkeletonShaderGLES3::MODE_2D : 0;
specialization |= SkeletonShaderGLES3::USE_BLEND_SHAPES;
if (!array_is_2d) {
if ((mi->surfaces[i].format_cache & (1ULL << RS::ARRAY_NORMAL))) {
specialization |= SkeletonShaderGLES3::USE_NORMAL;
}
if ((mi->surfaces[i].format_cache & (1ULL << RS::ARRAY_TANGENT))) {
specialization |= SkeletonShaderGLES3::USE_TANGENT;
}
}
bool success = skeleton_shader.shader.version_bind_shader(skeleton_shader.shader_version, variant, specialization);
if (!success) {
continue;
}
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_WEIGHT, base_weight, skeleton_shader.shader_version, variant, specialization);
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_SHAPE_COUNT, float(mi->mesh->blend_shape_count), skeleton_shader.shader_version, variant, specialization);
glBindBuffer(GL_ARRAY_BUFFER, 0);
GLuint vertex_array_gl = 0;
uint64_t mask = ((1 << 10) - 1) << 3; // Mask from ARRAY_FORMAT_COLOR to ARRAY_FORMAT_INDEX.
mask = ~mask;
uint64_t format = mi->surfaces[i].format_cache & mask; // Format should only have vertex, normal, tangent (as necessary) + compressions.
mesh_surface_get_vertex_arrays_and_format(mi->mesh->surfaces[i], format, vertex_array_gl);
glBindVertexArray(vertex_array_gl);
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, mi->surfaces[i].vertex_buffers[0]);
glBeginTransformFeedback(GL_POINTS);
glDrawArrays(GL_POINTS, 0, mi->mesh->surfaces[i]->vertex_count);
glEndTransformFeedback();
variant = SkeletonShaderGLES3::MODE_BLEND_PASS;
success = skeleton_shader.shader.version_bind_shader(skeleton_shader.shader_version, variant, specialization);
if (!success) {
continue;
}
//Do the last blend shape separately, as it can be combined with the skeleton pass.
for (uint32_t bs = 0; bs < mi->mesh->blend_shape_count - 1; bs++) {
float weight = mi->blend_weights[bs];
if (Math::is_zero_approx(weight)) {
//not bother with this one
continue;
}
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_WEIGHT, weight, skeleton_shader.shader_version, variant, specialization);
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_SHAPE_COUNT, float(mi->mesh->blend_shape_count), skeleton_shader.shader_version, variant, specialization);
glBindVertexArray(mi->mesh->surfaces[i]->blend_shapes[bs].vertex_array);
_blend_shape_bind_mesh_instance_buffer(mi, i);
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, mi->surfaces[i].vertex_buffers[1]);
glBeginTransformFeedback(GL_POINTS);
glDrawArrays(GL_POINTS, 0, mi->mesh->surfaces[i]->vertex_count);
glEndTransformFeedback();
SWAP(mi->surfaces[i].vertex_buffers[0], mi->surfaces[i].vertex_buffers[1]);
}
uint32_t bs = mi->mesh->blend_shape_count - 1;
float weight = mi->blend_weights[bs];
glBindVertexArray(mi->mesh->surfaces[i]->blend_shapes[bs].vertex_array);
_blend_shape_bind_mesh_instance_buffer(mi, i);
specialization |= can_use_skeleton ? SkeletonShaderGLES3::USE_SKELETON : 0;
specialization |= (can_use_skeleton && use_8_weights) ? SkeletonShaderGLES3::USE_EIGHT_WEIGHTS : 0;
specialization |= SkeletonShaderGLES3::FINAL_PASS;
success = skeleton_shader.shader.version_bind_shader(skeleton_shader.shader_version, variant, specialization);
if (!success) {
continue;
}
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_WEIGHT, weight, skeleton_shader.shader_version, variant, specialization);
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_SHAPE_COUNT, float(mi->mesh->blend_shape_count), skeleton_shader.shader_version, variant, specialization);
if (can_use_skeleton) {
Transform2D transform = mi->canvas_item_transform_2d.affine_inverse() * sk->base_transform_2d;
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_X, transform[0], skeleton_shader.shader_version, variant, specialization);
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_Y, transform[1], skeleton_shader.shader_version, variant, specialization);
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_OFFSET, transform[2], skeleton_shader.shader_version, variant, specialization);
Transform2D inverse_transform = transform.affine_inverse();
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_X, inverse_transform[0], skeleton_shader.shader_version, variant, specialization);
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_Y, inverse_transform[1], skeleton_shader.shader_version, variant, specialization);
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_OFFSET, inverse_transform[2], skeleton_shader.shader_version, variant, specialization);
// Do last blendshape in the same pass as the Skeleton.
