87f37bc5a3
-Built-in version of the library for Windows, Android and iOS (other OSs use system one) -Small fixes all around
1030 lines
23 KiB
C
1030 lines
23 KiB
C
/* crypto/bn/bn_asm.c */
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
|
|
#ifndef BN_DEBUG
|
|
# undef NDEBUG /* avoid conflicting definitions */
|
|
# define NDEBUG
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
#include "cryptlib.h"
|
|
#include "bn_lcl.h"
|
|
|
|
#if defined(BN_LLONG) || defined(BN_UMULT_HIGH)
|
|
|
|
BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
|
|
{
|
|
BN_ULONG c1=0;
|
|
|
|
assert(num >= 0);
|
|
if (num <= 0) return(c1);
|
|
|
|
#ifndef OPENSSL_SMALL_FOOTPRINT
|
|
while (num&~3)
|
|
{
|
|
mul_add(rp[0],ap[0],w,c1);
|
|
mul_add(rp[1],ap[1],w,c1);
|
|
mul_add(rp[2],ap[2],w,c1);
|
|
mul_add(rp[3],ap[3],w,c1);
|
|
ap+=4; rp+=4; num-=4;
|
|
}
|
|
#endif
|
|
while (num)
|
|
{
|
|
mul_add(rp[0],ap[0],w,c1);
|
|
ap++; rp++; num--;
|
|
}
|
|
|
|
return(c1);
|
|
}
|
|
|
|
BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
|
|
{
|
|
BN_ULONG c1=0;
|
|
|
|
assert(num >= 0);
|
|
if (num <= 0) return(c1);
|
|
|
|
#ifndef OPENSSL_SMALL_FOOTPRINT
|
|
while (num&~3)
|
|
{
|
|
mul(rp[0],ap[0],w,c1);
|
|
mul(rp[1],ap[1],w,c1);
|
|
mul(rp[2],ap[2],w,c1);
|
|
mul(rp[3],ap[3],w,c1);
|
|
ap+=4; rp+=4; num-=4;
|
|
}
|
|
#endif
|
|
while (num)
|
|
{
|
|
mul(rp[0],ap[0],w,c1);
|
|
ap++; rp++; num--;
|
|
}
|
|
return(c1);
|
|
}
|
|
|
|
void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
|
|
{
|
|
assert(n >= 0);
|
|
if (n <= 0) return;
|
|
|
|
#ifndef OPENSSL_SMALL_FOOTPRINT
|
|
while (n&~3)
|
|
{
|
|
sqr(r[0],r[1],a[0]);
|
|
sqr(r[2],r[3],a[1]);
|
|
sqr(r[4],r[5],a[2]);
|
|
sqr(r[6],r[7],a[3]);
|
|
a+=4; r+=8; n-=4;
|
|
}
|
|
#endif
|
|
while (n)
|
|
{
|
|
sqr(r[0],r[1],a[0]);
|
|
a++; r+=2; n--;
|
|
}
|
|
}
|
|
|
|
#else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
|
|
|
|
BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
|
|
{
|
|
BN_ULONG c=0;
|
|
BN_ULONG bl,bh;
|
|
|
|
assert(num >= 0);
|
|
if (num <= 0) return((BN_ULONG)0);
|
|
|
|
bl=LBITS(w);
|
|
bh=HBITS(w);
|
|
|
|
#ifndef OPENSSL_SMALL_FOOTPRINT
|
|
while (num&~3)
|
|
{
|
|
mul_add(rp[0],ap[0],bl,bh,c);
|
|
mul_add(rp[1],ap[1],bl,bh,c);
|
|
mul_add(rp[2],ap[2],bl,bh,c);
|
|
mul_add(rp[3],ap[3],bl,bh,c);
|
|
ap+=4; rp+=4; num-=4;
|
|
}
|
|
#endif
|
|
while (num)
|
|
{
|
|
mul_add(rp[0],ap[0],bl,bh,c);
|
|
ap++; rp++; num--;
|
|
}
|
|
return(c);
|
|
}
|
|
|
|
BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
|
|
{
|
|
BN_ULONG carry=0;
|
|
BN_ULONG bl,bh;
|
|
|
|
assert(num >= 0);
|
|
if (num <= 0) return((BN_ULONG)0);
|
|
|
|
bl=LBITS(w);
|
|
bh=HBITS(w);
|
|
|
|
#ifndef OPENSSL_SMALL_FOOTPRINT
|
|
while (num&~3)
|
|
{
|
|
mul(rp[0],ap[0],bl,bh,carry);
|
|
mul(rp[1],ap[1],bl,bh,carry);
|
|
mul(rp[2],ap[2],bl,bh,carry);
