virtualx-engine/editor/spatial_editor_gizmos.cpp

4282 lines
122 KiB
C++

/*************************************************************************/
/* spatial_editor_gizmos.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2018 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2018 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "spatial_editor_gizmos.h"
#include "geometry.h"
#include "quick_hull.h"
#include "scene/3d/camera.h"
#include "scene/3d/soft_body.h"
#include "scene/resources/box_shape.h"
#include "scene/resources/capsule_shape.h"
#include "scene/resources/convex_polygon_shape.h"
#include "scene/resources/cylinder_shape.h"
#include "scene/resources/plane_shape.h"
#include "scene/resources/primitive_meshes.h"
#include "scene/resources/ray_shape.h"
#include "scene/resources/sphere_shape.h"
#include "scene/resources/surface_tool.h"
// Keep small children away from this file.
// It's so ugly it will eat them alive
// The previous comment is kept only for historical reasons.
// No children will be harmed by the visioning of this file... hopefully.
#define HANDLE_HALF_SIZE 9.5
bool EditorSpatialGizmo::can_draw() const {
return is_editable();
}
bool EditorSpatialGizmo::is_editable() const {
ERR_FAIL_COND_V(!spatial_node, false);
Node *edited_root = spatial_node->get_tree()->get_edited_scene_root();
if (spatial_node == edited_root)
return true;
if (spatial_node->get_owner() == edited_root)
return true;
if (edited_root->is_editable_instance(spatial_node->get_owner()))
return true;
return false;
}
void EditorSpatialGizmo::clear() {
for (int i = 0; i < instances.size(); i++) {
if (instances[i].instance.is_valid())
VS::get_singleton()->free(instances[i].instance);
}
billboard_handle = false;
collision_segments.clear();
collision_mesh = Ref<TriangleMesh>();
instances.clear();
handles.clear();
secondary_handles.clear();
}
void EditorSpatialGizmo::redraw() {
ERR_FAIL_COND(!gizmo_plugin);
gizmo_plugin->redraw(this);
}
String EditorSpatialGizmo::get_handle_name(int p_idx) const {
ERR_FAIL_COND_V(!gizmo_plugin, "");
return gizmo_plugin->get_handle_name(this, p_idx);
}
Variant EditorSpatialGizmo::get_handle_value(int p_idx) {
ERR_FAIL_COND_V(!gizmo_plugin, Variant());
return gizmo_plugin->get_handle_value(this, p_idx);
}
void EditorSpatialGizmo::set_handle(int p_idx, Camera *p_camera, const Point2 &p_point) {
ERR_FAIL_COND(!gizmo_plugin);
return gizmo_plugin->set_handle(this, p_idx, p_camera, p_point);
}
void EditorSpatialGizmo::commit_handle(int p_idx, const Variant &p_restore, bool p_cancel) {
ERR_FAIL_COND(!gizmo_plugin);
return gizmo_plugin->commit_handle(this, p_idx, p_restore, p_cancel);
}
void EditorSpatialGizmo::set_spatial_node(Spatial *p_node) {
ERR_FAIL_NULL(p_node);
spatial_node = p_node;
}
void EditorSpatialGizmo::Instance::create_instance(Spatial *p_base, bool p_hidden) {
instance = VS::get_singleton()->instance_create2(mesh->get_rid(), p_base->get_world()->get_scenario());
VS::get_singleton()->instance_attach_object_instance_id(instance, p_base->get_instance_id());
if (skeleton.is_valid())
VS::get_singleton()->instance_attach_skeleton(instance, skeleton);
if (extra_margin)
VS::get_singleton()->instance_set_extra_visibility_margin(instance, 1);
VS::get_singleton()->instance_geometry_set_cast_shadows_setting(instance, VS::SHADOW_CASTING_SETTING_OFF);
int layer = p_hidden ? 0 : 1 << SpatialEditorViewport::GIZMO_EDIT_LAYER;
VS::get_singleton()->instance_set_layer_mask(instance, layer); //gizmos are 26
}
void EditorSpatialGizmo::add_mesh(const Ref<ArrayMesh> &p_mesh, bool p_billboard, const RID &p_skeleton) {
ERR_FAIL_COND(!spatial_node);
Instance ins;
ins.billboard = p_billboard;
ins.mesh = p_mesh;
ins.skeleton = p_skeleton;
if (valid) {
ins.create_instance(spatial_node, hidden);
VS::get_singleton()->instance_set_transform(ins.instance, spatial_node->get_global_transform());
}
instances.push_back(ins);
}
void EditorSpatialGizmo::add_lines(const Vector<Vector3> &p_lines, const Ref<Material> &p_material, bool p_billboard) {
ERR_FAIL_COND(!spatial_node);
Instance ins;
Ref<ArrayMesh> mesh = memnew(ArrayMesh);
Array a;
a.resize(Mesh::ARRAY_MAX);
a[Mesh::ARRAY_VERTEX] = p_lines;
PoolVector<Color> color;
color.resize(p_lines.size());
{
PoolVector<Color>::Write w = color.write();
for (int i = 0; i < p_lines.size(); i++) {
if (is_selected())
w[i] = Color(1, 1, 1, 0.8);
else
w[i] = Color(1, 1, 1, 0.2);
}
}
a[Mesh::ARRAY_COLOR] = color;
mesh->add_surface_from_arrays(Mesh::PRIMITIVE_LINES, a);
mesh->surface_set_material(0, p_material);
if (p_billboard) {
float md = 0;
for (int i = 0; i < p_lines.size(); i++) {
md = MAX(0, p_lines[i].length());
}
if (md) {
mesh->set_custom_aabb(AABB(Vector3(-md, -md, -md), Vector3(md, md, md) * 2.0));
}
}
ins.billboard = p_billboard;
ins.mesh = mesh;
if (valid) {
ins.create_instance(spatial_node, hidden);
VS::get_singleton()->instance_set_transform(ins.instance, spatial_node->get_global_transform());
}
instances.push_back(ins);
}
void EditorSpatialGizmo::add_unscaled_billboard(const Ref<Material> &p_material, float p_scale) {
ERR_FAIL_COND(!spatial_node);
Instance ins;
Vector<Vector3> vs;
Vector<Vector2> uv;
vs.push_back(Vector3(-p_scale, p_scale, 0));
vs.push_back(Vector3(p_scale, p_scale, 0));
vs.push_back(Vector3(p_scale, -p_scale, 0));
vs.push_back(Vector3(-p_scale, -p_scale, 0));
uv.push_back(Vector2(0, 0));
uv.push_back(Vector2(1, 0));
uv.push_back(Vector2(1, 1));
uv.push_back(Vector2(0, 1));
Ref<ArrayMesh> mesh = memnew(ArrayMesh);
Array a;
a.resize(Mesh::ARRAY_MAX);
a[Mesh::ARRAY_VERTEX] = vs;
a[Mesh::ARRAY_TEX_UV] = uv;
mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLE_FAN, a);
mesh->surface_set_material(0, p_material);
if (true) {
float md = 0;
for (int i = 0; i < vs.size(); i++) {
md = MAX(0, vs[i].length());
}
if (md) {
mesh->set_custom_aabb(AABB(Vector3(-md, -md, -md), Vector3(md, md, md) * 2.0));
}
}
selectable_icon_size = p_scale;
mesh->set_custom_aabb(AABB(Vector3(-selectable_icon_size, -selectable_icon_size, -selectable_icon_size) * 100.0f, Vector3(selectable_icon_size, selectable_icon_size, selectable_icon_size) * 200.0f));
ins.mesh = mesh;
ins.unscaled = true;
ins.billboard = true;
if (valid) {
ins.create_instance(spatial_node, hidden);
VS::get_singleton()->instance_set_transform(ins.instance, spatial_node->get_global_transform());
}
selectable_icon_size = p_scale;
instances.push_back(ins);
}
void EditorSpatialGizmo::add_collision_triangles(const Ref<TriangleMesh> &p_tmesh) {
collision_mesh = p_tmesh;
}
void EditorSpatialGizmo::add_collision_segments(const Vector<Vector3> &p_lines) {
int from = collision_segments.size();
collision_segments.resize(from + p_lines.size());
for (int i = 0; i < p_lines.size(); i++) {
collision_segments.write[from + i] = p_lines[i];
}
}
void EditorSpatialGizmo::add_handles(const Vector<Vector3> &p_handles, const Ref<Material> &p_material, bool p_billboard, bool p_secondary) {
billboard_handle = p_billboard;
if (!is_selected() || !is_editable())
return;
ERR_FAIL_COND(!spatial_node);
ERR_FAIL_COND(!spatial_node);
Instance ins;
Ref<ArrayMesh> mesh = memnew(ArrayMesh);
Array a;
a.resize(VS::ARRAY_MAX);
a[VS::ARRAY_VERTEX] = p_handles;
PoolVector<Color> colors;
{
colors.resize(p_handles.size());
PoolVector<Color>::Write w = colors.write();
for (int i = 0; i < p_handles.size(); i++) {
Color col(1, 1, 1, 1);
if (gizmo_plugin->is_gizmo_handle_highlighted(this, i))
col = Color(0, 0, 1, 0.9);
if (SpatialEditor::get_singleton()->get_over_gizmo_handle() != i)
col.a = 0.8;
w[i] = col;
}
}
a[VS::ARRAY_COLOR] = colors;
mesh->add_surface_from_arrays(Mesh::PRIMITIVE_POINTS, a);
mesh->surface_set_material(0, p_material);
if (p_billboard) {
float md = 0;
for (int i = 0; i < p_handles.size(); i++) {
md = MAX(0, p_handles[i].length());
}
if (md) {
mesh->set_custom_aabb(AABB(Vector3(-md, -md, -md), Vector3(md, md, md) * 2.0));
}
}
ins.mesh = mesh;
ins.billboard = p_billboard;
ins.extra_margin = true;
if (valid) {
ins.create_instance(spatial_node, hidden);
VS::get_singleton()->instance_set_transform(ins.instance, spatial_node->get_global_transform());
}
instances.push_back(ins);
if (!p_secondary) {
int chs = handles.size();
handles.resize(chs + p_handles.size());
for (int i = 0; i < p_handles.size(); i++) {
handles.write[i + chs] = p_handles[i];
}
} else {
int chs = secondary_handles.size();
secondary_handles.resize(chs + p_handles.size());
for (int i = 0; i < p_handles.size(); i++) {
secondary_handles.write[i + chs] = p_handles[i];
}
}
}
void EditorSpatialGizmo::add_solid_box(Ref<Material> &p_material, Vector3 p_size, Vector3 p_position) {
ERR_FAIL_COND(!spatial_node);
CubeMesh cubem;
cubem.set_size(p_size);
Array arrays = cubem.surface_get_arrays(0);
PoolVector3Array vertex = arrays[VS::ARRAY_VERTEX];
PoolVector3Array::Write w = vertex.write();
for (int i = 0; i < vertex.size(); ++i) {
w[i] += p_position;
}
arrays[VS::ARRAY_VERTEX] = vertex;
Ref<ArrayMesh> m = memnew(ArrayMesh);
m->add_surface_from_arrays(cubem.surface_get_primitive_type(0), arrays);
m->surface_set_material(0, p_material);
add_mesh(m);
}
bool EditorSpatialGizmo::intersect_frustum(const Camera *p_camera, const Vector<Plane> &p_frustum) {
ERR_FAIL_COND_V(!spatial_node, false);
ERR_FAIL_COND_V(!valid, false);
if (hidden && !gizmo_plugin->is_selectable_when_hidden()) return false;
if (selectable_icon_size > 0.0f) {
Vector3 origin = spatial_node->get_global_transform().get_origin();
const Plane *p = p_frustum.ptr();
int fc = p_frustum.size();
bool any_out = false;
for (int j = 0; j < fc; j++) {
if (p[j].is_point_over(origin)) {
any_out = true;
break;
}
}
if (!any_out)
return true;
return false;
}
if (collision_segments.size()) {
const Plane *p = p_frustum.ptr();
int fc = p_frustum.size();
int vc = collision_segments.size();
const Vector3 *vptr = collision_segments.ptr();
Transform t = spatial_node->get_global_transform();
bool any_out = false;
for (int j = 0; j < fc; j++) {
for (int i = 0; i < vc; i++) {
Vector3 v = t.xform(vptr[i]);
if (p[j].is_point_over(v)) {
any_out = true;
break;
}
}
if (any_out) break;
}
if (!any_out) return true;
}
if (collision_mesh.is_valid()) {
Transform t = spatial_node->get_global_transform();
Vector3 mesh_scale = t.get_basis().get_scale();
t.orthonormalize();
Transform it = t.affine_inverse();
Vector<Plane> transformed_frustum;
for (int i = 0; i < 4; i++) {
transformed_frustum.push_back(it.xform(p_frustum[i]));
}
if (collision_mesh->inside_convex_shape(transformed_frustum.ptr(), transformed_frustum.size(), mesh_scale)) {
return true;
}
}
return false;
}
bool EditorSpatialGizmo::intersect_ray(Camera *p_camera, const Point2 &p_point, Vector3 &r_pos, Vector3 &r_normal, int *r_gizmo_handle, bool p_sec_first) {
ERR_FAIL_COND_V(!spatial_node, false);
ERR_FAIL_COND_V(!valid, false);
if (hidden && !gizmo_plugin->is_selectable_when_hidden()) return false;
if (r_gizmo_handle && !hidden) {
Transform t = spatial_node->get_global_transform();
t.orthonormalize();
if (billboard_handle) {
t.set_look_at(t.origin, t.origin - p_camera->get_transform().basis.get_axis(2), p_camera->get_transform().basis.get_axis(1));
}
float min_d = 1e20;
int idx = -1;
for (int i = 0; i < secondary_handles.size(); i++) {
Vector3 hpos = t.xform(secondary_handles[i]);
Vector2 p = p_camera->unproject_position(hpos);
if (p.distance_to(p_point) < HANDLE_HALF_SIZE) {
real_t dp = p_camera->get_transform().origin.distance_to(hpos);
if (dp < min_d) {
r_pos = t.xform(hpos);
r_normal = p_camera->get_transform().basis.get_axis(2);
min_d = dp;
idx = i + handles.size();
}
}
}
if (p_sec_first && idx != -1) {
*r_gizmo_handle = idx;
return true;
}
min_d = 1e20;
for (int i = 0; i < handles.size(); i++) {
Vector3 hpos = t.xform(handles[i]);
Vector2 p = p_camera->unproject_position(hpos);
if (p.distance_to(p_point) < HANDLE_HALF_SIZE) {
real_t dp = p_camera->get_transform().origin.distance_to(hpos);
if (dp < min_d) {
r_pos = t.xform(hpos);
r_normal = p_camera->get_transform().basis.get_axis(2);
min_d = dp;
idx = i;
}
}
}
if (idx >= 0) {
*r_gizmo_handle = idx;
return true;
}
}
if (selectable_icon_size > 0.0f) {
Transform t = spatial_node->get_global_transform();
t.orthonormalize();
t.set_look_at(t.origin, p_camera->get_camera_transform().origin, Vector3(0, 1, 0));
float scale = t.origin.distance_to(p_camera->get_camera_transform().origin);
if (p_camera->get_projection() == Camera::PROJECTION_ORTHOGONAL) {
float aspect = p_camera->get_viewport()->get_visible_rect().size.aspect();
float size = p_camera->get_size();
scale = size / aspect;
}
Point2 center = p_camera->unproject_position(t.origin);
Transform oct = p_camera->get_camera_transform();
p_camera->look_at(t.origin, Vector3(0, 1, 0));
Vector3 c0 = t.xform(Vector3(selectable_icon_size, selectable_icon_size, 0) * scale);
Vector3 c1 = t.xform(Vector3(-selectable_icon_size, -selectable_icon_size, 0) * scale);
Point2 p0 = p_camera->unproject_position(c0);
Point2 p1 = p_camera->unproject_position(c1);
p_camera->set_global_transform(oct);
Rect2 rect(p0, p1 - p0);
rect.set_position(center - rect.get_size() / 2.0);
if (rect.has_point(p_point)) {
return true;
}
return false;
}
if (collision_segments.size()) {
Plane camp(p_camera->get_transform().origin, (-p_camera->get_transform().basis.get_axis(2)).normalized());
int vc = collision_segments.size();
const Vector3 *vptr = collision_segments.ptr();
Transform t = spatial_node->get_global_transform();
if (billboard_handle) {
t.set_look_at(t.origin, t.origin - p_camera->get_transform().basis.get_axis(2), p_camera->get_transform().basis.get_axis(1));
}
Vector3 cp;
float cpd = 1e20;
for (int i = 0; i < vc / 2; i++) {
Vector3 a = t.xform(vptr[i * 2 + 0]);
Vector3 b = t.xform(vptr[i * 2 + 1]);
Vector2 s[2];
s[0] = p_camera->unproject_position(a);
s[1] = p_camera->unproject_position(b);
Vector2 p = Geometry::get_closest_point_to_segment_2d(p_point, s);
float pd = p.distance_to(p_point);
if (pd < cpd) {
float d = s[0].distance_to(s[1]);
Vector3 tcp;
if (d > 0) {
float d2 = s[0].distance_to(p) / d;
tcp = a + (b - a) * d2;
} else {
tcp = a;
}
if (camp.distance_to(tcp) < p_camera->get_znear())
continue;
cp = tcp;
cpd = pd;
}
}
if (cpd < 8) {
r_pos = cp;
r_normal = -p_camera->project_ray_normal(p_point);
return true;
}
return false;
}
if (collision_mesh.is_valid()) {
Transform gt = spatial_node->get_global_transform();
if (billboard_handle) {
gt.set_look_at(gt.origin, gt.origin - p_camera->get_transform().basis.get_axis(2), p_camera->get_transform().basis.get_axis(1));
}
Transform ai = gt.affine_inverse();