_compute_skeleton(mi, sk, i);
can_use_skeleton = false;
} else {
// Do last blendshape by itself and prepare vertex data for use by the renderer.
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, mi->surfaces[i].vertex_buffer);
glBeginTransformFeedback(GL_POINTS);
glDrawArrays(GL_POINTS, 0, mi->mesh->surfaces[i]->vertex_count);
glEndTransformFeedback();
}
glBindVertexArray(0);
glBindBuffer(GL_TRANSFORM_FEEDBACK_BUFFER, 0);
}
// This branch should only execute when Skeleton is run by itself.
if (can_use_skeleton) {
SkeletonShaderGLES3::ShaderVariant variant = SkeletonShaderGLES3::MODE_BASE_PASS;
uint64_t specialization = 0;
specialization |= array_is_2d ? SkeletonShaderGLES3::MODE_2D : 0;
specialization |= SkeletonShaderGLES3::USE_SKELETON;
specialization |= SkeletonShaderGLES3::FINAL_PASS;
specialization |= use_8_weights ? SkeletonShaderGLES3::USE_EIGHT_WEIGHTS : 0;
if (!array_is_2d) {
if ((mi->surfaces[i].format_cache & (1ULL << RS::ARRAY_NORMAL))) {
specialization |= SkeletonShaderGLES3::USE_NORMAL;
}
if ((mi->surfaces[i].format_cache & (1ULL << RS::ARRAY_TANGENT))) {
specialization |= SkeletonShaderGLES3::USE_TANGENT;
}
}
bool success = skeleton_shader.shader.version_bind_shader(skeleton_shader.shader_version, variant, specialization);
if (!success) {
continue;
}
Transform2D transform = mi->canvas_item_transform_2d.affine_inverse() * sk->base_transform_2d;
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_X, transform[0], skeleton_shader.shader_version, variant, specialization);
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_Y, transform[1], skeleton_shader.shader_version, variant, specialization);
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_OFFSET, transform[2], skeleton_shader.shader_version, variant, specialization);
Transform2D inverse_transform = transform.affine_inverse();
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_X, inverse_transform[0], skeleton_shader.shader_version, variant, specialization);
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_Y, inverse_transform[1], skeleton_shader.shader_version, variant, specialization);
skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_OFFSET, inverse_transform[2], skeleton_shader.shader_version, variant, specialization);
GLuint vertex_array_gl = 0;
uint64_t mask = ((1 << 10) - 1) << 3; // Mask from ARRAY_FORMAT_COLOR to ARRAY_FORMAT_INDEX.
mask = ~mask;
uint64_t format = mi->surfaces[i].format_cache & mask; // Format should only have vertex, normal, tangent (as necessary) + compressions.
mesh_surface_get_vertex_arrays_and_format(mi->mesh->surfaces[i], format, vertex_array_gl);
glBindVertexArray(vertex_array_gl);
_compute_skeleton(mi, sk, i);
}
}
mi->dirty = false;
if (sk) {
mi->skeleton_version = sk->version;
}
dirty_mesh_instance_arrays.remove(&mi->array_update_list);
}
glDisable(GL_RASTERIZER_DISCARD);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, 0);
}
/* MULTIMESH API */
RID MeshStorage::multimesh_allocate() {
return multimesh_owner.allocate_rid();
}
void MeshStorage::multimesh_initialize(RID p_rid) {
multimesh_owner.initialize_rid(p_rid, MultiMesh());
}
void MeshStorage::multimesh_free(RID p_rid) {
_update_dirty_multimeshes();
multimesh_allocate_data(p_rid, 0, RS::MULTIMESH_TRANSFORM_2D);
MultiMesh *multimesh = multimesh_owner.get_or_null(p_rid);
multimesh->dependency.deleted_notify(p_rid);
multimesh_owner.free(p_rid);
}
void MeshStorage::multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data) {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
ERR_FAIL_NULL(multimesh);
if (multimesh->instances == p_instances && multimesh->xform_format == p_transform_format && multimesh->uses_colors == p_use_colors && multimesh->uses_custom_data == p_use_custom_data) {
return;
}
if (multimesh->buffer) {
GLES3::Utilities::get_singleton()->buffer_free_data(multimesh->buffer);
multimesh->buffer = 0;
}
if (multimesh->data_cache_dirty_regions) {
memdelete_arr(multimesh->data_cache_dirty_regions);
multimesh->data_cache_dirty_regions = nullptr;
multimesh->data_cache_used_dirty_regions = 0;
}
// If we have either color or custom data, reserve space for both to make data handling logic simpler.