|
|
mul(rp[3],ap[3],bl,bh,carry);
|
|
ap+=4; rp+=4; num-=4;
|
|
}
|
|
#endif
|
|
while (num)
|
|
{
|
|
mul(rp[0],ap[0],bl,bh,carry);
|
|
ap++; rp++; num--;
|
|
}
|
|
return(carry);
|
|
}
|
|
|
|
void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
|
|
{
|
|
assert(n >= 0);
|
|
if (n <= 0) return;
|
|
|
|
#ifndef OPENSSL_SMALL_FOOTPRINT
|
|
while (n&~3)
|
|
{
|
|
sqr64(r[0],r[1],a[0]);
|
|
sqr64(r[2],r[3],a[1]);
|
|
sqr64(r[4],r[5],a[2]);
|
|
sqr64(r[6],r[7],a[3]);
|
|
a+=4; r+=8; n-=4;
|
|
}
|
|
#endif
|
|
while (n)
|
|
{
|
|
sqr64(r[0],r[1],a[0]);
|
|
a++; r+=2; n--;
|
|
}
|
|
}
|
|
|
|
#endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
|
|
|
|
#if defined(BN_LLONG) && defined(BN_DIV2W)
|
|
|
|
BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
|
|
{
|
|
return((BN_ULONG)(((((BN_ULLONG)h)<<BN_BITS2)|l)/(BN_ULLONG)d));
|
|
}
|
|
|
|
#else
|
|
|
|
/* Divide h,l by d and return the result. */
|
|
/* I need to test this some more :-( */
|
|
BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
|
|
{
|
|
BN_ULONG dh,dl,q,ret=0,th,tl,t;
|
|
int i,count=2;
|
|
|
|
if (d == 0) return(BN_MASK2);
|
|
|
|
i=BN_num_bits_word(d);
|
|
assert((i == BN_BITS2) || (h <= (BN_ULONG)1<<i));
|
|
|
|
i=BN_BITS2-i;
|
|
if (h >= d) h-=d;
|
|
|
|
if (i)
|
|
{
|
|
d<<=i;
|
|
h=(h<<i)|(l>>(BN_BITS2-i));
|
|
l<<=i;
|
|
}
|
|
dh=(d&BN_MASK2h)>>BN_BITS4;
|
|
dl=(d&BN_MASK2l);
|
|
for (;;)
|
|
{
|
|
if ((h>>BN_BITS4) == dh)
|
|
q=BN_MASK2l;
|
|
else
|
|
q=h/dh;
|
|
|
|
th=q*dh;
|
|
tl=dl*q;
|
|
for (;;)
|
|
{
|
|
t=h-th;
|
|
if ((t&BN_MASK2h) ||
|
|
((tl) <= (
|
|
(t<<BN_BITS4)|
|
|
((l&BN_MASK2h)>>BN_BITS4))))
|
|
break;
|
|
q--;
|
|
th-=dh;
|
|
tl-=dl;
|
|
}
|
|
t=(tl>>BN_BITS4);
|
|
tl=(tl<<BN_BITS4)&BN_MASK2h;
|
|
th+=t;
|
|
|
|
if (l < tl) th++;
|
|
l-=tl;
|
|
if (h < th)
|
|
{
|
|
h+=d;
|
|
q--;
|
|
}
|
|
h-=th;
|
|
|
|
if (--count == 0) break;
|
|
|
|
ret=q<<BN_BITS4;
|
|
h=((h<<BN_BITS4)|(l>>BN_BITS4))&BN_MASK2;
|
|
l=(l&BN_MASK2l)<<BN_BITS4;
|
|
}
|
|
ret|=q;
|
|
return(ret);
|
|
}
|
|
#endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */
|
|
|
|
#ifdef BN_LLONG
|
|
BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
|
|
{
|
|
BN_ULLONG ll=0;
|
|
|
|
assert(n >= 0);
|
|
if (n <= 0) return((BN_ULONG)0);
|
|
|
|
#ifndef OPENSSL_SMALL_FOOTPRINT
|
|
while (n&~3)
|
|
{
|
|
ll+=(BN_ULLONG)a[0]+b[0];
|
|
r[0]=(BN_ULONG)ll&BN_MASK2;
|
|
ll>>=BN_BITS2;
|
|
ll+=(BN_ULLONG)a[1]+b[1];
|
|
r[1]=(BN_ULONG)ll&BN_MASK2;
|
|
ll>>=BN_BITS2;
|
|
ll+=(BN_ULLONG)a[2]+b[2];
|
|
r[2]=(BN_ULONG)ll&BN_MASK2;
|
|
ll>>=BN_BITS2;
|
|
ll+=(BN_ULLONG)a[3]+b[3];
|
|
r[3]=(BN_ULONG)ll&BN_MASK2;
|
|
ll>>=BN_BITS2;
|
|
a+=4; b+=4; r+=4; n-=4;
|
|
}
|
|
#endif
|
|
while (n)
|
|
{
|
|
ll+=(BN_ULLONG)a[0]+b[0];
|
|
r[0]=(BN_ULONG)ll&BN_MASK2;
|
|
ll>>=BN_BITS2;
|
|
a++; b++; r++; n--;
|
|
}
|
|
return((BN_ULONG)ll);