Vector3 ray_from = ai.xform(p_camera->project_ray_origin(p_point));
Vector3 ray_dir = ai.basis.xform(p_camera->project_ray_normal(p_point)).normalized();
Vector3 rpos, rnorm;
if (collision_mesh->intersect_ray(ray_from, ray_dir, rpos, rnorm)) {
r_pos = gt.xform(rpos);
r_normal = gt.basis.xform(rnorm).normalized();
return true;
}
}
return false;
}
void EditorSpatialGizmo::create() {
ERR_FAIL_COND(!spatial_node);
ERR_FAIL_COND(valid);
valid = true;
for (int i = 0; i < instances.size(); i++) {
instances.write[i].create_instance(spatial_node, hidden);
}
transform();
}
void EditorSpatialGizmo::transform() {
ERR_FAIL_COND(!spatial_node);
ERR_FAIL_COND(!valid);
for (int i = 0; i < instances.size(); i++) {
VS::get_singleton()->instance_set_transform(instances[i].instance, spatial_node->get_global_transform());
}
}
void EditorSpatialGizmo::free() {
ERR_FAIL_COND(!spatial_node);
ERR_FAIL_COND(!valid);
for (int i = 0; i < instances.size(); i++) {
if (instances[i].instance.is_valid())
VS::get_singleton()->free(instances[i].instance);
instances.write[i].instance = RID();
}
clear();
valid = false;
}
void EditorSpatialGizmo::set_hidden(bool p_hidden) {
hidden = p_hidden;
int layer = hidden ? 0 : 1 << SpatialEditorViewport::GIZMO_EDIT_LAYER;
for (int i = 0; i < instances.size(); ++i) {
VS::get_singleton()->instance_set_layer_mask(instances[i].instance, layer);
}
}
void EditorSpatialGizmo::set_plugin(EditorSpatialGizmoPlugin *p_plugin) {
gizmo_plugin = p_plugin;
}
void EditorSpatialGizmo::_bind_methods() {
ClassDB::bind_method(D_METHOD("add_lines", "lines", "material", "billboard"), &EditorSpatialGizmo::add_lines, DEFVAL(false));
ClassDB::bind_method(D_METHOD("add_mesh", "mesh", "billboard", "skeleton"), &EditorSpatialGizmo::add_mesh, DEFVAL(false), DEFVAL(RID()));
ClassDB::bind_method(D_METHOD("add_collision_segments", "segments"), &EditorSpatialGizmo::add_collision_segments);
ClassDB::bind_method(D_METHOD("add_collision_triangles", "triangles"), &EditorSpatialGizmo::add_collision_triangles);
ClassDB::bind_method(D_METHOD("add_unscaled_billboard", "material", "default_scale"), &EditorSpatialGizmo::add_unscaled_billboard, DEFVAL(1));
ClassDB::bind_method(D_METHOD("add_handles", "handles", "billboard", "secondary"), &EditorSpatialGizmo::add_handles, DEFVAL(false), DEFVAL(false));
ClassDB::bind_method(D_METHOD("set_spatial_node", "node"), &EditorSpatialGizmo::_set_spatial_node);
ClassDB::bind_method(D_METHOD("clear"), &EditorSpatialGizmo::clear);
ClassDB::bind_method(D_METHOD("set_hidden", "hidden"), &EditorSpatialGizmo::set_hidden);
BIND_VMETHOD(MethodInfo("redraw"));
BIND_VMETHOD(MethodInfo(Variant::STRING, "get_handle_name", PropertyInfo(Variant::INT, "index")));
MethodInfo hvget(Variant::NIL, "get_handle_value", PropertyInfo(Variant::INT, "index"));
hvget.return_val.usage |= PROPERTY_USAGE_NIL_IS_VARIANT;
BIND_VMETHOD(hvget);
BIND_VMETHOD(MethodInfo("set_handle", PropertyInfo(Variant::INT, "index"), PropertyInfo(Variant::OBJECT, "camera", PROPERTY_HINT_RESOURCE_TYPE, "Camera"), PropertyInfo(Variant::VECTOR2, "point")));
MethodInfo cm = MethodInfo("commit_handle", PropertyInfo(Variant::INT, "index"), PropertyInfo(Variant::NIL, "restore"), PropertyInfo(Variant::BOOL, "cancel"));
cm.default_arguments.push_back(false);
BIND_VMETHOD(cm);
}
EditorSpatialGizmo::EditorSpatialGizmo() {
valid = false;
billboard_handle = false;
hidden = false;
base = NULL;
selected = false;
instanced = false;
spatial_node = NULL;
gizmo_plugin = NULL;
}
EditorSpatialGizmo::~EditorSpatialGizmo() {
if (gizmo_plugin != NULL) gizmo_plugin->unregister_gizmo(this);
clear();
}
Vector3 EditorSpatialGizmo::get_handle_pos(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, handles.size(), Vector3());
return handles[p_idx];
}
//// light gizmo
LightSpatialGizmoPlugin::LightSpatialGizmoPlugin() {
Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/light", Color(1, 1, 0.2));
create_material("lines", gizmo_color);
create_material("lines_billboard", gizmo_color, true);
create_icon_material("light_directional_icon", SpatialEditor::get_singleton()->get_icon("GizmoDirectionalLight", "EditorIcons"));
create_icon_material("light_omni_icon", SpatialEditor::get_singleton()->get_icon("GizmoLight", "EditorIcons"));
create_icon_material("light_spot_icon", SpatialEditor::get_singleton()->get_icon("GizmoSpotLight", "EditorIcons"));
create_handle_material("handles");
create_handle_material("handles_billboard", true);
}
bool LightSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) {
return Object::cast_to<Light>(p_spatial) != NULL;
}
String LightSpatialGizmoPlugin::get_name() const {
return "Lights";
}
String LightSpatialGizmoPlugin::get_handle_name(const EditorSpatialGizmo *p_gizmo, int p_idx) const {
if (p_idx == 0)
return "Radius";
else
return "Aperture";
}
Variant LightSpatialGizmoPlugin::get_handle_value(EditorSpatialGizmo *p_gizmo, int p_idx) const {
Light *light = Object::cast_to<Light>(p_gizmo->get_spatial_node());
if (p_idx == 0)
return light->get_param(Light::PARAM_RANGE);
if (p_idx == 1)
return light->get_param(Light::PARAM_SPOT_ANGLE);
return Variant();
}
static float _find_closest_angle_to_half_pi_arc(const Vector3 &p_from, const Vector3 &p_to, float p_arc_radius, const Transform &p_arc_xform) {
//bleh, discrete is simpler
static const int arc_test_points = 64;
float min_d = 1e20;
Vector3 min_p;
for (int i = 0; i < arc_test_points; i++) {
float a = i * Math_PI * 0.5 / arc_test_points;
float an = (i + 1) * Math_PI * 0.5 / arc_test_points;
Vector3 p = Vector3(Math::cos(a), 0, -Math::sin(a)) * p_arc_radius;
Vector3 n = Vector3(Math::cos(an), 0, -Math::sin(an)) * p_arc_radius;
Vector3 ra, rb;
Geometry::get_closest_points_between_segments(p, n, p_from, p_to, ra, rb);
float d = ra.distance_to(rb);
if (d < min_d) {
min_d = d;
min_p = ra;
}
}
//min_p = p_arc_xform.affine_inverse().xform(min_p);
float a = (Math_PI * 0.5) - Vector2(min_p.x, -min_p.z).angle();
return a * 180.0 / Math_PI;
}
void LightSpatialGizmoPlugin::set_handle(EditorSpatialGizmo *p_gizmo, int p_idx, Camera *p_camera, const Point2 &p_point) {
Light *light = Object::cast_to<Light>(p_gizmo->get_spatial_node());
Transform gt = light->get_global_transform();
gt.orthonormalize();
Transform gi = gt.affine_inverse();
Vector3 ray_from = p_camera->project_ray_origin(p_point);
Vector3 ray_dir = p_camera->project_ray_normal(p_point);
Vector3 s[2] = { gi.xform(ray_from), gi.xform(ray_from + ray_dir * 4096) };
if (p_idx == 0) {
if (Object::cast_to<SpotLight>(light)) {
Vector3 ra, rb;
Geometry::get_closest_points_between_segments(Vector3(), Vector3(0, 0, -4096), s[0], s[1], ra, rb);
float d = -ra.z;
if (d < 0)
d = 0;
light->set_param(Light::PARAM_RANGE, d);
} else if (Object::cast_to<OmniLight>(light)) {
Plane cp = Plane(gt.origin, p_camera->get_transform().basis.get_axis(2));
Vector3 inters;
if (cp.intersects_ray(ray_from, ray_dir, &inters)) {
float r = inters.distance_to(gt.origin);
light->set_param(Light::PARAM_RANGE, r);
}
}
} else if (p_idx == 1) {
float a = _find_closest_angle_to_half_pi_arc(s[0], s[1], light->get_param(Light::PARAM_RANGE), gt);
light->set_param(Light::PARAM_SPOT_ANGLE, CLAMP(a, 0.01, 89.99));
}
}
void LightSpatialGizmoPlugin::commit_handle(EditorSpatialGizmo *p_gizmo, int p_idx, const Variant &p_restore, bool p_cancel) {
Light *light = Object::cast_to<Light>(p_gizmo->get_spatial_node());
if (p_cancel) {
light->set_param(p_idx == 0 ? Light::PARAM_RANGE : Light::PARAM_SPOT_ANGLE, p_restore);
} else if (p_idx == 0) {
UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo();
ur->create_action(TTR("Change Light Radius"));
ur->add_do_method(light, "set_param", Light::PARAM_RANGE, light->get_param(Light::PARAM_RANGE));
ur->add_undo_method(light, "set_param", Light::PARAM_RANGE, p_restore);
ur->commit_action();
} else if (p_idx == 1) {
UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo();
ur->create_action(TTR("Change Light Radius"));
ur->add_do_method(light, "set_param", Light::PARAM_SPOT_ANGLE, light->get_param(Light::PARAM_SPOT_ANGLE));
ur->add_undo_method(light, "set_param", Light::PARAM_SPOT_ANGLE, p_restore);
ur->commit_action();
}
}
void LightSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) {
Light *light = Object::cast_to<Light>(p_gizmo->get_spatial_node());
p_gizmo->clear();
if (Object::cast_to<DirectionalLight>(light)) {
Ref<Material> material = get_material("lines", p_gizmo);
Ref<Material> icon = get_material("light_directional_icon", p_gizmo);
const int arrow_points = 7;
const float arrow_length = 1.5;
Vector3 arrow[arrow_points] = {
Vector3(0, 0, -1),
Vector3(0, 0.8, 0),
Vector3(0, 0.3, 0),
Vector3(0, 0.3, arrow_length),
Vector3(0, -0.3, arrow_length),
Vector3(0, -0.3, 0),
Vector3(0, -0.8, 0)
};
int arrow_sides = 2;
Vector<Vector3> lines;
for (int i = 0; i < arrow_sides; i++) {
for (int j = 0; j < arrow_points; j++) {
Basis ma(Vector3(0, 0, 1), Math_PI * i / arrow_sides);
Vector3 v1 = arrow[j] - Vector3(0, 0, arrow_length);
Vector3 v2 = arrow[(j + 1) % arrow_points] - Vector3(0, 0, arrow_length);
lines.push_back(ma.xform(v1));
lines.push_back(ma.xform(v2));
}
}
p_gizmo->add_lines(lines, material);
p_gizmo->add_collision_segments(lines);
p_gizmo->add_unscaled_billboard(icon, 0.05);
}
if (Object::cast_to<OmniLight>(light)) {
Ref<Material> material = get_material("lines_billboard", p_gizmo);
Ref<Material> icon = get_material("light_omni_icon", p_gizmo);
OmniLight *on = Object::cast_to<OmniLight>(light);
float r = on->get_param(Light::PARAM_RANGE);
Vector<Vector3> points;
for (int i = 0; i <= 360; i++) {
float ra = Math::deg2rad((float)i);
float rb = Math::deg2rad((float)i + 1);
Point2 a = Vector2(Math::sin(ra), Math::cos(ra)) * r;
Point2 b = Vector2(Math::sin(rb), Math::cos(rb)) * r;
/*points.push_back(Vector3(a.x,0,a.y));
points.push_back(Vector3(b.x,0,b.y));
points.push_back(Vector3(0,a.x,a.y));
points.push_back(Vector3(0,b.x,b.y));*/
points.push_back(Vector3(a.x, a.y, 0));
points.push_back(Vector3(b.x, b.y, 0));
}
p_gizmo->add_lines(points, material, true);
p_gizmo->add_collision_segments(points);
p_gizmo->add_unscaled_billboard(icon, 0.05);
Vector<Vector3> handles;
handles.push_back(Vector3(r, 0, 0));
p_gizmo->add_handles(handles, get_material("handles_billboard"), true);
}
if (Object::cast_to<SpotLight>(light)) {
Ref<Material> material = get_material("lines", p_gizmo);
Ref<Material> icon = get_material("light_spot_icon", p_gizmo);
Vector<Vector3> points;
SpotLight *sl = Object::cast_to<SpotLight>(light);
float r = sl->get_param(Light::PARAM_RANGE);
float w = r * Math::sin(Math::deg2rad(sl->get_param(Light::PARAM_SPOT_ANGLE)));
float d = r * Math::cos(Math::deg2rad(sl->get_param(Light::PARAM_SPOT_ANGLE)));
for (int i = 0; i < 360; i++) {
float ra = Math::deg2rad((float)i);
float rb = Math::deg2rad((float)i + 1);
Point2 a = Vector2(Math::sin(ra), Math::cos(ra)) * w;
Point2 b = Vector2(Math::sin(rb), Math::cos(rb)) * w;
points.push_back(Vector3(a.x, a.y, -d));
points.push_back(Vector3(b.x, b.y, -d));
if (i % 90 == 0) {
points.push_back(Vector3(a.x, a.y, -d));
points.push_back(Vector3());
}
}
points.push_back(Vector3(0, 0, -r));
points.push_back(Vector3());
p_gizmo->add_lines(points, material);
Vector<Vector3> handles;
handles.push_back(Vector3(0, 0, -r));
Vector<Vector3> collision_segments;
for (int i = 0; i < 64; i++) {
float ra = i * Math_PI * 2.0 / 64.0;
float rb = (i + 1) * Math_PI * 2.0 / 64.0;
Point2 a = Vector2(Math::sin(ra), Math::cos(ra)) * w;
Point2 b = Vector2(Math::sin(rb), Math::cos(rb)) * w;
collision_segments.push_back(Vector3(a.x, a.y, -d));
collision_segments.push_back(Vector3(b.x, b.y, -d));
if (i % 16 == 0) {
collision_segments.push_back(Vector3(a.x, a.y, -d));
collision_segments.push_back(Vector3());
}
if (i == 16) {
handles.push_back(Vector3(a.x, a.y, -d));
}
}
collision_segments.push_back(Vector3(0, 0, -r));
collision_segments.push_back(Vector3());
p_gizmo->add_handles(handles, get_material("handles"));
p_gizmo->add_collision_segments(collision_segments);
p_gizmo->add_unscaled_billboard(icon, 0.05);
}
}
//////
//// player gizmo
AudioStreamPlayer3DSpatialGizmoPlugin::AudioStreamPlayer3DSpatialGizmoPlugin() {
Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/stream_player_3d", Color(0.4, 0.8, 1));
create_icon_material("stream_player_3d_icon", SpatialEditor::get_singleton()->get_icon("GizmoSpatialSamplePlayer", "EditorIcons"));
create_material("stream_player_3d_material", gizmo_color);
create_handle_material("handles");
}
bool AudioStreamPlayer3DSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) {
return Object::cast_to<AudioStreamPlayer3D>(p_spatial) != NULL;
}
String AudioStreamPlayer3DSpatialGizmoPlugin::get_name() const {
return "AudioStreamPlayer3D";
}
String AudioStreamPlayer3DSpatialGizmoPlugin::get_handle_name(const EditorSpatialGizmo *p_gizmo, int p_idx) const {
return "Emission Radius";
}
Variant AudioStreamPlayer3DSpatialGizmoPlugin::get_handle_value(EditorSpatialGizmo *p_gizmo, int p_idx) const {
AudioStreamPlayer3D *player = Object::cast_to<AudioStreamPlayer3D>(p_gizmo->get_spatial_node());
return player->get_emission_angle();
}
void AudioStreamPlayer3DSpatialGizmoPlugin::set_handle(EditorSpatialGizmo *p_gizmo, int p_idx, Camera *p_camera, const Point2 &p_point) {
AudioStreamPlayer3D *player = Object::cast_to<AudioStreamPlayer3D>(p_gizmo->get_spatial_node());
Transform gt = player->get_global_transform();
gt.orthonormalize();
Transform gi = gt.affine_inverse();
Vector3 ray_from = p_camera->project_ray_origin(p_point);
Vector3 ray_dir = p_camera->project_ray_normal(p_point);
Vector3 ray_to = ray_from + ray_dir * 4096;
ray_from = gi.xform(ray_from);
ray_to = gi.xform(ray_to);
float closest_dist = 1e20;
float closest_angle = 1e20;
for (int i = 0; i < 180; i++) {
float a = i * Math_PI / 180.0;
float an = (i + 1) * Math_PI / 180.0;
Vector3 from(Math::sin(a), 0, -Math::cos(a));
Vector3 to(Math::sin(an), 0, -Math::cos(an));
Vector3 r1, r2;
Geometry::get_closest_points_between_segments(from, to, ray_from, ray_to, r1, r2);
float d = r1.distance_to(r2);
if (d < closest_dist) {
closest_dist = d;
closest_angle = i;
}
}
if (closest_angle < 91) {
player->set_emission_angle(closest_angle);
}
}
void AudioStreamPlayer3DSpatialGizmoPlugin::commit_handle(EditorSpatialGizmo *p_gizmo, int p_idx, const Variant &p_restore, bool p_cancel) {
AudioStreamPlayer3D *player = Object::cast_to<AudioStreamPlayer3D>(p_gizmo->get_spatial_node());
if (p_cancel) {
player->set_emission_angle(p_restore);
} else {
UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo();