// This way we can always treat them both as a single, compressed uvec4.
int color_and_custom_strides = (p_use_colors || p_use_custom_data) ? 2 : 0;
multimesh->instances = p_instances;
multimesh->xform_format = p_transform_format;
multimesh->uses_colors = p_use_colors;
multimesh->color_offset_cache = p_transform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
multimesh->uses_custom_data = p_use_custom_data;
multimesh->custom_data_offset_cache = multimesh->color_offset_cache + color_and_custom_strides;
multimesh->stride_cache = multimesh->custom_data_offset_cache + color_and_custom_strides;
multimesh->buffer_set = false;
multimesh->data_cache = Vector<float>();
multimesh->aabb = AABB();
multimesh->aabb_dirty = false;
multimesh->visible_instances = MIN(multimesh->visible_instances, multimesh->instances);
if (multimesh->instances) {
glGenBuffers(1, &multimesh->buffer);
glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, multimesh->buffer, multimesh->instances * multimesh->stride_cache * sizeof(float), nullptr, GL_STATIC_DRAW, "MultiMesh buffer");
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
}
int MeshStorage::multimesh_get_instance_count(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
ERR_FAIL_NULL_V(multimesh, 0);
return multimesh->instances;
}
void MeshStorage::multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
ERR_FAIL_NULL(multimesh);
if (multimesh->mesh == p_mesh || p_mesh.is_null()) {
return;
}
multimesh->mesh = p_mesh;
if (multimesh->instances == 0) {
return;
}
if (multimesh->data_cache.size()) {
//we have a data cache, just mark it dirty
_multimesh_mark_all_dirty(multimesh, false, true);
} else if (multimesh->instances) {
// Need to re-create AABB. Unfortunately, calling this has a penalty.
if (multimesh->buffer_set) {
Vector<uint8_t> buffer = Utilities::buffer_get_data(GL_ARRAY_BUFFER, multimesh->buffer, multimesh->instances * multimesh->stride_cache * sizeof(float));
const uint8_t *r = buffer.ptr();
const float *data = (const float *)r;
_multimesh_re_create_aabb(multimesh, data, multimesh->instances);
}
}
multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
}
#define MULTIMESH_DIRTY_REGION_SIZE 512
void MeshStorage::_multimesh_make_local(MultiMesh *multimesh) const {
if (multimesh->data_cache.size() > 0 || multimesh->instances == 0) {
return; //already local
}
ERR_FAIL_COND(multimesh->data_cache.size() > 0);
// this means that the user wants to load/save individual elements,
// for this, the data must reside on CPU, so just copy it there.
multimesh->data_cache.resize(multimesh->instances * multimesh->stride_cache);
{
float *w = multimesh->data_cache.ptrw();
if (multimesh->buffer_set) {
Vector<uint8_t> buffer = Utilities::buffer_get_data(GL_ARRAY_BUFFER, multimesh->buffer, multimesh->instances * multimesh->stride_cache * sizeof(float));
{
const uint8_t *r = buffer.ptr();
memcpy(w, r, buffer.size());
}
} else {
memset(w, 0, (size_t)multimesh->instances * multimesh->stride_cache * sizeof(float));
}
}
uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
multimesh->data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
multimesh->data_cache_dirty_regions[i] = false;
}
multimesh->data_cache_used_dirty_regions = 0;
}
void MeshStorage::_multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb) {
uint32_t region_index = p_index / MULTIMESH_DIRTY_REGION_SIZE;
#ifdef DEBUG_ENABLED
uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
ERR_FAIL_UNSIGNED_INDEX(region_index, data_cache_dirty_region_count); //bug
#endif
if (!multimesh->data_cache_dirty_regions[region_index]) {
multimesh->data_cache_dirty_regions[region_index] = true;
multimesh->data_cache_used_dirty_regions++;
}
if (p_aabb) {
multimesh->aabb_dirty = true;
}
if (!multimesh->dirty) {
multimesh->dirty_list = multimesh_dirty_list;
multimesh_dirty_list = multimesh;
multimesh->dirty = true;
}
}
void MeshStorage::_multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb) {
if (p_data) {
uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
if (!multimesh->data_cache_dirty_regions[i]) {
multimesh->data_cache_dirty_regions[i] = true;
multimesh->data_cache_used_dirty_regions++;
}
}
}
if (p_aabb) {
multimesh->aabb_dirty = true;
}
if (!multimesh->dirty) {
multimesh->dirty_list = multimesh_dirty_list;
multimesh_dirty_list = multimesh;
multimesh->dirty = true;
}
}
void MeshStorage::_multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances) {
ERR_FAIL_COND(multimesh->mesh.is_null());
AABB aabb;
AABB mesh_aabb = mesh_get_aabb(multimesh->mesh);
for (int i = 0; i < p_instances; i++) {