|
|
}
|
|
#else /* !BN_LLONG */
|
|
BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
|
|
{
|
|
BN_ULONG c,l,t;
|
|
|
|
assert(n >= 0);
|
|
if (n <= 0) return((BN_ULONG)0);
|
|
|
|
c=0;
|
|
#ifndef OPENSSL_SMALL_FOOTPRINT
|
|
while (n&~3)
|
|
{
|
|
t=a[0];
|
|
t=(t+c)&BN_MASK2;
|
|
c=(t < c);
|
|
l=(t+b[0])&BN_MASK2;
|
|
c+=(l < t);
|
|
r[0]=l;
|
|
t=a[1];
|
|
t=(t+c)&BN_MASK2;
|
|
c=(t < c);
|
|
l=(t+b[1])&BN_MASK2;
|
|
c+=(l < t);
|
|
r[1]=l;
|
|
t=a[2];
|
|
t=(t+c)&BN_MASK2;
|
|
c=(t < c);
|
|
l=(t+b[2])&BN_MASK2;
|
|
c+=(l < t);
|
|
r[2]=l;
|
|
t=a[3];
|
|
t=(t+c)&BN_MASK2;
|
|
c=(t < c);
|
|
l=(t+b[3])&BN_MASK2;
|
|
c+=(l < t);
|
|
r[3]=l;
|
|
a+=4; b+=4; r+=4; n-=4;
|
|
}
|
|
#endif
|
|
while(n)
|
|
{
|
|
t=a[0];
|
|
t=(t+c)&BN_MASK2;
|
|
c=(t < c);
|
|
l=(t+b[0])&BN_MASK2;
|
|
c+=(l < t);
|
|
r[0]=l;
|
|
a++; b++; r++; n--;
|
|
}
|
|
return((BN_ULONG)c);
|
|
}
|
|
#endif /* !BN_LLONG */
|
|
|
|
BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
|
|
{
|
|
BN_ULONG t1,t2;
|
|
int c=0;
|
|
|
|
assert(n >= 0);
|
|
if (n <= 0) return((BN_ULONG)0);
|
|
|
|
#ifndef OPENSSL_SMALL_FOOTPRINT
|
|
while (n&~3)
|
|
{
|
|
t1=a[0]; t2=b[0];
|
|
r[0]=(t1-t2-c)&BN_MASK2;
|
|
if (t1 != t2) c=(t1 < t2);
|
|
t1=a[1]; t2=b[1];
|
|
r[1]=(t1-t2-c)&BN_MASK2;
|
|
if (t1 != t2) c=(t1 < t2);
|
|
t1=a[2]; t2=b[2];
|
|
r[2]=(t1-t2-c)&BN_MASK2;
|
|
if (t1 != t2) c=(t1 < t2);
|
|
t1=a[3]; t2=b[3];
|
|
r[3]=(t1-t2-c)&BN_MASK2;
|
|
if (t1 != t2) c=(t1 < t2);
|
|
a+=4; b+=4; r+=4; n-=4;
|
|
}
|
|
#endif
|
|
while (n)
|
|
{
|
|
t1=a[0]; t2=b[0];
|
|
r[0]=(t1-t2-c)&BN_MASK2;
|
|
if (t1 != t2) c=(t1 < t2);
|
|
a++; b++; r++; n--;
|
|
}
|
|
return(c);
|
|
}
|
|
|
|
#if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT)
|
|
|
|
#undef bn_mul_comba8
|
|
#undef bn_mul_comba4
|
|
#undef bn_sqr_comba8
|
|
#undef bn_sqr_comba4
|
|
|
|
/* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */
|
|
/* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
|
|
/* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
|
|
/* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */
|
|
|
|
#ifdef BN_LLONG
|
|
#define mul_add_c(a,b,c0,c1,c2) \
|
|
t=(BN_ULLONG)a*b; \
|
|
t1=(BN_ULONG)Lw(t); \
|
|
t2=(BN_ULONG)Hw(t); \
|
|
c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
|
|
c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
|
|
|
|
#define mul_add_c2(a,b,c0,c1,c2) \
|
|
t=(BN_ULLONG)a*b; \
|
|
tt=(t+t)&BN_MASK; \
|
|
if (tt < t) c2++; \
|
|
t1=(BN_ULONG)Lw(tt); \
|
|
t2=(BN_ULONG)Hw(tt); \
|
|
c0=(c0+t1)&BN_MASK2; \
|
|
if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
|
|
c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
|
|
|
|
#define sqr_add_c(a,i,c0,c1,c2) \
|
|
t=(BN_ULLONG)a[i]*a[i]; \
|
|
t1=(BN_ULONG)Lw(t); \
|
|
t2=(BN_ULONG)Hw(t); \
|
|
c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