ur->create_action(TTR("Change AudioStreamPlayer3D Emission Angle"));
ur->add_do_method(player, "set_emission_angle", player->get_emission_angle());
ur->add_undo_method(player, "set_emission_angle", p_restore);
ur->commit_action();
}
}
void AudioStreamPlayer3DSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) {
AudioStreamPlayer3D *player = Object::cast_to<AudioStreamPlayer3D>(p_gizmo->get_spatial_node());
p_gizmo->clear();
Ref<Material> icon = get_material("stream_player_3d_icon", p_gizmo);
if (player->is_emission_angle_enabled()) {
Ref<Material> material = get_material("stream_player_3d_material", p_gizmo);
float pc = player->get_emission_angle();
Vector<Vector3> points;
points.resize(208);
float ofs = -Math::cos(Math::deg2rad(pc));
float radius = Math::sin(Math::deg2rad(pc));
for (int i = 0; i < 100; i++) {
float a = i * 2.0 * Math_PI / 100.0;
float an = (i + 1) * 2.0 * Math_PI / 100.0;
Vector3 from(Math::sin(a) * radius, Math::cos(a) * radius, ofs);
Vector3 to(Math::sin(an) * radius, Math::cos(an) * radius, ofs);
points.write[i * 2 + 0] = from;
points.write[i * 2 + 1] = to;
}
for (int i = 0; i < 4; i++) {
float a = i * 2.0 * Math_PI / 4.0;
Vector3 from(Math::sin(a) * radius, Math::cos(a) * radius, ofs);
points.write[200 + i * 2 + 0] = from;
points.write[200 + i * 2 + 1] = Vector3();
}
p_gizmo->add_lines(points, material);
p_gizmo->add_collision_segments(points);
Vector<Vector3> handles;
float ha = Math::deg2rad(player->get_emission_angle());
handles.push_back(Vector3(Math::sin(ha), 0, -Math::cos(ha)));
p_gizmo->add_handles(handles, get_material("handles"));
}
p_gizmo->add_unscaled_billboard(icon, 0.05);
}
//////
CameraSpatialGizmoPlugin::CameraSpatialGizmoPlugin() {
Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/camera", Color(0.8, 0.4, 0.8));
create_material("camera_material", gizmo_color);
create_icon_material("camera_icon", SpatialEditor::get_singleton()->get_icon("GizmoCamera", "EditorIcons"));
create_handle_material("handles");
}
bool CameraSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) {
return Object::cast_to<Camera>(p_spatial) != NULL;
}
String CameraSpatialGizmoPlugin::get_name() const {
return "Camera";
}
String CameraSpatialGizmoPlugin::get_handle_name(const EditorSpatialGizmo *p_gizmo, int p_idx) const {
Camera *camera = Object::cast_to<Camera>(p_gizmo->get_spatial_node());
if (camera->get_projection() == Camera::PROJECTION_PERSPECTIVE) {
return "FOV";
} else {
return "Size";
}
}
Variant CameraSpatialGizmoPlugin::get_handle_value(EditorSpatialGizmo *p_gizmo, int p_idx) const {
Camera *camera = Object::cast_to<Camera>(p_gizmo->get_spatial_node());
if (camera->get_projection() == Camera::PROJECTION_PERSPECTIVE) {
return camera->get_fov();
} else {
return camera->get_size();
}
}
void CameraSpatialGizmoPlugin::set_handle(EditorSpatialGizmo *p_gizmo, int p_idx, Camera *p_camera, const Point2 &p_point) {
Camera *camera = Object::cast_to<Camera>(p_gizmo->get_spatial_node());
Transform gt = camera->get_global_transform();
gt.orthonormalize();
Transform gi = gt.affine_inverse();
Vector3 ray_from = p_camera->project_ray_origin(p_point);
Vector3 ray_dir = p_camera->project_ray_normal(p_point);
Vector3 s[2] = { gi.xform(ray_from), gi.xform(ray_from + ray_dir * 4096) };
if (camera->get_projection() == Camera::PROJECTION_PERSPECTIVE) {
Transform gt = camera->get_global_transform();
float a = _find_closest_angle_to_half_pi_arc(s[0], s[1], 1.0, gt);
camera->set("fov", a * 2.0);
} else {
Vector3 ra, rb;
Geometry::get_closest_points_between_segments(Vector3(0, 0, -1), Vector3(4096, 0, -1), s[0], s[1], ra, rb);
float d = ra.x * 2.0;
if (d < 0)
d = 0;
camera->set("size", d);
}
}
void CameraSpatialGizmoPlugin::commit_handle(EditorSpatialGizmo *p_gizmo, int p_idx, const Variant &p_restore, bool p_cancel) {
Camera *camera = Object::cast_to<Camera>(p_gizmo->get_spatial_node());
if (camera->get_projection() == Camera::PROJECTION_PERSPECTIVE) {
if (p_cancel) {
camera->set("fov", p_restore);
} else {
UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo();
ur->create_action(TTR("Change Camera FOV"));
ur->add_do_property(camera, "fov", camera->get_fov());
ur->add_undo_property(camera, "fov", p_restore);
ur->commit_action();
}
} else {
if (p_cancel) {
camera->set("size", p_restore);
} else {
UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo();
ur->create_action(TTR("Change Camera Size"));
ur->add_do_property(camera, "size", camera->get_size());
ur->add_undo_property(camera, "size", p_restore);
ur->commit_action();
}
}
}
void CameraSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) {
Camera *camera = Object::cast_to<Camera>(p_gizmo->get_spatial_node());
p_gizmo->clear();
Vector<Vector3> lines;
Vector<Vector3> handles;
Ref<Material> material = get_material("camera_material", p_gizmo);
Ref<Material> icon = get_material("camera_icon", p_gizmo);
switch (camera->get_projection()) {
case Camera::PROJECTION_PERSPECTIVE: {
// The real FOV is halved for accurate representation
float fov = camera->get_fov() / 2.0;
Vector3 side = Vector3(Math::sin(Math::deg2rad(fov)), 0, -Math::cos(Math::deg2rad(fov)));
Vector3 nside = side;
nside.x = -nside.x;
Vector3 up = Vector3(0, side.x, 0);
#define ADD_TRIANGLE(m_a, m_b, m_c) \
{ \
lines.push_back(m_a); \
lines.push_back(m_b); \
lines.push_back(m_b); \
lines.push_back(m_c); \
lines.push_back(m_c); \
lines.push_back(m_a); \
}
ADD_TRIANGLE(Vector3(), side + up, side - up);
ADD_TRIANGLE(Vector3(), nside + up, nside - up);
ADD_TRIANGLE(Vector3(), side + up, nside + up);
ADD_TRIANGLE(Vector3(), side - up, nside - up);
handles.push_back(side);
side.x *= 0.25;
nside.x *= 0.25;
Vector3 tup(0, up.y * 3 / 2, side.z);
ADD_TRIANGLE(tup, side + up, nside + up);
} break;
case Camera::PROJECTION_ORTHOGONAL: {
#define ADD_QUAD(m_a, m_b, m_c, m_d) \
{ \
lines.push_back(m_a); \
lines.push_back(m_b); \
lines.push_back(m_b); \
lines.push_back(m_c); \
lines.push_back(m_c); \
lines.push_back(m_d); \
lines.push_back(m_d); \
lines.push_back(m_a); \
}
float size = camera->get_size();
float hsize = size * 0.5;
Vector3 right(hsize, 0, 0);
Vector3 up(0, hsize, 0);
Vector3 back(0, 0, -1.0);
Vector3 front(0, 0, 0);
ADD_QUAD(-up - right, -up + right, up + right, up - right);
ADD_QUAD(-up - right + back, -up + right + back, up + right + back, up - right + back);
ADD_QUAD(up + right, up + right + back, up - right + back, up - right);
ADD_QUAD(-up + right, -up + right + back, -up - right + back, -up - right);
handles.push_back(right + back);
right.x *= 0.25;
Vector3 tup(0, up.y * 3 / 2, back.z);
ADD_TRIANGLE(tup, right + up + back, -right + up + back);
} break;
}
p_gizmo->add_lines(lines, material);
p_gizmo->add_collision_segments(lines);
p_gizmo->add_unscaled_billboard(icon, 0.05);
p_gizmo->add_handles(handles, get_material("handles"));
}
//////
MeshInstanceSpatialGizmoPlugin::MeshInstanceSpatialGizmoPlugin() {
}
bool MeshInstanceSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) {
return Object::cast_to<MeshInstance>(p_spatial) != NULL && Object::cast_to<SoftBody>(p_spatial) == NULL;
}
String MeshInstanceSpatialGizmoPlugin::get_name() const {
return "MeshInstance";
}
bool MeshInstanceSpatialGizmoPlugin::can_be_hidden() const {
return false;
}
void MeshInstanceSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) {
MeshInstance *mesh = Object::cast_to<MeshInstance>(p_gizmo->get_spatial_node());
p_gizmo->clear();
Ref<Mesh> m = mesh->get_mesh();
if (!m.is_valid())
return; //none
Ref<TriangleMesh> tm = m->generate_triangle_mesh();
if (tm.is_valid()) {
p_gizmo->add_collision_triangles(tm);
}
}
/////
Sprite3DSpatialGizmoPlugin::Sprite3DSpatialGizmoPlugin() {
}
bool Sprite3DSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) {
return Object::cast_to<Sprite3D>(p_spatial) != NULL;
}
String Sprite3DSpatialGizmoPlugin::get_name() const {
return "Sprite3D";
}
bool Sprite3DSpatialGizmoPlugin::can_be_hidden() const {
return false;
}
void Sprite3DSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) {
Sprite3D *sprite = Object::cast_to<Sprite3D>(p_gizmo->get_spatial_node());
p_gizmo->clear();
Ref<TriangleMesh> tm = sprite->generate_triangle_mesh();
if (tm.is_valid()) {
p_gizmo->add_collision_triangles(tm);
}
}
///
Position3DSpatialGizmoPlugin::Position3DSpatialGizmoPlugin() {
pos3d_mesh = Ref<ArrayMesh>(memnew(ArrayMesh));
cursor_points = Vector<Vector3>();
PoolVector<Color> cursor_colors;
float cs = 0.25;
cursor_points.push_back(Vector3(+cs, 0, 0));
cursor_points.push_back(Vector3(-cs, 0, 0));
cursor_points.push_back(Vector3(0, +cs, 0));
cursor_points.push_back(Vector3(0, -cs, 0));
cursor_points.push_back(Vector3(0, 0, +cs));
cursor_points.push_back(Vector3(0, 0, -cs));
cursor_colors.push_back(Color(1, 0.5, 0.5, 0.7));
cursor_colors.push_back(Color(1, 0.5, 0.5, 0.7));
cursor_colors.push_back(Color(0.5, 1, 0.5, 0.7));
cursor_colors.push_back(Color(0.5, 1, 0.5, 0.7));
cursor_colors.push_back(Color(0.5, 0.5, 1, 0.7));
cursor_colors.push_back(Color(0.5, 0.5, 1, 0.7));
Ref<SpatialMaterial> mat = memnew(SpatialMaterial);
mat->set_flag(SpatialMaterial::FLAG_UNSHADED, true);
mat->set_flag(SpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
mat->set_flag(SpatialMaterial::FLAG_SRGB_VERTEX_COLOR, true);
mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true);
mat->set_line_width(3);
Array d;
d.resize(VS::ARRAY_MAX);
d[Mesh::ARRAY_VERTEX] = cursor_points;
d[Mesh::ARRAY_COLOR] = cursor_colors;
pos3d_mesh->add_surface_from_arrays(Mesh::PRIMITIVE_LINES, d);
pos3d_mesh->surface_set_material(0, mat);
}
bool Position3DSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) {
return Object::cast_to<Position3D>(p_spatial) != NULL;
}
String Position3DSpatialGizmoPlugin::get_name() const {
return "Position3D";
}
void Position3DSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) {
p_gizmo->clear();
p_gizmo->add_mesh(pos3d_mesh);
p_gizmo->add_collision_segments(cursor_points);
}
/////
SkeletonSpatialGizmoPlugin::SkeletonSpatialGizmoPlugin() {
Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/skeleton", Color(1, 0.8, 0.4));
create_material("skeleton_material", gizmo_color);
}
bool SkeletonSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) {
return Object::cast_to<Skeleton>(p_spatial) != NULL;
}
String SkeletonSpatialGizmoPlugin::get_name() const {
return "Skeleton";
}
void SkeletonSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) {
Skeleton *skel = Object::cast_to<Skeleton>(p_gizmo->get_spatial_node());
p_gizmo->clear();
Ref<Material> material = get_material("skeleton_material", p_gizmo);
SpatialMaterial *sm = Object::cast_to<SpatialMaterial>(material.ptr());
{ // Reset
Color c(sm->get_albedo());
c.a = 1;
sm->set_albedo(c);
}
if (sm) {
switch (SpatialEditor::get_singleton()->get_skeleton_visibility_state()) {
case 0: {
// Hidden
Color c(sm->get_albedo());
c.a = 0;
sm->set_albedo(c);
sm->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true);
} break;
case 1:
// Visible
sm->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, false);
sm->set_render_priority(SpatialMaterial::RENDER_PRIORITY_MIN);
sm->set_flag(SpatialMaterial::FLAG_DISABLE_DEPTH_TEST, false);
break;
case 2:
// x-ray
sm->set_on_top_of_alpha();
break;
}
}
Ref<SurfaceTool> surface_tool(memnew(SurfaceTool));
surface_tool->begin(Mesh::PRIMITIVE_LINES);
surface_tool->set_material(material);
Vector<Transform> grests;
grests.resize(skel->get_bone_count());
Vector<int> bones;
Vector<float> weights;
bones.resize(4);
weights.resize(4);
for (int i = 0; i < 4; i++) {
bones.write[i] = 0;
weights.write[i] = 0;
}
weights.write[0] = 1;
AABB aabb;
Color bonecolor = Color(1.0, 0.4, 0.4, 0.3);
Color rootcolor = Color(0.4, 1.0, 0.4, 0.1);
for (int i_bone = 0; i_bone < skel->get_bone_count(); i_bone++) {
int i = skel->get_process_order(i_bone);
int parent = skel->get_bone_parent(i);
if (parent >= 0) {
grests.write[i] = grests[parent] * skel->get_bone_rest(i);
Vector3 v0 = grests[parent].origin;
Vector3 v1 = grests[i].origin;
Vector3 d = (v1 - v0).normalized();
float dist = v0.distance_to(v1);
//find closest axis
int closest = -1;
float closest_d = 0.0;
for (int j = 0; j < 3; j++) {
float dp = Math::abs(grests[parent].basis[j].normalized().dot(d));
if (j == 0 || dp > closest_d)
closest = j;
}
//find closest other
Vector3 first;
Vector3 points[4];
int pointidx = 0;
for (int j = 0; j < 3; j++) {
bones.write[0] = parent;
surface_tool->add_bones(bones);
surface_tool->add_weights(weights);
surface_tool->add_color(rootcolor);
surface_tool->add_vertex(v0 - grests[parent].basis[j].normalized() * dist * 0.05);
surface_tool->add_bones(bones);
surface_tool->add_weights(weights);
surface_tool->add_color(rootcolor);
surface_tool->add_vertex(v0 + grests[parent].basis[j].normalized() * dist * 0.05);
if (j == closest)
continue;
Vector3 axis;
if (first == Vector3()) {
axis = d.cross(d.cross(grests[parent].basis[j])).normalized();
first = axis;
} else {
axis = d.cross(first).normalized();
}
for (int k = 0; k < 2; k++) {
if (k == 1)
axis = -axis;
Vector3 point = v0 + d * dist * 0.2;
point += axis * dist * 0.1;
bones.write[0] = parent;
surface_tool->add_bones(bones);
surface_tool->add_weights(weights);
surface_tool->add_color(bonecolor);
surface_tool->add_vertex(v0);
surface_tool->add_bones(bones);
surface_tool->add_weights(weights);
surface_tool->add_color(bonecolor);
surface_tool->add_vertex(point);
bones.write[0] = parent;
surface_tool->add_bones(bones);
surface_tool->add_weights(weights);
surface_tool->add_color(bonecolor);
surface_tool->add_vertex(point);
bones.write[0] = i;
surface_tool->add_bones(bones);
surface_tool->add_weights(weights);
surface_tool->add_color(bonecolor);
surface_tool->add_vertex(v1);
points[pointidx++] = point;
}
}
SWAP(points[1], points[2]);
for (int j = 0; j < 4; j++) {
bones.write[0] = parent;
surface_tool->add_bones(bones);
surface_tool->add_weights(weights);
surface_tool->add_color(bonecolor);
surface_tool->add_vertex(points[j]);
surface_tool->add_bones(bones);
surface_tool->add_weights(weights);
surface_tool->add_color(bonecolor);
surface_tool->add_vertex(points[(j + 1) % 4]);
}
/*
bones[0]=parent;
surface_tool->add_bones(bones);
surface_tool->add_weights(weights);
surface_tool->add_color(Color(0.4,1,0.4,0.4));
surface_tool->add_vertex(v0);
bones[0]=i;
surface_tool->add_bones(bones);
surface_tool->add_weights(weights);
surface_tool->add_color(Color(0.4,1,0.4,0.4));
surface_tool->add_vertex(v1);
*/
} else {
grests.write[i] = skel->get_bone_rest(i);
bones.write[0] = i;
}
/*
Transform t = grests[i];