const float *data = p_data + multimesh->stride_cache * i;
Transform3D t;
if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
t.basis.rows[0][0] = data[0];
t.basis.rows[0][1] = data[1];
t.basis.rows[0][2] = data[2];
t.origin.x = data[3];
t.basis.rows[1][0] = data[4];
t.basis.rows[1][1] = data[5];
t.basis.rows[1][2] = data[6];
t.origin.y = data[7];
t.basis.rows[2][0] = data[8];
t.basis.rows[2][1] = data[9];
t.basis.rows[2][2] = data[10];
t.origin.z = data[11];
} else {
t.basis.rows[0][0] = data[0];
t.basis.rows[0][1] = data[1];
t.origin.x = data[3];
t.basis.rows[1][0] = data[4];
t.basis.rows[1][1] = data[5];
t.origin.y = data[7];
}
if (i == 0) {
aabb = t.xform(mesh_aabb);
} else {
aabb.merge_with(t.xform(mesh_aabb));
}
}
multimesh->aabb = aabb;
}
void MeshStorage::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
ERR_FAIL_NULL(multimesh);
ERR_FAIL_INDEX(p_index, multimesh->instances);
ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D);
_multimesh_make_local(multimesh);
{
float *w = multimesh->data_cache.ptrw();
float *dataptr = w + p_index * multimesh->stride_cache;
dataptr[0] = p_transform.basis.rows[0][0];
dataptr[1] = p_transform.basis.rows[0][1];
dataptr[2] = p_transform.basis.rows[0][2];
dataptr[3] = p_transform.origin.x;
dataptr[4] = p_transform.basis.rows[1][0];
dataptr[5] = p_transform.basis.rows[1][1];
dataptr[6] = p_transform.basis.rows[1][2];
dataptr[7] = p_transform.origin.y;
dataptr[8] = p_transform.basis.rows[2][0];
dataptr[9] = p_transform.basis.rows[2][1];
dataptr[10] = p_transform.basis.rows[2][2];
dataptr[11] = p_transform.origin.z;
}
_multimesh_mark_dirty(multimesh, p_index, true);
}
void MeshStorage::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
ERR_FAIL_NULL(multimesh);
ERR_FAIL_INDEX(p_index, multimesh->instances);
ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D);
_multimesh_make_local(multimesh);
{
float *w = multimesh->data_cache.ptrw();
float *dataptr = w + p_index * multimesh->stride_cache;
dataptr[0] = p_transform.columns[0][0];
dataptr[1] = p_transform.columns[1][0];
dataptr[2] = 0;
dataptr[3] = p_transform.columns[2][0];
dataptr[4] = p_transform.columns[0][1];
dataptr[5] = p_transform.columns[1][1];
dataptr[6] = 0;
dataptr[7] = p_transform.columns[2][1];
}
_multimesh_mark_dirty(multimesh, p_index, true);
}
void MeshStorage::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
ERR_FAIL_NULL(multimesh);
ERR_FAIL_INDEX(p_index, multimesh->instances);
ERR_FAIL_COND(!multimesh->uses_colors);
_multimesh_make_local(multimesh);
{
// Colors are packed into 2 floats.
float *w = multimesh->data_cache.ptrw();
float *dataptr = w + p_index * multimesh->stride_cache + multimesh->color_offset_cache;
uint16_t val[4] = { Math::make_half_float(p_color.r), Math::make_half_float(p_color.g), Math::make_half_float(p_color.b), Math::make_half_float(p_color.a) };
memcpy(dataptr, val, 2 * 4);
}
_multimesh_mark_dirty(multimesh, p_index, false);
}
void MeshStorage::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
ERR_FAIL_NULL(multimesh);
ERR_FAIL_INDEX(p_index, multimesh->instances);
ERR_FAIL_COND(!multimesh->uses_custom_data);
_multimesh_make_local(multimesh);
{
float *w = multimesh->data_cache.ptrw();
float *dataptr = w + p_index * multimesh->stride_cache + multimesh->custom_data_offset_cache;
uint16_t val[4] = { Math::make_half_float(p_color.r), Math::make_half_float(p_color.g), Math::make_half_float(p_color.b), Math::make_half_float(p_color.a) };
memcpy(dataptr, val, 2 * 4);
}
_multimesh_mark_dirty(multimesh, p_index, false);
}
RID MeshStorage::multimesh_get_mesh(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
ERR_FAIL_NULL_V(multimesh, RID());
return multimesh->mesh;
}
AABB MeshStorage::multimesh_get_aabb(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
ERR_FAIL_NULL_V(multimesh, AABB());
if (multimesh->aabb_dirty) {
const_cast<MeshStorage *>(this)->_update_dirty_multimeshes();
}
return multimesh->aabb;
}
Transform3D MeshStorage::multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
ERR_FAIL_NULL_V(multimesh, Transform3D());
ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform3D());
ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D, Transform3D());
_multimesh_make_local(multimesh);
Transform3D t;
{
const float *r = multimesh->data_cache.ptr();
const float *dataptr = r + p_index * multimesh->stride_cache;
t.basis.rows[0][0] = dataptr[0];
t.basis.rows[0][1] = dataptr[1];
t.basis.rows[0][2] = dataptr[2];
t.origin.x = dataptr[3];
t.basis.rows[1][0] = dataptr[4];
t.basis.rows[1][1] = dataptr[5];