|
|
c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
|
|
|
|
#define sqr_add_c2(a,i,j,c0,c1,c2) \
|
|
mul_add_c2((a)[i],(a)[j],c0,c1,c2)
|
|
|
|
#elif defined(BN_UMULT_LOHI)
|
|
|
|
#define mul_add_c(a,b,c0,c1,c2) { \
|
|
BN_ULONG ta=(a),tb=(b); \
|
|
BN_UMULT_LOHI(t1,t2,ta,tb); \
|
|
c0 += t1; t2 += (c0<t1)?1:0; \
|
|
c1 += t2; c2 += (c1<t2)?1:0; \
|
|
}
|
|
|
|
#define mul_add_c2(a,b,c0,c1,c2) { \
|
|
BN_ULONG ta=(a),tb=(b),t0; \
|
|
BN_UMULT_LOHI(t0,t1,ta,tb); \
|
|
t2 = t1+t1; c2 += (t2<t1)?1:0; \
|
|
t1 = t0+t0; t2 += (t1<t0)?1:0; \
|
|
c0 += t1; t2 += (c0<t1)?1:0; \
|
|
c1 += t2; c2 += (c1<t2)?1:0; \
|
|
}
|
|
|
|
#define sqr_add_c(a,i,c0,c1,c2) { \
|
|
BN_ULONG ta=(a)[i]; \
|
|
BN_UMULT_LOHI(t1,t2,ta,ta); \
|
|
c0 += t1; t2 += (c0<t1)?1:0; \
|
|
c1 += t2; c2 += (c1<t2)?1:0; \
|
|
}
|
|
|
|
#define sqr_add_c2(a,i,j,c0,c1,c2) \
|
|
mul_add_c2((a)[i],(a)[j],c0,c1,c2)
|
|
|
|
#elif defined(BN_UMULT_HIGH)
|
|
|
|
#define mul_add_c(a,b,c0,c1,c2) { \
|
|
BN_ULONG ta=(a),tb=(b); \
|
|
t1 = ta * tb; \
|
|
t2 = BN_UMULT_HIGH(ta,tb); \
|
|
c0 += t1; t2 += (c0<t1)?1:0; \
|
|
c1 += t2; c2 += (c1<t2)?1:0; \
|
|
}
|
|
|
|
#define mul_add_c2(a,b,c0,c1,c2) { \
|
|
BN_ULONG ta=(a),tb=(b),t0; \
|
|
t1 = BN_UMULT_HIGH(ta,tb); \
|
|
t0 = ta * tb; \
|
|
t2 = t1+t1; c2 += (t2<t1)?1:0; \
|
|
t1 = t0+t0; t2 += (t1<t0)?1:0; \
|
|
c0 += t1; t2 += (c0<t1)?1:0; \
|
|
c1 += t2; c2 += (c1<t2)?1:0; \
|
|
}
|
|
|
|
#define sqr_add_c(a,i,c0,c1,c2) { \
|
|
BN_ULONG ta=(a)[i]; \
|
|
t1 = ta * ta; \
|
|
t2 = BN_UMULT_HIGH(ta,ta); \
|
|
c0 += t1; t2 += (c0<t1)?1:0; \
|
|
c1 += t2; c2 += (c1<t2)?1:0; \
|
|
}
|
|
|
|
#define sqr_add_c2(a,i,j,c0,c1,c2) \
|
|
mul_add_c2((a)[i],(a)[j],c0,c1,c2)
|
|
|
|
#else /* !BN_LLONG */
|
|
#define mul_add_c(a,b,c0,c1,c2) \
|
|
t1=LBITS(a); t2=HBITS(a); \
|
|
bl=LBITS(b); bh=HBITS(b); \
|
|
mul64(t1,t2,bl,bh); \
|
|
c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
|
|
c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
|
|
|
|
#define mul_add_c2(a,b,c0,c1,c2) \
|
|
t1=LBITS(a); t2=HBITS(a); \
|
|
bl=LBITS(b); bh=HBITS(b); \
|
|
mul64(t1,t2,bl,bh); \
|
|
if (t2 & BN_TBIT) c2++; \
|
|
t2=(t2+t2)&BN_MASK2; \
|
|
if (t1 & BN_TBIT) t2++; \
|
|
t1=(t1+t1)&BN_MASK2; \
|
|
c0=(c0+t1)&BN_MASK2; \
|
|
if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
|
|
c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
|
|
|
|
#define sqr_add_c(a,i,c0,c1,c2) \
|
|
sqr64(t1,t2,(a)[i]); \
|
|
c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
|
|
c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
|
|
|
|
#define sqr_add_c2(a,i,j,c0,c1,c2) \
|
|
mul_add_c2((a)[i],(a)[j],c0,c1,c2)
|
|
#endif /* !BN_LLONG */
|
|
|
|
void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
|
|
{
|
|
#ifdef BN_LLONG
|
|
BN_ULLONG t;
|
|
#else
|
|
BN_ULONG bl,bh;
|
|
#endif
|
|