t.orthonormalize();
for (int i=0;i<6;i++) {
Vector3 face_points[4];
for (int j=0;j<4;j++) {
float v[3];
v[0]=1.0;
v[1]=1-2*((j>>1)&1);
v[2]=v[1]*(1-2*(j&1));
for (int k=0;k<3;k++) {
if (i<3)
face_points[j][(i+k)%3]=v[k]*(i>=3?-1:1);
else
face_points[3-j][(i+k)%3]=v[k]*(i>=3?-1:1);
}
}
for(int j=0;j<4;j++) {
surface_tool->add_bones(bones);
surface_tool->add_weights(weights);
surface_tool->add_color(Color(1.0,0.4,0.4,0.4));
surface_tool->add_vertex(t.xform(face_points[j]*0.04));
surface_tool->add_bones(bones);
surface_tool->add_weights(weights);
surface_tool->add_color(Color(1.0,0.4,0.4,0.4));
surface_tool->add_vertex(t.xform(face_points[(j+1)%4]*0.04));
}
}
*/
}
Ref<ArrayMesh> m = surface_tool->commit();
p_gizmo->add_mesh(m, false, skel->get_skeleton());
}
////
PhysicalBoneSpatialGizmoPlugin::PhysicalBoneSpatialGizmoPlugin() {
create_material("joint_material", EDITOR_DEF("editors/3d_gizmos/gizmo_colors/joint", Color(0.5, 0.8, 1)));
}
bool PhysicalBoneSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) {
return Object::cast_to<PhysicalBone>(p_spatial) != NULL;
}
String PhysicalBoneSpatialGizmoPlugin::get_name() const {
return "PhysicalBones";
}
void PhysicalBoneSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) {
p_gizmo->clear();
PhysicalBone *physical_bone = Object::cast_to<PhysicalBone>(p_gizmo->get_spatial_node());
if (!physical_bone)
return;
Skeleton *sk(physical_bone->find_skeleton_parent());
PhysicalBone *pb(sk->get_physical_bone(physical_bone->get_bone_id()));
PhysicalBone *pbp(sk->get_physical_bone_parent(physical_bone->get_bone_id()));
Vector<Vector3> points;
switch (physical_bone->get_joint_type()) {
case PhysicalBone::JOINT_TYPE_PIN: {
JointSpatialGizmoPlugin::CreatePinJointGizmo(physical_bone->get_joint_offset(), points);
} break;
case PhysicalBone::JOINT_TYPE_CONE: {
const PhysicalBone::ConeJointData *cjd(static_cast<const PhysicalBone::ConeJointData *>(physical_bone->get_joint_data()));
JointSpatialGizmoPlugin::CreateConeTwistJointGizmo(
physical_bone->get_joint_offset(),
physical_bone->get_global_transform() * physical_bone->get_joint_offset(),
pb ? pb->get_global_transform() : Transform(),
pbp ? pbp->get_global_transform() : Transform(),
cjd->swing_span,
cjd->twist_span,
pb ? &points : NULL,
pbp ? &points : NULL);
} break;
case PhysicalBone::JOINT_TYPE_HINGE: {
const PhysicalBone::HingeJointData *hjd(static_cast<const PhysicalBone::HingeJointData *>(physical_bone->get_joint_data()));
JointSpatialGizmoPlugin::CreateHingeJointGizmo(
physical_bone->get_joint_offset(),
physical_bone->get_global_transform() * physical_bone->get_joint_offset(),
pb ? pb->get_global_transform() : Transform(),
pbp ? pbp->get_global_transform() : Transform(),
hjd->angular_limit_lower,
hjd->angular_limit_upper,
hjd->angular_limit_enabled,
points,
pb ? &points : NULL,
pbp ? &points : NULL);
} break;
case PhysicalBone::JOINT_TYPE_SLIDER: {
const PhysicalBone::SliderJointData *sjd(static_cast<const PhysicalBone::SliderJointData *>(physical_bone->get_joint_data()));
JointSpatialGizmoPlugin::CreateSliderJointGizmo(
physical_bone->get_joint_offset(),
physical_bone->get_global_transform() * physical_bone->get_joint_offset(),
pb ? pb->get_global_transform() : Transform(),
pbp ? pbp->get_global_transform() : Transform(),
sjd->angular_limit_lower,
sjd->angular_limit_upper,
sjd->linear_limit_lower,
sjd->linear_limit_upper,
points,
pb ? &points : NULL,
pbp ? &points : NULL);
} break;
case PhysicalBone::JOINT_TYPE_6DOF: {
const PhysicalBone::SixDOFJointData *sdofjd(static_cast<const PhysicalBone::SixDOFJointData *>(physical_bone->get_joint_data()));
JointSpatialGizmoPlugin::CreateGeneric6DOFJointGizmo(
physical_bone->get_joint_offset(),
physical_bone->get_global_transform() * physical_bone->get_joint_offset(),
pb ? pb->get_global_transform() : Transform(),
pbp ? pbp->get_global_transform() : Transform(),
sdofjd->axis_data[0].angular_limit_lower,
sdofjd->axis_data[0].angular_limit_upper,
sdofjd->axis_data[0].linear_limit_lower,
sdofjd->axis_data[0].linear_limit_upper,
sdofjd->axis_data[0].angular_limit_enabled,
sdofjd->axis_data[0].linear_limit_enabled,
sdofjd->axis_data[1].angular_limit_lower,
sdofjd->axis_data[1].angular_limit_upper,
sdofjd->axis_data[1].linear_limit_lower,
sdofjd->axis_data[1].linear_limit_upper,
sdofjd->axis_data[1].angular_limit_enabled,
sdofjd->axis_data[1].linear_limit_enabled,
sdofjd->axis_data[2].angular_limit_lower,
sdofjd->axis_data[2].angular_limit_upper,
sdofjd->axis_data[2].linear_limit_lower,
sdofjd->axis_data[2].linear_limit_upper,
sdofjd->axis_data[2].angular_limit_enabled,
sdofjd->axis_data[2].linear_limit_enabled,
points,
pb ? &points : NULL,
pbp ? &points : NULL);
} break;
default:
return;
}
Ref<Material> material = get_material("joint_material", p_gizmo);
p_gizmo->add_collision_segments(points);
p_gizmo->add_lines(points, material);
}
// FIXME: Kept as reference for reimplementation in 3.1+
#if 0
void RoomSpatialGizmo::redraw() {
clear();
Ref<RoomBounds> roomie = room->get_room();
if (roomie.is_null())
return;
PoolVector<Face3> faces = roomie->get_geometry_hint();
Vector<Vector3> lines;
int fc = faces.size();
PoolVector<Face3>::Read r = faces.read();
Map<_EdgeKey, Vector3> edge_map;
for (int i = 0; i < fc; i++) {
Vector3 fn = r[i].get_plane().normal;
for (int j = 0; j < 3; j++) {
_EdgeKey ek;
ek.from = r[i].vertex[j].snapped(Vector3(CMP_EPSILON, CMP_EPSILON, CMP_EPSILON));
ek.to = r[i].vertex[(j + 1) % 3].snapped(Vector3(CMP_EPSILON, CMP_EPSILON, CMP_EPSILON));
if (ek.from < ek.to)
SWAP(ek.from, ek.to);
Map<_EdgeKey, Vector3>::Element *E = edge_map.find(ek);
if (E) {
if (E->get().dot(fn) > 0.9) {
E->get() = Vector3();
}
} else {
edge_map[ek] = fn;
}
}
}
for (Map<_EdgeKey, Vector3>::Element *E = edge_map.front(); E; E = E->next()) {
if (E->get() != Vector3()) {
lines.push_back(E->key().from);
lines.push_back(E->key().to);
}
}
add_lines(lines, EditorSpatialGizmos::singleton->room_material);
add_collision_segments(lines);
}
RoomSpatialGizmo::RoomSpatialGizmo(Room *p_room) {
set_spatial_node(p_room);
room = p_room;
}
/////
void PortalSpatialGizmo::redraw() {
clear();
Vector<Point2> points = portal->get_shape();
if (points.size() == 0) {
return;
}
Vector<Vector3> lines;
Vector3 center;
for (int i = 0; i < points.size(); i++) {
Vector3 f;
f.x = points[i].x;
f.y = points[i].y;
Vector3 fn;
fn.x = points[(i + 1) % points.size()].x;
fn.y = points[(i + 1) % points.size()].y;
center += f;
lines.push_back(f);
lines.push_back(fn);
}
center /= points.size();
lines.push_back(center);
lines.push_back(center + Vector3(0, 0, 1));
add_lines(lines, EditorSpatialGizmos::singleton->portal_material);
add_collision_segments(lines);
}
PortalSpatialGizmo::PortalSpatialGizmo(Portal *p_portal) {
set_spatial_node(p_portal);
portal = p_portal;
}
#endif
/////
RayCastSpatialGizmoPlugin::RayCastSpatialGizmoPlugin() {
Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/shape", Color(0.5, 0.7, 1));
create_material("shape_material", gizmo_color);
}
bool RayCastSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) {
return Object::cast_to<RayCast>(p_spatial) != NULL;
}
String RayCastSpatialGizmoPlugin::get_name() const {
return "RayCast";
}
void RayCastSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) {
RayCast *raycast = Object::cast_to<RayCast>(p_gizmo->get_spatial_node());
p_gizmo->clear();
Vector<Vector3> lines;
lines.push_back(Vector3());
lines.push_back(raycast->get_cast_to());
Ref<SpatialMaterial> material = get_material("shape_material", p_gizmo);
p_gizmo->add_lines(lines, material);
p_gizmo->add_collision_segments(lines);
}
/////
VehicleWheelSpatialGizmoPlugin::VehicleWheelSpatialGizmoPlugin() {
Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/shape", Color(0.5, 0.7, 1));
create_material("shape_material", gizmo_color);
}
bool VehicleWheelSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) {
return Object::cast_to<VehicleWheel>(p_spatial) != NULL;
}
String VehicleWheelSpatialGizmoPlugin::get_name() const {
return "VehicleWheel";
}
void VehicleWheelSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) {
VehicleWheel *car_wheel = Object::cast_to<VehicleWheel>(p_gizmo->get_spatial_node());
p_gizmo->clear();
Vector<Vector3> points;
float r = car_wheel->get_radius();
const int skip = 10;
for (int i = 0; i <= 360; i += skip) {
float ra = Math::deg2rad((float)i);
float rb = Math::deg2rad((float)i + skip);
Point2 a = Vector2(Math::sin(ra), Math::cos(ra)) * r;
Point2 b = Vector2(Math::sin(rb), Math::cos(rb)) * r;
points.push_back(Vector3(0, a.x, a.y));
points.push_back(Vector3(0, b.x, b.y));
const int springsec = 4;
for (int j = 0; j < springsec; j++) {
float t = car_wheel->get_suspension_rest_length() * 5;
points.push_back(Vector3(a.x, i / 360.0 * t / springsec + j * (t / springsec), a.y) * 0.2);
points.push_back(Vector3(b.x, (i + skip) / 360.0 * t / springsec + j * (t / springsec), b.y) * 0.2);
}
}
//travel
points.push_back(Vector3(0, 0, 0));
points.push_back(Vector3(0, car_wheel->get_suspension_rest_length(), 0));
//axis
points.push_back(Vector3(r * 0.2, car_wheel->get_suspension_rest_length(), 0));
points.push_back(Vector3(-r * 0.2, car_wheel->get_suspension_rest_length(), 0));
//axis
points.push_back(Vector3(r * 0.2, 0, 0));
points.push_back(Vector3(-r * 0.2, 0, 0));
//forward line
points.push_back(Vector3(0, -r, 0));
points.push_back(Vector3(0, -r, r * 2));
points.push_back(Vector3(0, -r, r * 2));
points.push_back(Vector3(r * 2 * 0.2, -r, r * 2 * 0.8));
points.push_back(Vector3(0, -r, r * 2));
points.push_back(Vector3(-r * 2 * 0.2, -r, r * 2 * 0.8));
Ref<Material> material = get_material("shape_material", p_gizmo);
p_gizmo->add_lines(points, material);
p_gizmo->add_collision_segments(points);
}
///////////
SoftBodySpatialGizmoPlugin::SoftBodySpatialGizmoPlugin() {
Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/shape", Color(0.5, 0.7, 1));
create_material("shape_material", gizmo_color);
create_handle_material("handles");
}
bool SoftBodySpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) {
return Object::cast_to<SoftBody>(p_spatial) != NULL;
}
String SoftBodySpatialGizmoPlugin::get_name() const {
return "SoftBody";
}
bool SoftBodySpatialGizmoPlugin::is_selectable_when_hidden() const {
return true;
}
void SoftBodySpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) {
SoftBody *soft_body = Object::cast_to<SoftBody>(p_gizmo->get_spatial_node());
p_gizmo->clear();
if (!soft_body || soft_body->get_mesh().is_null()) {
return;
}
// find mesh
Vector<Vector3> lines;
soft_body->get_mesh()->generate_debug_mesh_lines(lines);
if (!lines.size()) {
return;
}
Ref<TriangleMesh> tm = soft_body->get_mesh()->generate_triangle_mesh();
Vector<Vector3> points;
soft_body->get_mesh()->generate_debug_mesh_indices(points);
soft_body->get_mesh()->clear_cache();
Ref<Material> material = get_material("shape_material", p_gizmo);
p_gizmo->add_lines(lines, material);
p_gizmo->add_collision_segments(lines);
p_gizmo->add_handles(points, get_material("handles"));
p_gizmo->add_collision_triangles(tm);
}
String SoftBodySpatialGizmoPlugin::get_handle_name(const EditorSpatialGizmo *p_gizmo, int p_idx) const {
return "SoftBody pin point";
}
Variant SoftBodySpatialGizmoPlugin::get_handle_value(EditorSpatialGizmo *p_gizmo, int p_idx) const {
SoftBody *soft_body = Object::cast_to<SoftBody>(p_gizmo->get_spatial_node());
return Variant(soft_body->is_point_pinned(p_idx));
}
void SoftBodySpatialGizmoPlugin::commit_handle(EditorSpatialGizmo *p_gizmo, int p_idx, const Variant &p_restore, bool p_cancel) {
SoftBody *soft_body = Object::cast_to<SoftBody>(p_gizmo->get_spatial_node());
soft_body->pin_point_toggle(p_idx);
}
bool SoftBodySpatialGizmoPlugin::is_gizmo_handle_highlighted(const EditorSpatialGizmo *p_gizmo, int idx) const {
SoftBody *soft_body = Object::cast_to<SoftBody>(p_gizmo->get_spatial_node());
return soft_body->is_point_pinned(idx);
}
///////////
VisibilityNotifierGizmoPlugin::VisibilityNotifierGizmoPlugin() {
Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/visibility_notifier", Color(0.8, 0.5, 0.7));
create_material("visibility_notifier_material", gizmo_color);
gizmo_color.a = 0.1;
create_material("visibility_notifier_solid_material", gizmo_color);
create_handle_material("handles");
}
bool VisibilityNotifierGizmoPlugin::has_gizmo(Spatial *p_spatial) {
return Object::cast_to<VisibilityNotifier>(p_spatial) != NULL;
}
String VisibilityNotifierGizmoPlugin::get_name() const {
return "VisibilityNotifier";
}
String VisibilityNotifierGizmoPlugin::get_handle_name(const EditorSpatialGizmo *p_gizmo, int p_idx) const {
switch (p_idx) {
case 0: return "Size X";
case 1: return "Size Y";
case 2: return "Size Z";
case 3: return "Pos X";
case 4: return "Pos Y";
case 5: return "Pos Z";
}
return "";
}
Variant VisibilityNotifierGizmoPlugin::get_handle_value(EditorSpatialGizmo *p_gizmo, int p_idx) const {
VisibilityNotifier *notifier = Object::cast_to<VisibilityNotifier>(p_gizmo->get_spatial_node());
return notifier->get_aabb();
}
void VisibilityNotifierGizmoPlugin::set_handle(EditorSpatialGizmo *p_gizmo, int p_idx, Camera *p_camera, const Point2 &p_point) {
VisibilityNotifier *notifier = Object::cast_to<VisibilityNotifier>(p_gizmo->get_spatial_node());
Transform gt = notifier->get_global_transform();
Transform gi = gt.affine_inverse();
bool move = p_idx >= 3;
p_idx = p_idx % 3;
AABB aabb = notifier->get_aabb();
Vector3 ray_from = p_camera->project_ray_origin(p_point);
Vector3 ray_dir = p_camera->project_ray_normal(p_point);
Vector3 sg[2] = { gi.xform(ray_from), gi.xform(ray_from + ray_dir * 4096) };
Vector3 ofs = aabb.position + aabb.size * 0.5;
Vector3 axis;
axis[p_idx] = 1.0;
if (move) {
Vector3 ra, rb;
Geometry::get_closest_points_between_segments(ofs - axis * 4096, ofs + axis * 4096, sg[0], sg[1], ra, rb);
float d = ra[p_idx];
aabb.position[p_idx] = d - 1.0 - aabb.size[p_idx] * 0.5;
notifier->set_aabb(aabb);
} else {
Vector3 ra, rb;
Geometry::get_closest_points_between_segments(ofs, ofs + axis * 4096, sg[0], sg[1], ra, rb);
float d = ra[p_idx] - ofs[p_idx];
if (d < 0.001)
d = 0.001;
//resize
aabb.position[p_idx] = (aabb.position[p_idx] + aabb.size[p_idx] * 0.5) - d;
aabb.size[p_idx] = d * 2;
notifier->set_aabb(aabb);
}
}
void VisibilityNotifierGizmoPlugin::commit_handle(EditorSpatialGizmo *p_gizmo, int p_idx, const Variant &p_restore, bool p_cancel) {
VisibilityNotifier *notifier = Object::cast_to<VisibilityNotifier>(p_gizmo->get_spatial_node());
if (p_cancel) {
notifier->set_aabb(p_restore);
return;
}
UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo();
ur->create_action(TTR("Change Notifier AABB"));
ur->add_do_method(notifier, "set_aabb", notifier->get_aabb());
ur->add_undo_method(notifier, "set_aabb", p_restore);
ur->commit_action();
}
void VisibilityNotifierGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) {
VisibilityNotifier *notifier = Object::cast_to<VisibilityNotifier>(p_gizmo->get_spatial_node());
p_gizmo->clear();
Vector<Vector3> lines;
AABB aabb = notifier->get_aabb();
for (int i = 0; i < 12; i++) {
Vector3 a, b;
aabb.get_edge(i, a, b);
lines.push_back(a);
lines.push_back(b);
}
Vector<Vector3> handles;
for (int i = 0; i < 3; i++) {
Vector3 ax;
ax[i] = aabb.position[i] + aabb.size[i];
ax[(i + 1) % 3] = aabb.position[(i + 1) % 3] + aabb.size[(i + 1) % 3] * 0.5;
ax[(i + 2) % 3] = aabb.position[(i + 2) % 3] + aabb.size[(i + 2) % 3] * 0.5;
handles.push_back(ax);
}
Vector3 center = aabb.position + aabb.size * 0.5;
for (int i = 0; i < 3; i++) {
Vector3 ax;
ax[i] = 1.0;
handles.push_back(center + ax);
lines.push_back(center);
lines.push_back(center + ax);
}
Ref<Material> material = get_material("visibility_notifier_material", p_gizmo);
p_gizmo->add_lines(lines, material);
p_gizmo->add_collision_segments(lines);
if (p_gizmo->is_selected()) {
Ref<Material> solid_material = get_material("visibility_notifier_solid_material", p_gizmo);
p_gizmo->add_solid_box(solid_material, aabb.get_size(), aabb.get_position() + aabb.get_size() / 2.0);
}
p_gizmo->add_handles(handles, get_material("handles"));
}
////
ParticlesGizmoPlugin::ParticlesGizmoPlugin() {
Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/particles", Color(0.8, 0.7, 0.4));
create_material("particles_material", gizmo_color);
gizmo_color.a = 0.1;
create_material("particles_solid_material", gizmo_color);
create_icon_material("particles_icon", SpatialEditor::get_singleton()->get_icon("GizmoParticles", "EditorIcons"));
create_handle_material("handles");
}
bool ParticlesGizmoPlugin::has_gizmo(Spatial *p_spatial) {
return Object::cast_to<Particles>(p_spatial) != NULL;
}
String ParticlesGizmoPlugin::get_name() const {
return "Particles";
}
bool ParticlesGizmoPlugin::is_selectable_when_hidden() const {
return true;
}
String ParticlesGizmoPlugin::get_handle_name(const EditorSpatialGizmo *p_gizmo, int p_idx) const {
switch (p_idx) {
case 0: return "Size X";
case 1: return "Size Y";
case 2: return "Size Z";
case 3: return "Pos X";
case 4: return "Pos Y";
case 5: return "Pos Z";
}
return "";
}
Variant ParticlesGizmoPlugin::get_handle_value(EditorSpatialGizmo *p_gizmo, int p_idx) const {
Particles *particles = Object::cast_to<Particles>(p_gizmo->get_spatial_node());
return particles->get_visibility_aabb();
}
void ParticlesGizmoPlugin::set_handle(EditorSpatialGizmo *p_gizmo, int p_idx, Camera *p_camera, const Point2 &p_point) {
Particles *particles = Object::cast_to<Particles>(p_gizmo->get_spatial_node());
Transform gt = particles->get_global_transform();
//gt.orthonormalize();
Transform gi = gt.affine_inverse();
bool move = p_idx >= 3;
p_idx = p_idx % 3;
AABB aabb = particles->get_visibility_aabb();
Vector3 ray_from = p_camera->project_ray_origin(p_point);
Vector3 ray_dir = p_camera->project_ray_normal(p_point);
Vector3 sg[2] = { gi.xform(ray_from), gi.xform(ray_from + ray_dir * 4096) };
Vector3 ofs = aabb.position + aabb.size * 0.5;
Vector3 axis;
axis[p_idx] = 1.0;
if (move) {
Vector3 ra, rb;
Geometry::get_closest_points_between_segments(ofs - axis * 4096, ofs + axis * 4096, sg[0], sg[1], ra, rb);
float d = ra[p_idx];
aabb.position[p_idx] = d - 1.0 - aabb.size[p_idx] * 0.5;
particles->set_visibility_aabb(aabb);
} else {
Vector3 ra, rb;
Geometry::get_closest_points_between_segments(ofs, ofs + axis * 4096, sg[0], sg[1], ra, rb);
float d = ra[p_idx] - ofs[p_idx];
if (d < 0.001)
d = 0.001;
//resize
aabb.position[p_idx] = (aabb.position[p_idx] + aabb.size[p_idx] * 0.5) - d;
aabb.size[p_idx] = d * 2;
particles->set_visibility_aabb(aabb);
}
}
void ParticlesGizmoPlugin::commit_handle(EditorSpatialGizmo *p_gizmo, int p_idx, const Variant &p_restore, bool p_cancel) {
Particles *particles = Object::cast_to<Particles>(p_gizmo->get_spatial_node());
if (p_cancel) {
particles->set_visibility_aabb(p_restore);
return;
}
UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo();
ur->create_action(TTR("Change Particles AABB"));
ur->add_do_method(particles, "set_custom_aabb", particles->get_visibility_aabb());
ur->add_undo_method(particles, "set_custom_aabb", p_restore);
ur->commit_action();
}
void ParticlesGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) {
Particles *particles = Object::cast_to<Particles>(p_gizmo->get_spatial_node());
p_gizmo->clear();
Vector<Vector3> lines;
AABB aabb = particles->get_visibility_aabb();
for (int i = 0; i < 12; i++) {
Vector3 a, b;
aabb.get_edge(i, a, b);
lines.push_back(a);
lines.push_back(b);
}
Vector<Vector3> handles;
for (int i = 0; i < 3; i++) {
Vector3 ax;
ax[i] = aabb.position[i] + aabb.size[i];
ax[(i + 1) % 3] = aabb.position[(i + 1) % 3] + aabb.size[(i + 1) % 3] * 0.5;
ax[(i + 2) % 3] = aabb.position[(i + 2) % 3] + aabb.size[(i + 2) % 3] * 0.5;
handles.push_back(ax);
}
Vector3 center = aabb.position + aabb.size * 0.5;
for (int i = 0; i < 3; i++) {
Vector3 ax;
ax[i] = 1.0;
handles.push_back(center + ax);
lines.push_back(center);
lines.push_back(center + ax);
}
Ref<Material> material = get_material("particles_material", p_gizmo);
Ref<Material> icon = get_material("particles_icon", p_gizmo);
p_gizmo->add_lines(lines, material);
p_gizmo->add_collision_segments(lines);
if (p_gizmo->is_selected()) {
Ref<Material> solid_material = get_material("particles_solid_material", p_gizmo);
p_gizmo->add_solid_box(solid_material, aabb.get_size(), aabb.get_position() + aabb.get_size() / 2.0);
}
p_gizmo->add_handles(handles, get_material("handles"));
p_gizmo->add_unscaled_billboard(icon, 0.05);
}
////
ReflectionProbeGizmoPlugin::ReflectionProbeGizmoPlugin() {
Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/reflection_probe", Color(0.6, 1, 0.5));
create_material("reflection_probe_material", gizmo_color);
gizmo_color.a = 0.5;
create_material("reflection_internal_material", gizmo_color);
gizmo_color.a = 0.1;
create_material("reflection_probe_solid_material", gizmo_color);
create_icon_material("reflection_probe_icon", SpatialEditor::get_singleton()->get_icon("GizmoReflectionProbe", "EditorIcons"));
create_handle_material("handles");
}
bool ReflectionProbeGizmoPlugin::has_gizmo(Spatial *p_spatial) {
return Object::cast_to<ReflectionProbe>(p_spatial) != NULL;
}
String ReflectionProbeGizmoPlugin::get_name() const {
return "ReflectionProbe";
}
String ReflectionProbeGizmoPlugin::get_handle_name(const EditorSpatialGizmo *p_gizmo, int p_idx) const {
switch (p_idx) {
case 0: return "Extents X";
case 1: return "Extents Y";
case 2: return "Extents Z";
case 3: return "Origin X";
case 4: return "Origin Y";
case 5: return "Origin Z";
}
return "";
}
Variant ReflectionProbeGizmoPlugin::get_handle_value(EditorSpatialGizmo *p_gizmo, int p_idx) const {
ReflectionProbe *probe = Object::cast_to<ReflectionProbe>(p_gizmo->get_spatial_node());
return AABB(probe->get_extents(), probe->get_origin_offset());
}
void ReflectionProbeGizmoPlugin::set_handle(EditorSpatialGizmo *p_gizmo, int p_idx, Camera *p_camera, const Point2 &p_point) {
ReflectionProbe *probe = Object::cast_to<ReflectionProbe>(p_gizmo->get_spatial_node());
Transform gt = probe->get_global_transform();
Transform gi = gt.affine_inverse();
if (p_idx < 3) {
Vector3 extents = probe->get_extents();
Vector3 ray_from = p_camera->project_ray_origin(p_point);
Vector3 ray_dir = p_camera->project_ray_normal(p_point);
Vector3 sg[2] = { gi.xform(ray_from), gi.xform(ray_from + ray_dir * 16384) };
Vector3 axis;
axis[p_idx] = 1.0;
Vector3 ra, rb;
Geometry::get_closest_points_between_segments(Vector3(), axis * 16384, sg[0], sg[1], ra, rb);
float d = ra[p_idx];
if (d < 0.001)
d = 0.001;
extents[p_idx] = d;
probe->set_extents(extents);
} else {
p_idx -= 3;
Vector3 origin = probe->get_origin_offset();
origin[p_idx] = 0;
Vector3 ray_from = p_camera->project_ray_origin(p_point);
Vector3 ray_dir = p_camera->project_ray_normal(p_point);
Vector3 sg[2] = { gi.xform(ray_from), gi.xform(ray_from + ray_dir * 16384) };
Vector3 axis;
axis[p_idx] = 1.0;
Vector3 ra, rb;
Geometry::get_closest_points_between_segments(origin - axis * 16384, origin + axis * 16384, sg[0], sg[1], ra, rb);
float d = ra[p_idx];
d += 0.25;
origin[p_idx] = d;
probe->set_origin_offset(origin);
}
}
void ReflectionProbeGizmoPlugin::commit_handle(EditorSpatialGizmo *p_gizmo, int p_idx, const Variant &p_restore, bool p_cancel) {
ReflectionProbe *probe = Object::cast_to<ReflectionProbe>(p_gizmo->get_spatial_node());
AABB restore = p_restore;
if (p_cancel) {
probe->set_extents(restore.position);
probe->set_origin_offset(restore.size);
return;
}
UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo();
ur->create_action(TTR("Change Probe Extents"));
ur->add_do_method(probe, "set_extents", probe->get_extents());
ur->add_do_method(probe, "set_origin_offset", probe->get_origin_offset());
ur->add_undo_method(probe, "set_extents", restore.position);
ur->add_undo_method(probe, "set_origin_offset", restore.size);
ur->commit_action();
}
void ReflectionProbeGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) {
ReflectionProbe *probe = Object::cast_to<ReflectionProbe>(p_gizmo->get_spatial_node());
p_gizmo->clear();
Vector<Vector3> lines;
Vector<Vector3> internal_lines;
Vector3 extents = probe->get_extents();
AABB aabb;
aabb.position = -extents;
aabb.size = extents * 2;
for (int i = 0; i < 12; i++) {
Vector3 a, b;
aabb.get_edge(i, a, b);
lines.push_back(a);
lines.push_back(b);
}
for (int i = 0; i < 8; i++) {
Vector3 ep = aabb.get_endpoint(i);
internal_lines.push_back(probe->get_origin_offset());
internal_lines.push_back(ep);
}
Vector<Vector3> handles;
for (int i = 0; i < 3; i++) {
Vector3 ax;
ax[i] = aabb.position[i] + aabb.size[i];
handles.push_back(ax);
}
for (int i = 0; i < 3; i++) {
Vector3 orig_handle = probe->get_origin_offset();
orig_handle[i] -= 0.25;
lines.push_back(orig_handle);
handles.push_back(orig_handle);
orig_handle[i] += 0.5;
lines.push_back(orig_handle);
}
Ref<Material> material = get_material("reflection_probe_material", p_gizmo);
Ref<Material> material_internal = get_material("reflection_internal_material", p_gizmo);
Ref<Material> icon = get_material("reflection_probe_icon", p_gizmo);
p_gizmo->add_lines(lines, material);
p_gizmo->add_lines(internal_lines, material_internal);
if (p_gizmo->is_selected()) {
Ref<Material> solid_material = get_material("reflection_probe_solid_material", p_gizmo);
p_gizmo->add_solid_box(solid_material, probe->get_extents() * 2.0);
}
p_gizmo->add_unscaled_billboard(icon, 0.05);
p_gizmo->add_collision_segments(lines);
p_gizmo->add_handles(handles, get_material("handles"));
}
GIProbeGizmoPlugin::GIProbeGizmoPlugin() {
Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/gi_probe", Color(0.5, 1, 0.6));
create_material("gi_probe_material", gizmo_color);
gizmo_color.a = 0.5;
create_material("gi_probe_internal_material", gizmo_color);
gizmo_color.a = 0.1;
create_material("gi_probe_solid_material", gizmo_color);
create_icon_material("gi_probe_icon", SpatialEditor::get_singleton()->get_icon("GizmoGIProbe", "EditorIcons"));
create_handle_material("handles");
}
bool GIProbeGizmoPlugin::has_gizmo(Spatial *p_spatial) {
return Object::cast_to<GIProbe>(p_spatial) != NULL;
}
String GIProbeGizmoPlugin::get_name() const {
return "GIProbe";
}
String GIProbeGizmoPlugin::get_handle_name(const EditorSpatialGizmo *p_gizmo, int p_idx) const {
switch (p_idx) {
case 0: return "Extents X";
case 1: return "Extents Y";
case 2: return "Extents Z";
}
return "";
}
Variant GIProbeGizmoPlugin::get_handle_value(EditorSpatialGizmo *p_gizmo, int p_idx) const {
GIProbe *probe = Object::cast_to<GIProbe>(p_gizmo->get_spatial_node());
return probe->get_extents();
}
void GIProbeGizmoPlugin::set_handle(EditorSpatialGizmo *p_gizmo, int p_idx, Camera *p_camera, const Point2 &p_point) {
GIProbe *probe = Object::cast_to<GIProbe>(p_gizmo->get_spatial_node());
Transform gt = probe->get_global_transform();
//gt.orthonormalize();
Transform gi = gt.affine_inverse();
Vector3 extents = probe->get_extents();
Vector3 ray_from = p_camera->project_ray_origin(p_point);
Vector3 ray_dir = p_camera->project_ray_normal(p_point);
Vector3 sg[2] = { gi.xform(ray_from), gi.xform(ray_from + ray_dir * 16384) };
Vector3 axis;
axis[p_idx] = 1.0;
Vector3 ra, rb;
Geometry::get_closest_points_between_segments(Vector3(), axis * 16384, sg[0], sg[1], ra, rb);
float d = ra[p_idx];
if (d < 0.001)
d = 0.001;
extents[p_idx] = d;
probe->set_extents(extents);
}
void GIProbeGizmoPlugin::commit_handle(EditorSpatialGizmo *p_gizmo, int p_idx, const Variant &p_restore, bool p_cancel) {
GIProbe *probe = Object::cast_to<GIProbe>(p_gizmo->get_spatial_node());
Vector3 restore = p_restore;
if (p_cancel) {
probe->set_extents(restore);
return;
}
UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo();
ur->create_action(TTR("Change Probe Extents"));
ur->add_do_method(probe, "set_extents", probe->get_extents());
ur->add_undo_method(probe, "set_extents", restore);
ur->commit_action();
}
void GIProbeGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) {
GIProbe *probe = Object::cast_to<GIProbe>(p_gizmo->get_spatial_node());
Ref<Material> material = get_material("gi_probe_material", p_gizmo);
Ref<Material> icon = get_material("gi_probe_icon", p_gizmo);
Ref<Material> material_internal = get_material("gi_probe_internal_material", p_gizmo);
p_gizmo->clear();
Vector<Vector3> lines;
Vector3 extents = probe->get_extents();
static const int subdivs[GIProbe::SUBDIV_MAX] = { 64, 128, 256, 512 };
AABB aabb = AABB(-extents, extents * 2);
int subdiv = subdivs[probe->get_subdiv()];
float cell_size = aabb.get_longest_axis_size() / subdiv;
for (int i = 0; i < 12; i++) {
Vector3 a, b;
aabb.get_edge(i, a, b);
lines.push_back(a);
lines.push_back(b);
}
p_gizmo->add_lines(lines, material);
p_gizmo->add_collision_segments(lines);
lines.clear();
for (int i = 1; i < subdiv; i++) {
for (int j = 0; j < 3; j++) {
if (cell_size * i > aabb.size[j]) {
continue;
}
Vector2 dir;
dir[j] = 1.0;
Vector2 ta, tb;
int j_n1 = (j + 1) % 3;
int j_n2 = (j + 2) % 3;
ta[j_n1] = 1.0;
tb[j_n2] = 1.0;
for (int k = 0; k < 4; k++) {
Vector3 from = aabb.position, to = aabb.position;
from[j] += cell_size * i;
to[j] += cell_size * i;
if (k & 1) {