t.basis.rows[1][2] = dataptr[6];
t.origin.y = dataptr[7];
t.basis.rows[2][0] = dataptr[8];
t.basis.rows[2][1] = dataptr[9];
t.basis.rows[2][2] = dataptr[10];
t.origin.z = dataptr[11];
}
return t;
}
Transform2D MeshStorage::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
ERR_FAIL_NULL_V(multimesh, Transform2D());
ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform2D());
ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D, Transform2D());
_multimesh_make_local(multimesh);
Transform2D t;
{
const float *r = multimesh->data_cache.ptr();
const float *dataptr = r + p_index * multimesh->stride_cache;
t.columns[0][0] = dataptr[0];
t.columns[1][0] = dataptr[1];
t.columns[2][0] = dataptr[3];
t.columns[0][1] = dataptr[4];
t.columns[1][1] = dataptr[5];
t.columns[2][1] = dataptr[7];
}
return t;
}
Color MeshStorage::multimesh_instance_get_color(RID p_multimesh, int p_index) const {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
ERR_FAIL_NULL_V(multimesh, Color());
ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
ERR_FAIL_COND_V(!multimesh->uses_colors, Color());
_multimesh_make_local(multimesh);
Color c;
{
const float *r = multimesh->data_cache.ptr();
const float *dataptr = r + p_index * multimesh->stride_cache + multimesh->color_offset_cache;
uint16_t raw_data[4];
memcpy(raw_data, dataptr, 2 * 4);
c.r = Math::half_to_float(raw_data[0]);
c.g = Math::half_to_float(raw_data[1]);
c.b = Math::half_to_float(raw_data[2]);
c.a = Math::half_to_float(raw_data[3]);
}
return c;
}
Color MeshStorage::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
ERR_FAIL_NULL_V(multimesh, Color());
ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
ERR_FAIL_COND_V(!multimesh->uses_custom_data, Color());
_multimesh_make_local(multimesh);
Color c;
{
const float *r = multimesh->data_cache.ptr();
const float *dataptr = r + p_index * multimesh->stride_cache + multimesh->custom_data_offset_cache;
uint16_t raw_data[4];
memcpy(raw_data, dataptr, 2 * 4);
c.r = Math::half_to_float(raw_data[0]);
c.g = Math::half_to_float(raw_data[1]);
c.b = Math::half_to_float(raw_data[2]);
c.a = Math::half_to_float(raw_data[3]);
}
return c;
}
void MeshStorage::multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer) {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
ERR_FAIL_NULL(multimesh);
if (multimesh->uses_colors || multimesh->uses_custom_data) {
// Color and custom need to be packed so copy buffer to data_cache and pack.
_multimesh_make_local(multimesh);
uint32_t old_stride = multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
old_stride += multimesh->uses_colors ? 4 : 0;
old_stride += multimesh->uses_custom_data ? 4 : 0;
ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)old_stride));
multimesh->data_cache = p_buffer;
float *w = multimesh->data_cache.ptrw();
for (int i = 0; i < multimesh->instances; i++) {
{
float *dataptr = w + i * old_stride;
float *newptr = w + i * multimesh->stride_cache;
float vals[8] = { dataptr[0], dataptr[1], dataptr[2], dataptr[3], dataptr[4], dataptr[5], dataptr[6], dataptr[7] };
memcpy(newptr, vals, 8 * 4);
}
if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
float *dataptr = w + i * old_stride + 8;
float *newptr = w + i * multimesh->stride_cache + 8;
float vals[8] = { dataptr[0], dataptr[1], dataptr[2], dataptr[3] };
memcpy(newptr, vals, 4 * 4);
}
if (multimesh->uses_colors) {
float *dataptr = w + i * old_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12);
float *newptr = w + i * multimesh->stride_cache + multimesh->color_offset_cache;
uint16_t val[4] = { Math::make_half_float(dataptr[0]), Math::make_half_float(dataptr[1]), Math::make_half_float(dataptr[2]), Math::make_half_float(dataptr[3]) };
memcpy(newptr, val, 2 * 4);
}
if (multimesh->uses_custom_data) {
float *dataptr = w + i * old_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12) + (multimesh->uses_colors ? 4 : 0);
float *newptr = w + i * multimesh->stride_cache + multimesh->custom_data_offset_cache;
uint16_t val[4] = { Math::make_half_float(dataptr[0]), Math::make_half_float(dataptr[1]), Math::make_half_float(dataptr[2]), Math::make_half_float(dataptr[3]) };
memcpy(newptr, val, 2 * 4);
}
}
multimesh->data_cache.resize(multimesh->instances * (int)multimesh->stride_cache);
const float *r = multimesh->data_cache.ptr();
glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
glBufferData(GL_ARRAY_BUFFER, multimesh->data_cache.size() * sizeof(float), r, GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
} else {
// Only Transform is being used, so we can upload directly.
ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)multimesh->stride_cache));
const float *r = p_buffer.ptr();
glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
glBufferData(GL_ARRAY_BUFFER, p_buffer.size() * sizeof(float), r, GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
multimesh->buffer_set = true;
if (multimesh->data_cache.size() || multimesh->uses_colors || multimesh->uses_custom_data) {
//if we have a data cache, just update it
multimesh->data_cache = multimesh->data_cache;
{
//clear dirty since nothing will be dirty anymore
uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
multimesh->data_cache_dirty_regions[i] = false;
}
multimesh->data_cache_used_dirty_regions = 0;
}
_multimesh_mark_all_dirty(multimesh, false, true); //update AABB
} else if (multimesh->mesh.is_valid()) {
//if we have a mesh set, we need to re-generate the AABB from the new data
const float *data = p_buffer.ptr();
_multimesh_re_create_aabb(multimesh, data, multimesh->instances);
multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
}
}
Vector<float> MeshStorage::multimesh_get_buffer(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
ERR_FAIL_NULL_V(multimesh, Vector<float>());
Vector<float> ret;
if (multimesh->buffer == 0 || multimesh->instances == 0) {
return Vector<float>();
} else if (multimesh->data_cache.size()) {
ret = multimesh->data_cache;
} else {
// Buffer not cached, so fetch from GPU memory. This can be a stalling operation, avoid whenever possible.
Vector<uint8_t> buffer = Utilities::buffer_get_data(GL_ARRAY_BUFFER, multimesh->buffer, multimesh->instances * multimesh->stride_cache * sizeof(float));
ret.resize(multimesh->instances * multimesh->stride_cache);
{
float *w = ret.ptrw();
const uint8_t *r = buffer.ptr();
memcpy(w, r, buffer.size());
}
}
if (multimesh->uses_colors || multimesh->uses_custom_data) {
// Need to decompress buffer.
uint32_t new_stride = multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
new_stride += multimesh->uses_colors ? 4 : 0;
new_stride += multimesh->uses_custom_data ? 4 : 0;
Vector<float> decompressed;
decompressed.resize(multimesh->instances * (int)new_stride);
float *w = decompressed.ptrw();
const float *r = ret.ptr();
for (int i = 0; i < multimesh->instances; i++) {
{
float *newptr = w + i * new_stride;
const float *oldptr = r + i * multimesh->stride_cache;
float vals[8] = { oldptr[0], oldptr[1], oldptr[2], oldptr[3], oldptr[4], oldptr[5], oldptr[6], oldptr[7] };
memcpy(newptr, vals, 8 * 4);
}
if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
float *newptr = w + i * new_stride + 8;
const float *oldptr = r + i * multimesh->stride_cache + 8;
float vals[8] = { oldptr[0], oldptr[1], oldptr[2], oldptr[3] };
memcpy(newptr, vals, 4 * 4);
}
if (multimesh->uses_colors) {
float *newptr = w + i * new_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12);
const float *oldptr = r + i * multimesh->stride_cache + multimesh->color_offset_cache;
uint16_t raw_data[4];
memcpy(raw_data, oldptr, 2 * 4);
newptr[0] = Math::half_to_float(raw_data[0]);
newptr[1] = Math::half_to_float(raw_data[1]);
newptr[2] = Math::half_to_float(raw_data[2]);
newptr[3] = Math::half_to_float(raw_data[3]);
}
if (multimesh->uses_custom_data) {
float *newptr = w + i * new_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12) + (multimesh->uses_colors ? 4 : 0);
const float *oldptr = r + i * multimesh->stride_cache + multimesh->custom_data_offset_cache;
uint16_t raw_data[4];
memcpy(raw_data, oldptr, 2 * 4);
newptr[0] = Math::half_to_float(raw_data[0]);
newptr[1] = Math::half_to_float(raw_data[1]);
newptr[2] = Math::half_to_float(raw_data[2]);
newptr[3] = Math::half_to_float(raw_data[3]);
}
}
return decompressed;
} else {
return ret;
}
}
void MeshStorage::multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
ERR_FAIL_NULL(multimesh);
ERR_FAIL_COND(p_visible < -1 || p_visible > multimesh->instances);
if (multimesh->visible_instances == p_visible) {
return;
}
if (multimesh->data_cache.size()) {
// There is a data cache, but we may need to update some sections.