BN_ULONG t1,t2;
|
|
BN_ULONG c1,c2,c3;
|
|
|
|
c1=0;
|
|
c2=0;
|
|
c3=0;
|
|
mul_add_c(a[0],b[0],c1,c2,c3);
|
|
r[0]=c1;
|
|
c1=0;
|
|
mul_add_c(a[0],b[1],c2,c3,c1);
|
|
mul_add_c(a[1],b[0],c2,c3,c1);
|
|
r[1]=c2;
|
|
c2=0;
|
|
mul_add_c(a[2],b[0],c3,c1,c2);
|
|
mul_add_c(a[1],b[1],c3,c1,c2);
|
|
mul_add_c(a[0],b[2],c3,c1,c2);
|
|
r[2]=c3;
|
|
c3=0;
|
|
mul_add_c(a[0],b[3],c1,c2,c3);
|
|
mul_add_c(a[1],b[2],c1,c2,c3);
|
|
mul_add_c(a[2],b[1],c1,c2,c3);
|
|
mul_add_c(a[3],b[0],c1,c2,c3);
|
|
r[3]=c1;
|
|
c1=0;
|
|
mul_add_c(a[4],b[0],c2,c3,c1);
|
|
mul_add_c(a[3],b[1],c2,c3,c1);
|
|
mul_add_c(a[2],b[2],c2,c3,c1);
|
|
mul_add_c(a[1],b[3],c2,c3,c1);
|
|
mul_add_c(a[0],b[4],c2,c3,c1);
|
|
r[4]=c2;
|
|
c2=0;
|
|
mul_add_c(a[0],b[5],c3,c1,c2);
|
|
mul_add_c(a[1],b[4],c3,c1,c2);
|
|
mul_add_c(a[2],b[3],c3,c1,c2);
|
|
mul_add_c(a[3],b[2],c3,c1,c2);
|
|
mul_add_c(a[4],b[1],c3,c1,c2);
|
|
mul_add_c(a[5],b[0],c3,c1,c2);
|
|
r[5]=c3;
|
|
c3=0;
|
|
mul_add_c(a[6],b[0],c1,c2,c3);
|
|
mul_add_c(a[5],b[1],c1,c2,c3);
|
|
mul_add_c(a[4],b[2],c1,c2,c3);
|
|
mul_add_c(a[3],b[3],c1,c2,c3);
|
|
mul_add_c(a[2],b[4],c1,c2,c3);
|
|
mul_add_c(a[1],b[5],c1,c2,c3);
|
|
mul_add_c(a[0],b[6],c1,c2,c3);
|
|
r[6]=c1;
|
|
c1=0;
|
|
mul_add_c(a[0],b[7],c2,c3,c1);
|
|
mul_add_c(a[1],b[6],c2,c3,c1);
|
|
mul_add_c(a[2],b[5],c2,c3,c1);
|
|
mul_add_c(a[3],b[4],c2,c3,c1);
|
|
mul_add_c(a[4],b[3],c2,c3,c1);
|
|
mul_add_c(a[5],b[2],c2,c3,c1);
|
|
mul_add_c(a[6],b[1],c2,c3,c1);
|
|
mul_add_c(a[7],b[0],c2,c3,c1);
|
|
r[7]=c2;
|
|
c2=0;
|
|
mul_add_c(a[7],b[1],c3,c1,c2);
|
|
mul_add_c(a[6],b[2],c3,c1,c2);
|
|
mul_add_c(a[5],b[3],c3,c1,c2);
|
|
mul_add_c(a[4],b[4],c3,c1,c2);
|
|
mul_add_c(a[3],b[5],c3,c1,c2);
|
|
mul_add_c(a[2],b[6],c3,c1,c2);
|
|
mul_add_c(a[1],b[7],c3,c1,c2);
|
|
r[8]=c3;
|
|
c3=0;
|
|
mul_add_c(a[2],b[7],c1,c2,c3);
|
|
mul_add_c(a[3],b[6],c1,c2,c3);
|
|
mul_add_c(a[4],b[5],c1,c2,c3);
|
|
mul_add_c(a[5],b[4],c1,c2,c3);
|
|
mul_add_c(a[6],b[3],c1,c2,c3);
|
|
mul_add_c(a[7],b[2],c1,c2,c3);
|
|
r[9]=c1;
|
|
c1=0;
|
|
mul_add_c(a[7],b[3],c2,c3,c1);
|
|
mul_add_c(a[6],b[4],c2,c3,c1);
|
|
mul_add_c(a[5],b[5],c2,c3,c1);
|
|
mul_add_c(a[4],b[6],c2,c3,c1);
|
|
mul_add_c(a[3],b[7],c2,c3,c1);
|
|
r[10]=c2;
|
|
c2=0;
|
|
mul_add_c(a[4],b[7],c3,c1,c2);
|
|
mul_add_c(a[5],b[6],c3,c1,c2);
|
|
mul_add_c(a[6],b[5],c3,c1,c2);
|
|
mul_add_c(a[7],b[4],c3,c1,c2);
|
|
r[11]=c3;
|
|
c3=0;
|
|
mul_add_c(a[7],b[5],c1,c2,c3);
|
|
mul_add_c(a[6],b[6],c1,c2,c3);
|
|
mul_add_c(a[5],b[7],c1,c2,c3);
|
|
r[12]=c1;
|
|
c1=0;
|
|
mul_add_c(a[6],b[7],c2,c3,c1);
|
|
mul_add_c(a[7],b[6],c2,c3,c1);
|
|
r[13]=c2;
|
|
c2=0;
|
|
mul_add_c(a[7],b[7],c3,c1,c2);
|
|
r[14]=c3;
|
|
r[15]=c1;
|
|
}
|
|
|
|
void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
|
|
{
|
|
#ifdef BN_LLONG
|
|
BN_ULLONG t;
|
|
#else
|
|
BN_ULONG bl,bh;
|
|
#endif
|
|
BN_ULONG t1,t2;