to[j_n1] += aabb.size[j_n1];
} else {
to[j_n2] += aabb.size[j_n2];
}
if (k & 2) {
from[j_n1] += aabb.size[j_n1];
from[j_n2] += aabb.size[j_n2];
}
lines.push_back(from);
lines.push_back(to);
}
}
}
p_gizmo->add_lines(lines, material_internal);
Vector<Vector3> handles;
for (int i = 0; i < 3; i++) {
Vector3 ax;
ax[i] = aabb.position[i] + aabb.size[i];
handles.push_back(ax);
}
if (p_gizmo->is_selected()) {
Ref<Material> solid_material = get_material("gi_probe_solid_material", p_gizmo);
p_gizmo->add_solid_box(solid_material, aabb.get_size());
}
p_gizmo->add_unscaled_billboard(icon, 0.05);
p_gizmo->add_handles(handles, get_material("handles"));
}
////
BakedIndirectLightGizmoPlugin::BakedIndirectLightGizmoPlugin() {
Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/baked_indirect_light", Color(0.5, 0.6, 1));
create_material("baked_indirect_light_material", gizmo_color);
gizmo_color.a = 0.1;
create_material("baked_indirect_light_internal_material", gizmo_color);
create_icon_material("baked_indirect_light_icon", SpatialEditor::get_singleton()->get_icon("GizmoBakedLightmap", "EditorIcons"));
create_handle_material("handles");
}
String BakedIndirectLightGizmoPlugin::get_handle_name(const EditorSpatialGizmo *p_gizmo, int p_idx) const {
switch (p_idx) {
case 0: return "Extents X";
case 1: return "Extents Y";
case 2: return "Extents Z";
}
return "";
}
Variant BakedIndirectLightGizmoPlugin::get_handle_value(EditorSpatialGizmo *p_gizmo, int p_idx) const {
BakedLightmap *baker = Object::cast_to<BakedLightmap>(p_gizmo->get_spatial_node());
return baker->get_extents();
}
void BakedIndirectLightGizmoPlugin::set_handle(EditorSpatialGizmo *p_gizmo, int p_idx, Camera *p_camera, const Point2 &p_point) {
BakedLightmap *baker = Object::cast_to<BakedLightmap>(p_gizmo->get_spatial_node());
Transform gt = baker->get_global_transform();
//gt.orthonormalize();
Transform gi = gt.affine_inverse();
Vector3 extents = baker->get_extents();
Vector3 ray_from = p_camera->project_ray_origin(p_point);
Vector3 ray_dir = p_camera->project_ray_normal(p_point);
Vector3 sg[2] = { gi.xform(ray_from), gi.xform(ray_from + ray_dir * 16384) };
Vector3 axis;
axis[p_idx] = 1.0;
Vector3 ra, rb;
Geometry::get_closest_points_between_segments(Vector3(), axis * 16384, sg[0], sg[1], ra, rb);
float d = ra[p_idx];
if (d < 0.001)
d = 0.001;
extents[p_idx] = d;
baker->set_extents(extents);
}
void BakedIndirectLightGizmoPlugin::commit_handle(EditorSpatialGizmo *p_gizmo, int p_idx, const Variant &p_restore, bool p_cancel) {
BakedLightmap *baker = Object::cast_to<BakedLightmap>(p_gizmo->get_spatial_node());
Vector3 restore = p_restore;
if (p_cancel) {
baker->set_extents(restore);
return;
}
UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo();
ur->create_action(TTR("Change Probe Extents"));
ur->add_do_method(baker, "set_extents", baker->get_extents());
ur->add_undo_method(baker, "set_extents", restore);
ur->commit_action();
}
bool BakedIndirectLightGizmoPlugin::has_gizmo(Spatial *p_spatial) {
return Object::cast_to<BakedLightmap>(p_spatial) != NULL;
}
String BakedIndirectLightGizmoPlugin::get_name() const {
return "BakedLightmap";
}
void BakedIndirectLightGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) {
BakedLightmap *baker = Object::cast_to<BakedLightmap>(p_gizmo->get_spatial_node());
Ref<Material> material = get_material("baked_indirect_light_material", p_gizmo);
Ref<Material> icon = get_material("baked_indirect_light_icon", p_gizmo);
Ref<Material> material_internal = get_material("baked_indirect_light_internal_material", p_gizmo);
p_gizmo->clear();
Vector<Vector3> lines;
Vector3 extents = baker->get_extents();
AABB aabb = AABB(-extents, extents * 2);
for (int i = 0; i < 12; i++) {
Vector3 a, b;
aabb.get_edge(i, a, b);
lines.push_back(a);
lines.push_back(b);
}
p_gizmo->add_lines(lines, material);
p_gizmo->add_collision_segments(lines);
Vector<Vector3> handles;
for (int i = 0; i < 3; i++) {
Vector3 ax;
ax[i] = aabb.position[i] + aabb.size[i];
handles.push_back(ax);
}
if (p_gizmo->is_selected()) {
p_gizmo->add_solid_box(material_internal, aabb.get_size());
}
p_gizmo->add_unscaled_billboard(icon, 0.05);
p_gizmo->add_handles(handles, get_material("handles"));
}
////
CollisionShapeSpatialGizmoPlugin::CollisionShapeSpatialGizmoPlugin() {
Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/shape", Color(0.5, 0.7, 1));
create_material("shape_material", gizmo_color);
create_handle_material("handles");
}
bool CollisionShapeSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) {
return Object::cast_to<CollisionShape>(p_spatial) != NULL;
}
String CollisionShapeSpatialGizmoPlugin::get_name() const {
return "CollisionShape";
}
String CollisionShapeSpatialGizmoPlugin::get_handle_name(const EditorSpatialGizmo *p_gizmo, int p_idx) const {
const CollisionShape *cs = Object::cast_to<CollisionShape>(p_gizmo->get_spatial_node());
Ref<Shape> s = cs->get_shape();
if (s.is_null())
return "";
if (Object::cast_to<SphereShape>(*s)) {
return "Radius";
}
if (Object::cast_to<BoxShape>(*s)) {
return "Extents";
}
if (Object::cast_to<CapsuleShape>(*s)) {
return p_idx == 0 ? "Radius" : "Height";
}
if (Object::cast_to<CylinderShape>(*s)) {
return p_idx == 0 ? "Radius" : "Height";
}
if (Object::cast_to<RayShape>(*s)) {
return "Length";
}
return "";
}
Variant CollisionShapeSpatialGizmoPlugin::get_handle_value(EditorSpatialGizmo *p_gizmo, int p_idx) const {
CollisionShape *cs = Object::cast_to<CollisionShape>(p_gizmo->get_spatial_node());
Ref<Shape> s = cs->get_shape();
if (s.is_null())
return Variant();
if (Object::cast_to<SphereShape>(*s)) {
Ref<SphereShape> ss = s;
return ss->get_radius();
}
if (Object::cast_to<BoxShape>(*s)) {
Ref<BoxShape> bs = s;
return bs->get_extents();
}
if (Object::cast_to<CapsuleShape>(*s)) {
Ref<CapsuleShape> cs = s;
return p_idx == 0 ? cs->get_radius() : cs->get_height();
}
if (Object::cast_to<CylinderShape>(*s)) {
Ref<CylinderShape> cs = s;
return p_idx == 0 ? cs->get_radius() : cs->get_height();
}
if (Object::cast_to<RayShape>(*s)) {
Ref<RayShape> cs = s;
return cs->get_length();
}
return Variant();
}
void CollisionShapeSpatialGizmoPlugin::set_handle(EditorSpatialGizmo *p_gizmo, int p_idx, Camera *p_camera, const Point2 &p_point) {
CollisionShape *cs = Object::cast_to<CollisionShape>(p_gizmo->get_spatial_node());
Ref<Shape> s = cs->get_shape();
if (s.is_null())
return;
Transform gt = cs->get_global_transform();
gt.orthonormalize();
Transform gi = gt.affine_inverse();
Vector3 ray_from = p_camera->project_ray_origin(p_point);
Vector3 ray_dir = p_camera->project_ray_normal(p_point);
Vector3 sg[2] = { gi.xform(ray_from), gi.xform(ray_from + ray_dir * 4096) };
if (Object::cast_to<SphereShape>(*s)) {
Ref<SphereShape> ss = s;
Vector3 ra, rb;
Geometry::get_closest_points_between_segments(Vector3(), Vector3(4096, 0, 0), sg[0], sg[1], ra, rb);
float d = ra.x;
if (d < 0.001)
d = 0.001;
ss->set_radius(d);
}
if (Object::cast_to<RayShape>(*s)) {
Ref<RayShape> rs = s;
Vector3 ra, rb;
Geometry::get_closest_points_between_segments(Vector3(), Vector3(0, 0, 4096), sg[0], sg[1], ra, rb);
float d = ra.z;
if (d < 0.001)
d = 0.001;
rs->set_length(d);
}
if (Object::cast_to<BoxShape>(*s)) {
Vector3 axis;
axis[p_idx] = 1.0;
Ref<BoxShape> bs = s;
Vector3 ra, rb;
Geometry::get_closest_points_between_segments(Vector3(), axis * 4096, sg[0], sg[1], ra, rb);
float d = ra[p_idx];
if (d < 0.001)
d = 0.001;
Vector3 he = bs->get_extents();
he[p_idx] = d;
bs->set_extents(he);
}
if (Object::cast_to<CapsuleShape>(*s)) {
Vector3 axis;
axis[p_idx == 0 ? 0 : 2] = 1.0;
Ref<CapsuleShape> cs = s;
Vector3 ra, rb;
Geometry::get_closest_points_between_segments(Vector3(), axis * 4096, sg[0], sg[1], ra, rb);
float d = axis.dot(ra);
if (p_idx == 1)
d -= cs->get_radius();
if (d < 0.001)
d = 0.001;
if (p_idx == 0)
cs->set_radius(d);
else if (p_idx == 1)
cs->set_height(d * 2.0);
}
if (Object::cast_to<CylinderShape>(*s)) {
Vector3 axis;
axis[p_idx == 0 ? 0 : 1] = 1.0;
Ref<CylinderShape> cs = s;
Vector3 ra, rb;
Geometry::get_closest_points_between_segments(Vector3(), axis * 4096, sg[0], sg[1], ra, rb);
float d = axis.dot(ra);
if (d < 0.001)
d = 0.001;
if (p_idx == 0)
cs->set_radius(d);
else if (p_idx == 1)
cs->set_height(d * 2.0);
}
}
void CollisionShapeSpatialGizmoPlugin::commit_handle(EditorSpatialGizmo *p_gizmo, int p_idx, const Variant &p_restore, bool p_cancel) {
CollisionShape *cs = Object::cast_to<CollisionShape>(p_gizmo->get_spatial_node());
Ref<Shape> s = cs->get_shape();
if (s.is_null())
return;
if (Object::cast_to<SphereShape>(*s)) {
Ref<SphereShape> ss = s;
if (p_cancel) {
ss->set_radius(p_restore);
return;
}
UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo();
ur->create_action(TTR("Change Sphere Shape Radius"));
ur->add_do_method(ss.ptr(), "set_radius", ss->get_radius());
ur->add_undo_method(ss.ptr(), "set_radius", p_restore);
ur->commit_action();
}
if (Object::cast_to<BoxShape>(*s)) {
Ref<BoxShape> ss = s;
if (p_cancel) {
ss->set_extents(p_restore);
return;
}
UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo();
ur->create_action(TTR("Change Box Shape Extents"));
ur->add_do_method(ss.ptr(), "set_extents", ss->get_extents());
ur->add_undo_method(ss.ptr(), "set_extents", p_restore);
ur->commit_action();
}
if (Object::cast_to<CapsuleShape>(*s)) {
Ref<CapsuleShape> ss = s;
if (p_cancel) {
if (p_idx == 0)
ss->set_radius(p_restore);
else
ss->set_height(p_restore);
return;
}
UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo();
if (p_idx == 0) {
ur->create_action(TTR("Change Capsule Shape Radius"));
ur->add_do_method(ss.ptr(), "set_radius", ss->get_radius());
ur->add_undo_method(ss.ptr(), "set_radius", p_restore);
} else {
ur->create_action(TTR("Change Capsule Shape Height"));
ur->add_do_method(ss.ptr(), "set_height", ss->get_height());
ur->add_undo_method(ss.ptr(), "set_height", p_restore);
}
ur->commit_action();
}
if (Object::cast_to<CylinderShape>(*s)) {
Ref<CylinderShape> ss = s;
if (p_cancel) {
if (p_idx == 0)
ss->set_radius(p_restore);
else
ss->set_height(p_restore);
return;
}
UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo();
if (p_idx == 0) {
ur->create_action(TTR("Change Cylinder Shape Radius"));
ur->add_do_method(ss.ptr(), "set_radius", ss->get_radius());
ur->add_undo_method(ss.ptr(), "set_radius", p_restore);
} else {
ur->create_action(
///
////////
TTR("Change Cylinder Shape Height"));
ur->add_do_method(ss.ptr(), "set_height", ss->get_height());
ur->add_undo_method(ss.ptr(), "set_height", p_restore);
}
ur->commit_action();
}
if (Object::cast_to<RayShape>(*s)) {
Ref<RayShape> ss = s;
if (p_cancel) {
ss->set_length(p_restore);
return;
}
UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo();
ur->create_action(TTR("Change Ray Shape Length"));
ur->add_do_method(ss.ptr(), "set_length", ss->get_length());
ur->add_undo_method(ss.ptr(), "set_length", p_restore);
ur->commit_action();
}
}
void CollisionShapeSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) {
CollisionShape *cs = Object::cast_to<CollisionShape>(p_gizmo->get_spatial_node());
p_gizmo->clear();
Ref<Shape> s = cs->get_shape();
if (s.is_null())
return;
Ref<Material> material = get_material("shape_material", p_gizmo);
Ref<Material> handles_material = get_material("handles");
if (Object::cast_to<SphereShape>(*s)) {
Ref<SphereShape> sp = s;
float r = sp->get_radius();
Vector<Vector3> points;
for (int i = 0; i <= 360; i++) {
float ra = Math::deg2rad((float)i);
float rb = Math::deg2rad((float)i + 1);
Point2 a = Vector2(Math::sin(ra), Math::cos(ra)) * r;
Point2 b = Vector2(Math::sin(rb), Math::cos(rb)) * r;
points.push_back(Vector3(a.x, 0, a.y));
points.push_back(Vector3(b.x, 0, b.y));
points.push_back(Vector3(0, a.x, a.y));
points.push_back(Vector3(0, b.x, b.y));
points.push_back(Vector3(a.x, a.y, 0));
points.push_back(Vector3(b.x, b.y, 0));
}
Vector<Vector3> collision_segments;
for (int i = 0; i < 64; i++) {
float ra = i * Math_PI * 2.0 / 64.0;
float rb = (i + 1) * Math_PI * 2.0 / 64.0;
Point2 a = Vector2(Math::sin(ra), Math::cos(ra)) * r;
Point2 b = Vector2(Math::sin(rb), Math::cos(rb)) * r;
collision_segments.push_back(Vector3(a.x, 0, a.y));
collision_segments.push_back(Vector3(b.x, 0, b.y));
collision_segments.push_back(Vector3(0, a.x, a.y));
collision_segments.push_back(Vector3(0, b.x, b.y));
collision_segments.push_back(Vector3(a.x, a.y, 0));
collision_segments.push_back(Vector3(b.x, b.y, 0));
}
p_gizmo->add_lines(points, material);
p_gizmo->add_collision_segments(collision_segments);
Vector<Vector3> handles;
handles.push_back(Vector3(r, 0, 0));
p_gizmo->add_handles(handles, handles_material);
}
if (Object::cast_to<BoxShape>(*s)) {
Ref<BoxShape> bs = s;
Vector<Vector3> lines;
AABB aabb;
aabb.position = -bs->get_extents();
aabb.size = aabb.position * -2;
for (int i = 0; i < 12; i++) {
Vector3 a, b;
aabb.get_edge(i, a, b);
lines.push_back(a);
lines.push_back(b);
}
Vector<Vector3> handles;
for (int i = 0; i < 3; i++) {
Vector3 ax;
ax[i] = bs->get_extents()[i];
handles.push_back(ax);
}
p_gizmo->add_lines(lines, material);
p_gizmo->add_collision_segments(lines);
p_gizmo->add_handles(handles, handles_material);
}
if (Object::cast_to<CapsuleShape>(*s)) {
Ref<CapsuleShape> cs = s;
float radius = cs->get_radius();
float height = cs->get_height();
Vector<Vector3> points;
Vector3 d(0, 0, height * 0.5);
for (int i = 0; i < 360; i++) {
float ra = Math::deg2rad((float)i);
float rb = Math::deg2rad((float)i + 1);
Point2 a = Vector2(Math::sin(ra), Math::cos(ra)) * radius;
Point2 b = Vector2(Math::sin(rb), Math::cos(rb)) * radius;
points.push_back(Vector3(a.x, a.y, 0) + d);
points.push_back(Vector3(b.x, b.y, 0) + d);
points.push_back(Vector3(a.x, a.y, 0) - d);
points.push_back(Vector3(b.x, b.y, 0) - d);
if (i % 90 == 0) {
points.push_back(Vector3(a.x, a.y, 0) + d);
points.push_back(Vector3(a.x, a.y, 0) - d);
}
Vector3 dud = i < 180 ? d : -d;
points.push_back(Vector3(0, a.y, a.x) + dud);
points.push_back(Vector3(0, b.y, b.x) + dud);
points.push_back(Vector3(a.y, 0, a.x) + dud);
points.push_back(Vector3(b.y, 0, b.x) + dud);
}
p_gizmo->add_lines(points, material);
Vector<Vector3> collision_segments;
for (int i = 0; i < 64; i++) {
float ra = i * Math_PI * 2.0 / 64.0;
float rb = (i + 1) * Math_PI * 2.0 / 64.0;
Point2 a = Vector2(Math::sin(ra), Math::cos(ra)) * radius;
Point2 b = Vector2(Math::sin(rb), Math::cos(rb)) * radius;
collision_segments.push_back(Vector3(a.x, a.y, 0) + d);
collision_segments.push_back(Vector3(b.x, b.y, 0) + d);
collision_segments.push_back(Vector3(a.x, a.y, 0) - d);
collision_segments.push_back(Vector3(b.x, b.y, 0) - d);