_multimesh_mark_all_dirty(multimesh, false, true);
int start = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
for (int i = start; i < p_visible; i++) {
_multimesh_mark_dirty(multimesh, i, true);
}
}
multimesh->visible_instances = p_visible;
multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES);
}
int MeshStorage::multimesh_get_visible_instances(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
ERR_FAIL_NULL_V(multimesh, 0);
return multimesh->visible_instances;
}
void MeshStorage::_update_dirty_multimeshes() {
while (multimesh_dirty_list) {
MultiMesh *multimesh = multimesh_dirty_list;
if (multimesh->data_cache.size()) { //may have been cleared, so only process if it exists
const float *data = multimesh->data_cache.ptr();
uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
if (multimesh->data_cache_used_dirty_regions) {
uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
uint32_t visible_region_count = visible_instances == 0 ? 0 : (visible_instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
GLint region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
if (multimesh->data_cache_used_dirty_regions > 32 || multimesh->data_cache_used_dirty_regions > visible_region_count / 2) {
// If there too many dirty regions, or represent the majority of regions, just copy all, else transfer cost piles up too much
glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
glBufferSubData(GL_ARRAY_BUFFER, 0, MIN(visible_region_count * region_size, multimesh->instances * multimesh->stride_cache * sizeof(float)), data);
glBindBuffer(GL_ARRAY_BUFFER, 0);
} else {
// Not that many regions? update them all
// TODO: profile the performance cost on low end
glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
for (uint32_t i = 0; i < visible_region_count; i++) {
if (multimesh->data_cache_dirty_regions[i]) {
GLint offset = i * region_size;
GLint size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
uint32_t region_start_index = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * i;
glBufferSubData(GL_ARRAY_BUFFER, offset, MIN(region_size, size - offset), &data[region_start_index]);
}
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
multimesh->data_cache_dirty_regions[i] = false;
}
multimesh->data_cache_used_dirty_regions = 0;
}
if (multimesh->aabb_dirty && multimesh->mesh.is_valid()) {
_multimesh_re_create_aabb(multimesh, data, visible_instances);
multimesh->aabb_dirty = false;
multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
}
}
multimesh_dirty_list = multimesh->dirty_list;
multimesh->dirty_list = nullptr;
multimesh->dirty = false;
}
multimesh_dirty_list = nullptr;
}
/* SKELETON API */
RID MeshStorage::skeleton_allocate() {
return skeleton_owner.allocate_rid();
}
void MeshStorage::skeleton_initialize(RID p_rid) {
skeleton_owner.initialize_rid(p_rid, Skeleton());
}
void MeshStorage::skeleton_free(RID p_rid) {
_update_dirty_skeletons();
skeleton_allocate_data(p_rid, 0);
Skeleton *skeleton = skeleton_owner.get_or_null(p_rid);
skeleton->dependency.deleted_notify(p_rid);
skeleton_owner.free(p_rid);
}
void MeshStorage::_skeleton_make_dirty(Skeleton *skeleton) {
if (!skeleton->dirty) {
skeleton->dirty = true;
skeleton->dirty_list = skeleton_dirty_list;
skeleton_dirty_list = skeleton;
}
}
void MeshStorage::skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton) {
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
ERR_FAIL_NULL(skeleton);
ERR_FAIL_COND(p_bones < 0);
if (skeleton->size == p_bones && skeleton->use_2d == p_2d_skeleton) {
return;
}
skeleton->size = p_bones;
skeleton->use_2d = p_2d_skeleton;
skeleton->height = (p_bones * (p_2d_skeleton ? 2 : 3)) / 256;
if ((p_bones * (p_2d_skeleton ? 2 : 3)) % 256) {
skeleton->height++;
}
if (skeleton->transforms_texture != 0) {
GLES3::Utilities::get_singleton()->texture_free_data(skeleton->transforms_texture);
skeleton->transforms_texture = 0;
skeleton->data.clear();
}
if (skeleton->size) {
skeleton->data.resize(256 * skeleton->height * 4);
glGenTextures(1, &skeleton->transforms_texture);
glBindTexture(GL_TEXTURE_2D, skeleton->transforms_texture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, 256, skeleton->height, 0, GL_RGBA, GL_FLOAT, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glBindTexture(GL_TEXTURE_2D, 0);