|
|
BN_ULONG c1,c2,c3;
|
|
|
|
c1=0;
|
|
c2=0;
|
|
c3=0;
|
|
mul_add_c(a[0],b[0],c1,c2,c3);
|
|
r[0]=c1;
|
|
c1=0;
|
|
mul_add_c(a[0],b[1],c2,c3,c1);
|
|
mul_add_c(a[1],b[0],c2,c3,c1);
|
|
r[1]=c2;
|
|
c2=0;
|
|
mul_add_c(a[2],b[0],c3,c1,c2);
|
|
mul_add_c(a[1],b[1],c3,c1,c2);
|
|
mul_add_c(a[0],b[2],c3,c1,c2);
|
|
r[2]=c3;
|
|
c3=0;
|
|
mul_add_c(a[0],b[3],c1,c2,c3);
|
|
mul_add_c(a[1],b[2],c1,c2,c3);
|
|
mul_add_c(a[2],b[1],c1,c2,c3);
|
|
mul_add_c(a[3],b[0],c1,c2,c3);
|
|
r[3]=c1;
|
|
c1=0;
|
|
mul_add_c(a[3],b[1],c2,c3,c1);
|
|
mul_add_c(a[2],b[2],c2,c3,c1);
|
|
mul_add_c(a[1],b[3],c2,c3,c1);
|
|
r[4]=c2;
|
|
c2=0;
|
|
mul_add_c(a[2],b[3],c3,c1,c2);
|
|
mul_add_c(a[3],b[2],c3,c1,c2);
|
|
r[5]=c3;
|
|
c3=0;
|
|
mul_add_c(a[3],b[3],c1,c2,c3);
|
|
r[6]=c1;
|
|
r[7]=c2;
|
|
}
|
|
|
|
void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
|
|
{
|
|
#ifdef BN_LLONG
|
|
BN_ULLONG t,tt;
|
|
#else
|
|
BN_ULONG bl,bh;
|
|
#endif
|
|
BN_ULONG t1,t2;
|
|
BN_ULONG c1,c2,c3;
|
|
|
|
c1=0;
|
|
c2=0;
|
|
c3=0;
|
|
sqr_add_c(a,0,c1,c2,c3);
|
|
r[0]=c1;
|
|
c1=0;
|
|
sqr_add_c2(a,1,0,c2,c3,c1);
|
|
r[1]=c2;
|
|
c2=0;
|
|
sqr_add_c(a,1,c3,c1,c2);
|
|
sqr_add_c2(a,2,0,c3,c1,c2);
|
|
r[2]=c3;
|
|
c3=0;
|
|
sqr_add_c2(a,3,0,c1,c2,c3);
|
|
sqr_add_c2(a,2,1,c1,c2,c3);
|
|
r[3]=c1;
|
|
c1=0;
|
|
sqr_add_c(a,2,c2,c3,c1);
|
|
sqr_add_c2(a,3,1,c2,c3,c1);
|
|
sqr_add_c2(a,4,0,c2,c3,c1);
|
|
r[4]=c2;
|
|
c2=0;
|
|
sqr_add_c2(a,5,0,c3,c1,c2);
|
|
sqr_add_c2(a,4,1,c3,c1,c2);
|
|
sqr_add_c2(a,3,2,c3,c1,c2);
|
|
r[5]=c3;
|
|
c3=0;
|
|
sqr_add_c(a,3,c1,c2,c3);
|
|
sqr_add_c2(a,4,2,c1,c2,c3);
|
|
sqr_add_c2(a,5,1,c1,c2,c3);
|
|
sqr_add_c2(a,6,0,c1,c2,c3);
|
|
r[6]=c1;
|
|
c1=0;
|
|
sqr_add_c2(a,7,0,c2,c3,c1);
|
|
sqr_add_c2(a,6,1,c2,c3,c1);
|
|
sqr_add_c2(a,5,2,c2,c3,c1);
|
|
sqr_add_c2(a,4,3,c2,c3,c1);
|
|
r[7]=c2;
|
|
c2=0;
|
|
sqr_add_c(a,4,c3,c1,c2);
|
|
sqr_add_c2(a,5,3,c3,c1,c2);
|
|
sqr_add_c2(a,6,2,c3,c1,c2);
|
|
sqr_add_c2(a,7,1,c3,c1,c2);
|
|
r[8]=c3;
|
|
c3=0;
|
|
sqr_add_c2(a,7,2,c1,c2,c3);
|
|
sqr_add_c2(a,6,3,c1,c2,c3);
|
|
sqr_add_c2(a,5,4,c1,c2,c3);
|
|
r[9]=c1;
|
|
c1=0;
|
|
sqr_add_c(a,5,c2,c3,c1);
|
|
sqr_add_c2(a,6,4,c2,c3,c1);
|
|
sqr_add_c2(a,7,3,c2,c3,c1);
|
|
r[10]=c2;
|
|
c2=0;
|
|
sqr_add_c2(a,7,4,c3,c1,c2);
|
|
sqr_add_c2(a,6,5,c3,c1,c2);
|
|
r[11]=c3;
|
|
c3=0;
|
|
sqr_add_c(a,6,c1,c2,c3);
|
|
sqr_add_c2(a,7,5,c1,c2,c3);
|
|
r[12]=c1;
|
|
c1=0;
|
|
sqr_add_c2(a,7,6,c2,c3,c1);
|
|
r[13]=c2;
|
|
c2=0;
|
|
sqr_add_c(a,7,c3,c1,c2);
|
|
r[14]=c3;
|
|
r[15]=c1;
|
|
}
|
|
|
|
void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
|
|
{
|
|
#ifdef BN_LLONG
|
|
BN_ULLONG t,tt;
|
|
#else
|
|
BN_ULONG bl,bh;
|
|
#endif
|
|
BN_ULONG t1,t2;
|
|
BN_ULONG c1,c2,c3;
|
|
|
|
c1=0;
|
|
c2=0;
|
|
c3=0;
|
|
sqr_add_c(a,0,c1,c2,c3);
|
|
r[0]=c1;
|
|
c1=0;
|
|
sqr_add_c2(a,1,0,c2,c3,c1);
|
|