if (i % 16 == 0) {
collision_segments.push_back(Vector3(a.x, a.y, 0) + d);
collision_segments.push_back(Vector3(a.x, a.y, 0) - d);
}
Vector3 dud = i < 32 ? d : -d;
collision_segments.push_back(Vector3(0, a.y, a.x) + dud);
collision_segments.push_back(Vector3(0, b.y, b.x) + dud);
collision_segments.push_back(Vector3(a.y, 0, a.x) + dud);
collision_segments.push_back(Vector3(b.y, 0, b.x) + dud);
}
p_gizmo->add_collision_segments(collision_segments);
Vector<Vector3> handles;
handles.push_back(Vector3(cs->get_radius(), 0, 0));
handles.push_back(Vector3(0, 0, cs->get_height() * 0.5 + cs->get_radius()));
p_gizmo->add_handles(handles, handles_material);
}
if (Object::cast_to<CylinderShape>(*s)) {
Ref<CylinderShape> cs = s;
float radius = cs->get_radius();
float height = cs->get_height();
Vector<Vector3> points;
Vector3 d(0, height * 0.5, 0);
for (int i = 0; i < 360; i++) {
float ra = Math::deg2rad((float)i);
float rb = Math::deg2rad((float)i + 1);
Point2 a = Vector2(Math::sin(ra), Math::cos(ra)) * radius;
Point2 b = Vector2(Math::sin(rb), Math::cos(rb)) * radius;
points.push_back(Vector3(a.x, 0, a.y) + d);
points.push_back(Vector3(b.x, 0, b.y) + d);
points.push_back(Vector3(a.x, 0, a.y) - d);
points.push_back(Vector3(b.x, 0, b.y) - d);
if (i % 90 == 0) {
points.push_back(Vector3(a.x, 0, a.y) + d);
points.push_back(Vector3(a.x, 0, a.y) - d);
}
}
p_gizmo->add_lines(points, material);
Vector<Vector3> collision_segments;
for (int i = 0; i < 64; i++) {
float ra = i * Math_PI * 2.0 / 64.0;
float rb = (i + 1) * Math_PI * 2.0 / 64.0;
Point2 a = Vector2(Math::sin(ra), Math::cos(ra)) * radius;
Point2 b = Vector2(Math::sin(rb), Math::cos(rb)) * radius;
collision_segments.push_back(Vector3(a.x, 0, a.y) + d);
collision_segments.push_back(Vector3(b.x, 0, b.y) + d);
collision_segments.push_back(Vector3(a.x, 0, a.y) - d);
collision_segments.push_back(Vector3(b.x, 0, b.y) - d);
if (i % 16 == 0) {
collision_segments.push_back(Vector3(a.x, 0, a.y) + d);
collision_segments.push_back(Vector3(a.x, 0, a.y) - d);
}
}
p_gizmo->add_collision_segments(collision_segments);
Vector<Vector3> handles;
handles.push_back(Vector3(cs->get_radius(), 0, 0));
handles.push_back(Vector3(0, cs->get_height() * 0.5, 0));
p_gizmo->add_handles(handles, handles_material);
}
if (Object::cast_to<PlaneShape>(*s)) {
Ref<PlaneShape> ps = s;
Plane p = ps->get_plane();
Vector<Vector3> points;
Vector3 n1 = p.get_any_perpendicular_normal();
Vector3 n2 = p.normal.cross(n1).normalized();
Vector3 pface[4] = {
p.normal * p.d + n1 * 10.0 + n2 * 10.0,
p.normal * p.d + n1 * 10.0 + n2 * -10.0,
p.normal * p.d + n1 * -10.0 + n2 * -10.0,
p.normal * p.d + n1 * -10.0 + n2 * 10.0,
};
points.push_back(pface[0]);
points.push_back(pface[1]);
points.push_back(pface[1]);
points.push_back(pface[2]);
points.push_back(pface[2]);
points.push_back(pface[3]);
points.push_back(pface[3]);
points.push_back(pface[0]);
points.push_back(p.normal * p.d);
points.push_back(p.normal * p.d + p.normal * 3);
p_gizmo->add_lines(points, material);
p_gizmo->add_collision_segments(points);
}
if (Object::cast_to<ConvexPolygonShape>(*s)) {
PoolVector<Vector3> points = Object::cast_to<ConvexPolygonShape>(*s)->get_points();
if (points.size() > 3) {
QuickHull qh;
Vector<Vector3> varr = Variant(points);
Geometry::MeshData md;
Error err = qh.build(varr, md);
if (err == OK) {
Vector<Vector3> points;
points.resize(md.edges.size() * 2);
for (int i = 0; i < md.edges.size(); i++) {
points.write[i * 2 + 0] = md.vertices[md.edges[i].a];
points.write[i * 2 + 1] = md.vertices[md.edges[i].b];
}
p_gizmo->add_lines(points, material);
p_gizmo->add_collision_segments(points);
}
}
}
if (Object::cast_to<RayShape>(*s)) {
Ref<RayShape> rs = s;
Vector<Vector3> points;
points.push_back(Vector3());
points.push_back(Vector3(0, 0, rs->get_length()));
p_gizmo->add_lines(points, material);
p_gizmo->add_collision_segments(points);
Vector<Vector3> handles;
handles.push_back(Vector3(0, 0, rs->get_length()));
p_gizmo->add_handles(handles, handles_material);
}
}
/////
CollisionPolygonSpatialGizmoPlugin::CollisionPolygonSpatialGizmoPlugin() {
Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/shape", Color(0.5, 0.7, 1));
create_material("shape_material", gizmo_color);
}
bool CollisionPolygonSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) {
return Object::cast_to<CollisionPolygon>(p_spatial) != NULL;
}
String CollisionPolygonSpatialGizmoPlugin::get_name() const {
return "CollisionPolygon";
}
void CollisionPolygonSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) {
CollisionPolygon *polygon = Object::cast_to<CollisionPolygon>(p_gizmo->get_spatial_node());
p_gizmo->clear();
Vector<Vector2> points = polygon->get_polygon();
float depth = polygon->get_depth() * 0.5;
Vector<Vector3> lines;
for (int i = 0; i < points.size(); i++) {
int n = (i + 1) % points.size();
lines.push_back(Vector3(points[i].x, points[i].y, depth));
lines.push_back(Vector3(points[n].x, points[n].y, depth));
lines.push_back(Vector3(points[i].x, points[i].y, -depth));
lines.push_back(Vector3(points[n].x, points[n].y, -depth));
lines.push_back(Vector3(points[i].x, points[i].y, depth));
lines.push_back(Vector3(points[i].x, points[i].y, -depth));
}
Ref<Material> material = get_material("shape_material", p_gizmo);
p_gizmo->add_lines(lines, material);
p_gizmo->add_collision_segments(lines);
}
////
NavigationMeshSpatialGizmoPlugin::NavigationMeshSpatialGizmoPlugin() {
create_material("navigation_material", EDITOR_DEF("editors/3d_gizmos/gizmo_colors/navigation_edge", Color(0.5, 1, 1)));
create_material("navigation_material", EDITOR_DEF("editors/3d_gizmos/gizmo_colors/navigation_edge_disabled", Color(0.7, 0.7, 0.7)));
create_material("navigation_material", EDITOR_DEF("editors/3d_gizmos/gizmo_colors/navigation_solid", Color(0.5, 1, 1, 0.4)));
create_material("navigation_material", EDITOR_DEF("editors/3d_gizmos/gizmo_colors/navigation_solid_disabled", Color(0.7, 0.7, 0.7, 0.4)));
}
bool NavigationMeshSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) {
return Object::cast_to<NavigationMeshInstance>(p_spatial) != NULL;
}
String NavigationMeshSpatialGizmoPlugin::get_name() const {
return "NavigationMeshInstance";
}
void NavigationMeshSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) {
NavigationMeshInstance *navmesh = Object::cast_to<NavigationMeshInstance>(p_gizmo->get_spatial_node());
Ref<Material> edge_material = get_material("navigation_material", p_gizmo);
Ref<Material> edge_material_disabled = get_material("navigation_material", p_gizmo);
Ref<Material> solid_material = get_material("navigation_material", p_gizmo);
Ref<Material> solid_material_disabled = get_material("navigation_material", p_gizmo);
p_gizmo->clear();
Ref<NavigationMesh> navmeshie = navmesh->get_navigation_mesh();
if (navmeshie.is_null())
return;
PoolVector<Vector3> vertices = navmeshie->get_vertices();
PoolVector<Vector3>::Read vr = vertices.read();
List<Face3> faces;
for (int i = 0; i < navmeshie->get_polygon_count(); i++) {
Vector<int> p = navmeshie->get_polygon(i);
for (int j = 2; j < p.size(); j++) {
Face3 f;
f.vertex[0] = vr[p[0]];
f.vertex[1] = vr[p[j - 1]];
f.vertex[2] = vr[p[j]];
faces.push_back(f);
}
}
if (faces.empty())
return;
Map<_EdgeKey, bool> edge_map;
PoolVector<Vector3> tmeshfaces;
tmeshfaces.resize(faces.size() * 3);
{
PoolVector<Vector3>::Write tw = tmeshfaces.write();
int tidx = 0;
for (List<Face3>::Element *E = faces.front(); E; E = E->next()) {
const Face3 &f = E->get();
for (int j = 0; j < 3; j++) {
tw[tidx++] = f.vertex[j];
_EdgeKey ek;
ek.from = f.vertex[j].snapped(Vector3(CMP_EPSILON, CMP_EPSILON, CMP_EPSILON));
ek.to = f.vertex[(j + 1) % 3].snapped(Vector3(CMP_EPSILON, CMP_EPSILON, CMP_EPSILON));
if (ek.from < ek.to)
SWAP(ek.from, ek.to);
Map<_EdgeKey, bool>::Element *E = edge_map.find(ek);
if (E) {
E->get() = false;
} else {
edge_map[ek] = true;
}
}
}
}
Vector<Vector3> lines;
for (Map<_EdgeKey, bool>::Element *E = edge_map.front(); E; E = E->next()) {
if (E->get()) {
lines.push_back(E->key().from);
lines.push_back(E->key().to);
}
}
Ref<TriangleMesh> tmesh = memnew(TriangleMesh);
tmesh->create(tmeshfaces);
if (lines.size())
p_gizmo->add_lines(lines, navmesh->is_enabled() ? edge_material : edge_material_disabled);
p_gizmo->add_collision_triangles(tmesh);
Ref<ArrayMesh> m = memnew(ArrayMesh);
Array a;
a.resize(Mesh::ARRAY_MAX);
a[0] = tmeshfaces;
m->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, a);
m->surface_set_material(0, navmesh->is_enabled() ? solid_material : solid_material_disabled);
p_gizmo->add_mesh(m);
p_gizmo->add_collision_segments(lines);
}
//////
#define BODY_A_RADIUS 0.25
#define BODY_B_RADIUS 0.27
Basis JointGizmosDrawer::look_body(const Transform &p_joint_transform, const Transform &p_body_transform) {
const Vector3 &p_eye(p_joint_transform.origin);
const Vector3 &p_target(p_body_transform.origin);
Vector3 v_x, v_y, v_z;
// Look the body with X
v_x = p_target - p_eye;
v_x.normalize();
v_z = v_x.cross(Vector3(0, 1, 0));
v_z.normalize();
v_y = v_z.cross(v_x);
v_y.normalize();
Basis base;
base.set(v_x, v_y, v_z);
// Absorb current joint transform
base = p_joint_transform.basis.inverse() * base;
return base;
}
Basis JointGizmosDrawer::look_body_toward(Vector3::Axis p_axis, const Transform &joint_transform, const Transform &body_transform) {
switch (p_axis) {
case Vector3::AXIS_X:
return look_body_toward_x(joint_transform, body_transform);
case Vector3::AXIS_Y:
return look_body_toward_y(joint_transform, body_transform);
case Vector3::AXIS_Z:
return look_body_toward_z(joint_transform, body_transform);
default:
return Basis();
}
}
Basis JointGizmosDrawer::look_body_toward_x(const Transform &p_joint_transform, const Transform &p_body_transform) {
const Vector3 &p_eye(p_joint_transform.origin);
const Vector3 &p_target(p_body_transform.origin);
const Vector3 p_front(p_joint_transform.basis.get_axis(0));
Vector3 v_x, v_y, v_z;
// Look the body with X
v_x = p_target - p_eye;
v_x.normalize();
v_y = p_front.cross(v_x);
v_y.normalize();
v_z = v_y.cross(p_front);
v_z.normalize();
// Clamp X to FRONT axis
v_x = p_front;
v_x.normalize();
Basis base;
base.set(v_x, v_y, v_z);
// Absorb current joint transform
base = p_joint_transform.basis.inverse() * base;
return base;
}
Basis JointGizmosDrawer::look_body_toward_y(const Transform &p_joint_transform, const Transform &p_body_transform) {
const Vector3 &p_eye(p_joint_transform.origin);
const Vector3 &p_target(p_body_transform.origin);
const Vector3 p_up(p_joint_transform.basis.get_axis(1));
Vector3 v_x, v_y, v_z;
// Look the body with X
v_x = p_target - p_eye;
v_x.normalize();
v_z = v_x.cross(p_up);
v_z.normalize();
v_x = p_up.cross(v_z);
v_x.normalize();
// Clamp Y to UP axis
v_y = p_up;
v_y.normalize();
Basis base;
base.set(v_x, v_y, v_z);
// Absorb current joint transform
base = p_joint_transform.basis.inverse() * base;
return base;
}
Basis JointGizmosDrawer::look_body_toward_z(const Transform &p_joint_transform, const Transform &p_body_transform) {
const Vector3 &p_eye(p_joint_transform.origin);
const Vector3 &p_target(p_body_transform.origin);
const Vector3 p_lateral(p_joint_transform.basis.get_axis(2));
Vector3 v_x, v_y, v_z;
// Look the body with X
v_x = p_target - p_eye;
v_x.normalize();
v_z = p_lateral;
v_z.normalize();
v_y = v_z.cross(v_x);
v_y.normalize();
// Clamp X to Z axis
v_x = v_y.cross(v_z);
v_x.normalize();
Basis base;
base.set(v_x, v_y, v_z);
// Absorb current joint transform
base = p_joint_transform.basis.inverse() * base;
return base;
}
void JointGizmosDrawer::draw_circle(Vector3::Axis p_axis, real_t p_radius, const Transform &p_offset, const Basis &p_base, real_t p_limit_lower, real_t p_limit_upper, Vector<Vector3> &r_points, bool p_inverse) {
if (p_limit_lower == p_limit_upper) {
r_points.push_back(p_offset.translated(Vector3()).origin);
r_points.push_back(p_offset.translated(p_base.xform(Vector3(0.5, 0, 0))).origin);
} else {
if (p_limit_lower > p_limit_upper) {
p_limit_lower = -Math_PI;
p_limit_upper = Math_PI;
}
const int points = 32;
for (int i = 0; i < points; i++) {
real_t s = p_limit_lower + i * (p_limit_upper - p_limit_lower) / points;
real_t n = p_limit_lower + (i + 1) * (p_limit_upper - p_limit_lower) / points;
Vector3 from;
Vector3 to;
switch (p_axis) {
case Vector3::AXIS_X:
if (p_inverse) {
from = p_base.xform(Vector3(0, Math::sin(s), Math::cos(s))) * p_radius;
to = p_base.xform(Vector3(0, Math::sin(n), Math::cos(n))) * p_radius;
} else {
from = p_base.xform(Vector3(0, -Math::sin(s), Math::cos(s))) * p_radius;
to = p_base.xform(Vector3(0, -Math::sin(n), Math::cos(n))) * p_radius;
}
break;
case Vector3::AXIS_Y:
if (p_inverse) {
from = p_base.xform(Vector3(Math::cos(s), 0, -Math::sin(s))) * p_radius;
to = p_base.xform(Vector3(Math::cos(n), 0, -Math::sin(n))) * p_radius;
} else {
from = p_base.xform(Vector3(Math::cos(s), 0, Math::sin(s))) * p_radius;
to = p_base.xform(Vector3(Math::cos(n), 0, Math::sin(n))) * p_radius;
}
break;
case Vector3::AXIS_Z:
from = p_base.xform(Vector3(Math::cos(s), Math::sin(s), 0)) * p_radius;
to = p_base.xform(Vector3(Math::cos(n), Math::sin(n), 0)) * p_radius;
break;
}
if (i == points - 1) {
r_points.push_back(p_offset.translated(to).origin);
r_points.push_back(p_offset.translated(Vector3()).origin);
}
if (i == 0) {
r_points.push_back(p_offset.translated(from).origin);
r_points.push_back(p_offset.translated(Vector3()).origin);
}
r_points.push_back(p_offset.translated(from).origin);
r_points.push_back(p_offset.translated(to).origin);
}
r_points.push_back(p_offset.translated(Vector3(0, p_radius * 1.5, 0)).origin);
r_points.push_back(p_offset.translated(Vector3()).origin);
}
}
void JointGizmosDrawer::draw_cone(const Transform &p_offset, const Basis &p_base, real_t p_swing, real_t p_twist, Vector<Vector3> &r_points) {
float r = 1.0;
float w = r * Math::sin(p_swing);
float d = r * Math::cos(p_swing);
//swing
for (int i = 0; i < 360; i += 10) {
float ra = Math::deg2rad((float)i);
float rb = Math::deg2rad((float)i + 10);
Point2 a = Vector2(Math::sin(ra), Math::cos(ra)) * w;
Point2 b = Vector2(Math::sin(rb), Math::cos(rb)) * w;
r_points.push_back(p_offset.translated(p_base.xform(Vector3(d, a.x, a.y))).origin);
r_points.push_back(p_offset.translated(p_base.xform(Vector3(d, b.x, b.y))).origin);
if (i % 90 == 0) {
r_points.push_back(p_offset.translated(p_base.xform(Vector3(d, a.x, a.y))).origin);
r_points.push_back(p_offset.translated(p_base.xform(Vector3())).origin);
}
}
r_points.push_back(p_offset.translated(p_base.xform(Vector3())).origin);