GLES3::Utilities::get_singleton()->texture_allocated_data(skeleton->transforms_texture, skeleton->data.size() * sizeof(float), "Skeleton transforms texture");
memset(skeleton->data.ptrw(), 0, skeleton->data.size() * sizeof(float));
_skeleton_make_dirty(skeleton);
}
skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_DATA);
}
void MeshStorage::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
ERR_FAIL_NULL(skeleton);
ERR_FAIL_COND(!skeleton->use_2d);
skeleton->base_transform_2d = p_base_transform;
}
int MeshStorage::skeleton_get_bone_count(RID p_skeleton) const {
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
ERR_FAIL_NULL_V(skeleton, 0);
return skeleton->size;
}
void MeshStorage::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) {
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
ERR_FAIL_NULL(skeleton);
ERR_FAIL_INDEX(p_bone, skeleton->size);
ERR_FAIL_COND(skeleton->use_2d);
float *dataptr = skeleton->data.ptrw() + p_bone * 12;
dataptr[0] = p_transform.basis.rows[0][0];
dataptr[1] = p_transform.basis.rows[0][1];
dataptr[2] = p_transform.basis.rows[0][2];
dataptr[3] = p_transform.origin.x;
dataptr[4] = p_transform.basis.rows[1][0];
dataptr[5] = p_transform.basis.rows[1][1];
dataptr[6] = p_transform.basis.rows[1][2];
dataptr[7] = p_transform.origin.y;
dataptr[8] = p_transform.basis.rows[2][0];
dataptr[9] = p_transform.basis.rows[2][1];
dataptr[10] = p_transform.basis.rows[2][2];
dataptr[11] = p_transform.origin.z;
_skeleton_make_dirty(skeleton);
}
Transform3D MeshStorage::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const {
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
ERR_FAIL_NULL_V(skeleton, Transform3D());
ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform3D());
ERR_FAIL_COND_V(skeleton->use_2d, Transform3D());
const float *dataptr = skeleton->data.ptr() + p_bone * 12;
Transform3D t;
t.basis.rows[0][0] = dataptr[0];
t.basis.rows[0][1] = dataptr[1];
t.basis.rows[0][2] = dataptr[2];
t.origin.x = dataptr[3];
t.basis.rows[1][0] = dataptr[4];
t.basis.rows[1][1] = dataptr[5];
t.basis.rows[1][2] = dataptr[6];
t.origin.y = dataptr[7];
t.basis.rows[2][0] = dataptr[8];
t.basis.rows[2][1] = dataptr[9];
t.basis.rows[2][2] = dataptr[10];
t.origin.z = dataptr[11];
return t;
}
void MeshStorage::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
ERR_FAIL_NULL(skeleton);
ERR_FAIL_INDEX(p_bone, skeleton->size);
ERR_FAIL_COND(!skeleton->use_2d);
float *dataptr = skeleton->data.ptrw() + p_bone * 8;
dataptr[0] = p_transform.columns[0][0];
dataptr[1] = p_transform.columns[1][0];
dataptr[2] = 0;
dataptr[3] = p_transform.columns[2][0];
dataptr[4] = p_transform.columns[0][1];
dataptr[5] = p_transform.columns[1][1];
dataptr[6] = 0;
dataptr[7] = p_transform.columns[2][1];
_skeleton_make_dirty(skeleton);
}
Transform2D MeshStorage::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const {
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
ERR_FAIL_NULL_V(skeleton, Transform2D());
ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform2D());
ERR_FAIL_COND_V(!skeleton->use_2d, Transform2D());
const float *dataptr = skeleton->data.ptr() + p_bone * 8;
Transform2D t;
t.columns[0][0] = dataptr[0];
t.columns[1][0] = dataptr[1];
t.columns[2][0] = dataptr[3];
t.columns[0][1] = dataptr[4];
t.columns[1][1] = dataptr[5];
t.columns[2][1] = dataptr[7];
return t;
}
void MeshStorage::_update_dirty_skeletons() {
while (skeleton_dirty_list) {
Skeleton *skeleton = skeleton_dirty_list;
if (skeleton->size) {
glBindTexture(GL_TEXTURE_2D, skeleton->transforms_texture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, 256, skeleton->height, 0, GL_RGBA, GL_FLOAT, skeleton->data.ptr());
glBindTexture(GL_TEXTURE_2D, 0);
}
skeleton_dirty_list = skeleton->dirty_list;
skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_BONES);
skeleton->version++;
skeleton->dirty = false;
skeleton->dirty_list = nullptr;
}
skeleton_dirty_list = nullptr;
}
void MeshStorage::skeleton_update_dependency(RID p_skeleton, DependencyTracker *p_instance) {
Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
ERR_FAIL_NULL(skeleton);
p_instance->update_dependency(&skeleton->dependency);
}
#endif // GLES3_ENABLED