r[1]=c2;
|
|
c2=0;
|
|
sqr_add_c(a,1,c3,c1,c2);
|
|
sqr_add_c2(a,2,0,c3,c1,c2);
|
|
r[2]=c3;
|
|
c3=0;
|
|
sqr_add_c2(a,3,0,c1,c2,c3);
|
|
sqr_add_c2(a,2,1,c1,c2,c3);
|
|
r[3]=c1;
|
|
c1=0;
|
|
sqr_add_c(a,2,c2,c3,c1);
|
|
sqr_add_c2(a,3,1,c2,c3,c1);
|
|
r[4]=c2;
|
|
c2=0;
|
|
sqr_add_c2(a,3,2,c3,c1,c2);
|
|
r[5]=c3;
|
|
c3=0;
|
|
sqr_add_c(a,3,c1,c2,c3);
|
|
r[6]=c1;
|
|
r[7]=c2;
|
|
}
|
|
|
|
#ifdef OPENSSL_NO_ASM
|
|
#ifdef OPENSSL_BN_ASM_MONT
|
|
#include <alloca.h>
|
|
/*
|
|
* This is essentially reference implementation, which may or may not
|
|
* result in performance improvement. E.g. on IA-32 this routine was
|
|
* observed to give 40% faster rsa1024 private key operations and 10%
|
|
* faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only
|
|
* by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a
|
|
* reference implementation, one to be used as starting point for
|
|
* platform-specific assembler. Mentioned numbers apply to compiler
|
|
* generated code compiled with and without -DOPENSSL_BN_ASM_MONT and
|
|
* can vary not only from platform to platform, but even for compiler
|
|
* versions. Assembler vs. assembler improvement coefficients can
|
|
* [and are known to] differ and are to be documented elsewhere.
|
|
*/
|
|
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
|
|
{
|
|
BN_ULONG c0,c1,ml,*tp,n0;
|
|
#ifdef mul64
|
|
BN_ULONG mh;
|
|
#endif
|
|
volatile BN_ULONG *vp;
|
|
int i=0,j;
|
|
|
|
#if 0 /* template for platform-specific implementation */
|
|
if (ap==bp) return bn_sqr_mont(rp,ap,np,n0p,num);
|
|
#endif
|
|
vp = tp = alloca((num+2)*sizeof(BN_ULONG));
|
|
|
|
n0 = *n0p;
|
|
|
|
c0 = 0;
|
|
ml = bp[0];
|
|
#ifdef mul64
|
|
mh = HBITS(ml);
|
|
ml = LBITS(ml);
|
|
for (j=0;j<num;++j)
|
|
mul(tp[j],ap[j],ml,mh,c0);
|
|
#else
|
|
for (j=0;j<num;++j)
|
|
mul(tp[j],ap[j],ml,c0);
|
|
#endif
|
|
|
|
tp[num] = c0;
|
|
tp[num+1] = 0;
|
|
goto enter;
|
|
|
|
for(i=0;i<num;i++)
|
|
{
|
|
c0 = 0;
|
|
ml = bp[i];
|
|
#ifdef mul64
|
|
mh = HBITS(ml);
|
|
ml = LBITS(ml);
|
|
for (j=0;j<num;++j)
|
|
mul_add(tp[j],ap[j],ml,mh,c0);
|
|
#else
|
|
for (j=0;j<num;++j)
|
|
mul_add(tp[j],ap[j],ml,c0);
|
|
#endif
|
|
c1 = (tp[num] + c0)&BN_MASK2;
|
|
tp[num] = c1;
|
|
tp[num+1] = (c1<c0?1:0);
|
|
enter:
|
|
c1 = tp[0];
|
|
ml = (c1*n0)&BN_MASK2;
|
|
c0 = 0;
|
|
#ifdef mul64
|
|
mh = HBITS(ml);
|
|
ml = LBITS(ml);
|
|
mul_add(c1,np[0],ml,mh,c0);
|
|
#else
|
|
mul_add(c1,ml,np[0],c0);
|
|
#endif
|
|
for(j=1;j<num;j++)
|
|
{
|
|
c1 = tp[j];
|
|
#ifdef mul64
|
|
mul_add(c1,np[j],ml,mh,c0);
|
|
#else
|
|
mul_add(c1,ml,np[j],c0);
|
|
#endif
|
|
tp[j-1] = c1&BN_MASK2;
|
|
}
|
|
c1 = (tp[num] + c0)&BN_MASK2;
|
|
tp[num-1] = c1;
|
|
tp[num] = tp[num+1] + (c1<c0?1:0);
|
|
}
|
|
|
|
if (tp[num]!=0 || tp[num-1]>=np[num-1])
|
|
{
|
|
c0 = bn_sub_words(rp,tp,np,num);
|
|
if (tp[num]!=0 || c0==0)