r_points.push_back(p_offset.translated(p_base.xform(Vector3(1, 0, 0))).origin);
/// Twist
float ts = Math::rad2deg(p_twist);
ts = MIN(ts, 720);
for (int i = 0; i < int(ts); i += 5) {
float ra = Math::deg2rad((float)i);
float rb = Math::deg2rad((float)i + 5);
float c = i / 720.0;
float cn = (i + 5) / 720.0;
Point2 a = Vector2(Math::sin(ra), Math::cos(ra)) * w * c;
Point2 b = Vector2(Math::sin(rb), Math::cos(rb)) * w * cn;
r_points.push_back(p_offset.translated(p_base.xform(Vector3(c, a.x, a.y))).origin);
r_points.push_back(p_offset.translated(p_base.xform(Vector3(cn, b.x, b.y))).origin);
}
}
////
JointSpatialGizmoPlugin::JointSpatialGizmoPlugin() {
create_material("joint_material", EDITOR_DEF("editors/3d_gizmos/gizmo_colors/joint", Color(0.5, 0.8, 1)));
create_material("joint_body_a_material", EDITOR_DEF("editors/3d_gizmos/gizmo_colors/joint_body_a", Color(0.6, 0.8, 1)));
create_material("joint_body_b_material", EDITOR_DEF("editors/3d_gizmos/gizmo_colors/joint_body_b", Color(0.6, 0.9, 1)));
}
bool JointSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) {
return Object::cast_to<Joint>(p_spatial) != NULL;
}
String JointSpatialGizmoPlugin::get_name() const {
return "Joints";
}
void JointSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) {
Joint *joint = Object::cast_to<Joint>(p_gizmo->get_spatial_node());
p_gizmo->clear();
const Spatial *node_body_a = Object::cast_to<Spatial>(joint->get_node(joint->get_node_a()));
const Spatial *node_body_b = Object::cast_to<Spatial>(joint->get_node(joint->get_node_b()));
Ref<Material> common_material = get_material("joint_material", p_gizmo);
Ref<Material> body_a_material = get_material("joint_body_a_material", p_gizmo);
Ref<Material> body_b_material = get_material("joint_body_b_material", p_gizmo);
Vector<Vector3> points;
Vector<Vector3> body_a_points;
Vector<Vector3> body_b_points;
if (Object::cast_to<PinJoint>(joint)) {
CreatePinJointGizmo(Transform(), points);
p_gizmo->add_collision_segments(points);
p_gizmo->add_lines(points, common_material);
}
HingeJoint *hinge = Object::cast_to<HingeJoint>(joint);
if (hinge) {
CreateHingeJointGizmo(
Transform(),
hinge->get_global_transform(),
node_body_a ? node_body_a->get_global_transform() : Transform(),
node_body_b ? node_body_b->get_global_transform() : Transform(),
hinge->get_param(HingeJoint::PARAM_LIMIT_LOWER),
hinge->get_param(HingeJoint::PARAM_LIMIT_UPPER),
hinge->get_flag(HingeJoint::FLAG_USE_LIMIT),
points,
node_body_a ? &body_a_points : NULL,
node_body_b ? &body_b_points : NULL);
p_gizmo->add_collision_segments(points);
p_gizmo->add_collision_segments(body_a_points);
p_gizmo->add_collision_segments(body_b_points);
p_gizmo->add_lines(points, common_material);
p_gizmo->add_lines(body_a_points, body_a_material);
p_gizmo->add_lines(body_b_points, body_b_material);
}
SliderJoint *slider = Object::cast_to<SliderJoint>(joint);
if (slider) {
CreateSliderJointGizmo(
Transform(),
slider->get_global_transform(),
node_body_a ? node_body_a->get_global_transform() : Transform(),
node_body_b ? node_body_b->get_global_transform() : Transform(),
slider->get_param(SliderJoint::PARAM_ANGULAR_LIMIT_LOWER),
slider->get_param(SliderJoint::PARAM_ANGULAR_LIMIT_UPPER),
slider->get_param(SliderJoint::PARAM_LINEAR_LIMIT_LOWER),
slider->get_param(SliderJoint::PARAM_LINEAR_LIMIT_UPPER),
points,
node_body_a ? &body_a_points : NULL,
node_body_b ? &body_b_points : NULL);
p_gizmo->add_collision_segments(points);
p_gizmo->add_collision_segments(body_a_points);
p_gizmo->add_collision_segments(body_b_points);
p_gizmo->add_lines(points, common_material);
p_gizmo->add_lines(body_a_points, body_a_material);
p_gizmo->add_lines(body_b_points, body_b_material);
}
ConeTwistJoint *cone = Object::cast_to<ConeTwistJoint>(joint);
if (cone) {
CreateConeTwistJointGizmo(
Transform(),
cone->get_global_transform(),
node_body_a ? node_body_a->get_global_transform() : Transform(),
node_body_b ? node_body_b->get_global_transform() : Transform(),
cone->get_param(ConeTwistJoint::PARAM_SWING_SPAN),
cone->get_param(ConeTwistJoint::PARAM_TWIST_SPAN),
node_body_a ? &body_a_points : NULL,
node_body_b ? &body_b_points : NULL);
p_gizmo->add_collision_segments(body_a_points);
p_gizmo->add_collision_segments(body_b_points);
p_gizmo->add_lines(body_a_points, body_a_material);
p_gizmo->add_lines(body_b_points, body_b_material);
}
Generic6DOFJoint *gen = Object::cast_to<Generic6DOFJoint>(joint);
if (gen) {
CreateGeneric6DOFJointGizmo(
Transform(),
gen->get_global_transform(),
node_body_a ? node_body_a->get_global_transform() : Transform(),
node_body_b ? node_body_b->get_global_transform() : Transform(),
gen->get_param_x(Generic6DOFJoint::PARAM_ANGULAR_LOWER_LIMIT),
gen->get_param_x(Generic6DOFJoint::PARAM_ANGULAR_UPPER_LIMIT),
gen->get_param_x(Generic6DOFJoint::PARAM_LINEAR_LOWER_LIMIT),
gen->get_param_x(Generic6DOFJoint::PARAM_LINEAR_UPPER_LIMIT),
gen->get_flag_x(Generic6DOFJoint::FLAG_ENABLE_ANGULAR_LIMIT),
gen->get_flag_x(Generic6DOFJoint::FLAG_ENABLE_LINEAR_LIMIT),
gen->get_param_y(Generic6DOFJoint::PARAM_ANGULAR_LOWER_LIMIT),
gen->get_param_y(Generic6DOFJoint::PARAM_ANGULAR_UPPER_LIMIT),
gen->get_param_y(Generic6DOFJoint::PARAM_LINEAR_LOWER_LIMIT),
gen->get_param_y(Generic6DOFJoint::PARAM_LINEAR_UPPER_LIMIT),
gen->get_flag_y(Generic6DOFJoint::FLAG_ENABLE_ANGULAR_LIMIT),
gen->get_flag_y(Generic6DOFJoint::FLAG_ENABLE_LINEAR_LIMIT),
gen->get_param_z(Generic6DOFJoint::PARAM_ANGULAR_LOWER_LIMIT),
gen->get_param_z(Generic6DOFJoint::PARAM_ANGULAR_UPPER_LIMIT),
gen->get_param_z(Generic6DOFJoint::PARAM_LINEAR_LOWER_LIMIT),
gen->get_param_z(Generic6DOFJoint::PARAM_LINEAR_UPPER_LIMIT),
gen->get_flag_z(Generic6DOFJoint::FLAG_ENABLE_ANGULAR_LIMIT),
gen->get_flag_z(Generic6DOFJoint::FLAG_ENABLE_LINEAR_LIMIT),
points,
node_body_a ? &body_a_points : NULL,
node_body_a ? &body_b_points : NULL);
p_gizmo->add_collision_segments(points);
p_gizmo->add_collision_segments(body_a_points);
p_gizmo->add_collision_segments(body_b_points);
p_gizmo->add_lines(points, common_material);
p_gizmo->add_lines(body_a_points, body_a_material);
p_gizmo->add_lines(body_b_points, body_b_material);
}
}
void JointSpatialGizmoPlugin::CreatePinJointGizmo(const Transform &p_offset, Vector<Vector3> &r_cursor_points) {
float cs = 0.25;
r_cursor_points.push_back(p_offset.translated(Vector3(+cs, 0, 0)).origin);
r_cursor_points.push_back(p_offset.translated(Vector3(-cs, 0, 0)).origin);
r_cursor_points.push_back(p_offset.translated(Vector3(0, +cs, 0)).origin);
r_cursor_points.push_back(p_offset.translated(Vector3(0, -cs, 0)).origin);
r_cursor_points.push_back(p_offset.translated(Vector3(0, 0, +cs)).origin);
r_cursor_points.push_back(p_offset.translated(Vector3(0, 0, -cs)).origin);
}
void JointSpatialGizmoPlugin::CreateHingeJointGizmo(const Transform &p_offset, const Transform &p_trs_joint, const Transform &p_trs_body_a, const Transform &p_trs_body_b, real_t p_limit_lower, real_t p_limit_upper, bool p_use_limit, Vector<Vector3> &r_common_points, Vector<Vector3> *r_body_a_points, Vector<Vector3> *r_body_b_points) {
r_common_points.push_back(p_offset.translated(Vector3(0, 0, 0.5)).origin);
r_common_points.push_back(p_offset.translated(Vector3(0, 0, -0.5)).origin);
if (!p_use_limit) {
p_limit_upper = -1;
p_limit_lower = 0;
}
if (r_body_a_points) {
JointGizmosDrawer::draw_circle(Vector3::AXIS_Z,
BODY_A_RADIUS,
p_offset,
JointGizmosDrawer::look_body_toward_z(p_trs_joint, p_trs_body_a),
p_limit_lower,
p_limit_upper,
*r_body_a_points);
}
if (r_body_b_points) {
JointGizmosDrawer::draw_circle(Vector3::AXIS_Z,
BODY_B_RADIUS,
p_offset,
JointGizmosDrawer::look_body_toward_z(p_trs_joint, p_trs_body_b),
p_limit_lower,
p_limit_upper,
*r_body_b_points);
}
}
void JointSpatialGizmoPlugin::CreateSliderJointGizmo(const Transform &p_offset, const Transform &p_trs_joint, const Transform &p_trs_body_a, const Transform &p_trs_body_b, real_t p_angular_limit_lower, real_t p_angular_limit_upper, real_t p_linear_limit_lower, real_t p_linear_limit_upper, Vector<Vector3> &r_points, Vector<Vector3> *r_body_a_points, Vector<Vector3> *r_body_b_points) {
p_linear_limit_lower = -p_linear_limit_lower;
p_linear_limit_upper = -p_linear_limit_upper;
float cs = 0.25;
r_points.push_back(p_offset.translated(Vector3(0, 0, 0.5)).origin);
r_points.push_back(p_offset.translated(Vector3(0, 0, -0.5)).origin);
if (p_linear_limit_lower >= p_linear_limit_upper) {
r_points.push_back(p_offset.translated(Vector3(p_linear_limit_upper, 0, 0)).origin);
r_points.push_back(p_offset.translated(Vector3(p_linear_limit_lower, 0, 0)).origin);
r_points.push_back(p_offset.translated(Vector3(p_linear_limit_upper, -cs, -cs)).origin);
r_points.push_back(p_offset.translated(Vector3(p_linear_limit_upper, -cs, cs)).origin);
r_points.push_back(p_offset.translated(Vector3(p_linear_limit_upper, -cs, cs)).origin);
r_points.push_back(p_offset.translated(Vector3(p_linear_limit_upper, cs, cs)).origin);
r_points.push_back(p_offset.translated(Vector3(p_linear_limit_upper, cs, cs)).origin);
r_points.push_back(p_offset.translated(Vector3(p_linear_limit_upper, cs, -cs)).origin);
r_points.push_back(p_offset.translated(Vector3(p_linear_limit_upper, cs, -cs)).origin);
r_points.push_back(p_offset.translated(Vector3(p_linear_limit_upper, -cs, -cs)).origin);
r_points.push_back(p_offset.translated(Vector3(p_linear_limit_lower, -cs, -cs)).origin);
r_points.push_back(p_offset.translated(Vector3(p_linear_limit_lower, -cs, cs)).origin);
r_points.push_back(p_offset.translated(Vector3(p_linear_limit_lower, -cs, cs)).origin);
r_points.push_back(p_offset.translated(Vector3(p_linear_limit_lower, cs, cs)).origin);
r_points.push_back(p_offset.translated(Vector3(p_linear_limit_lower, cs, cs)).origin);
r_points.push_back(p_offset.translated(Vector3(p_linear_limit_lower, cs, -cs)).origin);
r_points.push_back(p_offset.translated(Vector3(p_linear_limit_lower, cs, -cs)).origin);
r_points.push_back(p_offset.translated(Vector3(p_linear_limit_lower, -cs, -cs)).origin);
} else {
r_points.push_back(p_offset.translated(Vector3(+cs * 2, 0, 0)).origin);
r_points.push_back(p_offset.translated(Vector3(-cs * 2, 0, 0)).origin);
}
if (r_body_a_points)
JointGizmosDrawer::draw_circle(
Vector3::AXIS_X,
BODY_A_RADIUS,
p_offset,
JointGizmosDrawer::look_body_toward(Vector3::AXIS_X, p_trs_joint, p_trs_body_a),
p_angular_limit_lower,
p_angular_limit_upper,
*r_body_a_points);
if (r_body_b_points)
JointGizmosDrawer::draw_circle(
Vector3::AXIS_X,
BODY_B_RADIUS,
p_offset,
JointGizmosDrawer::look_body_toward(Vector3::AXIS_X, p_trs_joint, p_trs_body_b),
p_angular_limit_lower,
p_angular_limit_upper,
*r_body_b_points,
true);
}
void JointSpatialGizmoPlugin::CreateConeTwistJointGizmo(const Transform &p_offset, const Transform &p_trs_joint, const Transform &p_trs_body_a, const Transform &p_trs_body_b, real_t p_swing, real_t p_twist, Vector<Vector3> *r_body_a_points, Vector<Vector3> *r_body_b_points) {
if (r_body_a_points)
JointGizmosDrawer::draw_cone(
p_offset,
JointGizmosDrawer::look_body(p_trs_joint, p_trs_body_a),
p_swing,
p_twist,
*r_body_a_points);
if (r_body_b_points)
JointGizmosDrawer::draw_cone(
p_offset,
JointGizmosDrawer::look_body(p_trs_joint, p_trs_body_b),
p_swing,
p_twist,
*r_body_b_points);
}
void JointSpatialGizmoPlugin::CreateGeneric6DOFJointGizmo(
const Transform &p_offset,
const Transform &p_trs_joint,
const Transform &p_trs_body_a,
const Transform &p_trs_body_b,
real_t p_angular_limit_lower_x,
real_t p_angular_limit_upper_x,
real_t p_linear_limit_lower_x,
real_t p_linear_limit_upper_x,
bool p_enable_angular_limit_x,
bool p_enable_linear_limit_x,
real_t p_angular_limit_lower_y,
real_t p_angular_limit_upper_y,
real_t p_linear_limit_lower_y,
real_t p_linear_limit_upper_y,
bool p_enable_angular_limit_y,
bool p_enable_linear_limit_y,
real_t p_angular_limit_lower_z,
real_t p_angular_limit_upper_z,
real_t p_linear_limit_lower_z,
real_t p_linear_limit_upper_z,
bool p_enable_angular_limit_z,
bool p_enable_linear_limit_z,
Vector<Vector3> &r_points,
Vector<Vector3> *r_body_a_points,
Vector<Vector3> *r_body_b_points) {
float cs = 0.25;
for (int ax = 0; ax < 3; ax++) {
/*r_points.push_back(p_offset.translated(Vector3(+cs,0,0)).origin);
r_points.push_back(p_offset.translated(Vector3(-cs,0,0)).origin);
r_points.push_back(p_offset.translated(Vector3(0,+cs,0)).origin);
r_points.push_back(p_offset.translated(Vector3(0,-cs,0)).origin);
r_points.push_back(p_offset.translated(Vector3(0,0,+cs*2)).origin);
r_points.push_back(p_offset.translated(Vector3(0,0,-cs*2)).origin); */
float ll;
float ul;
float lll;
float lul;
int a1, a2, a3;
bool enable_ang;
bool enable_lin;
switch (ax) {
case 0:
ll = p_angular_limit_lower_x;
ul = p_angular_limit_upper_x;
lll = -p_linear_limit_lower_x;
lul = -p_linear_limit_upper_x;
enable_ang = p_enable_angular_limit_x;
enable_lin = p_enable_linear_limit_x;
a1 = 0;
a2 = 1;
a3 = 2;
break;
case 1:
ll = p_angular_limit_lower_y;
ul = p_angular_limit_upper_y;
lll = -p_linear_limit_lower_y;
lul = -p_linear_limit_upper_y;
enable_ang = p_enable_angular_limit_y;
enable_lin = p_enable_linear_limit_y;
a1 = 1;
a2 = 2;
a3 = 0;
break;
case 2:
ll = p_angular_limit_lower_z;
ul = p_angular_limit_upper_z;
lll = -p_linear_limit_lower_z;
lul = -p_linear_limit_upper_z;
enable_ang = p_enable_angular_limit_z;
enable_lin = p_enable_linear_limit_z;
a1 = 2;
a2 = 0;
a3 = 1;
break;
}
#define ADD_VTX(x, y, z) \
{ \
Vector3 v; \
v[a1] = (x); \
v[a2] = (y); \
v[a3] = (z); \
r_points.push_back(p_offset.translated(v).origin); \
}
if (enable_lin && lll >= lul) {
ADD_VTX(lul, 0, 0);
ADD_VTX(lll, 0, 0);
ADD_VTX(lul, -cs, -cs);
ADD_VTX(lul, -cs, cs);
ADD_VTX(lul, -cs, cs);
ADD_VTX(lul, cs, cs);
ADD_VTX(lul, cs, cs);
ADD_VTX(lul, cs, -cs);
ADD_VTX(lul, cs, -cs);
ADD_VTX(lul, -cs, -cs);
ADD_VTX(lll, -cs, -cs);
ADD_VTX(lll, -cs, cs);
ADD_VTX(lll, -cs, cs);
ADD_VTX(lll, cs, cs);
ADD_VTX(lll, cs, cs);
ADD_VTX(lll, cs, -cs);
ADD_VTX(lll, cs, -cs);
ADD_VTX(lll, -cs, -cs);
} else {
ADD_VTX(+cs * 2, 0, 0);
ADD_VTX(-cs * 2, 0, 0);
}
if (!enable_ang) {
ll = 0;
ul = -1;
}
if (r_body_a_points)
JointGizmosDrawer::draw_circle(
static_cast<Vector3::Axis>(ax),
BODY_A_RADIUS,
p_offset,
JointGizmosDrawer::look_body_toward(static_cast<Vector3::Axis>(ax), p_trs_joint, p_trs_body_a),
ll,
ul,
*r_body_a_points,
true);
if (r_body_b_points)
JointGizmosDrawer::draw_circle(
static_cast<Vector3::Axis>(ax),
BODY_B_RADIUS,
p_offset,
JointGizmosDrawer::look_body_toward(static_cast<Vector3::Axis>(ax), p_trs_joint, p_trs_body_b),
ll,
ul,
*r_body_b_points);
}
#undef ADD_VTX
}