|
|
{
|
|
for(i=0;i<num+2;i++) vp[i] = 0;
|
|
return 1;
|
|
}
|
|
}
|
|
for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0;
|
|
vp[num] = 0;
|
|
vp[num+1] = 0;
|
|
return 1;
|
|
}
|
|
#else
|
|
/*
|
|
* Return value of 0 indicates that multiplication/convolution was not
|
|
* performed to signal the caller to fall down to alternative/original
|
|
* code-path.
|
|
*/
|
|
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
|
|
{ return 0; }
|
|
#endif /* OPENSSL_BN_ASM_MONT */
|
|
#endif
|
|
|
|
#else /* !BN_MUL_COMBA */
|
|
|
|
/* hmm... is it faster just to do a multiply? */
|
|
#undef bn_sqr_comba4
|
|
void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
|
|
{
|
|
BN_ULONG t[8];
|
|
bn_sqr_normal(r,a,4,t);
|
|
}
|
|
|
|
#undef bn_sqr_comba8
|
|
void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
|
|
{
|
|
BN_ULONG t[16];
|
|
bn_sqr_normal(r,a,8,t);
|
|
}
|
|
|
|
void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
|
|
{
|
|
r[4]=bn_mul_words( &(r[0]),a,4,b[0]);
|
|
r[5]=bn_mul_add_words(&(r[1]),a,4,b[1]);
|
|
r[6]=bn_mul_add_words(&(r[2]),a,4,b[2]);
|
|
r[7]=bn_mul_add_words(&(r[3]),a,4,b[3]);
|
|
}
|
|
|
|
void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
|
|
{
|
|
r[ 8]=bn_mul_words( &(r[0]),a,8,b[0]);
|
|
r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]);
|
|
r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]);
|
|
r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]);
|
|
r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]);
|
|
r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]);
|
|
r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]);
|
|
r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]);
|
|
}
|
|
|
|
#ifdef OPENSSL_NO_ASM
|
|
#ifdef OPENSSL_BN_ASM_MONT
|
|
#include <alloca.h>
|
|
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
|
|
{
|
|
BN_ULONG c0,c1,*tp,n0=*n0p;
|
|
volatile BN_ULONG *vp;
|
|
int i=0,j;
|
|
|
|
vp = tp = alloca((num+2)*sizeof(BN_ULONG));
|
|
|
|
for(i=0;i<=num;i++) tp[i]=0;
|
|
|
|
for(i=0;i<num;i++)
|
|
{
|
|
c0 = bn_mul_add_words(tp,ap,num,bp[i]);
|
|
c1 = (tp[num] + c0)&BN_MASK2;
|
|
tp[num] = c1;
|
|
tp[num+1] = (c1<c0?1:0);
|
|
|
|
c0 = bn_mul_add_words(tp,np,num,tp[0]*n0);
|
|
c1 = (tp[num] + c0)&BN_MASK2;
|
|
tp[num] = c1;
|
|
tp[num+1] += (c1<c0?1:0);
|
|
for(j=0;j<=num;j++) tp[j]=tp[j+1];
|
|
}
|
|
|
|
if (tp[num]!=0 || tp[num-1]>=np[num-1])
|
|
{
|
|
c0 = bn_sub_words(rp,tp,np,num);
|
|
if (tp[num]!=0 || c0==0)
|
|
{
|
|
for(i=0;i<num+2;i++) vp[i] = 0;
|
|
return 1;
|
|
}
|
|
}
|
|
for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0;
|
|
vp[num] = 0;
|
|
vp[num+1] = 0;
|
|
return 1;
|
|
}
|
|
#else
|
|
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
|
|
{ return 0; }
|
|
#endif /* OPENSSL_BN_ASM_MONT */
|
|
#endif
|
|
|
|
#endif /* !BN_MUL_COMBA */
|